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Abstract
While adversarial training has become the de facto
approach for training robust classifiers, it leads to
a drop in accuracy. This has led to prior works
postulating that accuracy is inherently at odds
with robustness. Yet, the phenomenon remains
inexplicable. In this paper, we closely examine
the changes induced in the decision boundary of
a deep network during adversarial training. We
find that adversarial training leads to unwarranted
increase in the margin along certain adversarial
directions, thereby hurting accuracy. Motivated
by this observation, we present a novel algorithm,
called Helper-based Adversarial Training (HAT),
to reduce this effect by incorporating additional
wrongly labelled examples during training. Our
proposed method provides a notable improvement
in accuracy without compromising robustness. It
achieves a better trade-off between accuracy and
robustness in comparison to existing defenses.

1. Introduction
It has been demonstrated that state-of-the-art deep neural
networks (DNNs) are susceptible to intentionally crafted,
human-imperceptible perturbations of the input (Szegedy
et al., 2014; Goodfellow et al., 2015; Moosavi-Dezfooli
et al., 2016). While several defense mechanisms (Paper-
not et al., 2016; Madry et al., 2018; Tramèr et al., 2018;
Moosavi-Dezfooli et al., 2019) have been proposed to cir-
cumvent this issue, adversarial training (AT) (Madry et al.,
2018) stands out as one of the most popular and effective
methods to learn robust models. Nevertheless, it is known
to negatively affect the accuracy on clean samples, thus
leading to the much-debated trade-off between accuracy and
robustness (Tsipras et al., 2019; Yang et al., 2020).
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Consequently, in an endeavour to alleviate the accuracy
vs. robustness trade-off, several modifications have been
proposed to AT (Zhang et al., 2019; Wang et al., 2020;
Wong et al., 2020; Rice et al., 2020; Zhang et al., 2020)
with few works (Schmidt et al., 2018; Alayrac et al., 2019;
Carmon et al., 2019) even advocating the use of external
data for achieving notable gains in robustness. However, as
evident in the analysis by Gowal et al. (2021), recent algo-
rithms like TRADES (Zhang et al., 2019) and MART (Wang
et al., 2020) only achieve a 1% gain in robustness to `∞-
perturbations with norm 8/255 on CIFAR-10 (Krizhevsky,
2009) while seeing ∼ 2% drop in accuracy when compared
to AT in both the cases: with and without additional data.
Hence, the progress in terms of reducing the gap between
accuracy and robustness has been rather limited.

In this work, we attempt to improve and demystify the afore-
mentioned trade-off. To this end, we a closer look at the
effect of training with adversarial examples on the geometry
of decision boundary learnt by deep networks. First, we
demonstrate that AT leads to an excessive increase in the
margin along the adversarial directions of the input space
computed for a standard trained network. We refer to these
directions as initial adversarial directions, the reason for
such terminology will become clear in the later sections.
Second, we identify a direct connection between the exces-
sive directional margin and the accompanied reduction in
accuracy caused by AT. Finally, we propose a novel adver-
sarial training scheme to reduce the directional margin and
thus, achieve a better accuracy without losing robustness.
We call this algorithm, Helper-based Adversarial Training
(HAT), the name derived from the fact that we incorporate
additional training examples to help impede excessive direc-
tional robustness and hence, improve clean accuracy. We
also provide an extensive analysis of HAT and compare it
with state-of-the-art AT methods.

2. Preliminaries
Consider the input space X ⊆ Rd. Let fθ : X → RC
represent a deep neural network classifier parameterized by
θ, where C is the number of output classes. Let Fθ(x) =
argmaxk fθ(x)k be the class label predicted by fθ for any
x ∈ X , where fθ(x)k is the kth component of fθ(x).
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(a) Standard training
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(b) Adversarial training

Figure 2. Decision boundary learnt by MLP visualized in two dimensions: x1-x2 and x1-x3
respectively. Adversarial training improves robustness substantially from 41% to 74%, yet causes
about 9% drop in accuracy. For each left subplot, x3 = 0.85 and for each subplot on the right,
x2 = 0.4.

0.0 0.5 1.0 1.5 2.0
Initial Margin

0

5

10

15

20

25

30

Fi
na

l M
ar

gi
n

Margin along adversarial directions 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Initial Margin

0

5

10

15

20

25

30

Fi
na

l M
ar

gi
n

Margin along adversarial directions 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Initial Margin

0

5

10

15

20

25

30

Fi
na

l M
ar

gi
n

Margin along adversarial directions 5

Figure 3. Final margins for adversar-
ially trained model vs. initial mar-
gins before the start of adversarial fine-
tuning on CIFAR-10 alongRinit. The
red dashed line indicates the value of
PGD radius ε used.

Margin. Given a classifier Fθ, input x and an unit vector
r̂ ∈ Sd−1, we define margin µ at x along the direction r̂ as:

µ(x, r̂) = argmin
α

|α| s.t. Fθ(x+ αr̂) 6= Fθ(x) (1)

Additionally, note that we refer to a deep network trained
only on clean samples as standard network and a network
trained via adversarial training as robust network. Besides,
we reuse the definitions of clean (natural) and robust (adver-
sarial) accuracy as stated by Zhang et al. (2019).

Initial Adversarial Directions. Given a standard network
fθ, input dataset {(xi, yi)}ni=1, we define the set of initial
adversarial directions as Rinit = {ri/||ri||2}ni=1 where ri
is obtained by solving:

ri = max
δ:||δ||p≤ε

`(yi, fθ(xi + δ)). (2)

where, `(·, ·) is an arbitrary loss function e.g. cross-entropy
(CE). This optimization problem is usually solved via pro-
jected gradient descent (PGD) (Madry et al., 2018).

3. Adversarial Training Leads to Excessive
Directional Margin

We begin our analysis by examining the effect of adversarial
training (AT) on the decision boundary of DNNs. First, via
novel experiments on a toy dataset and CIFAR-10, we show
that AT triggers a superfluous increase in the margin along
the initial adversarial directions as compared to the nominal
increase required to attain robustness. Second, we provide
evidence which signifies a direct connection between the
increase in margin and reduction in clean accuracy.

Toy Problem. First, we study a toy setting to shed some
light on the phenomenon of excessive directional margin
caused by AT. We construct a 3-d binary classification
dataset drawn from two distributions which live on two
noisy concentric circles of different radii in the x1-x2 plane

and being linearly separable along the third dimension x3.
In particular, x1 = ρi cos(z) + ε1, x2 = ρi sin(z) + ε2 and
x3 ∼ U(αi, βi) where z ∼ U(0, 2π) and ε1, ε2 ∼ N (0, σ2)
where i = 1, 2 for class 1 and 2 respectively. We train
a single hidden-layer MLP via both standard training and
adversarial training. Fig. 2 visualizes the decision regions
with both the training procedures. It is evident that the
network primarily uses x3 to achieve zero classification er-
ror when trained using standard training, but the resulting
model performs poorly in terms of robustness. In contrast,
when we use AT, the learned decision boundary is com-
pletely different from that in the standard case. Here, the
network becomes reasonably invariant along x3 (Fig. 1b),
thus causing the directional margin along x3 to tend to∞.
This enables the network to attain robustness at the cost of a
small increase in classification error.

Evidence on CIFAR-10. Next, we illustrate that a similar
phenomenon occurs in the case of state-of-the-art deep net-
works trained on CIFAR-10 (Krizhevsky, 2009). To this
end, we measure directional margin (as defined by Eq. (1)).
We restrict ourselves to the following setting. We take a
ResNet-18 (He et al., 2016) trained until convergence on
CIFAR-10 (achieving 94.6% accuracy and 0% robustness to
`∞-PGD on the test set) and then fine-tune it using AT. This
framework allows us to study the evolution of the decision
boundary caused by AT in comparison to that learnt by a
standard network. We use `∞-PGD with norm ε = 8/255
for training. The network attains 83.3% accuracy and 51.6%
robustness on the test set after adversarial fine-tuning.

During adversarial fine-tuning, we track the margins along
the adversarial directions found by PGD to shed some light
on the learning dynamics. Suppose Rk = {rki /||rki ||2},
where rki denotes the perturbation found by PGD at kth

epoch of fine-tuning for the input sample xi. Thus,Rinit =
R0 represents the set of initial adversarial directions. We
hypothesize that during adversarial training, the network
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becomes excessively robust to these initial adversarial di-
rections R0(= Rinit) while slightly shifting the decision
boundaries along other adversarial directionsRk≥1. Fig. 3
illustrates the margins alongR0 before and after adversarial
fine-tuning respectively. The dashed red line indicates the
value of ε used for training, i.e., any allowable perturbation
r has ||r||∞ ≤ 8/255 or equivalently ||r||2 ≤ 1.74. Intu-
itively, one might expect adversarial fine-tuning to cause
small shifts in the decision boundary so that the margin
becomes greater than 1.74, and attain robustness. However,
this is not the case in practice. Intriguingly, the classifier
instead resorts to becoming largely insensitive alongR0 for
some data points as evident in Fig. 3 while undergoing small
shifts along other directions Rk≥1 (see App. C). We also
observe a decrease of 11.3% in accuracy after fine-tuning.

Connection between Margin along Rinit and Clean Ac-
curacy. We now provide a two-fold argument which justi-
fies the following hypothesis: The drastic rise in the margin
alongRinit is directly correlated to the observed reduction
in accuracy. In fact, a larger margin contributes to a larger
drop in accuracy. (i) Firstly, we complement our hypothe-
sis with the following observation by Ortiz-Jimenez et al.
(2020). The directions of input space with small margins
and in turn, the initial adversarial directions in the case of
the standard network, are associated with discriminative fea-
tures learnt by the network. We believe that these directions
are crucial for the performance of the network. Thus, a dras-
tic directional margin along these directions might be the
reason for a reduction in clean accuracy. This argument is
in line with the previous works by Jetley et al. (2018); Ilyas
et al. (2019). (ii) We train a robust network on CIFAR-10
using TRADES (Zhang et al., 2019) with different values
for the trade-off parameter β. As β increases, we observe
an increase in the margin along Rinit (computed on a sub-
set of 1024 examples from the CIFAR-10 test set) and a
corresponding reduction in clean accuracy (see Table 1).
This further corroborates our hypothesis. Lastly, we also
acknowledge the fact that robust accuracy also improves
as the margin increases in the case of TRADES. So, it is
not immediately clear if it is possible to reduce the margin
while maintaining the same robust accuracy. But, as we will
later see with our proposed HAT, this seems to be feasible.

Table 1. Median margin along Rinit and the corresponding clean
and robust accuracy with TRADES on CIFAR-10 test set for dif-
ferent values of β. The robust accuracy is evaluated using AutoAt-
tack (Croce & Hein, 2020).

β Median Margin Clean Robust

1.0 8.3 88.1 43.8
2.0 9.3 85.6 46.3
3.0 9.7 84.7 47.9
4.0 10.3 83.6 48.5
5.0 10.5 82.9 48.8

4. Helper-based Adversarial Training
As demonstrated in Sec. 3, adversarial training triggers an
unwarranted increase in the margin along initial adversarial
directions, thus hindering the network from using highly
discriminative features in those directions. In this section,
we introduce our proposed algorithm, Helper-based Adver-
sarial Training (HAT), to reduce the excessive directional
margin. To this end, we incorporate additional training ex-
amples, called helper examples, which are generated on-the-
fly during the adversarial training procedure. In particular,
a helper example is constructed by extrapolating the adver-
sarial perturbation found during training and is (possibly
wrongly) labelled by a normally trained network (see Fig. 4).
Formally, we define a helper example as follows.

Figure 4. Illustration depicting the purpose behind introducing
helper examples with labels computed by a standard classifier.
Solid black line: standard network. Dashed red line: adversarially
trained network. Dashed blue line: desired decision boundary.

Helper Examples. Given an input sample (xi, yi), a stan-
dard network fθstd , a robust network iterate fθk

rob
at kth train-

ing iteration and adversarial example x′i computed by the
adversary ϕ for fθk

rob
, the corresponding helper example is

given by (x̃i, ỹi) where

x̃i = xi + 2 (x′i − xi) and ỹi = argmaxk fθstd(x
′
i)k

The motivation behind this definition is illustrated in Fig. 4
where it is evident that we can stimulate a slight push to the
decision boundary along any adversarial direction by mak-
ing the network predict the correct label yi at adversarial
example x′i and have it predict ỹi (often ỹi 6= yi) at helper
example x̃i to relatively preserve the discriminative charac-
teristics as modelled by a standard network. In contrast to
adversarial training, this allows preventing the undesirable
excessive rise in the margin to some extent, thus making
it possible to achieve significantly better performance on
clean samples. Put differently, HAT can also be framed as
performing student-teacher learning particularly, geometric
self-distillation (Hinton et al., 2015) to mimic certain geo-
metric properties of a standard trained network. We choose
to instantiate HAT algorithm by extending TRADES (Zhang
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Table 2. Comparison of HAT with other adversarial defenses under `∞ adversary (ε = 8/255). We report the mean scores over 3 runs.

Algorithm CIFAR-10 CIFAR-100 SVHN TI-200
Clean Robust Clean Robust Clean Robust Clean Robust

Standard 94.57 0.0 76.00 0.0 96.14 0.14 65.02 0.0
AT 84.01 47.74 57.50 23.88 92.57 46.33 47.76 17.92
TRADES 82.73 48.80 57.26 23.54 91.01 52.99 48.25 17.17
MART 79.52 47.98 50.82 24.52 91.30 48.46 - -
HAT 84.90 49.08 59.19 23.75 93.08 52.83 52.60 18.14

et al., 2019) which allows us to balance the accuracy vs. ro-
bustness trade-off. Thus, in comparison to TRADES, we
have three different loss terms: (i) CE loss on clean samples,
(ii) KL divergence loss on adversarial samples weighted
by scalar β, (iii) an additional CE loss on helper samples
weighted by γ. See App. D for the detailed pseudocode
of HAT. Note that our extension can be easily incorporated
into other recent robust optimization algorithms (Wang et al.,
2020; Wu et al., 2020; Zhang et al., 2020; 2021).

5. Experiments
In this section, we empirically evaluate the performance of
HAT. We report results using ResNet-18 (He et al., 2016) on
four datasets: CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
SVHN (Netzer et al., 2011) and Tiny-ImageNet-200 (TI-
200) (Deng et al., 2009). We compare HAT with three
popular adversarial defenses: (i) AT (Madry et al., 2018),
(ii) TRADES (Zhang et al., 2019) and (iii) MART (Wang
et al., 2020). Please refer to App. E.1 for training details.
To evaluate the robustness of our models, we use AutoAt-
tack (Croce & Hein, 2020) which comprises of an ensemble
of four diverse attacks for a reliable evaluation of robustness.

Table 2 reports the performance of HAT and other promi-
nent defenses in the literature. It is evident that HAT can
significantly improve the clean accuracy of the models while
not compromising for robustness. In other words, HAT con-
sistently lowers the gap between accuracy and robustness by
∼ 2-4% compared to existing adversarial training schemes.
For example, in the case of CIFAR-10, HAT provides a
2.2% improvement in clean accuracy whilst achieving a
similar robust accuracy as TRADES; for TI-200, we see
4.8% gain in accuracy in comparison to AT. Besides, we
also compare the accuracy vs. robustness trade-off obtained
by AT, TRADES and HAT on CIFAR-10 in Fig. 5. HAT,
by incorporating additional helper samples, clearly outper-
forms AT and TRADES in terms of the trade-off curve. In
addition, we find that the 2.2% gain in clean accuracy on
CIFAR-10 also equates to a 2% improvement on common
corruptions (Hendrycks & Dietterich, 2019) (see App. E.3).

Finally, we remark that the improvement in the performance
on clean samples provided by HAT can be accredited to the
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Figure 5. Accuracy vs. robustness trade-off exhibited by different
adversarial defenses. From left to right, we decrease the trade-off
parameter β for TRADES and HAT (γ is fixed to 0.25).

following two observations on CIFAR-10: (i) HAT exhibits
a slightly lower directional margin alongRinit compared to
AT and TRADES. (ii) HAT marginally compromises robust-
ness to `∞ perturbations with a larger norm (ε > 8/255).
See App. E.4 for more details.

6. Conclusion
We presented experimental evidence to highlight that state-
of-the-art adversarial defenses foster a superfluous increase
in the margin along certain adversarial directions of the
input space. This largely destroys the discriminative charac-
teristics along these directions and partly contributes to the
much-debated accuracy vs. robustness trade-off. Further,
inspired by our analysis, we introduced a novel algorithm,
Helper-based Adversarial Training (HAT), to alleviate the
problem of excessive directional margin. HAT attempts to
mimic the discriminative features learnt by standard trained
networks to improve the accuracy on clean samples, hence
achieving a superior accuracy vs. robustness trade-off com-
pared to existing defenses. Finally, we verify that HAT
slightly reduces the directional margin, thus directly ben-
efiting the accuracy. We believe that our experiments and
the proposed HAT algorithm can open the door for further
research on comprehending adversarial examples and thus,
ameliorating the accuracy vs. robustness trade-off.
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A. Toy Problem
Fig. 6 illustrates the toy dataset used for our experiment from two different viewpoints. To be precise, we draw the 3
features x1, x2 and x3 as follows. x1 = ρi cos(z) + ε1, x2 = ρi sin(z) + ε2 and x3 ∼ U(αi, βi) where z ∼ U(0, 2π) and
ε1, ε2 ∼ N (0, σ2) where i = 1, 2 for class 1 and 2 respectively. We set σ = 0.2, ρ1 = 0.35, ρ2 = 1, α1 = 0.65, β1 = 0.70,
α2 = 0.80 and β2 = 0.85.

We use a single hidden layer MLP with 25 hidden units and ReLU activation. For training, we use SGD with momentum
0.9, weight decay 0.0005 and set the learning rate to 0.1. We train the model via standard training and adversarial training
respectively for 100 epochs. We use `∞ PGD with step size α = 0.05, maximum perturbation radius ε = 0.1 and run
K = 5 iterations for AT.
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Figure 6. Toy dataset used in our experiment.

B. Experimental Setup For Section 3: Evidence on CIFAR-10
For this experiment, we train ResNet-18 (He et al., 2016) on CIFAR10 (Krizhevsky, 2009) training set. We simply adopt
the set of hyperparameters and some improvements from DAWNBench (Coleman et al., 2017) submissions. We use SGD
optimizer with Nesterov momentum 0.9 (Nesterov, 1983) and weight decay 0.0005. We further use cyclic learning rates
(Smith & Topin, 2018) with cosine annealing and a maximum learning rate of 0.21. We train the model for 50 epochs
via standard training. Then, we perform adversarial fine-tuning for 25 epochs with the same scheduler and learning rate
settings. Further, we evaluate margins on a set of 512 samples drawn uniformly at random from CIFAR10 test set for the
visualizations in Fig. 3 (and Fig. 7).
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Figure 7. Final margins for adversarially trained model vs. initial margins before the start of adversarial fine-tuning on CIFAR-10 along
R10,R15 andR20 respectively. The red dashed line indicates the value of ε used during training and evaluation.
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C. Additional Margin Plots For Section 3: Evidence on CIFAR-10
The margins along other adversarial directions R10,R15,R20 before and after adversarial fine-tuning are displayed in
Fig. 7. Here,Rk corresponds to the adversarial directions computed at the kth iteration of adversarial fine-tuning. We see
an increase in the margin along other adversarial directions as expected. Nevertheless, the relative increase along these
directions is not as large as compared to that along initial onesR0 (see Fig. 3).

D. HAT Algorithm
The pseudocode for helper-based adversarial training with `∞-PGD perturbations is presented in Algorithm 1.

Algorithm 1 Helper-based Adversarial Training
Input: Training dataset D = {(xi, yi)}ni=1

Parameter: Batch size m, learning rate η, weight of robust loss β, weight of helper loss γ, attack radius ε,
attack step size α and number of attack iterations K

1: Train a network fθstd via standard training on D i.e., θstd ← argminθ
∑n
i=1 CE(yi, fθ(xi))

2: Randomly initialize the network parameters θHAT

3: repeat . Train a robust classifier
4: Sample a mini-batch {(xij , yij )}mj=1 from D
5: for j = 1, 2, ...,m do
6: x′ij ← xij + 0.001 · N (0, I) . Construct adversarial example
7: for k = 1, 2, ...,K do
8: x′ij ←

∏
B(xij

,ε)(x
′
ij
+ α · sign(∇x′

ij
KL(fθHAT(xij ), fθHAT(x

′
ij
))))

9: end for
10: Compute helper example: x̃ij ← xij + 2 (x′ij − xij )
11: Set helper label: ỹij ← argmaxk fθstd(x

′
ij
)k

12: end for
13: θHAT ← θHAT− η

m ·
∑m
j=1∇θHAT

(
CE
(
yi, fθHAT(xij )

)
+β ·KL(fθHAT(xij ), fθHAT(x

′
ij
))+γ ·CE(ỹij , fθHAT(x̃ij ))

)
14: until training completed

E. Further Performance Evaluation
E.1. Detailed Experimental Setup For Section 5

In this section, we list all the details of our training and evaluation setup. We run our experiments on NVIDIA GeForce
GTX 1080 Ti GPUs and use PyTorch 1.6.0. We run all our experiments thrice and report the average scores obtained
unless stated otherwise. We omit the standard deviations while noting that they are usually small.

Training Setup. We use ResNet-18 (He et al., 2016) for CIFAR-10 and CIFAR-100 (Krizhevsky, 2009); and PreAct
ResNet-18 for SVHN (Netzer et al., 2011) and Tiny-Imagenet-200 (TI-200) (Deng et al., 2009). For all our experiments,
we use SGD optimizer with Nesterov momentum 0.9 (Nesterov, 1983) and weight decay 0.0005. We further employ
cyclic learning rates (Smith & Topin, 2018) with cosine annealing and a maximum learning rate of 0.21 for CIFAR-10 and

Table 3. Hyperparameters of TRADES, MART and HAT used for training the models reported in Table 2. Here, β is the weight of robust
loss in TRADES, MART and HAT objective; γ is the weight of helper loss in HAT objective.

Algorithm CIFAR-10 CIFAR-100 SVHN TI-200

TRADES β = 5.0 β = 5.0 β = 5.0 β = 8.0
MART β = 5.0 β = 5.0 β = 5.0 -
HAT β = 2.5, γ = 0.5 β = 3.5, γ = 0.5 β = 2.5, γ = 0.5 β = 1.75, γ = 1.01

1We use CE loss for computing adversarial examples and the robust loss during HAT training instead of KL-divergence since we
found CE works much better on TI-200. This also explains the poor robustness of TRADES compared to AT due to the use of KL term.
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CIFAR-100, TI-200 ; 0.05 for SVHN. For CIFAR-10 and CIFAR-100, we train the models for 50 epochs with a batch size
of 128. In the case of SVHN, we only train for 15 epochs; for TI-200, we train for 30 epochs.

For computing adversarial examples during training, we apply `∞-PGD with the following hyperparameters: `∞ norm
ε = 8/255, step size α = 2/255 and run the attack for K = 10 iterations. Note that we re-implement AT, TRADES and
MART and train existing methods and HAT according to the aforementioned settings. The hyperparameters of TRADES,
MART and HAT used for training the models in Table 2 are summarized in Table 3. We also use the same setup to train a
standard model for computing helper labels during HAT training.

Evaluation Protocol. During training, we perform early stopping (Rice et al., 2020) i.e., we track the robustness of the
model to PGD (K = 20) on the test set and select the model that performs the best for further evaluation. In order
to benchmark the `∞ robustness, we always test our models against AutoAttack (AA) (Croce & Hein, 2020) using the
default code available at https://github.com/fra31/auto-attack. AutoAttack comprises an ensemble of four
sophisticated attacks (including a black box attack) for a reliable evaluation of robustness.

E.2. Achieving State-of-the-art Performance with ResNet-18 on CIFAR-10

Table 4. Benchmarking state-of-the-art performance
with ResNet-18 on CIFAR-10 under `∞ perturba-
tions (ε = 8/255). We report the results of a single
run. *Trained by us using the setup as Carmon et al.
(2019). §Best performing ResNet-18 model avail-
able on RobustBench (Croce et al., 2020). Robust
accuracy is evaluated using AutoAttack.

Algorithm Clean Robust

Carmon et al. (2019)* 85.02 53.92
Sehwag et al. (2021)§ 84.38 54.43
HAT 87.66 54.46

In this section, we leverage additional pseudo-labelled data in a bid to
further reduce the accuracy-robustness gap with ResNet-18 on CIFAR-10
under `∞ perturbations of size ε = 8/255. We train a ResNet-18 model
on CIFAR-10 with additional 500k images taken from Tiny Images
dataset (Torralba et al., 2008) as provided by Carmon et al. (2019)).
For training, we follow the same setup as Carmon et al. (2019) and use
early-stopping with PGD20 on the test set. We also retrain a ResNet-
18 with RST (Carmon et al., 2019) under the same setting. We use
β = 6.0 for RST and β = 3.5, γ = 0.5 for HAT. Table 4 presents
the evaluation results. Clearly, HAT surpasses Carmon et al. (2019) by
2.64% in accuracy and 0.52% in robustness. Moreover, HAT achieves a
superior accuracy (↑ 3.28%) compared to the best performing ResNet-18
model (Sehwag et al., 2021) available on RobustBench (Croce et al., 2020). Note that the best performing ResNet-18 model
uses additional ∼ 6M synthetically generated images during training.

E.3. Accuracy vs. Robustness Trade-off

Sensitivity of HAT to β and γ. We examine the effect of the weight of robust loss β and the weight of helper loss γ on the
accuracy vs. robustness trade-off exhibited by HAT. We show the corresponding trade-off curves for HAT with two different
values for γ ∈ {0.25, 0.50} in Fig 8. For each curve, we decrease β from 4.0 to 1.5 from left to right. As evident, β balances
the trade-off between accuracy and robustness while γ has a negligible effect on the resulting trade-off achieved by HAT.
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Figure 8. HAT accuracy vs. robustness trade-off obtained for dif-
ferent values of γ. From left to right, we decrease the trade-off
parameter β for HAT. Robust accuracy is evaluated using AutoAt-
tack.
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Figure 9. Accuracy vs. robustness trade-off exhibited by AT, MART
and HAT. From left to right, we decrease the trade-off parameter
β for MART and HAT (γ is fixed to 0.25). Robust accuracy is
evaluated using AutoAttack.

https://github.com/fra31/auto-attack
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Comparison with MART. Fig. 9 compares the trade-off obtained by HAT with that of AT and MART (Wang et al., 2020).
For HAT, we fix γ = 0.25 and vary β ∈ {1.5, 2.0, 2.5, 3.0, 3.5, 4.0}; for MART, we vary β ∈ {1.0, 2.0, 3.0, 4.0, 5.0}. HAT
surpasses AT and MART by a large margin.

Table 5. Performance of AT, TRADES, MART and HAT with
ResNet-18 on CIFAR-10 common corruptions. We list the mean
scores over 3 runs. The robust accuracy is evaluated against
AutoAttack.

Algorithm Clean Common Corruptions Robust

Standard 94.57 72.92 0.0
AT 84.01 75.53 47.74
TRADES 82.73 74.66 48.80
MART 79.52 71.81 47.98
HAT 84.90 76.74 49.08

Evaluation on CIFAR-10 Common Corruptions. In this
part, we examine the performance of HAT on CIFAR-
10 common corruptions (Hendrycks & Dietterich, 2019)
and compare it with that of AT, TRADES and MART.
We compute the accuracy on common corruptions using
the default code available at https://github.com/
RobustBench/robustbench and evaluate the robust
models trained on CIFAR-10 with `∞ perturbations of size
ε = 8/255. As seen from the results in Table 5, the ∼ 2%
gain in clean accuracy obtained by HAT also leads to a similar
gain (↑ 2%) in the accuracy under common corruptions. This
demonstrates the generality of HAT, also stressing the need to improve both accuracy as well as robustness in order to
advance the performance under real-world perturbations.

E.4. HAT reduces Margin alongRinit

We now verify our claim that HAT, to some extent, reduces the unwarranted increase in margin introduced by existing
adversarial defenses. To this end, we perform two experiments. Firstly, we take a robust network trained on CIFAR-10 and
evaluate it using PGD attack (K = 40) for different values of `∞-norm ε ∈ [0, 20/255]. Fig. 10 plots the difference between
robustness of HAT and TRADES vs. ε. We observe that while HAT outperforms TRADES at smaller ε’s, it performs slightly
worse after the ε exceeds the value used during training, i.e., ε > 8/255. This implies that we have traded robustness to high
ε’s for an improvement in clean accuracy. Secondly, we take a robust ResNet-18 model trained on CIFAR-10 and evaluate
the margin distribution on a random subset of 1024 samples from CIFAR-10 test set along the initial adversarial directions
(denoted Rinit). The margin for different algorithms illustrated in Table 6. Note that in Table 6, we list the models that
achieve the same robust accuracy (∼ 47.9% to AA). Yet, the median margin for HAT is slightly lower than that for AT and
TRADES. This highlights that the decision boundary lies closer to the data for HAT alongRinit. Furthermore, this signifies
that the predictive power alongRinit is relatively preserved and thus vindicates our claim that HAT benefits clean accuracy
(+ 2%) by slightly reducing the directional margin.
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Figure 10. Difference between robust accuracy (PGD40) of HAT and
TRADES vs ε (`∞-norm of PGD) on CIFAR-10. The red dashed
line corresponds to the value of ε the models are trained with.

Table 6. Median margin for different models along Rinit as com-
puted on a random subset of 1024 samples from CIFAR-10 test
set. All the models have ∼ 47.9% robustness to AutoAttack and
HAT has the highest clean accuracy. HAT exhibits slightly lower
margin alongRinit than AT and TRADES.

Algorithm Median Margin

AT 9.3
TRADES 9.7
HAT 9.1

https://github.com/RobustBench/robustbench
https://github.com/RobustBench/robustbench

