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ABSTRACT

This paper comprehensively evaluates several recently proposed optimizers for
4-bit training, revealing that low-bit precision amplifies sensitivity to learning rates
and often causes unstable gradient norms, leading to divergence at higher learning
rates. Among these, SPAM, a recent optimizer featuring momentum reset and
spike-aware gradient clipping, achieves the best performance across various bit
levels, but struggles to stabilize gradient norms, requiring careful learning rate
tuning. To address these limitations, we propose Stable-SPAM, which incor-
porates enhanced gradient normalization and clipping techniques. In particular,
Stable-SPAM (1) adaptively updates the clipping threshold for spiked gradients
by tracking their historical maxima; (2) normalizes the entire gradient matrix based
on its historical l2-norm statistics; and (3) inherits momentum reset from SPAM
to periodically reset the first and second moments of Adam, mitigating the accu-
mulation of spiked gradients. Extensive experiments show that Stable-SPAM
effectively stabilizes gradient norms in 4-bit LLM training, consistently delivering
superior performance compared to Adam and SPAM across model sizes from
LLaMA-130M to LLaMA-7B. Notably, our 4-bit LLaMA-1B model trained with
Stable-SPAM outperforms Adam by up to 3.1 perplexity. Furthermore, when
both models are trained in 4-bit, Stable-SPAM achieves the same loss as Adam
while requiring only about half the training steps. Code is submitted.

1 INTRODUCTION

Recently, several advanced optimizers have been proposed, claiming to either outperform the widely
used Adam optimizer or achieve comparable performance at reduced costs in the context of Large
Language Models (LLMs). Given the massive size of LLMs, reducing the memory footprint of
Adam has become a key objective in this line of research (Shazeer & Stern, 2018; Chen et al., 2024;
Zhang et al., 2024a; Zhao et al., 2024a; Zhang et al., 2024b; Ma et al., 2024). Another area of focus is
addressing the challenges of instability in LLM training. For instance, Huang et al. (2025) proposed
SPAM which incorporates momentum reset and spike-aware gradient clip (SpikeClip) to mitigate
the adverse effects of loss spikes. Zhao et al. (2024b) studied the stability of various optimizers
to hyperparameters with BF16. These optimizers are predominantly evaluated using the standard
BF16 precision, which is a practical option for real-world LLM training (Touvron et al., 2023; Li
et al., 2023). With the growing shift toward low-bit precisions such as FP8 and FP4 in LLMs due
to their significant cost-saving potential (Liu et al., 2024; Lee et al., 2024; Peng et al., 2023; Xi et al.,
2023), it is crucial to investigate whether their effectiveness persists under lower-bit precisions. For
the newly proposed optimizers to be economical, their training with low-bit precisions should be
similarly robust to hyperparameter choice as trained using higher precision.

This paper provides a comprehensive evaluation of the effectiveness and robustness of learning rate
choices across various recent optimizers, including Adam (Kingma, 2014), Adafactor (Shazeer &
Stern, 2018), Adam-mini (Zhang et al., 2024a), and SPAM (Huang et al., 2025), when training with
4-bit weights and activations. Our study reveals several key observations:

⋆ All evaluated optimizers exhibit increased sensitivity to learning rate choices during 4-bit training,
often diverging quickly when larger learning rates are used as shown in Figure 2.
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Figure 1: Effectiveness of Stable-SPAM in 4-bit LLM training. Experiments are conducted with
LLaMA-130M/350M/1B models on C4 Dataset. Adam-BF16 denotes that the model is trained with
BF16 by Adam. Perplexity on validation set is reported.

⋆ SPAM (Huang et al., 2025) consistently achieves the lowest evaluation loss across various bit levels
but requires careful learning rate tuning. Adafactor is surprisingly robust to learning rate choices,
even outperforming Adam in this regard.

⋆ Our analysis of the training dynamics in Figure 4 reveals that 4-bit training often exhibits extremely
unstable gradient norms, often accompanied by spikes, compared to BF16. This behavior can result
in loss spikes and, in some cases, even training divergence with relatively larger learning rates.

⋆ While SpikeClip introduced in SPAM mitigates the unstable gradient norms caused by 4-bit training
to a certain extent, it falls short of fully preventing training divergence, as shown in Figure 3.

1e-4 1e-3 3e-3
LR

3

4

5

Fi
na

l E
va

l L
os

s

(1) Adam
FP4 Training
INT4 Training
FP16 Training

1e-4 1e-3 3e-3
LR

3

4

5 (2) INT4 Training

1e-4 1e-3 3e-3
LR

3

4

5 (3) FP4 Training

1e-4 1e-3 3e-3
LR

3

4

5 (4) BF16 Training

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Adafactor Adam-mini Adam SPAM

Figure 2: Learning instability of existing optimizers during 4-bit training. Final validation loss
is reported. The vertical dotted line indicates that the model cannot be trained further as increasing
the learning rate, i.e. Training loss becomes NaN. Red dashed horizontal lines indicate the best
performance achieved.

Despite its sensitivity to learning rate selection, SPAM (Huang et al., 2025) consistently achieves
the lowest evaluation loss across various bit levels, making it an ideal foundation for improvement.
Building on this, we introduce Stable-SPAM to address the instability challenges associated with
low-precision training of LLMs. Stable-SPAM retains the superior performance of SPAM1 while
improving stability, offering a significant advancement in low-precision optimization.

Specifically, beyond the original momentum reset operation in SPAM, Stable-SPAM introduces
two key techniques: Adaptive Spike-Aware Clipping (AdaClip), which enables adaptive clipping
of spiked gradients, followed by Adaptive Gradient Norm (AdaGN), which normalizes the entire
gradient matrix based on its historical l2 norm statistics. Our analysis demonstrates that these
enhancements effectively stabilize the gradient norm of 4-bit training, achieving better performance
than Adam and SPAM. Furthermore, when both models are trained in 4-bit, Stable-SPAM achieves
the same loss as Adam while requiring only about half the training steps.

1Nevertheless, results in Table 3 show that our proposed techniques also improve the performance of other
optimizers.
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Figure 4: Training loss and gradient norm spikes under 4-bit Training. Experiments are conducted
under the same training configuration with LLaMA-130M/350M.

2 4-BIT TRAINING STABILITY INVESTIGATION
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Figure 3: Ineffectiveness of SpikeClip (Huang
et al., 2025) in preventing training divergence.
Left: gradient norms before and after performing
gradient spike clip. Right: training loss with and
without applying gradient spike clip. Models are
trained by Adam based on LLaMA-130M.

Recent studies (Zhao et al., 2024b; Wortsman
et al., 2023b; Huang et al., 2025; Takase et al.,
2023; Wortsman et al., 2023b) have investi-
gated stability challenges in large language model
(LLM) training, including issues such as learning
rate instability, gradient spikes, and loss spikes.
In this section, we extend the evaluation by ana-
lyzing the stability of various optimization algo-
rithms under a 4-bit LLM training setting. Follow-
ing the experimental setup outlined in Wortsman
et al. (2023b); Zhao et al. (2024b), we evaluate
the final performance using a range of learning
rates from 1e-4 to 3e-3. This evaluation includes
two widely used optimizers, Adam (Kingma,
2014) and Adafactor (Shazeer & Stern, 2018), as
well as two recently proposed methods, Adam-
mini (Zhang et al., 2024a) and SPAM (Huang
et al., 2025). Additionally, we monitor both the
global gradient norm and training loss throughout the 4-bit LLM training process. The global gradient

norm is defined as follows:
√∑N

i=0 ∥gi∥22 where N is the number of layers in model and gi denotes
the gradient of i-th layer. The experiments are conducted on the LLaMA-130M/350M models using
the C4 dataset and showed in Figure 2 and Figure 4. We observe:

❶ Lower-bit training exhibits reduced learning rate stability. As illustrated in Figure 2, the final
evaluation loss for 4-bit training increases significantly with larger learning rates, whereas BF16
training exhibits a more stable performance across different learning rates. This indicates that 4-bit
training is more sensitive and less stable in terms of learning rate.

❷ Lower-bit training suffers more loss spikes and gradient norm spikes. Figure 4 illustrates
this phenomenon by comparing the training loss and gradient norm curves of LLaMA-130M and
LLaMA-350M trained under BF16 and FP4 (E1M2) precision, using various learning rates. We
observe that BF16 training remains stable, but FP4 training exhibits significant loss spikes, which
occur on both model sizes. Furthermore, these loss spikes are consistently accompanied by gradient
norm explosions.

❸ SPAM performs the best in 4-bit training but needs careful learning rate tuning. As shown
in Figure 2, SPAM achieves the lowest eval loss among various optimizers in INT4 or FP4 with the
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optimal learning rate. However, its validation loss either diverges to NaN or sharply increases as the
learning rate rises.

❹ Although SPAM can partially mitigate gradient spikes, it fails to prevent training divergence
entirely. We monitor the training loss and gradient norm after applying the spike clipping technique
(SpikeClip) proposed in SPAM. SpikeClip detects and mitigates gradient outliers by leveraging the
second moment of gradients. Specifically, it follows the expression: gi = sign(gi) ·

√
θVi under

the condition g2
i

Vi
> θ where gi, Vi, θ are the gradient, second moment and pre-defined threshold

(5000 used by default in their paper) respectively. We observe that although SpikeClip can partially
mitigate loss spikes, it fails to prevent training divergence entirely. A plausible explanation is that
SpikeClip performs element-wise clipping using a fixed threshold, which may be insufficient when
all gradient components increase simultaneously. In such cases, the overall gradient norm can remain
large despite the absence of extreme outliers, since SpikeClip only targets individual large values
rather than accounting for the collective magnitude. This limitation is evident in Figure 3, where the
gradient norm explosions remain elevated even after applying SpikeClip.

3 STABLE-SPAM

To address the training instability in 4-bit training, we propose Stable-SPAM, a stabilized
spike-aware Adam optimizer. Apart from the momentum reset inherited from the original SPAM,
Stable-SPAM introduces two techniques: Adaptive Gradient Norm (AdaGN) and Adaptive Spike-
Aware Clipping (AdaClip), which we will explain in detail. The pseudocode is provided in
Appendix I.

Adaptive Gradient Norm (AdaGN). As we can observe in Figures 4 and 3, spikes in training loss
and instances of training divergence usually align with abrupt surges in the gradient norm, consistent
with findings in Takase et al. (2023); Huang et al. (2025). To address these training instabilities,
we propose AdaGN, a method that stabilizes gradients by adaptively scaling them based on their
historical l2 norm statistics. To better track the dynamics of the gradient norm during training, we
leverage the idea of Adam by maintaining moving averages of both the first and second moments of
the gradient norm. Concretely, we compute and update the moving averages of the gradient norm
(mnorm, vnorm), then use them to derive a normalized gradient:

gnorm = ∥gt∥2, mnorm = γ1mnorm + (1− γ1)gnorm, (1)

vnorm = γ2vnorm + (1− γ2)g
2
norm, ĝt =

gt
gnorm

· mnorm√
vnorm + ϵ

. (2)

where ĝt is the normalized gradient, γ1 and γ2 are momentum coefficients and ϵ is small constant for
numerical stability. By rescaling gt with a ratio of its historical mean norm mnorm to the square root
of its historical second moment

√
vnorm, AdaGN mitigates abrupt gradient norm spikes. Note that as

the gradient norm gnorm is essentially a scalar for an entire layer, the additional parameter overhead
introduced by AdaGN is negligible, i.e., two extra parameters per layer.

Adaptive Spike-Aware Clipping. (AdaClip) Different from the spike gradient clipping technique
in Huang et al. (2025), which sets a fixed clipping threshold, we propose an adaptive clipping
approach, i.e., AdaClip. The core idea is to dynamically adjust the clipping threshold by tracking
the maximum gradient magnitude observed over time, rather than relying on a pre-defined fixed
value. Concretely, let gt be the gradient at time step t. We first compute gmax, the maximum absolute
gradient value across all parameters. Then, we update the threshold Tthreshold with an exponential
moving average that incorporates gmax. Finally, any entries of gt that exceed Tthreshold are rescaled to
maintain stability. The procedure is formally expressed as follows:

gmax = max
i

(|gt[i]|), Tthreshold = γ3 · Tthreshold + (1− γ3) · gmax, (3)

Maskspikes = (gt > Tthreshold), gt[Maskspikes] =
gt[Maskspikes]

gmax
× Tthreshold, (4)

where γ3 ∈ [0, 1] controls the weight of the moving average. When γ3 is large, Tthreshold responds
more slowly to new gradient maxima, leading to more stable updates. When γ3 is small, it adapts
more quickly to sharp changes in gradient magnitude.
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Table 1: Performance of INT4/FP4 pre-training with LLaMA
(C4). All optimizers are trained with weight decay=0 except
for AdamW which used its default value: 0.01.

Perplexity INT4 Training FP4 Training
130M 350M 1B 130M 350M 1B

AdamW(WD=0.01) 25.73 18.64 18.01 28.12 20.10 18.76
Adam 26.40 19.21 18.39 28.9 20.64 19.11
Adam+GradClip 26.30 18.47 17.82 28.27 20.08 18.64
Adafactor 25.11 18.35 17.64 26.89 19.67 18.33
SPAM 25.03 18.39 17.38 26.78 19.56 18.02
Stable-SPAM 24.33 17.20 16.27 26.31 18.08 15.92
Training Tokens 2.2B 6.6B 7.7B 2.2B 6.6B 7.7B
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Figure 5: Training curves of
LLaMA-7B trained with 4 bit.

Momentum Reset (MoRet). Following Huang et al. (2025), we adopt momentum reset (MoRet)
to periodically reset the accumulated first and second moments in Adam. The effectiveness of
MoRet lies in addressing the negative effects of gradient spikes, which can inflate the first and
second moments of Adam. Since Adam uses exponential moving averages to track their historical
information, these inflated values caused by spiked gradients can have prolonged detrimental effects
(Huang et al., 2025) on moments. By resetting the momentum terms at fixed intervals (∆T ), MoRet
mitigates the lasting influence of unusually large gradients, enabling more stable optimization.

4 EXPERIMENTS

To demonstrate the efficacy of the proposed Stable-SPAM, we conduct extensive experiments with
various sizes of the LLaMA model on the C4 dataset.

Baselines. We adopt five popular optimizers as our baselines including Adam (Kingma, 2014),
AdamW (Loshchilov & Hutter, 2017) , Adafactor (Shazeer & Stern, 2018), Lion (Chen et al., 2024),
Adam-mini (Zhang et al., 2024a) and SPAM (Huang et al., 2025). Among these, Adam and Adafactor
are well-established and widely used, while Adam-mini and SPAM have been introduced more
recently. Besides, we also include gradient clipping (Goodfellow, 2016) (GradClip) in conjunction
with Adam as an additional baseline. All optimizers are applied without using weight decay, except
for AdamW, which employs its default setting of 0.01.

Experimental Setup. Following Lialin et al. (2023); Zhao et al. (2024a), we train LLaMA-based
architectures ranging from 60M to 1B parameters. Each architecture is configured with RMSNorm
Shazeer (2020) and SwiGLU activations Zhang & Sennrich (2019). For every model size, we keep
the same set of hyperparameters across methods and vary only the learning rate. We sweep over
learning rates from 1× 10−4 to 1× 10−3 , incrementing by 2× 10−4 for each optimizer. Following
the settings in Takase et al. (2023); Huang et al. (2025), we set the threshold to 1 for the GradClip
baseline. For Adafactor, we adopt the hyperparameters from the original paper Shazeer & Stern
(2018), where ϵ1 = 10−30, ϵ2 = 10−3, and d = 1.0. The hyperparameters for SPAM are configured
based on the settings in Huang et al. (2025), with reset intervals set to 500, learning rate warmup
steps to 150, and the GSS threshold to 5000. For Stable-SPAM, we set γ1 = 0.7, γ2 = 0.9 and
θ = 0.999 for 4-bit LLM training and γ1 = 0.85, γ2 = 0.9999 and γ3 = 0.999 for BF16 training.
Detailed descriptions of our task setups and hyperparameters are provided in the Appendix B.

4.1 PERFORMANCE OF 4-BIT LLM TRAINING

To evaluate the performance of Stable-SPAM in 4-bit LLM training, we conduct experiments
using both FP4 (E1M2: 1-bit exponent, 2-bit mantissa)2 and INT4 (4-bit integer) quantization-aware
training strategies. The training curves of various LLaMA models on the C4 dataset are presented in
Figure 1, and the final perplexity results are summarized in Table 1.

2The FP4 quantization and dequantization procedures follow the implementation described in https:
//arxiv.org/pdf/2310.16836.
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Table 2: Comparison among various optimizers on
BF16 training. Perplexity is reported. All optimizers
are trained with weight decay=0 except for AdamW
which used its default value: 0.01.

Optimizer 60M 130M 350M 1B
Adam-mini 34.10 24.85 19.05 16.07
AdamW (WD=0.01) 33.23 24.27 18.39 15.318
Adam 34.09 24.91 18.77 16.13
Adam + GradClip 33.33 24.88 18.51 15.22
Adafactor 32.57 23.98 17.74 15.19
SPAM 30.46 23.36 17.42 14.66
Stable-SPAM 28.84 22.21 16.85 13.90
Training Tokens 1.1B 2.2B 6.6B 11.6B

We observe that 4-bit training leads to a
significant performance drop compared to
BF16 training. As shown in Table 1, the
perplexity gap between BF16 (Adam) and
INT4/FP4 (Adam) exceeds 1.5 across all
model sizes, highlighting the challenges
of reduced precision. Figure 1 shows
that Stable-SPAM consistently outper-
forms Adam by a significant margin in 4-
bit scenarios. Table 1 further demonstrates
that Stable-SPAM outperforms other ad-
vanced optimizers, such as Adafactor and
SPAM. Among the baselines, incorporating
GradClip reduces perplexity, while Adafactor and SPAM both outperform the simple application of
GradClip. Stable-SPAM is able to match Adam’s performance with half the tokens in 4-bit training.
As illustrated in Figure 1, Stable-SPAM achieves the same perplexity as Adam in approximately
half the training steps. Notably, Stable-SPAM performs particularly well with larger models, such
as LLaMA-350M and LLaMA-1B, showcasing its strong potential for large-scale training. This is
likely because large-scale, low-precision training is more susceptible to instability issues (Fishman
et al., 2024), making stabilized training approaches like Stable-SPAM especially beneficial.

4.2 SCALE UP TO 7B MODEL

We further validate Stable-SPAM on a larger model with 7B parameters. Specifically, we compare
Stable-SPAM and Adam under INT4 training and present the training curves over 20K update
steps. As shown in Figure 5, Stable-SPAM consistently outperforms Adam on this large-scale
training scenario.

4.3 PERFORMANCE OF EXTREMELY LOW-PRECISION TRAINING

To evaluate the performance of Stable-SPAM under extremely low-precision training, we con-
ducted experiments on LLaMA-350M using A2W2 (INT2), A3W3 (INT3), and A4W4 (INT4) config-
urations. The final validation loss is presented in Figure 4. The results indicate that Stable-SPAM
consistently outperforms Adam across all low-precision settings.

4.4 PERFORMANCE OF BF16 LLM TRAINING
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Figure 6: Performance of BF16 training with various model sizes. Experiments are based on
LLaMA models trained on C4 Dataset.

To further evaluate the efficacy of Stable-SPAM, we conducted experiments on various LLaMA
model sizes following the standard BF16 training in Zhao et al. (2024a). The experiments are based
on C4 dataset. The training curves and final perplexity values are presented in Figure 6 and Table 2,
respectively. Table 2 highlights that Stable-SPAM consistently delivers superior performance
across different model sizes, surpassing the second-best optimizer with significant improvements.
Furthermore, Figure 6 illustrates that Stable-SPAM achieves the same performance as Adam in
only half the training steps or even fewer for LLaMA-350M and LLaMA-1B, validating its ability to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

match Adam’s performance while requiring significantly fewer tokens under BF16 LLM training.
The above results demonstrate that the promise of Stable-SPAM not only holds for low-precision
LLM training but also holds for the standard BF16 training.
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Figure 7: Effectivess of AdaGN and AdaClip on stabilizing FP4 LLM training. The left two
figures use LLaMA-130M (LR = 3e-3), and the right two figures use LLaMA-60M.

4.5 INTEGRATION WITH OTHER OPTIMIZERS

Table 3: Improvements from AdaGN and
AdaClip on Lion and Adam-mini optimizers.
Experiments are based on LLaMA-60M/130M
with 4-Bit training.

Optimizers INT4 Training FP4 Training
60M 130M 60M 130M

Lion 39.36 35.28 39.89 34.20
Lion +AdaGN+AdaClip 38.49 29.40 36.75 31.63
Adam-mini 34.84 29.79 36.37 32.95
Adam-mini +AdaGN+AdaClip 34.61 29.65 34.65 32.39
Training Tokens 1.1B

A2W2 A3W3 A4W4
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Table 4: StableSPAM under Extremely Low-
Precision Training. Experiments are con-
ducted with 350M models on C4 Dataset.

Although AdaGN and AdaClip are proposed specifically for Stable-SPAM, one may wonder,
“Can AdaGN and AdaClip also be compatible with other optimizers?" To answer this question, we
applied AdaGN and AdaClip to two recently published optimizers: Lion (Chen et al., 2024) and
Adam-mini (Zhang et al., 2024a). We conducted comparative experiments using Lion and Adam-mini
alone, as well as in combination with AdaGN and AdaClip, under a 4-bit training setting. These
experiments were performed on LLaMA-60M/130M models with the C4 dataset.

The results in Table 3 show that AdaGN and AdaClip consistently enhance the performance of both
Lion and Adam-mini under FP4 and INT4 training settings, across LLaMA-60M and LLaMA-130M
model sizes. Notably, on LLaMA-130M with INT4 training, Lion achieves a perplexity improvement
of up to 5.88, and Adam-mini on LLaMA-60M under FP4 training sees an improvement of 1.72.
These improvements underscore the broad applicability and effectiveness of the proposed AdaGN
and AdaClip methods.

4.6 EFFECT ON STABILIZING TRAINING

To validate the effectiveness of our proposed AdaGN and AdaClip techniques in stabilizing the
LLM training process, Firstly, we compared the training loss and gradient norm curves across three
settings: using Adam alone, using Adam with AdaGN, and using Adam with both AdaGN and
AdaClip. Our experiments employed LLaMA-130M with a learning rate of 3e-3 under an FP4
training setting. As shown in Figure 7, training solely with Adam leads to divergence in the training
loss and frequent spikes in the gradient norm. However, once AdaGN is introduced, the training loss
converges, and the gradient norm is noticeably reduced. Adding AdaClip on top of AdaGN further
decreases the gradient norm and yields a smoother training loss curve. Secondly, we present the final
performance across a range of learning rates, from 5× 10−4 to 5× 10−3, evaluated on LLaMA-60M
under both FP4 and INT4 training settings. The results in Figure 7 show that Stable-SPAM
produces a significantly flatter curve, highlighting its stability across varying learning rates. These
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results demonstrate the effectiveness of the proposed AdaGN and AdaClip techniques in achieving
a more stable and consistent training process.

4.7 ABLATION STUDY

Table 5: Ablations on Stable-SPAM. Experiments are
based on LLaMA-60M and C4.

Optimizer FP4 BF16

Adam 35.47 34.09
Adam + MoRet 32.4 31.47
Adam + MoRet + AdaClip 31.97 30.29
Adam + MoRet + AdaGN 32.26 28.96
Adam + MoRet + AdaGN + AdaClip (Stable-SPAM) 31.40 28.84

Adam + MoRet+AdaGN+SpikeClip Huang et al. (2025) 32.01 28.90
Adam + MoRet+ GradClip Goodfellow (2016)+AdaClip 31.95 29.87
Adam + MoRet+AdaGN+AdaClip (Stable-SPAM) 31.40 28.84
Training Tokens 1.1B

To validate the effectiveness of the
three components, MoRet, AdaGN,
and AdaClip, in Stable-SPAM,
we conduct a comprehensive ablation
study. Specifically, we take two ap-
proaches: (1) We iteratively incorpo-
rate MoRet, AdaGN, and AdaClip
into the Adam optimizer to measure
their individual and combined im-
provements under both FP4 and BF16
training settings. (2) We replace
AdaClip with SpikeClip Huang
et al. (2025) and AdaGN with Grad-
Clip Goodfellow (2016) to further assess the unique contributions of our proposed components. The
results, summarized in Table 5, reveal the following observations: MoRet consistently improves per-
formance across both FP4 and BF16 settings. Under both FP4 training, AdaGN alone shows limited
improvement. However, when combined with AdaClip, it substantially reduces final perplexity.
Conversely, in the BF16 setting, AdaGN alone yields considerable performance gains, but adding
AdaClip offers limited improvement. This discrepancy may stem from the higher frequency of
extreme element-wise gradient spikes in this FP4 training experiments, which necessitates AdaClip
to correct biased update directions effectively. Finally, replacing AdaClip with SpikeClip Huang
et al. (2025) and AdaGN with GradClip Goodfellow (2016) results in increased perplexity, further
validating the efficacy of our proposed AdaGN and AdaClip.

4.8 HYPER-PARAMETER ANALYSIS
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Figure 8: Hyper-parameter Analysis. Experiments are conducted with FP4 training on LLaMA-
60M and C4 with 1.1B tokens.

Stable-SPAM introduces four hyperparameters: γ1, γ2, γ3, and ∆T , which extend the functionality
of Adam. Among these, γ1 and γ2 serve a similar purpose to β1 and β2 in Adam, controlling the
smoothness of updates to the first moment mnorm and the second moment vnorm. Larger values of
γ1 and γ2 result in smoother updates, placing greater emphasis on historical gradient norm statistics
when adapting the current gradient norm. Similarly, γ3 plays a role in determining the threshold
for identifying gradient spikes. A larger γ3 leads to a smoother and more conservative threshold,
resulting in a higher proportion of gradients being classified as spike gradients. To investigate the
impact of these hyperparameters, we plot the final perplexity curve while varying γ1 from 0.5 to
0.9, γ2 from 0.8 to 0.999, γ3 from 0.9 to 0.999, and ∆T from 250 to 5000. The experiments are
conducted using LLaMA-60M, trained on 1.1B C4 tokens under the FP4 training setting. The results
in Figure 8 demonstrate that overly small or excessively large values of these hyperparameters can
degrade performance. However, the intuitive interpretations of these hyperparameters make them
straightforward to tune, and they typically require minimal adjustments. In this paper, we adopt the
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optimal values γ1 = 0.7, γ2 = 0.9, γ3 = 0.999, and ∆T = 1000, which work effectively for all
4-bit training scenarios.

5 RELATED WORK

Instability of Training Large Language Models. The instability of large language model (LLM)
training, which are marked by loss spikes and catastrophic divergence (Chowdhery et al., 2023; Moly-
bog et al., 2023), has driven extensive research into stabilization techniques. These methods generally
fall into three main categories: (1) gradient preprocessing, (2) architectural modifications, and (3)
initialization strategies. Gradient preprocessing typically involves scaling and clipping gradients
at the start of the optimization process to stabilize the training. A well-known example is gradient
clipping (Goodfellow, 2016), which globally rescales the gradient norm to a fixed value. Later,
Adafactor (Shazeer & Stern, 2018) introduced capping the norm of the parameter updates instead
of the raw gradients. More recently, SPAM (Huang et al., 2025) proposed detecting and clipping
anomalous gradients based on historical gradient statistics. However, a common drawback of these
methods is that they require manually setting a predefined threshold. Architecturally, Xiong et al.
(2020) showed that Post-LayerNorm (Post-LN) amplifies gradients, causing instability with large
learning rates, while Pre-LayerNorm (Pre-LN) preserves gradient norms for stable training. Embed
LayerNorm (Embed LN) normalizes embeddings (Dettmers et al., 2021), though it may impact
performance (Scao et al., 2022), while Embed Detach (Ding et al., 2021; Zeng et al., 2022) reduces
loss spikes by truncating gradients. DeepNorm (Wang et al., 2024) scales residual connections, and
αReparam (Zhai et al., 2023) prevents attention entropy collapse via spectral-normalized parameteri-
zation. Initialization strategies offer complementary stability benefits. Scaled Embed (Takase et al.,
2023) stabilizes LayerNorm gradients, while Scaled Initialization (Nguyen & Salazar, 2019) reduces
variance using N (0,

√
2/(5d)/

√
2N). Fixup (Zhang et al., 2019; Huang et al., 2020) eliminates

LayerNorm entirely, inspiring norm-free architectures. Though ongoing advancements refine these
approaches, training stability remains a key challenge in LLM development.

Low-precision LLM Training. Low-precision training Wang et al. (2018); Lin et al. (2022); Xi
et al. (2024a;b); Wortsman et al. (2023a) has emerged as a promising approach to improve both
computational and memory efficiency during training. Among these methods, FP16 Micikevicius et al.
(2017) and BF16 Kalamkar et al. (2019) are the most widely adopted precision formats. To push the
efficiency further, 8-bit training has garnered increasing attention. For instance, LM-FP8 Peng et al.
(2023) enables training with FP8 precision. While Fishman et al. (2024) demonstrates that as training
scales up (larger than 250B tokens), the issue of activation outliers becomes more pronounced, posing
challenges to the representation range of low-bit data formats. To address this challenge, Fishman
et al. (2024) proposes a smoothing strategy, while Ashkboos et al. (2025) leverages Hadamard
transformations to mitigate the impact of activation outliers. Furthermore, the choice of data format
significantly influences training performance. The INT8 format is the most widely supported low-
precision format, whereas FP8, available in NVIDIA’s Hopper GPU architecture, provides specialized
support. Additionally, the MX format Rouhani et al. (2023) demonstrates superior representational
capability, though it is rarely supported by current hardware. In this work, we investigate the training
instability associated with low-precision training and propose enhancements through the design of
optimizers. Our approach is compatible with existing techniques, providing a complementary solution
to improve the stability of low-precision training.

6 CONCLUSION

This paper presents a comprehensive study on the training instability challenges of 4-bit quantization
in large language models. We find that while low-precision training significantly reduces memory
and computational costs, it also amplifies the sensitivity to learning rates, and increases the likelihood
of gradient and loss spikes. To address these issues, we propose Stable-SPAM, an optimizer
that combines three key techniques: AdaClip, AdaGN, and MoRet. Empirical results on LLaMA
models of various sizes demonstrate that Stable-SPAM not only stabilizes 4-bit training but also
achieves better performance compared to existing optimizers. We additionally show that these
stabilization strategies are broadly applicable, benefiting other optimizers like Lion and Adam-mini.

9
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This work fully complies with the ICLR Code of Ethics. All datasets employed in our study are
publicly available and widely used in prior research. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details, including training procedures, evaluation proto-
cols, and hyperparameter settings, in Section 4 and Appendix B. The source code has been made
available for the review process and will be publicly released to support reproducibility and to
facilitate future research.

REFERENCES

Saleh Ashkboos, Mahdi Nikdan, Soroush Tabesh, Roberto L Castro, Torsten Hoefler, and Dan
Alistarh. Halo: Hadamard-assisted lossless optimization for efficient low-precision llm training
and fine-tuning. arXiv preprint arXiv:2501.02625, 2025.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
Advances in neural information processing systems, 34:19822–19835, 2021.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling fp8 training to trillion-token
llms. arXiv preprint arXiv:2409.12517, 2024.

Ian Goodfellow. Deep learning, 2016.

Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
aware adam with momentum reset for stable llm training. arXiv preprint arXiv:2501.06842,
2025.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization
through better initialization. In International Conference on Machine Learning, pp. 4475–4483.
PMLR, 2020.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
et al. A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Joonhyung Lee, Jeongin Bae, Byeongwook Kim, Se Jung Kwon, and Dongsoo Lee. To fp8 and
back again: Quantifying the effects of reducing precision on llm training stability. arXiv preprint
arXiv:2405.18710, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang,
and Yang You. Colossal-ai: A unified deep learning system for large-scale parallel training. In
Proceedings of the 52nd International Conference on Parallel Processing, pp. 766–775, 2023.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
training under 256kb memory. Advances in Neural Information Processing Systems, 35:22941–
22954, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chao Ma, Wenbo Gong, Meyer Scetbon, and Edward Meeds. Swan: Preprocessing sgd enables
adam-level performance on llm training with significant memory reduction. arXiv preprint
arXiv:2412.13148, 2024.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in
large-scale machine learning. arXiv preprint arXiv:2304.09871, 2023.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue
Yang, Bolin Ni, Jingcheng Hu, et al. Fp8-lm: Training fp8 large language models. arXiv preprint
arXiv:2310.18313, 2023.

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, et al. Microscaling data
formats for deep learning. arXiv preprint arXiv:2310.10537, 2023.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman, M Saiful Bari, Stella
Biderman, Hady Elsahar, Niklas Muennighoff, Jason Phang, et al. What language model to train if
you have one million gpu hours? arXiv preprint arXiv:2210.15424, 2022.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. Spike no more: Stabilizing the
pre-training of large language models. arXiv preprint arXiv:2312.16903, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. Advances in neural information processing
systems, 31, 2018.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig Schmidt.
Stable and low-precision training for large-scale vision-language models. Advances in Neural
Information Processing Systems, 36:10271–10298, 2023a.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023b.

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Haocheng Xi, Han Cai, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfei Chen, and Song Han. Coat:
Compressing optimizer states and activation for memory-efficient fp8 training. arXiv preprint
arXiv:2410.19313, 2024a.

Haocheng Xi, Yuxiang Chen, Kang Zhao, Kai Jun Teh, Jianfei Chen, and Jun Zhu. Jetfire: Efficient
and accurate transformer pretraining with int8 data flow and per-block quantization. arXiv preprint
arXiv:2403.12422, 2024b.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In International Conference on Machine Learning, pp. 40770–40803. PMLR,
2023.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024a.

Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024b.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were not involved in the development of the research methodology,
experimental design, analyses, or original contributions of this work. Their use was strictly limited to
general-purpose editorial assistance, including refining wording and improving readability.

The authors take full responsibility for the manuscript, including any text polished with LLM
assistance. We have ensured that all usage complies with ethical guidelines and does not involve
plagiarism, fabrication, or other forms of scientific misconduct.

B ARCHITECTURE AND HYPERPARAMETERS

We introduce details of the LLaMA architecture and hyperparameters used for 4-bit and BF16 pre-
training, following Lialin et al. (2023); Zhao et al. (2024a). Table 6 shows the most hyperparameters
of LLaMA models across model sizes. We use a max sequence length of 256 for all models, with
a batch size of 512, with a batch size of 131K tokens. For all experiments, we adopt learning rate
warmup of 2000 training steps, and use cosine annealing for the learning rate schedule, decaying to
10% of the initial learning rate.

Table 6: Configurations of LLaMA models used in this paper.

Params Hidden Intermediate Heads Layers

60M 512 1376 8 8
130M 768 2048 12 12
350M 1024 2736 16 24
1 B 2048 5461 24 32

For all methods across each model size (from 60M to 7B), we tune the learning rates from 1e− 4 to
1e− 3 with an increasing step of 2× 10−4 for pre-training tasks, and the best learning rate is selected
based on the validation perplexity. The detailed hyperparameter of Stable-SPAM on 4-bit training
and BF16 training are reported in Table 7 and Table 8.

Table 7: Hyperparameters of Stable-SPAM for 4-bit pre-training experiments in this paper.

Hyper-Parameters LLaMA-130M LLaMA-350M LLaMA-1B LLaMA-7B

LR 1e− 3 4e− 4 2e− 4 2e− 4
∆T 1000 1000 1000 1000
γ1 0.7 0.7 0.7 0.7
γ2 0.9 0.9 0.9 0.9
γ3 0.999 0.999 0.999 0.999

Table 8: Hyperparameters of Stable-SPAM for BF6 pre-training experiments in this paper.

Hyper-Parameters LLaMA-60M LLaMA-130M LLaMA-350M LLaMA-1B

Standard Pretraining

LR 1e− 3 8e− 4 4e− 4 2e− 4
∆T 1000 1000 1000 1000
γ1 0.85 0.85 0.85 0.85
γ2 0.99999 0.99999 0.99999 0.99999
γ3 0.999 0.999 0.999 0.999
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C BROADER IMPACT

This paper advances the field of large language model (LLM) training by proposing a stable optimizer
that enables more stable and efficient optimization at low-precision (4-bit) arithmetic. By reducing
computational and memory overhead, our approach has the potential to lower energy consumption
and lessen the environmental footprint of training large-scale models. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.

D EVALUATION ON FINE-TUNING TASK

We further evaluate Stable-SPAM on fine-tuning tasks using the pre-trained LLaMA2-7B model
on the CommonsenseQA benchmark.

Table 9: Fine-tuning performance of LLaMA2-7B on various downstream tasks (CommenseQA).
The rank for LoRA is set to 8.

Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Adam 76.06 79.00 33.21 59.94 79.87 77.82 46.76 34.40 60.88
StableSPAM 77.92 78.89 33.52 60.10 80.43 77.78 47.70 34.80 61.39

The results in Table 9 demonstrate that StableSPAM outperforms Adam during fine-tuning with
LoRA. However, the performance improvements are less pronounced than those observed in the
pre-training setting. We attribute this to the characteristics of fine-tuning tasks, which typically
employ much smaller learning rates (e.g., 5e-5 in our experiments). A plausible explanation is
that smaller learning rates inherently suppress the occurrence of gradient and loss spikes, thereby
diminishing the relative advantage of StableSPAM.

E EXPERIMENTS COMPUTE RESOURCES

All experiments are conducted using NVIDIA H100 GPUs. LLaMA-60M, 130M, and 350M models
are trained with 2 H100 GPUs, while the LLaMA-1B model is trained with 4 H100 GPUs.

F EFFECT OF REDUCING GRADIENT NORM SPIKES

We introduce a spike-counting metric based on gradient norm deviations. Specifically, a spike is
defined via the z-score:

zscore =
gt − µt

δt

where µt and δt are the rolling mean and standard deviation over a window of K = 100 steps and gt
is the gradient norm at step t. A spike is recorded whenever the z-score exceeds a fixed threshold
(typically 5).

The Table 10 reports the total number of spikes and final perplexity for FP32, BF16, and FP4 training
using Adam and Stable-SPAM, evaluated on LLaMA-350M with 2.2B tokens: We observed:

• The number of spikes increases significantly as precision decreases;
• Stable-SPAM effectively suppresses gradient norm spikes in FP4 training, reducing them to

levels comparable to—or even lower than—those observed with Adam under BF16 training,
yielding better final perplexity.

G RUNTIME AND MEMORY COST

We measured both the wall-clock time per 100 training steps and the peak optimizer memory usage
for LLaMA-130M and LLaMA-350M, trained on a single NVIDIA H100 GPU. As shown in Table 11
and Table 12, the computational and memory overhead introduced by Stable-SPAM compared to
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Table 10: #Spikes of gradient norm for Adam and Stable-SPAM during training process

FP32(Adam) BF16 (Adam) FP4 (Adam) FP4 (Stable-SPAM)

#Spikes 9 32 60 26
Final Perplexity 19.301 21.38 24.59 19.49

Adam is negligible. This confirms that the proposed optimizations in Stable-SPAM incur minimal
burden in terms of compute and bandwidth.

Table 11: Runtime of 100 steps for training LLaMA-130M and 350M based on 1 Nvidia H100 GPU

LLaMA-130M LLaMA-350M
Adam 219 (s) 543 (s)
StableSPAM 222(s) 548 (s)

Table 12: GPU memory usage of optimizer for training LLaMA-130M and 350M

LLaMA-130M LLaMA-350M
Adam 842.59 (M) 2187.3 (M)
StableSPAM 849.1 (M) 2203.81 (M)

H ADDITIONAL EXPERIMENTS ON OTHER TASKS

To further validate its general applicability beyond language modeling, we conducted additional
experiments on reinforcement learning (MuJoCo) and time series forecasting (weather prediction)
tasks,

H.1 REINFORCEMENT LEARNING TASK

As shown in Table 13, Stable-SPAM consistently outperforms Adam on the HalfCheetah,
Walker2d, and Ant enviroment, highlighting its effectiveness across diverse reinforcement learning
tasks.

H.2 TIME SERIES FORESCASTING TASK

We conducted additional experiments on time-series prediction tasks. In these experiments, we
intentionally introduced anomalous data with a probability A=10% to simulate gradient anomalies.
Experiments are conducted with 10 repeated runs on Weather time series data3 using PatchTST (Nie
et al., 2022) model. The results are presented in Figure 9.

The findings demonstrate that as the severity (S) of anomalous data increases, Stable-SPAM’s
performance advantage over Adam becomes more pronounced. Besides, Stable-SPAM consistently
surpasses SPAM across all settings. These results further highlight the effectiveness of the proposed
Stable-SPAM.

I PSEUDOCODE

The pseudocode is presented in Alogrithm 1.

3https://www.bgc-jena.mpg.de/wetter/
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Table 13: The final Test Rewards for the three mujoco environment: HalfCheetah, Walker2d and Ant.

HalfCheetah Ant Hopper
Adam 5276.1± 1542.9 3835.6± 759.5 2447.5±1037.9
StableSPAM 6762.6± 1414.2 4907.6±954.6 3435.1±1178.3
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Figure 9: Test Loss during Training Process on Weather Time-series Data. Anomalous data
is generated by adding Gaussian noise to 10% of randomly selected input values. Specifically, the
anomalies data are conducted with X = X + Gaussin(0,Severity ∗ Max(X)) where X is the
inputs and S is the severity.

Algorithm 1: Stable-SPAM
Input: A layer weight matrix w ∈ Rm×n, learning rate α, decay rates β1 = 0.9, β2 = 0.999, initial

parameters w0, γ1 = 0.7, γ2 = 0.9 for AdaGN and γ3 = 0.999 for AdaClip, momentum reset
interval ∆T , small constant ϵ = 1× 10−6, and total training steps T .

Output: Optimized parameters wT .
1 while t < T do
2 gt ∈ Rm×n ← −∇wϕt(wt) // Gradient of the objective at step t.
3 gmax ← Max(abs(gt))
4 Tthreshold ← Tthreshold · θ + (1− θ) gmax

5 T̂threshold ←
Tthreshold

1− θt
// Bias correction for threshold

6 Maskspikes ←
(
abs(gt) > T̂threshold

)
7 if sum

(
Maskspikes

)
> 0 then

8 gt[Maskspikes]←
gt[Maskspikes]

gmax
× T̂threshold

9 gnorm ← ∥gt∥2
10 mnorm ← γ1 mnorm + (1− γ1) gnorm
11 vnorm ← γ2 vnorm + (1− γ2) g

2
norm

12 m̂norm ←
mnorm

1− γt
1

, v̂norm ←
vnorm
1− γt

2

// Bias-corrected norm estimates

13 adaptive_norm← m̂norm√
v̂norm + ϵ

14 gt ←
gt

gnorm
× adaptive_norm

15 if (Mod(t, ∆T ) = 0) then
16 m← zeros_like(m)
17 v ← zeros_like(v)

18 mt ← β1 mt−1 + (1− β1) gt
19 vt ← β2 vt−1 + (1− β2) g

2
t

20 m̂t ←
mt

1− βt
1

// bias correction

21 v̂t ←
vt

1− βt
2

// bias correction

22 wt ← wt−1 − α
m̂t√
v̂t + ϵ

23 t← t+ 1

24 return wT .
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