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Abstract

Exceptional text-to-image (T2I) generation results of Stable Diffusion models1

(SDMs) come with substantial computational demands. To resolve this issue, re-2

cent research on efficient SDMs has prioritized reducing the number of sampling3

steps and utilizing network quantization. Orthogonal to these directions, this study4

highlights the power of classical architectural compression for general-purpose T2I5

synthesis by introducing a block-removed knowledge-distilled SDM (BK-SDM).6

We eliminate several residual and attention blocks from the U-Net of SDMs, obtain-7

ing over a 30% reduction in the number of parameters, MACs per sampling step,8

and latency. We conduct distillation-based pretraining with only 0.22M LAION9

pairs (fewer than 0.1% of the full training pairs) on a single A100 GPU. Despite10

being trained with limited resources, our compact models can imitate the original11

SDM by benefiting from transferred knowledge and achieve competitive results12

against larger multi-billion parameter models on the zero-shot MS-COCO bench-13

mark. Moreover, we demonstrate the applicability of our lightweight pretrained14

models in personalized generation with DreamBooth finetuning.15

Figure 1: Our compressed stable diffusion enables efficient (a) zero-shot general-purpose text-to-
image generation and (b) personalized synthesis. Selected samples from our lightest BK-SDM-Small
with 36% reduced parameters and latency are shown.
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1 Introduction16

Large diffusion models [44, 51, 38, 47] have showcased groundbreaking results in text-to-image (T2I)17

synthesis tasks, which aim to create photorealistic images from textual descriptions. Stable Diffusion18

models (SDMs) [46, 47] are one of the most renowned open-source models, and their exceptional19

capability has begun to be leveraged as a backbone in several text-guided vision applications, e.g.,20

text-driven image editing [2, 23] and 3D object creation [67], text-to-video generation [1, 68], and21

subject-driven [50, 25] and controllable [37, 71] T2I.22

Figure 2: Computation of the major components
in Stable Diffusion v1. The denoising U-Net is the
main processing bottleneck. THOP [75] is used to
measure MACs in generating a 512×512 image.

SDMs are T2I-specialized latent diffusion mod-23

els (LDMs) [47], which employ diffusion oper-24

ations [17, 59, 30] in a latent space to improve25

compute efficiency. Within a SDM, a U-Net26

[49, 6] conducts an iterative sampling procedure27

to gradually eliminate noise from random la-28

tents and is assisted by a text encoder [42] and29

an image decoder [9, 64] to produce text-aligned30

images. This inference process still involves ex-31

cessive computational requirements (see Figure32

2), which often hinder the utilization of SDMs33

despite their rapidly growing usage.34

To alleviate this issue, numerous approaches35

toward efficient SDMs have been introduced.36

Meng et al. [35, 34] reduce the number of denoising steps by distilling a pretrained diffusion model37

to guide an identically architectured model with fewer sampling steps. Li et al. [28], Hou and Asghar38

[19], Shen et al. [57] employ post-training quantization techniques, and Chen et al. [4] enhance the39

implementation of SDMs for better compatibility with GPUs. However, the removal of architectural40

elements in diffusion models has not been investigated in spite of the established efficacy of structured41

pruning across discriminative models [26, 69] and generative adversarial networks (GANs) [31, 24].42

This study unlocks the immense potential of classical architectural compression in attaining smaller43

and faster diffusion models. We eliminate multiple residual and attention blocks from the U-Net of a44

SDM and pretrain it with feature-level knowledge distillation (KD) [48, 13] for general-purpose T2I45

synthesis. Despite being trained with only 0.22M LAION pairs (less than 0.1% of the entire training46

pairs) [55] on a single A100 GPU, our compact models can mimic the original SDM by leveraging47

transferred knowledge. On the popular zero-shot MS-COCO benchmark [29], our work achieves a48

FID [15] score of 15.76 with 0.76B parameters and 16.98 with 0.66B parameters, which are on par49

with multi-billion parameter models [43, 7, 8]. Furthermore, we present the practical application of50

our lightweight pretrained models in customized T2I with DreamBooth finetuning [50].51

Our contributions are summarized as follows:52

◦ To the best of our knowledge, this is the first study to architecturally compress large-scale53

diffusion models. Our work is orthogonal to prior directions for efficient diffusion, e.g., enabling54

less sampling steps and employing quantization, and can be readily integrated with them.55

◦ We compress SDMs by removing architectural blocks from the U-Net and achieve more than56

30% reduction in model size and inference speed. We also introduce an interesting finding on57

the minor role of innermost blocks.58

◦ We demonstrate the advantage of distillation-based pretraining, which allows us to attain com-59

petitive zero-shot T2I results even with very limited training resources.60

◦ We highlight the capability of our light pretrained backbones in customized generation. Our61

models can lower the finetuning cost by 30% while retaining 97% scores of the original SDM.62

2 Related work63

Large T2I diffusion models. By gradually removing noise from corrupted data, diffusion-based64

generative models [18, 59, 6] enable high-fidelity synthesis with broad mode coverage. Integrating65

these merits with the advancement of pretrained language models [42, 41, 5] has significantly66

improved the quality of T2I synthesis. In GLIDE [38] and Imagen [51], a text-conditional diffusion67
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Figure 3: U-Net architectures of SDMs and KD-based pretraining process. The compact U-Net
student is built by eliminating several residual and attention blocks from the original U-Net teacher.
Through the feature and output distillation from the teacher, the student can be trained effectively yet
rapidly. See Appendix for the details of block components.

model generates a 64×64 image, which is upsampled via super-resolution modules. In DALL·E-2 [44],68

a text-conditional prior network produces an image embedding, which is transformed into a 64×6469

image via a diffusion decoder and further upscaled into higher resolutions. SDMs [46, 47] perform70

the diffusion modeling in a 64×64 latent space constructed through a pixel-space autoencoder. We use71

SDM as our baseline because of its open-access and gaining popularity over numerous downstream72

tasks [2, 67, 1, 50].73

Efficient diffusion models. Several studies have addressed the slow sampling process of diffusion74

models. Diffusion-tailored distillation approaches [35, 34, 52] progressively transfer knowledge from75

a pretrained diffusion model to a fewer-step model with the same architecture. Fast high-order solvers76

[32, 33, 73] for diffusion ordinary differential equations boost the sampling speed. Orthogonal77

to these directions for less sampling steps, our network compression approach reduces per-step78

computation and can be easily integrated with them. Leveraging quantization techniques [28, 19, 57]79

and implementation optimizations [4] has been applied for SDMs and also can be combined with our80

models for further efficiency gains.81

Distillation-based compression. KD enhances the performance of small-size models by exploiting82

output-level [16, 39] and feature-level [48, 13, 70] information of large source models. Although83

this classical distillation has been actively used toward efficient GANs [27, 45, 31, 22, 72], its power84

has not been explored for structurally compressed diffusion models. Distillation-based pretraining85

enables small yet capable general-purpose language models [54, 61, 21] and vision transformers86

[63, 11]. Beyond such models, we show that its success can be extended to diffusion models with87

iterative sampling steps. Concurrently with our study, a recently released small SDM without paper88

evidence [40] similarly utilizes KD pretraining for a block-eliminated architecture, but it relies on89

significantly more training resources along with multi-stage distillation. In contrast, our lightest90

model achieves further reduced computation, and we show that competitive results can be obtained91

even with much less data and single-stage distillation.92

3 BK-SDM: block-removed knowledge-distilled SDM93

We compress the U-Net [49] of a SDM [46, 47], which is the most compute-heavy component (see94

Figure 2). Conditioned on the text and time-step embeddings, the U-Net performs multiple denoising95

steps on latent representations. At each denoising step, the U-Net produces the noise residual to96

compute the latent for the next step (see the top part of Figure 3). We reduce this per-step computation97

by exploiting block-level elimination and feature distillation.98

3.1 Compressed U-Net architecture99

The proposed models are referred to as:100

◦ BK-SDM-Base (0.76B parameters) obtained with Section 3.1.1 (fewer blocks in outer stages).101

◦ BK-SDM-Small (0.66B) with Section 3.1.1 (fewer blocks) and Section 3.1.2 (mid-stage removal).102
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Table 1: Minor impact of eliminating the mid-stage
from the U-Net of SDM on zero-shot MS-COCO per-
formance. Any retraining is not performed for the mid-
stage removed model. For evaluation details, see Sec-
tion 5.1.1.

Model Performance # Params
FID ↓ IS ↑ U-Net Whole

SDM-v1.4 [46] 13.05 36.76 859.5M 1032.1M
Mid-Stage
Removal 15.60 32.33 762.5M

(-11.3%)
935.1M
(-9.4%)

Figure 4: Visual results of the mid-stage
removed U-Net without retraining.

3.1.1 Fewer blocks in the down and up stages103

Our design philosophy is closely aligned with that of DistilBERT [54] which halves the number of104

layers for improved computational efficiency and initializes the compact model with the original105

weights by benefiting from the shared dimensionality. In the original U-Net, each stage with a106

common spatial size consists of multiple blocks, and most stages contain pairs of residual (R) [12]107

and cross-attention (A) [65, 20] blocks. We hypothesize the existence of some unnecessary pairs and108

use the following removal strategies, as shown in Figure 3.109

For the down stages, we maintain the first R-A pairs while eliminating the second pairs, because the110

first pairs process the changed spatial information and would be more important than the second pairs.111

This design choice does not harm the dimensionality of the original U-Net, enabling the use of the112

corresponding pretrained weights for initialization [54].113

For the up stages, while adhering to the aforementioned scheme, we retain the third R-A pairs. This114

allows us to utilize the output feature maps at the end of each down stage and the corresponding skip115

connections between the down and up stages. The same process is applied to the innermost down and116

up stages that contain only R blocks.117

3.1.2 Removal of the entire mid-stage118

Surprisingly, removing the entire mid-stage from the original U-Net (marked with red in Figure 3)119

does not noticeably degrade the generation quality for many text prompts while effectively reducing120

the number of parameters (see Table 1 and Figure 4). This observation is consistent with the minor121

role of inner layers in the U-Net generator of GANs [24].122

Integrating the mid-stage removal with fewer blocks in Section 3.1.1 further decreases computational123

burdens (Table 3) at the cost of a slight decline in performance (Table 2). Therefore, we offer124

this mid-stage elimination as an option, depending on the priority between compute efficiency and125

generation quality.126

3.2 Distillation-based pretraining127

For general-purpose T2I generation, we train the compact U-Net to mimic the behavior of the original128

U-Net. Following Rombach et al. [47], we use the pretrained-and-frozen encoders to obtain the inputs129

of the U-Net.130

Given the latent representation z of an image and its paired text embedding y, the task loss for the131

reverse denoising process [18, 47] is computed as:132

LTask = Ez,ϵ,y,t

[
||ϵ− ϵS(zt, y, t)||22

]
, (1)

where ϵ∼N(0, I) and t∼Uniform(1, T ) denote the noise and time step sampled from the diffusion133

process, respectively, and ϵS(◦) indicates the output of our compact U-Net student. For brevity, we134

omit the subscripts of Ez,ϵ,y,t[◦] in the following notations.135
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The compact student is also trained to imitate the outputs of the original U-Net teacher, ϵT(◦) ,with136

the following output-level KD objective [16]:137

LOutKD = E
[
||ϵT(zt, y, t)− ϵS(zt, y, t)||22

]
. (2)

A key to our approach is the utilization of feature-level KD [48, 13] that provides abundant guidance138

for the student’s training:139

LFeatKD = E
[∑

l

||f l
T(zt, y, t)− f l

S(zt, y, t)||22
]
, (3)

where f l
T(◦) and f l

S(◦) represent the feature maps of the l-th layer in a predefined set of distilled layers140

from the teacher and the student, respectively. While learnable regressors (e.g., 1×1 convolutions141

to match the number of channels) have been commonly used in existing studies [58, 45, 48], our142

approach circumvents this requirement. By applying distillation at the end of each stage in both143

models, we ensure that the dimensionality of the feature maps already matches, thus eliminating the144

need for additional regressors.145

The final objective is formalized as below, and we simply set the loss weights λOutKD and λFeatKD146

as 1. Without any hyperparameter tuning, our approach is effective in empirical validation.147

L = LTask + λOutKDLOutKD + λFeatKDLFeatKD. (4)

3.3 Application: faster and smaller personalized SDMs148

To emphasize the benefit of our lightweight pretrained SDMs, we use a popular finetuning scenario149

for personalized generation. DreamBooth [50] enables T2I diffusion models to create contents about150

a particular subject using just a few input images. Our compact models not only accelerate inference151

speed but also reduce finetuning cost. Moreover, they produce high-quality images based on the152

inherited capability of the original SDM.153

4 Experimental setup154

4.1 Datasets and evaluation metrics155

Pretraining. We train our compact SDM with only 0.22M image-text pairs from LAION-Aesthetics156

V2 6.5+ [55, 56], which are significantly fewer than the original training data used for SDM-v1.4157

[46] (i.e., 600M pairs of LAION-Aesthetics V2 5+ [55] for the resumed training).158

Zero-shot T2I evaluation. Following the popular protocol [43, 47, 51] to assess general-purpose T2I159

with pretrained models, we use 30K prompts from the MS-COCO validation split [29] and compare160

the generated images to the whole validation set. We compute Fréchet Inception Distance (FID) [15]161

and Inception Score (IS) [53] to assess visual quality. Moreover, we measure CLIP score [42, 14]162

with CLIP-ViT-g/14 model to assess text-image correspondence.163

Finetuning for personalized generation. We use the DreamBooth dataset [50] that covers 30164

subjects, each of which is associated with 25 prompts and 4∼6 images. Through individual finetuning165

for each subject, 30 personalized models are obtained. For evaluation, we follow the protocol of Ruiz166

et al. [50] based on four synthesized images per subject and per prompt. We consider CLIP-I and167

DINO scores to measure how well subject details are maintained in generated images (i.e., subject168

fidelity) and CLIP-T scores to measure text-image alignment (i.e., text fidelity). We use ViT-S/16169

embeddings [3] for DINO scores and CLIP-ViT-g/14 embeddings for CLIP-I and CLIP-T.170

4.2 Implementation171

We use the released version v1.4 of SDM [46] as our compression target. We remark that our approach172

is also applicable to other versions in v1.1–v1.5 with the same architecture and to SDM-v2 with a173

similarly designed architecture.174
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Table 2: Zero-shot results on 30K prompts from MS-COCO validation set [29] at 256×256 resolution.
Despite being trained with a smaller dataset and having fewer parameters, our compressed models
achieve results on par with prior approaches for general-purpose T2I. For our models, the results with
the minimum FID and the final 50K-th iteration are reported (see Section 5.1.3 for detailed analysis).

Model Type FID ↓ IS ↑ # Params Data Size
SDM-v1.4 [47] DF 13.05 36.76 1.04B 600M
Small Stable Diffusion [40] DF 12.76 32.33 0.76B 229M
BK-SDM-Base (Ours) @ Min FID DF 13.57 29.22 0.76B 0.22M
BK-SDM-Base (Ours) @ Final Iter DF 15.76 33.79 0.76B 0.22M
BK-SDM-Small (Ours) @ Min FID DF 15.93 29.61 0.66B 0.22M
BK-SDM-Small (Ours) @ Final Iter DF 16.98 31.68 0.66B 0.22M
DALL·E†⋆ [43] AR 27.5 17.9 12B 250M
CogView‡⋆ [7] AR 27.1 18.2 4B 30M
CogView2†⋆ [8] AR 24.0 22.4 6B 30M
Make-A-Scene‡ [10] AR 11.84 - 4B 35M
LAFITE‡♯ [74] GAN 26.94 26.02 0.23B 3M
GALIP (CC3M)† [62] GAN 16.12 - 0.32B 3M
GALIP (CC12M)† [62] GAN 12.54 - 0.32B 12M
GLIDE‡ [38] DF 12.24 - 5B 250M
LDM-KL-8-G‡♯ [47] DF 12.63 30.29 1.45B 400M
DALL·E-2† [44] DF 10.39 - 5.2B 250M

† and ‡: FID from [62] and [47], respectively. ⋆ and ♯: IS from [8] and [47], respectively. DF and AR:
diffusion and autoregressive models. ↓ and ↑: lower and higher values are better.

We adjust the codes in Diffusers library [66] for pretraining our models and those in PEFT library175

[60] for DreamBooth-finetuning, both of which adopt the training process of DDPM [18] in latent176

spaces. We use a single NVIDIA A100 80G GPU for 50K-iteration pretraining with a constant177

learning rate of 5e-5. For DreamBooth, we use a single NVIDIA GeForce RTX 3090 GPU to finetune178

each personalized model for 800 iterations with a constant learning rate of 1e-6.179

Following the default inference setup, we use PNDM scheduler [30] for zero-shot T2I generation180

and DPM-Solver [32, 33] for DreamBooth results. For compute efficiency, we always opt for 25181

denoising steps of the U-Net at the inference phase. The classifier-free guidance scale [17, 51] is set182

to the default value of 7.5, except the analysis in Figure 7.183

5 Results184

5.1 General-purpose T2I generation185

5.1.1 Main results186

Table 2 shows the zero-shot T2I results on 30K samples from the MS-COCO 256×256 validation187

set. Despite being trained with only 0.22M samples and having fewer than 1B parameters, our188

compressed models demonstrate competitive performance on par with previous large pretrained189

models. Despite the absence of a paper support, we include the model [40] that is identical in190

structure to BK-SDM-Base for comparison. This model benefits from far more training resources,191

i.e., two-stage KD relied on two teachers (SDM-v1.4 and v1.5) and a much larger volume of data192

with significantly longer iterations.193

Figure 5 depicts synthesized images of different models with some MS-COCO captions. Our194

compressed models inherit the superior ability of SDM and produce more photorealistic images195

compared to the AR-based [8] and GAN-based [74, 62] baselines. Noticeably, the same latent code196

results in a shared visual style between the original and our compact SDMs (4th–6th columns in197

Figure 5), similar to the observation in transfer learning for GANs [36].198

Table 3 summarizes how the computational reduction for each sampling step of the U-Net impacts the199

overall compute of the entire SDM. The per-step reduction effectively decreases MACs and inference200

time by more than 30% as well as the number of parameters.201
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Figure 5: Visual comparison on zero-shot MS-COCO benchmark. The results of previous studies
[8, 74, 62] were obtained with their official codes and released models. We do not apply any CLIP-
based reranking for SDM and our models.

Table 3: The impact of per-step compute reduction of the U-Net on the entire SDM. The number of
sampling steps is indicated with the parentheses, e.g., U-Net (1) for one step. The full computation
(denoted by “Whole”) covers the text encoder, U-Net, and image decoder. All corresponding values
are obtained on the generation of a single 512×512 image with 25 denoising steps. The latency was
measured on Xeon Silver 4210R CPU 2.40GHz and NVIDIA GeForce RTX 3090 GPU.

# Params MACs CPU Latency GPU LatencyModel U-Net Whole U-Net (1) U-Net (25) Whole U-Net (1) U-Net (25) Whole U-Net (1) U-Net (25) Whole
SDM-v1.4 [46] 860M 1033M 339G 8469G 9716G 5.63s 146.28s 153.02s 0.049s 1.28s 1.41s

BK-SDM-
Base (Ours)

580M
(-32.6%)

752M
(-27.1%)

224G
(-33.9%)

5594G
(-33.9%)

6841G
(-29.5%)

3.84s
(-31.8%)

99.95s
(-31.7%)

106.62s
(-30.3%)

0.032s
(-34.6%)

0.83s
(-35.2%)

0.96s
(-31.9%)

BK-SDM-
Small (Ours)

483M
(-43.9%)

655M
(-36.5%)

218G
(-35.7%)

5444G
(-35.7%)

6690G
(-31.1%)

3.45s
(-38.7%)

89.78s
(-38.6%)

96.52s
(-36.9%)

0.030s
(-38.7%)

0.77s
(-39.8%)

0.90s
(-36.1%)

5.1.2 Ablation study202

Table 4 presents the ablation study with the zero-shot MS-COCO benchmark dataset. The common203

default settings for the models N1–N7 involve the usage of fewer blocks in the down and up stages204

(Section 3.1.1) and the denoising task loss (Eq. 1). All the models are drawn at the 50K-th training205

iteration. We made the following observations.206

N1 vs. N2. Importing the pretrained weights for initialization clearly improves the performance of207

block-removed SDMs. Transferring knowledge from well-trained models, a popularized practice in208

machine learning, is also beneficial for T2I generation with SDMs.209

N2 vs. N3 vs. N4. Exploiting output-level KD (Eq. 2) effectively boosts the generation quality210

compared to using only the denoising task loss. Leveraging feature-level KD (Eq. 3) further improves211

the performance by offering sufficient guidance over multiple stages in the student.212

N4 vs. N5. An increased batch size leads to a better IS and CLIP score but with a minor drop in FID.213

We opt for a batch size of 256 based on the premise that more samples per batch would enhance the214

model’s understanding ability.215

N6 and N7. Despite slight performance drop, the models N6 and N7 with the mid-stage removal216

have fewer parameters (0.66B) than N4 and N5 (0.76B), offering improved compute efficiency.217
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Table 4: Ablation study on zero-shot MS-COCO 256×256 30K. The common settings include fewer
blocks in the down and up stages and the denoising task loss. N5 and N7 correspond to BK-SDM-
Base and BK-SDM-Small, respectively

Model Performance

No. Initialize
Weights

Output
KD

Feature
KD

Batch
Size

Remove
Mid FID ↓ IS ↑ CLIP

score ↑
N1 Random ✗ ✗ 64 ✗ 43.80 13.61 0.1622
N2 Pretrained ✗ ✗ 64 ✗ 20.45 22.68 0.2444
N3 Pretrained ✓ ✗ 64 ✗ 16.48 27.30 0.2620
N4 Pretrained ✓ ✓ 64 ✗ 14.61 31.44 0.2826
N5 Pretrained ✓ ✓ 256 ✗ 15.76 33.79 0.2878
N6 Pretrained ✓ ✓ 64 ✓ 16.87 29.51 0.2644
N7 Pretrained ✓ ✓ 256 ✓ 16.98 31.68 0.2677

Original SDM-v1.4 [46, 47] 13.05 36.76 0.2958

Figure 6: Results on zero-shot MS-COCO 256×256 30K over
training progress. For our models, the architecture size, usage
of KD, and batch size are denoted.

Figure 7: Effect of different
classifier-free guidance scales on
MS-COCO 512×512 5K.

5.1.3 Impact of distillation on pretraining phase218

We further analyze the merits of transferred knowledge via distillation, with the models from the219

pretrained weight initialization. Figure 6 shows zero-shot T2I performance over training iterations.220

Compared to the absence of KD (indicated with green), distillation (purple and pink) accelerates the221

training process and leads to improved generation scores, demonstrating the benefits of providing222

sufficient hints for training guidance. Notably, our small-size model trained with KD (yellow)223

outperforms the bigger base-size model without KD (green). Additionally, while the best FID score224

is observed early on for our models, IS and CLIP score exhibit ongoing improvement, implying that225

judging models solely with FID may be suboptimal.226

Figure 7 shows the trade-off curves from different classifier-free guidance scales [17, 51]227

{2.0, 2.5, 3.0, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5}. For the analysis, we use 5K samples from the MS-228

COCO validation set and our base-size models from the 50K-th iteration. Higher guidance scales229

lead to better text-aligned images at the cost of less diversity. Compared to the baseline trained only230

with the denoising task loss, distillation-based pretraining leads to much better trade-off curves.231

5.2 Personalized T2I with DreamBooth232

Table 5 compares the results of DreamBooth finetuning [50] with different pretrained models. BK-233

SDM-Small can preserve over 97% performance of the original SDM with the reduced finetuning234

time and number of parameters. Figure 8 depicts that our models can accurately capture the subject235

details and generate various scenes. Over the models pretrained with a batch size of 64, we observe236

the impact of KD pretraining on personalized synthesis. The baselines without KD fail to generate237

the subjects entirely or cannot maintain the identity details.238
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Table 5: Personalized generation with finetuning over different pretrained models. Our compact
models can preserve subject fidelity (DINO and CLIP-I) and prompt fidelity (CLIP-T) of the original
SDM with reduced finetuning (FT) time and fewer parameters.

Pretrained Model DINO ↑ CLIP-I ↑ CLIP-T ↑ FT Time† # Params
SDM-v1.4 [46, 47] 0.728 0.725 0.263 881.3s 1.04B
BK-SDM-Base (Ours) 0.723 0.717 0.260 622.3s 0.76B
BK-SDM-Small (Ours) 0.720 0.705 0.259 603.6s 0.66B
BK-SDM-Base, Batch Size 64 0.718 0.708 0.262 622.3s 0.76B

- Without KD & Random Init. 0.594 0.465 0.191 622.3s 0.76B
- Without KD & Pretrained Init. 0.716 0.669 0.258 622.3s 0.76B

† Per-subject finetuning time for 800 iterations on NVIDIA GeForce RTX 3090 GPU.

Figure 8: Visual results of personalized generation. Each subject is marked as “a [identifier] [class
noun]” (e.g., “a [V] dog"). Similar to the original SDM, our compact models can synthesize the
images of input subjects in different backgrounds while preserving their appearance.

6 Conclusion and discussion239

This study uncovers the potential of architectural compression for general-purpose text-to-image240

synthesis with a renowned model, Stable Diffusion. Our block-removed lightweight models are241

effective for zero-shot generation, achieving competitive performance against large-scale baselines.242

Distillation is a key aspect of our method, leading to effective pretraining even under very constrained243

resources. Moreover, our smaller and faster pretrained models are successfully applied in personalized244

generation. Our work is orthogonal to previous directions for efficient diffusion models, e.g., enabling245

fewer sampling steps, and can be readily combined with them. We hope our study can facilitate future246

research on structural compression of large diffusion models.247

Limitations and future works. Our compact models inherit the capability of the source model for248

high-fidelity image generation, but they have shortcomings such as inaccurate generation of full-body249

human appearance. While we show that distillation pretraining is powerful even with very limited250

resources, increasing the volume of data and analyzing its effects would be promising.251

Negative social impacts. Because recent large generative models are capable of creating high-quality252

plausible content, they also involve potential risks of malicious use. To avoid causing unintended253

social bias, researchers should take steps to ensure the appropriateness of training data. Moreover,254

the release of resulting models should be accompanied by strong and reliable safeguards.255
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