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Abstract

We study practical heuristics to improve the per-
formance of prefix-tree based algorithms for dif-
ferentially private heavy hitter detection. Our
model assumes each user has multiple data points
and the goal is to learn as many of the most fre-
quent data points as possible across all users’
data with aggregate and local differential pri-
vacy. We propose an adaptive hyperparameter
tuning algorithm that improves the performance
of the algorithm while satisfying computational,
communication and aggregate privacy constraints.
We explore the impact of different data-selection
schemes as well as the impact of introducing deny
lists during multiple runs of the algorithm. We test
these improvements using extensive experimenta-
tion on the Reddit dataset (Caldas et al., 2018) on
the task of learning most frequent words.

1. Introduction
Gaining insight into population trends allows data analysts
to make data-driven decisions to improve user experience.
Heavy hitter detection, or learning popular data points gener-
ated by users, plays an important role in learning about user
behavior. A well-known example of this is learning ”out-of-
vocabulary” words typed on keyboard, which can then be
used to improve next word prediction models. This data is
often sensitive and the privacy of users’ data is paramount.
When the data universe is small, one can obtain private
solutions to this problem by directly using private histogram
algorithms such as RAPPOR (Erlingsson et al., 2014), and
PI-RAPPOR (Feldman & Talwar, 2021), and reading off the
heavy-hitters. However, when the data universe is large, as
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is the case with ”out-of-vocabulary” words, these solutions
result in algorithms with either very high communication,
or very high server side computation, or both. Prefix-tree
based iterative algorithms can lower communication and
computation costs, while maintaining high utility by
efficiently exploring the high dimensional space for heavy
hitters. They also offer an additional advantage in the
setting where users have multiple data points by refining the
query in each iteration, allowing each user to select amongst
those data points which are more likely to be heavy hitters.

In this work, we consider an iterative federated algorithm for
heavy hitter detection in the aggregate model of differential
privacy (DP) in the presence of computation or communi-
cation constraints. In this setting, each user has a private
dataset on their device. In each round of the algorithm, the
data analyst sends a query to the set of participating devices,
and each participating device responds with a response,
which is a random function of the private dataset of that user.
These responses are then summed using a secure aggrega-
tion protocol, and reported to the data analyst. The analyst
can then choose a query for the next round adaptively, based
on the aggregate results they have seen so far. The main DP
guarantee is a user-level privacy guarantee on the outputs of
the secure aggregator, accounting for the privacy cost of all
rounds of iteration. Our algorithm will additionally be DP
in the local model of DP (with a larger privacy parameter).
However, our focus is aggregate DP guarantee, and we do
not put an upper bound in the local epsilon. A potential
architecture for running iterative algorithms in this model
of privacy is outlined in (McMillan et al., 2022).

In the central model of DP, there is a long line of work
on adaptive algorithms for heavy hitter detection in data
with a hierarchical structure, such as learning popular n-
grams (McMillan et al., 2022; Cormode et al., 2012; Qardaji
et al., 2012; Song et al., 2013; Bagdasaryan et al., 2021;
Kim et al., 2021). These interactive algorithms all follow
the same general structure. Each data point is represented as
a sequence of data segments d = a1a2 · · · ar and the algo-
rithm iteratively finds the popular values of the first segment
a1, then finds popular values of a1a2 where a1 is restricted
to only heavy hitters found in the previous iteration, and so
on. This limits the domain of interest at each round, low-
ering communication and computation costs. The method

1



Differentially Private Heavy Hitters using Federated Analytics

of finding the heavy hitters in each round of the algorithm
varies in prior work, although is generally based on a DP fre-
quency estimation subroutine. One should consider system
constraints (communication, computation, number of partic-
ipating devices, etc.) and the privacy model when choosing
a frequency estimation subroutine. In this work, we will
focus on using one-hot encoding with binary randomized
response (inspired by RAPPOR (Erlingsson et al., 2014))
as our DP frequency estimation subroutine. Since we are
primarily interested in algorithmic choices that affect the it-
erative algorithm, we believe our findings should be agnostic
to the choice of frequency estimation subroutine used.

We explore the effect on utility of different data selection
schemes and algorithmic optimizations. We refer to our
algorithm as Optimized Prefix Tree (OptPrefixTree). Our
contributions are summarised below:

Adaptive Segmentation. We propose an algorithm for
adaptively choosing the segment length and the threshold
for keeping popular prefixes. In contrast to prior work that
treats the segment length as a hyperparameter, our algo-
rithm chooses these parameters in response to user data
from the previous iteration and attempts to maximize util-
ity (measured as the fraction of the empirical probability
distribution across all users captured by the returned heavy
hitters), while satisfying any system constraints. We find
that our method often results in the segment length varying
across iterations, and outperforms the algorithm that uses a
constant segment length. Our threshold selection algorithm
allows us to control the false positive rate.

Analysis of the effect of on-device data selection mecha-
nisms. We explore the impact of interactivity in the setting
where users have multiple data points. We observe empiri-
cally that when users have multiple data points, interactivity
can improve utility, even in the absence of system con-
straints. In each iteration, users choose a single data point
from their private data set to (privately) report to the server.
The list of heavy hitters in the previous iteration provides a
prefix list, so users will only choose a data point with one of
the allowed prefixes. If a user has several data points with
allowed prefixes, then there are several selection rules they
may use to choose which data point to report. Each user’s
private dataset defines an empirical distribution for that user.
We find that when users sample uniformly randomly from
the support of their distribution (conditioned on the prefix
list) then the algorithm is able to find more heavy hitters than
when they sample from their empirical distribution (again
conditioned on the prefix list). Note that the specific data
selection mechanism does not impact privacy guarantees.

Analysis of the impact of inclusion of deny list. Under the
constraint of user-level differential privacy, each user is only
able to communicate their most frequent data points, and
less frequent data points are down weighted. We explore

the use of a deny list that asks users not to report data points
that we already know are heavy hitters. In practice, a deny
list may arise from an auxiliary data source, or from a prior
run of the algorithm. Our analysis indicates even when the
privacy budget is shared between multiple rounds of the
algorithm, performing a second round equipped with a deny
list improves performance.

2. Related Works
Heavy hitters discovery methods have applications in vari-
ous different domains (Elkordy et al., 2023). This problem
has been studied in both the local model (Apple, 2017; Wang
et al., 2019; Acharya et al., 2019) and shuffle model (Ghazi
et al., 2021) of differential privacy. Furthermore, recently
different multi-party-computing (Boneh et al., 2021) meth-
ods and combination of multi-party-computing and DP tech-
niques (Böhler & Kerschbaum, 2021) have been proposed
to find the top-k heavy hitters in different domains. In this
work we focus on large domains and specifically iterative
methods that allows us to satisfy system constraints.

In (Zhu et al., 2020), the authors propose an iterative al-
gorithm to discover heavy hitters in the central model of
differential privacy. The general framework of forming a
tree-based structure is the same to our Prefix Tree method
except in their algorithm, TrieHH, samples a subset of de-
vices (γ

√
N ) in each iteration and uses the data points of

these devices to compute the heavy hitters for the next itera-
tion, without any additional noise and hence does not satisfy
local differential privacy. They select the prefix list for the
next iteration to be all prefixes such that more than θ devices
send the character in that iteration. The parameters γ and θ
are chosen to achieve the required privacy guarantee.

TrieHH++ (Cormode & Bharadwaj, 2022) is an extension
to TrieHH. The authors use the same sampling and thresh-
old algorithm as TrieHH to provide the (ϵ, δ)−aggregated
differential privacy. However, they are able to support more
general applications such as quantile and range queries. In
addition to detecting heavy hitters, this method is able to re-
port the frequency of heavy hitters without using additional
privacy budget. To achieve this goal, they take advantage
of Poisson sampling instead of fixed-size sampling to hide
the exact number of samples. Consequently releasing heavy
hitters and their counts does not violate user privacy.

While TrieHH and TrieHH++ satisfy the desired central
differential privacy, none of them provide any local differ-
ential privacy guarantee. In the Appendix G and H, we
evaluate the effect of different number of iterations for both
model. Using the optimum number of iterations for both
method, we compare the empirical utility of these models
with OptPrefixTree in section 4.
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3. Algorithm
In this section, we describe a high level outline of our pro-
posed algorithm OptPrefixTree. There are a number of
parameter and subroutine choices in this high-level algo-
rithm. Our focus in the experimental section to follow will
be to explore these choices, and provide some guidelines
on how they should be chosen. Note that this interactive
algorithm is well-suited to the federated setting since it does
not require every user to be present at every iteration.

Our algorithm is designed to satisfy device-level (protects
against a user changing all of the data points associated to
them) differential privacy (DP) in the aggregate model and
the local model of differential privacy. We use standard
composition theorems (Dwork et al., 2010; Kairouz et al.,
2017; Abadi et al., 2016; Mironov, 2017), and bound the
aggregate DP epsilon parameter by the numerical bound
on privacy amplification by shuffling. Since the aggregate
privacy guarantee is our primary privacy guarantee, we do
not directly optimize our local privacy parameter. For more
details on the privacy model, see Appendix B.

We represent the system constraints as a constraint of the
size of the data domain for any single iteration, denoted
by P . This bound may be a result of communication con-
straints, as is the case for the local randomizer we will use,
or computational constraints for the server-side algorithm,
as in (Feldman & Talwar, 2021; Feldman et al., 2022).

Notation. Let Pi be the empirical distribution of user i’s
data and P := 1

N

∑
i∈[N ] Pi be the global empirical distri-

bution. Each data point d ∈ {0, 1}r is of length r.

3.1. Private Heavy Hitters Algorithm

At every iteration t, the server has a list of live prefixes
Pprefixlistt of length lpref,t and a segment length lt and de-
vices (privately) report back the length lpref,t + lt(≤ r)
prefix of a data point that is not in the deny list Pdenylist and
whose lpref,t length prefix belongs in Pprefixlistt. The server
uses these local reports to define Pprefixlistt+1 (consisting
of prefixes of length lpref,t + lt) and lt+1 for the next round.
Algorithm 2 in Appendix C gives the pseudo-code of the
algorithm. We will use T to denote the number of iterations
and εl to be the local DP parameter for a single iteration. At
the end of T rounds, our algorithm outputs a set of heavy
hitters that includes the prefixes found in the last iteration
(PprefixlistT+1) and (if used) the contents of Pdenylist. We
use (εagg, δ)-DP to refer to the privacy parameters of our
algorithm in the aggregate model.

3.2. Device Algorithm

The device first uses the data selection mechanism select-
Data to choose a data point from their on-device dataset that
is not in the deny list, and whose lpref,t-length prefix is in

Pprefixlist. Then we pass the lpref,t + lt-length prefix of the
chosen data point to a εl-local DP algorithm and send the
privatized output to the aggregation protocol (Algorithm 3).

The Local Randomizer In our experiments we use one-
hot encoding with asymmetric binary randomized response
(denoted OHE+2RR) as the local randomizer. For details
of this randomizer, see Appendix A of (McMillan et al.,
2022). In practice one could use PI-RAPPOR (Feldman
& Talwar, 2021) (Appendix D) or Proj-RAPPOR (Feld-
man et al., 2022) for better communication-computation
trade-offs. Since the utility guarantees of these mechanisms
are very similar to OHE+2RR, we expect our findings on
OHE+2RR to be directly applicable when using PI-Rappor
or Proj-Rappor.

Data Selection We consider two data selection mechanisms.
In weighted selection, each device i selects a data point by
sampling from its empirical distribution Pi conditioned on
the datapoint having a prefix in Pprefixlistt and not being in
Pdenylist. In unweighted/uniform selection, each device i
selects a data point by sampling uniformly from those points
in the support of Pi which have a prefix inPprefixlistt and are
not in Pdenylist. To maintain local differential privacy, we
introduce a special data element ⊥ that devices (privately)
report if they have no eligible data points to select.

The empirical results of Kim et al. (2021) imply that se-
lecting more than one data point per device improved per-
formance in the central DP setting. Both of the selection
mechanisms above naturally extend to mechanisms that se-
lect more than one data point. In order to focus on the
impact of weighted vs. unweighted sampling, we focus on
selecting a single data point per device. We leave an explo-
ration of the optimal number of data points per device per
iteration in the aggregate DP setting to future work.

3.3. Server Algorithm
The server receives the aggregated privatized responses and
computes the prefix list and segmentation length for the next
iteration (Pseudo-code in Algorithm 4). These should be
chosen to both keep the prefixes of any heavy hitters, and
maintain any constraints on the data domain size for the next
iteration. In most of the prior works, the segment length and
threshold (described below) for keeping a prefix are treated
as hyperparameters that need to be tuned. Tuning hyperpa-
rameters is notoriously hard in the federated setting. Our
adaptive algorithms chooses these parameters in response
to user data, without using additional privacy budget.

Adaptive segmentation Our adaptive segmentation algo-
rithm first computes the list of live prefixes for the next
iteration. Given the aggregated privatized results the server
can compute an estimate f̃(d) of the number of devices
who sent the data point d in the last iteration, for every
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data element d ∈ Pprefixlistt × Alt . The prefix list selec-
tion algorithm aims to keep as many of the elements such
that f̃(d) > 0 as possible, while minimizing the number
of “false positives” in the prefix list (data elements which
do not match the selected data point for any device). When
using OHE+2RR, each estimate f̃(d) is unbiased and the
noise induced by the privatization scheme is approximately
Gaussian with standard deviation σ, where σ is a function
of εl and the number of participating devices. Due to the
noise, if we were to define the Pprefixlistt+1 to be all ele-
ments such that f̃(d) > 0, the false positive rate would be
too high. Instead, we propose using an adaptive algorithm
to choose a threshold multiplier τ such that the prefix list
Pprefixlistt+1 contains all the elements such that f̃(d) ≥ τσ.
This threshold is chosen to be as small as possible while
ensuring that the fraction of reported elements that are false
positives (have count 0) does exceed a specified False Posi-
tive Ratio threshold denoted by FPR. Furthermore, when
some datapoints have smaller length encodings than oth-
ers, we remove these data points from the prefix list for the
next round as soon as they are “complete”. They are then
added to the set of heavy hitters in the final output (details
in Appendix C.1).

Given the prefix list, the segment length is adaptively chosen
to be as large as possible while maintaining the dimension
constraint, lt+1 = argmaxℓ{ℓ | |Pprefixlistt+1| · 2

ℓ ≤ P}.
In the single data point per device setting, intuitively, there
are two opposing factors in the performance of the private
heavy hitters algorithm — the privacy budget per iteration
(which decreases with increase in T ) and the size of the total
search space (which is smaller for algorithms with smaller
segmentation lengths and hence more iterations). In Ap-
pendix E, we outline an argument illustrating that the effect
of decreasing in privacy budget per iteration dominates and
it is better to minimize the number of iterations. We also il-
lustrate this via experiments. Thus, we choose each segment
length to be as large as possible while retaining as many
popular prefixes (with suitable confidence) as possible and
maintaining the dimension constraint.

4. Experiments
Evaluation Dataset: For our evaluations, we use the Reddit
public dataset which contains the data of 1.6 million users’
comments posted on social media in December 2017 (Cal-
das et al., 2018). On the Reddit dataset each device has an
average of 1092 words and an average of 379 unique words.
For investigations on the single data point per device setting,
each device i samples a single data point from Pi. This
data point remains fixed during the multiple iterations of
the algorithm. Unless stated otherwise, we use a Huffman
encoding to translate the words into binary strings. One to-
ken is reserved for unknown characters and we have an end
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Figure 1. Discovered frequencies for different segmentation
schemes in OptPrefixTree, εagg = 1, δ = 10−6 and T = 4.

character encoding at the end of each bit stream. We set the
system constraint P = 107 and r = 60 in all experiments.
In all experiments we set FPR= 0.5.

Evaluation metric: Let H = (x1, x2, . . . , x|H|) denote the
set of heavy hitters output by an algorithm ordered by the
empirical global frequency distribution P. For our evalu-
ations here, we report the frequencies (according to P) of
heavy hitters output by the algorithm. To aid with visual-
ization in our plots, for a window size W = 50 and a given
heavy hitter set H , we plot for each i, the sum of the proba-
bilities (according to P) of the heavy hitters in the sliding
window More details about the plots are in Appendix F.

4.1. Adaptive Segmentation in Single Data Point Setting
We first focus on the simpler single data point per device
setting and explore the effect of adaptive segmentation on
the performance of OptPrefixTree. We demonstrate the
benefit of adaptively choosing the segment length, as op-
posed to using fixed-length uniform segment lengths. Fig. 1
compares the discovered normalized frequencies of having
uniform segments of sizes [15, 15, 15, 15] vs setting the
segment length adaptively which leads to segment lengths
of [23, 14, 11, 12]. Our adaptive scheme is able to discover
40% more heavy hitters (more plots in Fig. 15). We use
adaptive thresholding in both algorithms, with FPR = 0.5.
However, The empirical FPR is 0.35 and 0.41 for adaptive
and uniform segment algorithms, respectively.

4.2. Data Selection for Multiple Data Points per Device
Effect of data selection. First, we evaluate the effect of
weighted vs unweighted data selection schemes. To high-
light the benefit of conditioning on the prefix list during
data selection, we also compare against the version of these
schemes that do not take the prefix list into account when
selecting a data point. Fig. 2a shows the experimental re-
sults using the different data selection schemes. Unweighted
sampling outperforms weighted sampling in both with and
without prefix list experiments. As expected, conditioning
on the prefix list has a significant impact. For the rest of this
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(a) Discovered frequencies for different
data selections in OptPrefixTree
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(b) Discovered frequencies of adding deny
list to OptPrefixTree
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with prior works

Figure 2. Experimental results in the multiple data points per device setting with εagg = 1, δ = 10−6

paper, we use unweighted sampling conditioned on the pre-
fix list for on-device data selection. For these experiments
we set the FPR = 0.5. But, The empirical FPR is 0.30,
0.35, 0.35, and 0.38 for weighted selection + prefix list, un-
weighted selection + prefix list, weighted, and unweighted
selection respectively. More evaluations in Fig. 16.

Effect of adding a deny list. We explore two ways of
obtaining Pdenylist. Firstly, when the deny list comes from
an auxiliary public data source (which is not protected with
DP), which we refer to as a warm start. The second is
when we run the algorithm twice, with the heavy hitters for
the first round forming the deny list of the second round
(referred to as 2 rounds). In the 2 rounds case, we need
to account for the privacy budget of both rounds. In Fig. 2b
we compare the utility of different configurations. The
warm start is initiated with the top 2000 popular words from
Twitter Sentiment140 dataset (Go et al., 2009). We also
present the utility of the warm start (deny list line) on
its own, showing the difference between the distribution of
two datasets. We also include the standard algorithm run for
a single round, without a deny list (denoted as 1 round).
We further show the benefit of using deny list in one round
of algorithm execution. Finally, we first execute one round
of algorithm without a warm start and form a deny list out
of discovered prefixes, which is then used in a second round.
Fig. 2b shows that adding a deny list significantly increases
performance. Adding warm start leads to 2.1× more heavy
hitters discovered. The 2 round algorithm increases the
number of discovered heavy hitters discovered by 1.22×.
For Twitter Sentiment140 dataset only 0.006 of the data
points in this dataset do not belong to Reddit dataset. For
the rest of configurations, we set the FPR = 0.5. The
empirical FPR is 0.45, 0.37 and 0.39 for 1 round, 1
round + warm start and 2 rounds, respectively.

Comparing with prior works. We compare with
the optimized version of TrieHH (OptTrieHH) and
TrieHH++(OptTrieHH++) in the setting where each
device has multiple data points. We use our adaptive seg-
mentation to determine the segment length at each round.

For all three of the algorithms we use the unweighted data
selection, which performed the best in our previous explo-
rations. To have a fair comparison, the same binary encod-
ing is used for all of the models (5 bits per character, not
Huffman encoding). In OptTrieHH and OptTrieHH++,
for εagg = 1 and δ = 10−6, we set the threshold for the
number of reports that needs to be received for a word to
be a part of the prefix list (denoted by θ in their paper)
to 10. Accordingly, we set the sampling rate based for
TrieHH based on Corollary 1 in (Zhu et al., 2020) and for
TrieHH++ based on Lemma 3 in (Cormode & Bharad-
waj, 2022). In all of the methods, 12 iterations (1 character
per iteration) shows the best performance for this encoding.
Our analysis in Fig. 2c indicates OptPrefixTree is able to
discover 3.2 times more heavy hitters for the same number
of iterations and same dimension constraint. One explana-
tion for this performance difference is that OptTrieHH and
OptTrieHH++ use sampling and thresholding to achieve
the aggregated privacy guarantee, without adding any local
differential privacy noise. When we set the threshold to
10, the sampling rate is 0.0079 and 0.0071 for TrieHH and
TrieHH++ respectively. Hence, the low sampling rates
required to achieve the privacy guarantee results in sam-
pling error in the distribution that is larger than the noise
injected by our mechanism. In Appendix G and Appendix H
we explore the effect of different numbers of iterations in
the utility of TrieHH and TrieHH++ for both single and
multiple data points setting.

5. Conclusion
In this work we shed light on the importance of adaptive
segmentation and intelligent data selection in heavy hitter
detection algorithms. We conducted various experiments
to find the optimum adaptive segmentation scheme based
on the computation and communication constraints. In ad-
dition to comparing different data selection schemes, we
demonstrated the benefit of using a prefix list and deny list
for enhancing the utility of OptPrefixTree. Moreover, our
method is able to provide both local and aggregated DP.
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A. Notation table

Notation Definition
N Number of users
di,j jth Datapoint of user i
ni Number of datapoints of user i
P True underlying distribution of users
D Datapoint domain
A Alphabet domain
U Universe of all possible datapoints
T Number of unknown dictionary rounds
r Fixed total length of all the words
lt Segment length in iteration t
Ht histogram in iteration t

Pprefixlistt Prefix list after iteration t
vi,t private data of user i after iteration t
τ threshold multiplier
P Dimension limit
σ standard deviation of the noise

FPR Ratio of number of the false positives to total discovered
f̃(x) estimated frequency of data point x

Table 1. Notations

B. Differential Privacy
In this work, we will consider an algorithm that satisfies two levels of privacy protection appropriate for federated learning;
differential privacy in the aggregate model and differential privacy in the local model. For more details on a potential system
for achieving these guarantees please see (McMillan et al., 2022). In the federated setting where users may have more
than one data point, there are two main choices for the granularity of the privacy guarantee: device-level DP and event (or
data point)-level DP. We will focus on the stronger of these two guarantees, device-level DP, which protects against a user
changing all of the data points associated to them. We will introduce these two types of privacy guarantees in this section.
Throughout the remainder of this section, when we refer to a user’s data point, we are referring to their set of data points.

B.1. Local Differential Privacy

Local differentially private guarantees are achieved locally on a user’s device through the use of a local randomizer.

Definition B.1 (Local Randomizer (Dwork & Roth, 2014; Kasiviswanathan et al., 2011)). Let A : D → Y be a randomized
algorithm mapping a data entry in D to an output space Y . The algorithm A is an ϵ-DP local randomizer if for all pairs of
data entries d, d′ ∈ D, and all events E ⊂ Y , we have

−ε ≤ ln

(
Pr[A(d) ∈ E]

Pr[A(d′) ∈ E]

)
≤ ε.

The privacy parameter ε captures the privacy loss consumed by the output of the algorithm. Differential privacy for an
appropriate ε ensures that it is impossible to confidently determine what the individual contribution was, given the output of
the mechanism.

In general, differential privacy is defined for algorithms with input databases with more than one record. In the local model
of differential privacy, algorithms may only access the data through a local randomizer so that no raw data leaves the device.
For a single round protocol, local differential privacy is defined as follows:

Definition B.2 (Local Differential Privacy (Kasiviswanathan et al., 2011)). Let A : DN → Z be a randomized algorithm
mapping a dataset with n records to some arbitrary range Z . The algorithm A is ϵ-local differentially private if it can
be written as A(d(1), · · · , d(n)) = ϕ

(
A1(d

(1)), · · · ,An(d
(n))

)
where the Ai : D → Y are ϵ-local randomizers for each
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i ∈ [n] and ϕ : Yn → Z is some post-processing function of the privatized records A1(d
(1)), · · · ,An(d

(n)). Note that the
post-processing function does not have access to the raw data records.

We say a multi-round algorithm A is ε-DP in the local model if it is the composition of single round algorithms which are
DP in the local model, and the total privacy loss of A is ε-DP. More generally, we can say that an interactive algorithm is
locally differentially private if the transcript of all communication between the data subjects and the curator is differentially
private (Joseph et al., 2019). Since aggregate differential privacy is our primary privacy guarantee, when we refer to local
privacy guarantees, they will be for a single round of communication.

B.2. Aggregate Differential Privacy

In the aggregate model of differential privacy, we assume the existence of an aggregation protocol that sums the local reports
before they are released to the analyst. The analyst still interacts with the clients in a federated manner to perform the
algorithm, but the aggregation protocol guarantees that the analyst does not receive anything about the local reports except
their sum. The aggregate model of DP is a derivative of the more general and more common than aggregate DP shuffle
model of differential privacy introduced in (Erlingsson et al., 2019; Cheu et al., 2019).
Definition B.3. A single round algorithm A is (ε, δ)-DP in the aggregate model if the output of the aggregation protocol on
two datasets that differ on the data of a single individual are close. Formally, an algorithm A : Dn → Z is (ε, δ)-DP in the
aggregate model if the following conditions both hold:

• it can be written as A(d(1), · · · , d(n)) = ϕ(Aggregator(f(d(1)), · · · , f(dn))) where f : D → Z is a randomized
function that transforms that data, Aggregator is an aggregation protocol, and ϕ : Yn → Z is some post-processing
of the aggregated report

• for any pair of datasets D and D′ that differ on the data of a single individual, and any event E in the output space,

Pr(A(D) ∈ E) ≤ eε Pr(A(D′) ∈ E) + δ.

Note that the post-processing function takes the aggregation as its input and does not have access to the individual reports.

When δ > 0, we call this approximate DP. When each user uses a local randomizer (i.e. the functions f in Definition B.3 are
local randomizers), the privacy guarantee in the aggregation model can be bounded by a quantity that is a function of both ε0,
the privacy guarantee in the local model, and n, the number of users that participate in the aggregation protocol (Erlingsson
et al., 2019; Cheu et al., 2019). As the number of users increases, the privacy guarantee on the output of the aggregation
protocol gets stronger; essentially each user gets “lost in the crowd”. In this work, we will bound aggregate DP guarantee
by the numerical bound on privacy amplification by shuffling due to (Feldman et al., 2023), who provide bounds for both
approximate DP and a related privacy notion called Rényi DP.

A multi-round algorithm A is (ε, δ)-DP in the aggregate model if it is the composition of single round algorithms which
are DP in the aggregate model, and the total privacy loss of A is (ε, δ)-DP. One can formulate a version of Definition B.3
specifically for multi-round algorithms, for a more in-depth discussion see (Jain et al., 2021). There are a number of standard
theorems for analysing the privacy guarantee of composing multiple differentially private algorithms (Dwork et al., 2006;
2010). When the number of iterations is small, the advanced composition theorem (Dwork et al., 2010; Kairouz et al., 2017)
provides a tight analysis. When the number of iterations is large, a tighter analysis is obtained by computing the composition
bound in terms of Rényi differential privacy (Abadi et al., 2016; Mironov, 2017) then converting this Rényi bound into an
(ϵ, δ)-DP bound (Canonne et al., 2020). In our experiments, we compute the composed privacy guarantee using both of
these methods, then select the tighter bound.

Given an expected number of users, the number of iterations, and the desired aggregate privacy guarantee, we can use binary
search to approximate the smallest per iteration local epsilon that will achieve the given aggregate privacy guarantee. This
algorithm is given in Algorithm 1 where RenyiShuffleAnalysis computes the Rényi privacy guarantee for amplification
by shuffling, Composition uses the composition theorem for Rényi DP, Conversion converts the Rényi DP guarantees
to approximate DP guarantees and BinarySearch makes the decision on whether to increase or decrease εl

′. Since the
aggregate privacy guarantee is our primary privacy guarantee, we do not put an upper bound on our local epsilon. Table 2 in
Appendix B demonstrates how the local epsilon increases with the number of iterations, and the desired aggregate privacy
guarantee. For details, see Appendix B. Table 2 shows different values of εl and εagg depending on the number of iterations
for N = 1.6× 106 devices (number of users in the Reddit data set used for our experiments).
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Algorithm 1 Privacy Analysis

1: Input: ϵagg, δ: Aggregate privacy budget, T : number of iterations, N : number of devices , α: pre-defined set of Renyi
parameter, E: binary search error tolerance

2: Output: εl: local privacy budget of each device in each iteration
3: εl

′ ← Initialization
4: while |ϵagg − ϵ′agg| ≤ E do
5: ϵ′r ← RenyiShuffleAnalysis(ϵ′l, δ, T,N, α)
6: ϵ′composition ← Composition(ϵ′r, T ) // ϵ′composition = T × ϵ′r
7: ϵ′agg ← Conversion(ϵ′composition, δ, α) // Proposition 12 of (Canonne et al., 2020)
8: ϵ′l ← BinarySearch(ϵagg, ϵ′agg, εl

′)
9: end while

10: ϵl ← ϵ′l
11: return ϵl

ϵagg 0.25 0.5 1
T 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
ϵl 6.36 6.05 5.79 5.63 5.35 5.31 7.18 6.96 6.73 6.48 6.33 6.26 8.03 7.73 7.58 7.39 7.03 7.018

Table 2. Choices of εagg , T and εl

C. Further Algorithm Details and Pseudo-code
We give the pseudo-code of our proposed algorithm OptPrefixTree. Pseudo-code for the overall outline is given in
Algorithm 2. The algorithm allows to include both a deny list, and a “discovered list” Pdiscoveredlist, which includes heavy
hitters that are removed from the prefix list in earlier iterations because the encoding the data element was smaller than r.
Algorithm 3 gives more details for the device-side algorithm. Recall that our local randomizer Apriv is one-hot encoding
with asymmetric binary randomized response, see Appendix A of (McMillan et al., 2022) for more details on this choice
of local randomizer. The prefix length lpref is the length of the prefixes in the prefix list. More details on the server-side
algorithm can be found in the next subsection.

Algorithm 2 Prefix tree based heavy hitter algorithm (OptPrefixTree)

1: Input: T : number of iterations, εl: Local privacy parameter, selectData: Data selection mechanism, P : Bound on the
dimension, FPR: false positive ratio, η: extra parameters to pass to ServerSide, Pdenylist: deny list.

2: Output: PprefixlistT+1: Set of Heavy Hitters
3: l1 ← ⌊log(P )⌋, Pprefixlist1 = ∅,Pdiscoveredlist = ∅ // Initialize segment length and prefix list
4: for t ∈ [T ] do
5: Vt ← ∅ // Vt will be the set of all the device responses that is sent to the aggregation protocol
6: for i ∈ [N ] do
7: vi ← DeviceSidei(ϵl, lt,Pprefixlistt,Pdenylist, selectData)
8: Vt ← Vt ∪ vi
9: end for

10: Vt ← AggregationProtocol(Vt) // Device responses are aggregated
11: Dt ← Pprefixlistt × {0, 1}

lt // Data domain for iteration t
12: Pprefixlistt+1, lt+1,Pdiscoveredlist ← ServerSide(Vt,Dt,Pdiscoveredlist, ϵl, FPR, η) // Server returns prefix list and

segment length for next round
13: Send Pprefixlistt+1, and lt+1 to all the devices
14: end for
15: return PprefixlistT+1 ∪ Pdenylist ∪ Pdiscoveredlist

C.1. Server-side algorithm

The general outline of the server-side algorithm is given in Algorithm 4. In this section we provide the details of the
post-processing method on the server which determines the prefix list and next iteration segment length. We pass this noise
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Algorithm 3 Device side algorithm (DeviceSide)

1: Input: εl: Local privacy parameter, lpref : prefix length, lt: segment length, Pprefixlist: allowed prefix list, Pdenylist:
deny list, selectData: Function to choose a datapoint from the data

2: Param: D: device dataset
3: Output: v: Privatized output
4: D = {d ∈ D | d[0 : lpref ] ∈ Pprefixlist ∧ d /∈ Pdenylist}
5: if D == ϕ then
6: d←⊥ // We reserve a special data element for users that have no eligible data points to report.
7: else
8: d← selectData(D)
9: end if

10: v ← Apriv(d[0 : lpref + lt]; ϵl)
11: return v

parameter, the frequency estimates and some extra parameters to PruneHH (Algorithm 5), which chooses heavy hitters based
on some parameters set by the data analyst. In the simplest setting, one may simply define the heavy hitters as those with a
frequency estimate greater than a fixed constant times the noise σ.

Algorithm 4 Server side algorithm per round (ServerSide)

1: Input: Vt: Aggregated sum of devices responses, Dt: Data domain of iteration t, εl: Local privacy parameter, FPR:
False positive ration and η: Extra parameters for PruneHH

2: Output: Pprefixlist: Heavy hitters list
3: f̃(·)← Aprivagg(Vt,Dt; εl) // Takes the aggregated privatized responses and computes an estimate of the frequency of

every data element.
4: σ ←

√
Var(Aprivagg) // Computes an upper bound on the standard deviation of the frequency estimate for d

5: Pprefixlistt+1 ← PruneHH(D, f̃(D), C, FPR, σ, η)
6: Pprefixlistt+1,Pdiscoveredlist ← RemoveFinished(Pprefixlistt+1,Pdiscoveredlist) // Removes any of the discovered

prefixes which are “complete” data points and adds them to the discovered list.
7: lt+1 = max{ℓ | |Pprefixlistt+1| × 2ℓ ≤ P} // Adaptively chooses the maximum segment length
8: return Pprefixlistt+1, lt+1,Pdiscoveredlist

Algorithm 5 describes the post-processing of the frequency estimator to choose the prefix list of the next round. First, E
denotes the expected percentage of false positives. Based on the initialized confidence level (C), a threshold multiplier (τ ) is
computed based on the Gaussian approximation, where zC denotes the Cth gaussian quantile, i.e. zC = Φ−1(C), where
Φ() denotes the gaussian CDF. Then if the frequency of a discovered bin is above τσ, this means that with confidence C the
discovered bin is a true positive because its count is above the noise level with probability C (line 4). In the while loop (line
5 to 9), we make sure that the ratio of the expected false positives to all the bins we keep in the prefix list does not go above
a certain threshold. len(D)× E represents the expected number of false positive bins. As explained before an end symbol
is used to mark the end of stream. After extracting the prefix list, server checks if any of the prefixes already reached the end
symbol. If a prefix reaches its end symbol it can be excluded from the prefix list sent to the devices in the next iteration. We
append these finished prefixes to Pdiscoveredlist and form the prefix list of the next iteration (Pprefixlist) by removing them
(line 11). Finally, the next iteration segment length is defined based on the dimension constraint and size of the prefix list to
ensure the total domain size does not go above dimension limit (line 12).
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Algorithm 5 Pruning algorithm for confident heavy hitter detection (PruneHH)

1: Input: D, f̃ [D]: query set and estimated frequencies after aggregation, C: Initialization of confidence level, FPR:
ratio of expected false positives to the total number of bins, σ: aggregated noise standard deviation, η: step size

2: E ← 1− C
3: τ ← zC
4: Pprefixlist

′ = {q ∈ D | f̃ [q] > τ × σ}
5: while |Pprefixlist

′| < E × len(D)× 1
FPR do

6: E ← η ∗ E
7: C ← 1− E
8: τ ← zC
9: Pprefixlist

′ = {q ∈ D | f̃ [q] > τ × σ}
10: end while
11: Pprefixlist,Pdiscoveredlist ← RemoveEnds(Pprefixlist

′)

12: l← ⌊log
(

P
|Pprefixlist|

)
⌋

13: return Pprefixlist, l

D. PI-RAPPOR
In this section, we describe the PI-RAPPOR local randomizer that may be used as the local randomizer (Apriv) and two
algorithms (Aprivagg) we can use to get the private frequency estimates each element queried (usually the data domain in each
round Pprefixlistt−1×Alt ). We also discuss the computation and communication costs for the device side and both the server
side algorithms, provide recommendations for speeding up the algorithms by a factor of eεl + 1, and provide guidelines
for practitioners on how to choose one amongst the two frequency estimation algorithms based on the computation costs.
Both the local randomizer (Apriv) and the frequency estimation (Aprivagg) algorithms are parameterized by two constants
α0 and α1 which can be chosen suitably to satisfy deletion εl - DP (α0 = 1 − α1 = 1

eεl+1 ) and replacement εl - DP
(α0 = 1

eεl+1 , α1 = 1
2 ), respectively.

Let q be a prime power so that α0q is an integer (the case when α0q is not an integer incurs a small additional error as
described in Lemma 4.7 of (Feldman & Talwar, 2021)). We let F1 denote the α0q smallest elements of the field and let
bool(z) denote the indicator of the event z ∈ F1. We can describe an affine function v over Fd

q using d + 1 coefficients
v0, v1, . . . , vd and for any element w ∈ Fd

q ,we define the function as v(w) = v0 +
∑

i∈[d] viwi. Let V denote the family of
functions defined by all d+ 1 tuples in Fq . For each element w ∈ Fd

q , and bit b ∈ 0, 1, we define the set of functions

Vw,b := {v ∈ V|bool(v(w)) = b}. (1)

Algorithm 6 describes the device side compressor using PI-RAPPOR. It takes εl, the local DP parameter, q, a prime power,
d, the field dimension, Enc : S→ Fd

q , a mapping from data domain to field Fd
q , s the data point to be privatized as inputs.

We first convert the datapoint to be privatized and transmitted to an element in Fd
q using the mapping Enc. Then we sample

b ∼ Ber(α1) and finally sample v uniformly from Vw,b. This can be done by choosing v1, . . . , vd uniformly and randomly
from Fq and choosing v0 from the set {v0|v(w) = b}. Since this set consists of at most two contiguous ranges of integers,
this sampling can be done in O(log q) time. The communication cost of this algorithm is ⌈(d+ 1) log2 q⌉ bits.

Algorithm 6 PI-RAPPOR Local Randomizer

1: Input: εl: Local DP parameter, d: data point
2: Params: q: prime power, d: field dimension, Enc : U → Fd

q : mapping from data domain to field Fd
q

3: Output: v: compressed and privatized version of d
4: Set w = Enc(d)
5: Sample b ∼ Ber(α1)
6: Sample v uniformly from Vw,b defined in (1)
7: Return v

Let V = (v1, v2, . . . , vn) denote the collection of privatized responses collected from all the devices. For any element
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w ∈ Fd
q , we can find its estimated frequency using the following equation:

f̃ [w] =
∑
i∈[n]

bool(vi(w))− α0

α1 − α0
. (2)

Note that for user i, if vi was generated using the field element w, we have bool(vi(w)) ∼ Ber(α1) and if vi was generated
using any other field element, bool(vi(w)) ∼ Ber(α0). Thus,

f̃ [w] =
Bin(f [w], α1) + Bin(n− f [w], α0)− nα0

α1 − α0
, (3)

where f [w] is the true frequency of w. As shown in Lemma 4.2 of (Feldman & Talwar, 2021), f̃ is an unbiased estimator of
f with the minimum possible variance for locally private estimators.

Algorithms 7 and 8 describe two possible implementations of the decompressor to calculate (2). Both of them take εl, the
local DP parameter, Q, a set of elements of Fd

q of which we would like to know frequency estimates, and V , the collection
of outputs of all users as inputs. In Algorithm 7, we compute the dot product for all outputs and all query vectors giving
a computational complexity of the order n|Q|. In Algorithm 8 however, we try and reduce the number of dot products
computed by first keeping a counter of values in V , and computing the dot products only for the unique values in the counter.
Thus, the complexity of Algorithm 8 is of order ∼ |Set(V )||Q|+ n, where |Set(V )| is the number of unique elements in V .
Note that |Set(V )| < min{n, qd+1} and Algorithm 8 runs meaningfully faster than Algorithm 7 only when qd+1 < n.

Algorithm 7 PI-RAPPOR Frequency Oracle - I

1: Input: εl: Local DP parameter, V : compressed user outputs, Q: query set
2: Output: f̃ [w] ∀ w ∈ Q: Private estimates of frequencies of elements in query set
3: Set f̃ = 0 ∈ R|Q|

4: for i ∈ [n] do
5: for w ∈ Q do
6: f̃ [w]+ = bool(vi(w))
7: end for
8: end for
9: f̃ = f̃−α0n

α1−α0

10: Return f̃

Algorithm 8 PI-RAPPOR Frequency Oracle - II

1: Input: εl: Local DP parameter, V : compressed user outputs, Q: query set
2: Output: f̃ [w] ∀ w ∈ Q: Private estimates of frequencies of elements in query set
3: Set f̃ = 0 ∈ R|Q|

4: for v ∈ V do
5: nv = 0
6: end for
7: for v ∈ V do
8: nv+ = 1
9: end for

10: for v ∈ [V ] do
11: for w ∈ Q do
12: f̃ [w]+ = nv ∗ bool(vi(w))
13: end for
14: end for
15: f̃ = f̃−α0n

α1−α0

16: Return f̃
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Speedups in the decompressor for prefix based algorithms: When the query set is a contiguous set of elements, we can
choose the prime power q so that bool(v(w)) evaluates to 0 for most values of w and precisely calculate the values of w for
which it evaluates to 1. This can potentially save up computation by a factor of roughly 1

α0
. We choose q to be the smallest

prime power bigger than K = max{eεl + 1, 2l}, where l denotes the segment length. Also, let c = ⌊ q
eεl+1⌋ and denote

{0, 1, . . . , c} by [c]. We describe the encoding for the two algorithms below:

1. Noninteractive algorithm: (no prefix list filtering on device side) Each datapoint (assume it to be a bitstring)
of length r is divided into T segments of length l each. Each segment corresponds to a dimension in the field Fq and
hence in iteration j, the dimension used by the compressor is j, and the mapping Enc can be defined by taking each
chunk of size l and converting the bitstring to an integer. In each iteration, since we search over extensions of a given
set of prefixes (denoted by Pprefixlist), the query set is of the form Pprefixlist × Fq .

2. Interactive Algorithm: (with prefix list filtering on device side) Each datapoint (assume it to be a bitstring)
of length r is divided into T segments of length l each. In each iteration, the set of prefixes can be assigned to the
first ⌈logq |Pprefixlist|⌉ dimensions and the last dimension can be the chunk we search over. The mapping Enc can be
defined using the encoding for the prefixes which has already been communicated (since we can be interactive) and the
bitstring for the new segment can be converted to an integer less than q. Thus, the query set for each iteration will also
be of the form Pprefixlist × Fq .

Given a query set of the form Pprefixlist×Fq , we can improve the complexity of Algorithm 7 to∼ n∗c∗ |Pprefixlist| and that
of Algorithm 8 to ∼ |Set(V )|c|Pprefixlist|+ n. Note that this is a roughly eεl +1-fold improvement in both the cases. To do
this, instead of calculating the product vi(w) = vi0+

∑
j∈[d] v

i
jwj for all w ∈ Q, we calculate vi−1(h) = vi0+

∑
j∈[d−1] v

i
jhj

for all prefixes h ∈ Pprefixlist. Then for each element (say g) in [c], we calculate (vid)
−1(g − vi−1(h)) to get back precisely

the element wd ∈ Fq for which bool(vi(w)) will evaluate to 1 and correspondingly increase the estimated frequency count
for w = (h,wd). The inverse operation can be computed using a lookup table that can be calculated ahead of time. Thus,
instead of searching over all elements in the query set of size |Q|, we loop over all prefixes and possible cutoffs, giving a
size of c|Pprefixlist|, giving an effective improvement of roughly eεl + 1 (or 1

α0
) in the runtime.

E. Intuitive theoretical analysis of OptPrefixTree for single datapoint
In this part, we try to obtain guidelines for how to set the segment length in the a single data point per device setting. We
provide analysis for running OptPrefixTree for one round (T = 1) searching over the whole high dimensional universe
Ar. While this may be impractical to implement, it provides us with setting of hyperparameters in the case of no computation
and communication constraints. We analyze the algorithm assuming good performance of the local randomizer Apriv,
frequency estimator Aprivagg pair. We formalize this assumption as follows:

Assumption E.1. For any β ∈ [0, 1], for any element x in the domain, with probability at least 1− β, we have,

|F (x)− f̃(x)| ≤ C1

√
neεl

(eεl − 1)2
log

(
1

β

)
= C2

√
log(1/δ) log(1/β)

ϵagg
,

where C1 and C2 are absolute constants, F is the global empirical distribution and f̃ is the estimated empirical distribution.

We note that this assumption is satisfied by OHE+2RR, as well as other common frequency estimation algorithms such
as PI-Rappor. For the purpose of this analysis, we will use a different metric to the metric that will be the main focus in
our experimental results. We will measure the performance of OptPrefixTree using a metric we define in Definition E.2,
which is standard in the differentially private heavy hitters literature (Bassily et al., 2017).

Definition E.2 (λ-accurate). A set of heavy hitters PprefixlistT is said to be (λ,A)-accurate if it satisfies the following:

• For all d ∈ U , if F (d) ≥ A+ λ, then d ∈ PprefixlistT .

• For all d ∈ U , if F (d) < A− λ, then d /∈ PprefixlistT .

We now prove the utility of OptPrefixTree when we have one iteration with l = r in Proposition E.3.
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Proposition E.3. Let the local randomizer (Apriv) and frequency estimator (Aprivagg) pair satisfy Assumption E.1 and
let Pprefixlist1 be the output of OptPrefixTree when run for T = 1 round with l = r and the query set D = Ar

and aggregate DP parameters (ϵagg, δ). Then, with probability at least (1 − β), Pprefixlist1 is (λ, τσ)-accurate with

λ = O

(
1

ϵagg

√
log(1/δ) log

(
|A|r
β

))
, where τσ is the final threshold.

Proof of Proposition E.3. In a single round, we query each element in the data domain of size |A|r. Thus using As-
sumption E.1, with β′ = β

|A|r and using a union bound, we have that with probability 1 − β, maxd∈U |F [d] − f̃ [d]| ≤

C
√

neεl
(eεl−1)2 log(

|A|r
β ).

Now, we prove that this algorithm is λ-accurate (Definition E.2) with λ = C
√

neεl
(eεl−1)2 log(

|A|r
β ). Let d ∈ Ar with

f̃ [d] ≥ τσ+ λ. Then, f [d] ≥ τσ and hence d ∈ Pprefixlist1. Next, let d ∈ Ar such that f [d] < τσ− λ, then f [d] < τσ and

we have d /∈ Pprefixlist1. This shows that Pprefixlist1 is λ-accurate with λ = C
√

neεl
(eεl−1)2 log(

|A|r
β ).

While this only give us upper bound on the performance of the single iteration algorithm, it does help us gain some intuition
into how to set the segmentation length. Suppose we were to run the algorithm for T iterations with even segmentation (i.e.
lt = r/T for all t). Then, at each iteration, we would need the aggregate privacy guarantee for that round to be ≈ ϵagg/

√
T .

If the data domain size per iteration was exactly |A|r/T then the impact of T on the error would approximately cancel
(ignoring logarithmic terms that arise from ensuring true heavy hitters survive at each iteration). However, the data domain
at each round is greater than |A|r/T pushing us towards using a single round.

This intuition does not generalize to the multiple data points per device setting as it is possible for iterations allows us to
more intelligently select the data points that users contribute. This is aligned with our empirical results in Appendix F.2
which indicates sending one character at a time improves the utility. However, we conjecture that reducing the number of
iterations per round, and including multiple rounds with deny-lists will improve utility.

F. Adaptive Segmentation Exploration
Here, in addition to showing discovered frequencies and discovered counts, we show another metric which we refer to as
utility loss.

Let H = (x1, x2, . . . , x|H|) denote the set of heavy hitters output by an algorithm ordered by the empirical global frequency
distribution P, and let x∗

i denote the ith most frequent element according to the global empirical distribution P, i.e. the true
ith heavy hitter. Then, we evaluate an algorithm with output H by how close the total mass of H is to the total mass of the
true top |H| heavy hitters.

Utility Loss: Define the weight ratio as WR(H) =
∑

x∈H P(x)∑
i∈[|H|] P(x∗

i )
, i.e. the ratio of total probability mass of private heavy

hitters H over the probability mass of the actual top |H| heavy hitters. The goal is to maximize the WR to minimize the
loss (1-WR).

One other potential metric for evaluating these models is to use precision and recall or different versions of their combination
for instance F1-Score. However, these metrics do not take into the account the frequency of discovered items. Meaning that
if any iterative algorithm discovers the most frequent heavy hitters, but some of them are not in the actual most frequent
heavy hitters because of a small frequency difference, precision/recall metrics are not able to capture that. In other words,
they capture those as a miss which is not fair to these algorithms.

For marginal figures, to aid with visualisation in our plots, for a window size W = 50 and a given heavy hitter set H , we plot
for each i, the sum of the probabilities (according to P) of the heavy hitters in the sliding window (xi−W , xi−W+1, . . . , xi).
We also plot a true histogram line representing (x∗

i−W , x∗
i−W+1, . . . , x

∗
i ) (TruHist line) as a reference of what true histogram

looks like.
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(a) Marginal discovered frequencies
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(b) Marginal discovered counts
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Figure 3. Effect of the different FPR parameters for single data point setting on OptPrefixTree utility (εagg = 1, δ = 10−6 and
T = 4)

F.1. Adaptive Segmentation for Single Data Point

In this section, we explore the effect of different parameters in the utility of OptPrefixTree. For simplicity in this section,
we assume each device has a single datapoint.

False Positives Ratio

In these experiments we investigate the effect of different FPR parameters on the utility of the final model. False positives
ratio can be defined for each application. Depending on how sensitive the application is, FPR determines ratio of number
of expected false positives to the total discovered that we keep in each iteration. Please note that this parameter is application
dependent. For the applications that are more tolerant to false positives this ratio can be higher. In this part we set the
P = 107 and OptPrefixTree finishes in 4 iterations.

As observed increasing the FPR from 0.5 to 1 increases the number of heavy hitters detected slightly [660, 656, 678.0,
695] but increasing FPR also increases the number of discovered false positives significantly [357, 636, 828, 1400]. Based
on Figure 3c, although lower FPR detects fewer true bins to ensure it includes fewer false positives, it detects the top
most-frequent bins correctly as the loss value shown on y-axis is negligible. We also remark that FPR = 1 does not imply
that all bins are included since the threshold is based on the expected expected value of false positives for every confidence
whereas the true number typically fluctuates around the expectation.

Dimension Limitation

In production-scale systems the computation cost of decoding and aggregating the responses can be a significant bottleneck
considering the high dimension of data. Thus, we tried to evaluate the effect of different dimension constraints on the
performance of OptPrefixTree. In order to do so, we used different constraints of 20, 10, and 1 million for each device ’s
dimension in one iteration. This limitation in iteration t specifies 2lt+1 × |Pprefixlistt|. First for all the configurations we set
the number of iterations to 4. As illustrated in Figure 4c, 4b, and 4a changing the limit to 1 million degrades the utility of
the algorithm significantly. One way to compensate this degradation is to allow the algorithm to run in 5 iterations instead
of 4. To account for the total privacy budget in all the iterations, by having one more iteration, the noise value we use for
each iteration increases (check Table 2). However, with 5 rounds the algorithm is able to detect 15% more heavy hitters in
comparison to the same dimension limit of 1 million when uses 4 iterations.

Number of Devices Limitation

In this part we analyze the effect of having constraints on the number of devices on the utility of the model. In a production-
scale model with billions of devices sending data, dimension can grow extremely large. One way to get around this
issue is to use sampling. By sampling in each iteration only a sub-set of devices receive the query and contribute to the
algorithm. In this section we discuss the effect of having different sampling rates on the utility of the model. Each device
can participate in an iteration with a Ber(γ) where γ is the sub-sampling rate. We use theorem 5 described in (Zhu & Wang,
2019) for estimating the upper-bound of εc. The effect of different sub-sampling rates on the value of εl when εc = 1 and
N = 1.6 ∗ (10)6 is shown in Table 3. As shown small sampling rate, increase the εl by adding to the randomness. However,
as shown in the table, no sampling leads to higher εl in comparison to the moderate sampling rates εl. The reason is when
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Figure 4. Effect of dimension limitation for single data point setting on OptPrefixTree utility (εagg = 1, δ = 10−6 and T = 4)

T 3 4 5
sampling rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

εl 8.42 8.26 8.19 8.12 8.1 7.92 7.81 7.73 7.62 7.73 8.32 8.19 8.12 7.97 7.87 7.72 7.59 7.52 7.4 7.58 8.27 8.12 8.1 7.86 7.6 7.35 7.19 7.2 7.02 7.39

Table 3. Sampling rate effect on the εl for εagg = 1 and δ = 10−6

the number of devices increases, the privacy guarantee on the output of the aggregation protocol gets stronger (“lost in the
crowd”). Hence, for moderate sampling rates having less number of users cancels the benefit of using sampling. Figure 5c,
5b, 5a demonstrates the effect of different sampling rates on the utility of OptPrefixTree. In addition to εl difference of
using different methods, having smaller number of devices can affect the utility by eliminating some part of the distribution.
Consequently, we avoid using sampling if the dimension constraint allows.

F.2. Multiple Data point Adaptive Segmentation

Segmentation Size

In this analysis, we used binary encoding of the data. We set the dimension limitation to P = 107. We ran the experiment
for the utilized setting in which we have unweighted sampling and prefix list. We used both weighted and unweighted
metric. As demonstrated increasing the number of iterations from 3 to 12 improves the utility of the algorithm.

G. TrieHH
G.1. Single Data Point Setting for TrieHH

In this section we discuss the effect of number of iterations on the utility of a single data point setting for TrieHH (Zhu et al.,
2020). In Figure 8a, we show the effect of different segmentation on the utility of the algorithm for a single data point per
device setting. For these experiments we used εagg = 1 and sampling rates are set based on table 4. To evaluate the effect of
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Figure 5. Effect of the different sampling rates for single data point setting on OptPrefixTree utility (εagg = 1, δ = 10−6 and T = 4)
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(a) Marginal discovered frequencies (weighted metric)
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Figure 6. Effect of the segment size for multiple data points setting on OptPrefixTree utility (εagg = 1, δ = 10−6)
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(a) Marginal discovered counts (unweighted metric)
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Figure 7. Effect of the segment size for multiple data points setting on OptPrefixTree utility (εagg = 1, δ = 10−6)

εagg 1 0.5 0.25
T 12 6 4 3 12 6 4 3 12 6 4 3

Sampling Rate 0.0079 0.0153 0.0221 0.0283 0.0040 0.0079 0.0117 0.0153 0.0020 0.0040 0.0060 0.0079

Table 4. Number of rounds effect on the sampling rate of TrieHH
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(b) Marginal discovered counts
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Figure 8. The effect of different number of iterations on TrieHH for single data point setting (εagg = 1, δ = 10−6)
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Figure 9. The effect of different number of iterations on TrieHH for multiple data points setting with weighted sampling(εagg = 1,
δ = 10−6)

different segmentation in this part we used the P = 107 on the dimension. The number of heavy hitters detected by TrieHH
algorithm, when the number of iterations are 12 (1 char), 6 (2 char), 4 (3 char), 3 (4 char) are [142, 261, 355, 135]. Initially
having larger segments help with the algorithm since less number of iterations are required and consequently sampling rate
becomes larger. However, by increasing the segment size to certain point, the utility drops. The reason is by enlarging
the segment length the number of prefixes in each iteration reduces because of the dimension constraint. Hence, for the
comparisons with OptPrefixTree we used the best configurations which is having 4 iterations.

G.2. Multiple Data Points Setting for TrieHH

We further analyze the multiple data points setting. To optimize the algorithm we took advantage of a prefix list for each
iteration. Devices send their data only if they find a match with a prefix in the prefix list. We also use an end character symbol
to indicate the end of string. If end character symbol is observed in a prefix at the end of an iteration, the corresponding
prefix will be excluded from the prefix list. Therefore, users can send other unfinished prefixes. Also, for our evaluation,
we used binary encoding which uses 5 bits to represent each character. The total number of heavy hitters detected by
TrieHH algorithm, when the number of iterations are 12 (1 char), 6 (2 char), 4 (3 char), 3 (4 char), are [816, 706, 506, 110]
respectively. In this setting, 12 iterations shows the best utility. In Figure 9a and 9b we used weighted sampling described
in the original paper.

To further improve the utility of TrieHH, we used unweighted sampling in another set of experiments. This new sampling
scheme leads to finding [816, 529, 422, 85] heavy hitters when having 12 (1 char), 6 (2 char), 4 (3 char), 3 (4 char) iterations
respectively. Figure 10a and 10b shows the loss and marginal discovered counts based on the unweighted sampling scheme.
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Figure 10. The effect of different number of iterations on TrieHH for multiple data points setting with unweighted sampling (εagg = 1,
δ = 10−6)
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Figure 11. Utility comparison between OptTrieHH and OptPrefixTree for single data point setting(εagg = 1, δ = 10−6, T = 4)

As demonstrated in these figures, unweighted scheme is able to find more heavy hitters and cause less utility degradation.
Also using both sampling schemes, 12 iterations shows the highest utility. Thus, for the comparisons with OptPrefixTree

we use unweighted sampling, prefix-list and 12 iterations for OptTrieHH.

G.3. Comparison of OptTrieHH and OptPrefixTree

Zhu et al.’s primary experiments are on learning n-grams (words or length n sentences) where they propose setting the
segmentation length to be a single character. However, our analysis indicates that, in the single data point setting, larger
segments provide the higher utility. Earlier in this section we showed the effect of different number of iterations on the
sampling rate and utility of TrieHH. In this set of experiments we used 4 iterations that shows the highest utility for TrieHH
based on the dimension limitations (P = 107). We refer to this optimized version of TrieHH as OptTrieHH.

To have a fair comparison, we use the same binary encoding for both OptPrefixTree and OptTrieHH. This binary
encoding uses 5 bits to convert English letters to a binary representation. In these experiments, r = 60. We set FPR = 2 for
OptPrefixTree. Using this method, OptPrefixTree needs 4 iteration of unknown dictionary and uses the segmentation
of [23, 13, 12, 12]. Figure 11a shows the marginal frequencies of discovered bins on y-axis and number of heavy hitters in
x-axis. This figure shows the marginal value with sliding window of 50 on y-axis. In conclusion, with the same dimension
limit and binary encoding, our method is able to outperform OptTrieHH by finding 1.85X more heavy hitters. Figure 11b
shows the same plot but in the y-axis we have the marginal counts of discovered bins. Also, Figure 11c shows the total
utility loss.
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εagg 1 0.5 0.25
T 12 6 4 3 12 6 4 3 12 6 4 3

Sampling Rate 0.0071 0.0129 0.0193 0.0255 0.0032 0.0067 0.0102 0.0138 0.0016 0.0034 0.0053 0.0071

Table 5. Number of rounds effect on the sampling rate of TrieHH++ (δ = 10−6, N = 1.6× 106, θ = 10)

εagg 1 0.5 0.25
T 12 6 4 3 12 6 4 3 12 6 4 3

Sampling Rate 0.0153 0.0305 0.0449 0.0589 0.0078 0.0159 0.0239 0.0319 0.0039 0.0082 0.0123 0.0166

Table 6. Number of rounds effect on the sampling rate of TrieHH++ (δ = 10−6, N = 1.6× 106, θ = 20)

H. TrieHH++
Based on Lemma 3 of (Cormode & Bharadwaj, 2022), TrieHH++ achieves (ϵ, δ) differential privacy when sampling rate
ps = α(1 − e−ϵ) where 0 < α ≤ 1 and ϵ < 1 for δ = e−Cαθ, where Cα = ln 1/α − 1/(1 + α). The ϵ here is for one
iteration. We used advanced composition in theorem 3.4 of (Kairouz et al., 2017) to find the optimal ϵ per iteration which
gives us εagg of 1. We set the α parameter so that δ = 10−6. TrieHH++ provide the analysis that shows the trade off
between sampling and threshold values. We change the threshold θ from 10 to 20 and its effect on sampling rate are reported
in Table 5 and 6.

H.1. Single Data Point Setting for TrieHH++

In this section we discuss the effect of number of iterations on the utility of a single data point setting for TrieHH++ (Cor-
mode & Bharadwaj, 2022). In Figure 12, we show the effect of different segmentation on the utility of the algorithm for a
single data point per device setting. For these experiments we used εagg = 1 and sampling rates are set based on table 5.
To evaluate the effect of different segmentation in this part we used the P = 107 on the dimension. The number of heavy
hitters detected by TrieHH++ algorithm, when the number of iterations are 12 (1 char), 6 (2 char), 4 (3 char), 3 (4 char)
are [124, 223, 314, 137]. Similar to TrieHH having larger segments help with the algorithm since less number of iterations
are required and consequently sampling rate becomes larger. However, by increasing the segment size to a certain point, the
utility drops. The reason is by enlarging the segment length the number of prefixes that can be kept in each iteration reduces
because of the dimension constraint. Thus, for the comparisons with OptPrefixTree we used the best configurations
which is having 4 iterations.

H.2. Multiple Data Points Setting for TrieHH++

For our evaluation, we used the same binary encoding we described before. The total number of heavy hitters detected by
TrieHH++ algorithm, when the number of iterations are 12 (1 char), 6 (2 char), 4 (3 char), 3 (4 char), are [714, 455, 417, 90]
respectively. As shown in Figure 13, in this setting, 12 iterations shows the best utility.

To further improve the utility of TrieHH++, we used unweighted sampling in another set of experiments. This sampling
scheme leads to finding [704, 610, 484, 102] heavy hitters when having 12 (1 char), 6 (2 char), 4 (3 char), 3 (4 char) iterations
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Figure 12. The effect of different number of iterations on TrieHH++ for single data point setting (εagg = 1, δ = 10−6)
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Figure 13. The effect of different number of iterations on TrieHH++ for multiple data points setting with weighted sampling(εagg = 1,
δ = 10−6)

100 200 300 400 500 600 700
number of heavy hitters

104

105

106

107

108

di
sc

ov
er

ed
 c

ou
nt

s (
lo

g 
sc

al
e)

Utility loss comparison, Marginal loss (50)

12 iterations
6 iterations
4 iterations
3 iterations
TrueHist

(a) Marginal discovered counts
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Figure 14. The effect of different number of iterations on TrieHH++ for multiple data points setting with unweighted sampling
(εagg = 1, δ = 10−6)

respectively. Figure 14a and 14b shows the loss and marginal discovered counts based on the unweighted sampling scheme.
As demonstrated in these figures, unweighted scheme is able to find more heavy hitters and cause less utility degradation.
Also using both sampling schemes, 12 iterations shows the highest utility. Thus, for the comparisons with OptPrefixTree

we use unweighted sampling, and 12 iterations for TrieHH++ and we refer to it as OptTrieHH++.

I. Additional Experimental Results
Effect of Uniform vs Non-uniform Segmentation in Single Data Point Setting

As explained in 4 using our adaptive segmentation algorithm helps discovering more heavy hitters. In Figures 15a and 15b
we show the discovered counts and total utility loss comparison of this uniform and non-uniform segmentation.

Effect of Data Selection in Multiple Data Points Setting

There are different ways to measure the frequency of data points. In Section 3, we discuss how averaging the distribution of
words overall devices can be used to define the global frequency of words (weighted metric). Figure 16b shows the total
utility loss when using this distribution.
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(a) Marginal discovered counts comparison
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Figure 15. Effect of different segmentation on OptPrefixTree for single data point setting (εagg = 1, δ = 10−6, T = 4)
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(b) Total WR loss (weighted metric)
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Figure 16. Comparing different data selection schemes in OptPrefixTree for multiple data points (εagg = 1, δ = 10−6, T = 4)

One other way to measure the frequency is the percentage of devices who has the word in their support (unweighted metric).
Figure 16a shows the global number of discovered bins based on how many devices have the word. Figure 16c demonstrates
the total utility loss when using the average of users who has the data point as the frequency of words. As depicted using
both distributions, unweighted data selection outperforms weighted data selection regardless of the frequency computation
technique. Also prefix list benefits both of the data selection schemes.

Effect of adding a deny list in Multiple Data Points Setting

Figure 17b shows the total utility loss when using the frequency of the words in devices for extracting the global distribution.
In Figure 17a and 17c we use the number of devices with the word to demonstrate the true counts of the discovered words
and total utility loss.

Comparison with previous works As illustrated in section 4 OptPrefixTree outperforms OptTrieHH under the same
constraints. In Figure 18a and 18b, we show a comparison of OptPrefixTree and OptTrieHH for the multiple data points
setting.
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Figure 17. Effect of adding deny list to OptPrefixTree for multiple data points setting (εagg = 1, δ = 10−6, T = 4)
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(a) Marginal discovered counts
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Figure 18. Comparing OptPrefixTree and OptTrieHH for multiple data points setting (εagg = 1, δ = 10−6, T = 4)
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