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ABSTRACT

In this paper, a new approach to multi-view subspace learning is proposed
and termed as multi-view latent space learning via adaptive graph embedding
(MvSLGE), which learns a latent representation from all view features. Unlike
most existing multi-view latent space learning methods that only encode the com-
plementary information into the latent representation, MvSLGE adaptively learn
an adjacent graph that well characterizes similarity between samples to further reg-
ularize the latent representation. To extract the neighborhood information from
multi-view features, we propose a novel strategy that constructs one graph for
each view, and then the learned graph is approximately designed as a centroid of
these graphs of different views with different weights. Therefore, the constructed
latent representation not only incorporates the complementary information of fea-
tures from multiple views but also encodes the similarity between samples. The
proposed MvSLGE can be solved by the augmented Lagrangian multiplier with al-
ternating direction minimization (ALM-ADM) algorithm. Plenty of experiments
demonstrate the superiority of MvSLGE on a variety of datasets.

1 INTRODUCTION

Most of the data used in many fields can usually be represented by different modalities or different
types of features. For example, in the computer vision domain, one color image can be described
by multiple features, such as LBP, SIFT, HOG, Gist, etc Wang et al. (2017). Since an individual
view can not contain sufficient information to comprehensively describe all samples, multiple views
features are needed for various applications. However, different features that describe one sample
are constructed based on different purposes, which leads a large gap between views. It is therefore
important to effectively utilize information from multi-view features to the fullest extent possible
for depicting the objects better and improving various performances.

Recently, various multi-view algorithms have been proposed to solve this problem. Among all these
algorithms, multi-view subspace learning is a very important direction Jia et al. (2021); Lin et al.
(2023). One of the most famous algorithms is canonical correlation analysis (CCA) Hotelling (1992)
and its kernel extension kernel canonical correlation analysis (KCCA) Lai & Fyfe (2000). CCA aims
to seek a projection matrix for each view to project them onto one common subspace by maximizing
the correlation of individual views. However, they don’t account for the independent parts of the
views. Therefore, these methods totally fail to represent them or mix them with the information
shared by all views. Jia et al. (2010) consider the latent space as two parts: one common part to all
views and the other one for each individual view, which can account for the independencies and de-
pendencies between views simultaneously. However, there exist some limitations to these methods.
The main limitations are losing information in the procedure of learning from a single view feature
which contains insufficient information, or noise in the original single view feature. In order to solve
these limitations, Xu et al. (2015) propose a novel multi-view subspace learning algorithm termed as
multi-view intact space learning (MISL), which seeks to construct one common intact latent space
from multi-view features. Besides, to improve the robustness of the model, MISL measures the
reconstruction error of each view by Cauchy loss. Nevertheless, MISL hasn’t considered geomet-
ric structure information in the constructed latent representation. Since the features from different
views usually lie in different distributions, how to explore the underlying manifold structure from
multi-view features is still challenging.
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To deal with this problem, we propose a multi-view latent space learning via adaptive graph embed-
ding (MvSLGE). The proposed MvSLGE aims to fuse the multi-view features to construct one com-
mon latent representation which can effectively incorporate complementary information of hetero-
geneous property features. Moreover, to encode the local geometry structure of samples, MvSLGE
builds a similarity graph to regularize the latent representation. This graph is constructed from the
learned latent representation and original multi-view features. Additionally, considering that dif-
ferent views make different contributions, we futher propose an auto-weighted scheme to learn an
appropriate weight for each view. Finally, we adopt the ALM-ADM to solve the proposed MvSLGE.

2 RELATED WORK

With increasing multi-view data, numerous algorithms for multi-view learning have shown remark-
able success in various real-world applications Jia et al. (2021); Lin et al. (2023); Yan et al. (2021);
Liang et al. (2022). Most multi-view learning methods can be classified into three groups: co-
training, multiple kernel learning (MKL), and multi-view subspace learning. Co-training Blum &
Mitchell (1998) is a famous semi-supervised learning model for dealing with multi-view data. The
co-training seeks to maximize consensus between two different views. There are many variants, such
as co-regularization Kumar et al. (2011) and co-EM Nigam & Ghani (2000), have been developed.
These variants are applied to multi-view dimension reduction Zhang et al. (2017), multi-view metric
learning Wang et al. (2017); Zhang et al. (2018) and multi-view clustering Kumar et al. (2011); Cao
et al. (2015).

MKL is very popular since it provides a convenient way of combining information from multi-view
data. MKL considers the different kernels as different views and combines kernels to enhance the
performance. In Lanckriet et al. (2004), MKL is reformulated into a semi-definite programming
problem, which can be solved easily. In Sonnenburg et al. (2006) MKL is developed and formu-
lated as a more efficient semi-infinite linear program, which can be utilized to deal with large-scale
data. Szafranski et al. (2010) and Xu et al. (2010) introduce group-LASSO into MKL and propose
a novel MKL approach, which can well describe group structure for multi-view data and obtain
generalization bounds.

Multi-view subspace learning is also famous recently, which aims to discover one shared subspace
across all different views Wu et al. (2019); Wang et al. (2015); Zhao et al. (2018). CCA Hotelling
(1992), and its kernel extension Lai & Fyfe (2000) KCCA are the earliest typical multi-view sub-
space learning algorithms. In order to extend the traditional CCA to multiple views case, Rup-
nik & Shawe-Taylor (2010) propose multi-view CCA. Motivated by CCA and Fisher discriminant
analysis (FDA), Diethe et al. (2008) introduce the regularized two-view equivalent of FDA and its
corresponding dual. In contrast to CCA, this generalization fully considers the label information
in their algorithm. In Sharma et al. (2012) a multi-view subspace learning framework is proposed
as generalized multiview analysis (GMA), which can be considered as an extension of traditional
CCA algorithm. Deep canonical correlation analysis (DCCA) Andrew et al. (2013) exploits neu-
ral networks framework to explore the nonlinear correlation between different views. In the recent
decade, multi-view subspace clustering has become more popular. Based on the complementary
principle, Cao et al. (2015) propose a multi-view clustering approach termed as diversity-induced
multi-view subspace clustering (DiMSC), in which Hilbert-Schmidt independence criterion (HSIC)
is adopted for measuring the dependencies between views. Then, by minimizing the dependencies
of the views, DiMSC effectively extracts more incompatible information from multiple views fea-
tures. Zong et al. (2017) incorporate matrix factorization and multi-manifold regularization into a
framework to propose a multi-view subspace learning model for multi-view data clustering, which
focuses on learning the locally manifold structure of samples from multi-view features.

3 MULTI-VIEW LATENT SPACE LEARNING VIA ADAPTIVE GRAPH
EMBEDDING

3.1 THE CONSTRUCTION OF MVSLGE

Given N samples with m views features
{
Z(v)

∣∣∣∣Z(v) ∈ RDv ×N

}m

v=1

, where Dv is the dimen-

sionality of features from the vth view, our method aims to seek a latent space in which multi-
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view feature of one sample can be reconstructed by one common latent representation X =
[x1,x2, ...,xN ] ∈ RD×N by m linear view generation functions {Pv}mv=1, where D denotes the
dimensionality of the latent representation. With noise in features, we have

z
(v)
i = Pvxi + e

(v)
i , (1)

where e
(v)
i denotes the noise of the ith sample of the vth feature. Within the empirical risk mini-

mization framework, the objective function Xu et al. (2015) becomes

min
X,P ,E

LM (E) ,

s.t. E = Z − PX,
(2)

where Z = [Z1;Z2; ...;Zm] and P = [P1;P2; ...;Pm] are original multi-view features and corre-
sponding learned linear view generation functions, and LM is the error measurement. By Equation 2,
we can encode the complementary information of multi-view features into one common latent rep-
resentation X automatically. Thus, the learned latent representation can comprehensively depict a
sample more than every single view.

To enhance the robustness of the model, we adopt l2,1-norm ∥·∥2,1 as the measurement of the re-
construction error for each view. The l2,1-norm of a matrix B ∈ Rl×k is defined as: ∥B∥2,1 =∑k

j=1

√∑l
i=1 B

2
ij . Based on the effect of l1-norm, we can find that minimizing l2,1-norm of the

matrix makes the columns with small 2-norm to be zero, which makes it robust to outliers. The
objective function for minimizing the reconstruction error in our model is

min
X,P,E

1

mN
∥E∥2,1 + λ ∥X∥2F ,

s.t. E = Z − PX, PP T = I,

(3)

where we set λ > 0, and employ a regularization term to penalize the latent representations X and
a constraint on each projection matrix Pv .

Laplacian embedding is a famous technique in the manifold learning domain, which aims to explore
the local manifold structure of data. Suppose S ∈ RN×N is an affinity matrix of a graph with N
nodes. The Laplacian embedding technique intends to compute the embedding of all data points
by preserving the neighbor relationship of them as much as possible Belkin & Niyogi (2001). We
suppose the latent representations are the embedding coordinates of N sample points. Then we have

min
X

N∑
i,j=1

∥xi − xj∥22 sij , (4)

where sij usually characterizes the similarity between xi and xj . In the manifold learning domain,
the affinity matrix is usually predefined, which is not flexible and affects the performance of the
algorithm. So we aim to adaptively construct the affinity relationship which can characterize the
local manifold structure of samples.

To extract the local geometry structure from multi-view features, we build a graph S(v) for each
view as Belkin & Niyogi (2001). Then we aim to construct the integrated affinity matrix S that can
optimally integrate the affinity information of data by the pre-defined graphs S(v) of all views. To
achieve this goal, we incorporate the graph learning and latent space learning into one framework

min
X,P ,E,S

1

mN
∥E∥2,1 + λ ∥X∥2F + η

N∑
i,j=1

∥xi − xj∥22 sij + ζ

m∑
v=1

1

m

∥∥∥S − S(v)
∥∥∥2
F
,

s.t. E = Z − PX, PP T = I, sij > 0 and
∑
j

sij = 1,

(5)

where ζ > 0. Moreover, we further consider that different views usually have different contributions
for learning the graph. In order to more appropriately integrate the affinity relationship of all views,
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we introduce a collection of non-negative weights a = [a1, a2, ..., am] into graph learning procedure

min
S,a

m∑
v=1

av

∥∥∥S − S(v)
∥∥∥2
F
+ γ∥a∥22,

s.t. sij ≥ 0 and
∑
j

sij = 1,

m∑
v=1

av = 1, av ≥ 0,

(6)

where γ > 0 is a trade-off between the two terms above. The second term in Equation 6 is employed
to smoothen the distribution of a, which can make all views contribute to the procedure of graph
learning. Because without the second term, the weight of one view will be assigned to 1, and others
will be 0. Moreover, the solution of minimizing ∥a∥22 with respect to

∑
v av = 1 is av = 1

m .
Therefore, the second term also makes the weights non-sparse, which can promote all views to
participate in the process of learning.

Combining all the above insights, we can finally construct the objective function of MvSLGE as

min
X,P ,E,S,a

1

mN
∥E∥2,1 + λ ∥X∥2F + η

N∑
i,j=1

∥xi − xj∥22 sij + ζ

m∑
v=1

av

∥∥∥S − S(v)
∥∥∥2
F
+ γ∥a∥22,

s.t. E = Z − PX, PP T = I,

m∑
v=1

av = 1, av ≥ 0, sij ≥ 0 and
∑
j

sij = 1,

(7)
where λ, η, ζ, and γ are non-negative hyperparameters that control the trade-off between four terms
in Equation 7.

3.2 OPTIMIZATION PROCEDURE OF MVSLGE

In this section, we illustrate the details of the optimization algorithm of MvSLGE. It can be easily
found that for all the problems of variables, Equation 7 is not convex, and directly solving the
problem is not possible. So we employ the ALM algorithm and divide the original optimization
problem into four subproblems which can be efficiently solved by the ADM strategy. Firstly, we
formulate the Lagrangian function of the objective function in Equation 7 as follows

L (E,X,P ,S,a) =
1

mN
∥E∥2,1 + λ ∥X∥2F + η

N∑
i,j=1

∥xi − xj∥22 sij

+ ζ

m∑
v=1

av

∥∥∥S − S(v)
∥∥∥2
F
+ γ∥a∥22 + G (J ,Z − PX −E) ,

s.t. PP T = I,

m∑
v=1

av = 1, sij ≥ 0 and
∑
j

sij = 1,

(8)

The G(·, ·) is a function of matrix and defined as: G(A,B) = µ
2 ∥B∥2F + tr

(
ATB

)
. Jv is a

Lagrangian multiplier and µ > 0 is a penalty scalar. We minimize L for one variable, while other
variables are fixed. All the subproblems are illustrated as follows.

(1). P-subproblem: To update the generalized function P , we fix X,E, a and S, and reformulate
the objective function for each Pv as

P ∗ = argmin
P

G (J ,Z − PX −E)

= argmin
P

µ

2

∥∥∥(Z −E + J/µ)
T −XTP T

∥∥∥2
F

s.t. PP T = I.

(9)

By some algebra operation, Equation 9 can be further reformulated as

min
P

tr
(
PXF T

)
s.t PP T = I,

(10)
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where F = Z −E + J/µ.

We can easily optimize Equation 10 based on one famous theorem from linear algebra Gao et al.
(2018), which can be illustrated as

P = WUT , (11)

where W and U are SVD decomposition of the matrix: XF T , i.e. XF T = UΣW T .

(2). X-subproblem: In the step of updating the latent representation X , we fix P , S, a and E and
solve the following minimization problem

X∗ = argmin
X

η

N∑
i,j=1

∥xi − xj∥22 sij + G (J ,Z − PX −E)

= argmin
X

ηtr
(
XLSqXT

)
+

µ

2
∥Z − PX −E + J/µ∥2F ,

(12)

where LSq is a graph Laplacian of affinity matrix Sq with Sq
ij = (sij + sji)/2. We can find that

the optimization problem in Equation 12 is an unconstrained optimization problem. Therefore, the
optimal latent representation X can be obtained by setting the gradient of the function in Equation 12
with respect to X as 0

MX +XK = O, (13)

where M = µP TP , O = µP T (Z −E + Y /µ), and K = 2ηLSq . Equation 13 is the Sylvester
equation, which has a unique solution if M and −K have no one eigenvalue in common.

The steps of updating S, a and E, and the details of processing test sample are demonstrated in the
section 1 of supplemental material. Then we further summarize the procedure of MvSLGE in the
section 2 of supplemental material. We iteratively alternate the 6 steps until the objective function
Equation 8 satisfies convergence conditions. Moreover, we analyze the complexity of the methods
in the section 3 of supplemental material.

4 EXPERIMENTS

4.1 DATASETS AND COMPARING METHODS

To comprehensively evaluating the proposed MvSLGE, 7 famous datasets are employed in the exper-
iments including 3Sources, Cora, Outdoor Scene, Holidays, Caltech 101-7, MSRC-v1, and COIL-20.
Among these 7 datasets, 3Sources and Cora are multi-view text datasets, Outdoor Scene, Holidays,
Caltech 101-7, MSRC-v1 and COIL-20 are image datasets. The details of the employed datasets are
summarized in the section 4 of supplemental material.

We compare MvSLGE with 6 typical multi-view subspace learning methods to evaluate the effec-
tiveness: 1. canonical correlation analysis (CCA) Rupnik & Shawe-Taylor (2010), 2. multiview
spectral embedding (MSE) Xia et al. (2010), 3. factorized latent spaces with structured sparsity
(FLSSS) Jia et al. (2010), 4. multi-view intact space learning (MISL) Xu et al. (2015), 5. unsuper-
vised multi-view manifold learning with locality alignment (U-MVML-LA) Zhao et al. (2018), 6.
multi-view dimensionality co-reduction (McDR) Zhang et al. (2017). The hyperparameters of each
method are set by the 5-fold cross-validation.

4.2 IMAGE RETRIEVAL

In this section, we conduct image retrieval experiments on Outdoor Scene and Holidays datasets.
The outdoor Scene dataset consists of 2688 color images with 8 categories. For each category, 10
images are randomly selected as the query images, while other images are galleries. For each image,
4 views of features are extracted for our experiments: GIST, Color Moment, HoG, and LBP. Then
the L1 distance is adopted to measure the similarity. All the algorithms are conducted 10 times with
different queries, and the retrieval results are shown in Figure 1.

For the Holidays dataset, 1 image of each category is selected as the query images, and others are
assigned as galleries. We exploit the same multi-view features with Outdoor Scene dataset for each
image in this experiment. We adopt the L1 distance to measure the similarity. The retrieval results
are shown in Table 1.

5



Under review as a conference paper at ICLR 2024

0 10 20 30 40 50 60 70 80 90 100 110
Top number of retrieved images

40

50

60

70
Pr

ec
is

io
n(

%
)

CCA
MSE
FLSSS
MISL
McDR
U-MVML-LA
MvSLG (Ours)

(a) Precision

0 10 20 30 40 50 60 70 80 90 100 110
Top number of retrieved images

5

10

15

20

25

30

35

40

R
ec

al
l(%

) CCA
MSE
FLSSS
MISL
McDR
U-MVML-LA
MvSLG (Ours)

(b) Recall

0 5 10 15 20 25 30 35 40 45
Recall(%)

40

50

60

70

Pr
ec

is
io

n(
%

)

CCA
MSE
FLSSS
MISL
McDR
U-MVML-LA
MvSLG (Ours)

(c) PR-Curve

0 10 20 30 40 50 60 70 80 90 100 110
Top number of retrieved images

10

15

20

25

30

35

40

F1
-s

co
re CCA

MSE
FLSSS
MISL
McDR
U-MVML-LA
MvSLG (Ours)

(d) F1-Score
Figure 1: The performance of different algorithms on Outdoor Scene dataset.

Table 1: The performance of different algorithms on the Holidays dataset.

Method Criteria

Precision Recall MAP F1-score
CCA 77.15 58.12 83.13 66.28
MSE 77.65 59.42 83.65 67.32

FLSSS 76.25 57.73 82.35 65.70
MISL 78.03 60.12 83.94 67.90
McDR 77.69 60.01 84.03 67.70

U-MVML-LA 77.96 60.23 83.87 67.94
MvSLGE (Ours) 79.02 61.53 85.85 69.76

From the results Figure 1-Figure 2 and Table 1, We can see that the proposed MvSLGE obtains the
best performances. U-MVML-LA utilizes the locality alignment to improve the clustering effect
of latent representation and outperforms MISL. However, the graph it adopted to regularize the
latent representations is pre-defined. And the graph utilized in MvSLGE for embedding the latent
representations is adaptively learned, which is more flexible. Therefore, MvSLGE can achieve better
performance.

4.3 CLASSIFICATION EXPERIMENTS

For all classification experiments on each dataset, we select 10 train-test splits randomly and conduct
20 test runs for each split. After obtaining the representations, we adopt the SVM classifier to
classify testing samples and report the averaged performance.

We first conduct text classification experiments on 2 text datasets 3Sources and Cora. Table 2 shows
the averaged values with different dimensionalities respectively. We can easily find from Table 2
that MvSLGE obtains the best performance in most situations. Although MISL can achieve ex-
cellent performance by efficiently encoding the complementary information from multi-view fea-
tures, it hasn’t exploited local manifold information. U-MVML-LA considers the local information
in its framework, but it constructs the graph artificially. Therefore, MvSLGE is a more effective
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Figure 2: A retrieval example on the Holidays dataset, in which our MvSLG obtains the best results.
The left-most image in each row is the query image, and the wrong images are outlined in red.

Table 2: Classification Accuracies (%) with different dimensionality on 3Sources and Cora datasets.

Method Dim=10 Dim=30 Dim=50

3Sources Cora 3Sources Cora 3Sources Cora
CCA 64.72 44.17 71.52 48.37 80.51 51.24
MSE 65.31 46.28 70.96 48.85 80.34 50.22

FLSSS 63.28 47.12 72.58 47.31 77.71 46.59
MISL 70.29 50.21 79.93 53.26 86.28 56.38
McDR 69.38 48.11 76.08 51.18 82.68 52.76

U-MVML-LA 71.55 47.63 79.12 51.08 85.92 55.28
MvSLGE (Ours) 81.27 55.26 86.98 60.71 89.93 62.45

framework to integrate multi-view features into one common latent representation and preserve lo-
cal geometry structure. This is because our proposed MvSLGE can fully consider the local structure
when integrating the complementary information of multi-view features to construct the ideal latent
representation.

Then, we conduct image classification experiments on 3 widely used image datasets: Caltech 101-
7, MSRC-v1, and COIL-20 datasets.The experimental setting is same to the experiment on text
datasets. To evaluate the robustness of MvSLGE, the training images of all datasets are corrupted
with different strengths. For example, 10% corrupted strength means randomly selecting 10% pixels
of the image and replacing these pixels with 0. We select one image of COIL-20 and demonstrate
the original image and corrupted image in Figure 3.

For the Caltech101-7 dataset, all the images are represented in terms of 6 views features: Gabor,
WM, CENTRIST, HOG, GIST, and LBP. MSRC-v1 consists of 240 images from 9 categories. In
our experiments, we utilize 210 samples from 7 classes and extract 6 view features: GIST, HOG,
LBP, CENT, SIFT, and CMT. For COIL-20 dataset, we extract the features from 3 views: intensity
(view1), LBP (view2), and Gabor (view3). The classification accuracies of all comparison methods
are shown in Table 3.

Through Table 3, it can be clearly seen that MvSLGE achieves the best results in most situations.
Because Cauchy loss adopted by MISL can reduce the influence of outliers, MISL also achieves
promising results. These results illustrate that incorporating the local geometry information with
complementary information is effective for learning an ideal latent representation.
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Figure 3: From left to right: the original image in COIL-20 dataset, image with 5% corruption,
image with 10% corruption, image with 15% corruption, image with 20% corruption.

Table 3: The accuracy of the classification and robust testing on Caltech 101-7, MSRC-v1 and
COIL20 datasets.

Datasets Corruption 0% 5% 10% 15% 20%

Caltech101-7

CCA 83.41 79.36 76.43 75.18 73.11
MSE 82.86 80.42 79.88 76.12 75.27

FLSSS 84.00 83.08 81.73 78.11 76.30
MISL 86.58 85.34 84.21 82.15 81.98
McDR 85.19 83.29 81.27 80.22 78.36

U-MVML-LA 88.76 86.04 84.33 83.45 80.23
MvSLGE (Ours) 91.31 89.28 88.65 87.74 86.22

MSRC-v1

CCA 80.53 71.92 72.01 80.88 77.25
MSE 86.16 83.25 83.01 81.34 79.88

FLSSS 84.11 83.29 80.52 80.27 78.98
MISL 86.29 86.11 86.04 85.28 84.89
McDR 87.71 86.29 85.98 85.31 84.22

U-MVML-LA 85.06 84.86 84.23 83.68 83.03
MvSLGE (Ours) 88.76 87.95 87.24 86.89 86.51

COIL20

CCA 83.53 77.36 68.93 62.22 56.21
MSE 85.86 76.61 69.37 63.02 59.93

FLSSS 83.29 74.27 66.19 60.82 52.46
MISL 90.58 85.22 84.86 81.13 78.15
McDR 88.98 76.16 68.35 57.83 55.58

U-MVML-LA 91.76 84.64 81.19 79.17 76.84
MvSLGE (Ours) 93.17 87.16 85.97 82.95 82.12

4.4 COMPARISON WITH DEEP LEARNING METHOD

Deep learning as a branch of machine learning is based on artificial neural networks to learn data
representations. In this section, we compare our proposed algorithm with two famous deep learning
algorithms ResNet He et al. (2016) and Vision Transformer (VIT) Dosovitskiy et al. (2020) for
the image classification task. In this experiment, we exploit ResNet-34 and VIT_B_16 to perform
the image classification task. To compare with deep learning algorithms, we utilize one additional
large-scale image dataset MINIST combining with previous three datasets to do the experiments.
For MINIST, we utilize grayscale intensity (GSI), LBP, and Gabor as multi-view features. The
performances of classification accuracy on 4 datasets are shown in Table 4. From Table 4 we can find
that the classification performances of our MvSLGE and deep learning algorithms are comparable.
But the advantage of our MvSLGE is that it is the unsupervised method and does not relate to the
training which is fast for the implementation, while other deep learning algorithms are supervised
methods which need to employ the labels to extract discriminative information for constructing the
representation.

4.5 DISCUSSION

In this section, we conduct the classification on three image datasets to show the influence of the
auto-weighted scheme. We fix all weights av as 1

m and show the experimental results in Table 5.
We can see from Table 5 that the auto-weighted scheme can effectively improve the performance of
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Table 4: The comparison of the classification performances of the proposed algorithm with ResNet-
34 and VIT_B_16 in for datasets.

Method MINIST Caltech 101-7 MSRC COIL-20
ResNet-34 97.93 95.54 94.73 95.61
VIT_B_16 98.82 94.69 92.23 97.58

MvSLGE (Ours) 91.18 91.31 88.76 93.17

Table 5: The influence of the proposed auto-weighted scheme.
Datasets

Caltech 101-7 MSRC-v1 COIL-20
av = 1

m 89.19 87.75 85.82
Flexible av 91.31 88.76 93.17
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Figure 4: Figure (a) corresponds to the concatenation of the features of all views. Figure (b) and
Figure (c) are the latent representations obtained by MISL and MvSLGE respectively.

MvSLGE to obtain better results than simply setting all the weights to 1
m . This result demonstrates

the effectiveness of the auto-weighted scheme for MvSLGE.

Furthermore, we show the visualization of the distribution of the latent representations learned from
MvSLGE on MSRC-v1 dataset. The t-SNE Van der Maaten & Hinton (2008) is exploited to embed
the concatenation of all views features and the learned latent representations into a 2-dimensional
subspace to demonstrate the distributions in Figure 4. We clearly find that MISL and MvSLGE
can reveal the underlying structure better than the original feature. Especially, by the latent repre-
sentation learned from MvSLGE, the samples can be separated into more compact clusters. More
discussion of the experiments for the parameters setting, analysis of convergence, and visualization
results are shown in the section 5 of supplemental material.

5 CONCLUSION

In this work, we introduce a novel latent space learning model MvSLGE for multi-view data.
MvSLGE aims to construct a latent representation by incorporating complementary information
from multiview features to comprehensively depict each sample. Moreover, MvSLGE employs
an adaptively learned affinity matrix, which well characterizes the relationship between samples,
to regularize the latent representation. In the process of learning the affinity matrix, MvSLGE inte-
grates both the local manifold structure of original multi-view features and the latent representations.
Therefore, by combining latent representation learning, manifold embedding, and graph learning
into one framework, our approach can further prefer to extract the local manifold structure from
multi-view features and encode it into the latent representations to improve the discriminability. Var-
ious experiments have demonstrated that the proposed MvSLGE is an effective multi-view subspace
learning method. In the future, some accelerating techniques will be considered in the framework to
deal with large scale data, and nonlinearity by kernel or neuro networks will be introduced into our
framework.
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