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Abstract

A central problem in unsupervised domain adap-
tation is determining what to transfer from labeled
source domains to an unlabeled target domain. To
handle high-dimensional observations (e.g., im-
ages), a line of approaches use deep learning to
learn latent representations of the observations,
which facilitate knowledge transfer in the latent
space. However, existing approaches often rely on
restrictive assumptions to establish identifiability
of the joint distribution in the target domain, such
as independent latent variables or invariant label
distributions, limiting their real-world applicabil-
ity. In this work, we propose a general domain
adaptation framework that learns compact latent
representations to capture distribution shifts rela-
tive to the prediction task and address the funda-
mental question of what representations should be
learned and transferred. Notably, we first demon-
strate that learning representations based on all
the predictive information, i.e., the label’s Markov
blanket in terms of the learned representations,
is often underspecified in general settings. In-
stead, we show that, interestingly, general domain
adaptation can be achieved by partitioning the
representations of Markov blanket into those of
the label’s parents, children, and spouses. More-
over, its identifiability guarantee can be estab-
lished. Building on these theoretical insights, we
develop a practical, nonparametric approach for
domain adaptation in a general setting, which can
handle different types of distribution shifts.

1. Introduction
Unsupervised domain adaptation (UDA) aims to transfer
knowledge from labeled source domains to an unlabeled
target domain, particularly in scenarios where the training
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and testing data distributions differ substantially. In a multi-
source domain adaptation (MSDA) setup, each source do-
main u ∈ {1, . . . ,M} provides access to a labeled dataset
(x(u),y(u)) = {(x(u)

k , y
(u)
k )}mu

k=1, where mu represents the
number of samples in domain u. Here, the i-th dimension
of the feature vector X is denoted as Xi, and x

(u)
ik corre-

sponds to the value of the i-th feature for the k-th sample in
domain u. The goal is to train a classifier that generalizes to
an unlabeled target domain, where only the feature vectors
xτ = {xτ

k}mk=1 are available.

Determining the joint distribution P τ
X,Y in the target domain

based solely on the marginal distribution P τ
X is a fundamen-

tally underdetermined problem. In the absence of additional
assumptions, there are infinitely many possible joint dis-
tributions P τ

X,Y that can align with the observed marginal
distribution. Therefore, assumptions that connect the source
and target domain distributions are essential for identifying
the target joint distribution. Common approaches impose
constraints to ensure a degree of similarity across these dis-
tributions. A widely adopted assumption is covariate shift
(Pan & Yang, 2009), which asserts that the conditional dis-
tribution PY |X remains consistent across domains while
the marginal feature distribution PX varies. Alternatively,
other frameworks account for variations in PY or assume
that transformations between the source and target features
are linear (Zhang et al., 2015), offering additional ways to
model domain relationships.

To avoid restrictive parametric assumptions about the re-
lationships between domains, the principle of minimal
changes is often considered (Schölkopf et al., 2012; Zhang
et al., 2013). This perspective is particularly effective when
analyzed through the lens of the data generating process. For
instance, when the underlying process is Y → X , the con-
ditional distributions PY and PX|Y can vary independently
across domains. By factoring the joint distribution in this
way, domain shifts can be represented in a parsimonious and
structured manner. Moreover, changes in PX|Y are often
constrained to lie on a low-dimensional manifold, further
simplifying the problem (Stojanov et al., 2019). Advances
in domain adaptation frameworks, particularly those leverag-
ing multiple-domain data, have demonstrated the feasibility
of uncovering the data-generating process and capturing
these domain shifts (Huang et al., 2020; Zhang et al., 2020).
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With the increasing capabilities of deep learning, another
prominent line of work leverages neural architectures to
map high-dimensional features into a latent representation
space, ensuring that the latent variables Z are marginally
invariant across domains. This approach is motivated by ef-
ficiency: by working in a lower-dimensional latent space, it
aligns with the principle of minimal changes, as it only mod-
els the essential domain shifts while discarding irrelevant
variations. A classifier can then be trained on the labeled
source data to ensure that the latent space retains predictive
information about the labels (Ben-David et al., 2010; Ganin
& Lempitsky, 2015; Zhao et al., 2018; Li et al., 2024a).
While this strategy enables domain alignment in the latent
space, the joint distributions PZ,Y may still vary signifi-
cantly across domains, potentially degrading performance
in the target domain. To address this, several works employ
generative models or disentanglement techniques for the
latent representations (Cai et al., 2019a; Lu et al., 2021;
Yin et al., 2025). However, these methods typically lack
guarantees of identifiability for the target joint distribution
P τ
X,Y or the learned representations, limiting their ability

to recover the true data generating process. This lack of
identifiability raises concerns about the trustworthiness and
reliability of these approaches, particularly when applied
to real-world scenarios involving complex domain shifts.
Furthermore, some of these works rely on assumptions on
the data distributions such as exponential family (Lu et al.,
2021; Yin et al., 2025).

Recent works by Kong et al. (2022) and Li et al. (2024b)
have introduced theoretical frameworks that establish differ-
ent types of identifiability results for latent representations
in domain adaptation. They partition the latent space into
different subspaces according to its connection with do-
mains or labels. Although different types of identifiability
results have been provided for identifying the latent repre-
sentations and joint distribution in the target domain, these
works often rely on restrictive assumptions such as indepen-
dent latent variables or invariant label distributions, limiting
their real-world applicability.

In this work, we propose a general domain adaptation frame-
work that learns compact latent representations to capture
distribution shifts relative to the prediction task and address
the fundamental question of what representations should
be learned and transferred. Notably, we first demonstrate
that learning representations based on all the predictive in-
formation, such as the label’s Markov blanket in terms of
the learned representations, is often underspecified for do-
main adaptation in general settings. Instead, we show that,
interestingly, general domain adaptation can be achieved by
partitioning the representations of Markov blanket into those
of the label’s parents, children, and spouses. Accordingly,
we establish identifiability of the joint distribution in the
target domain, by learning low-dimensional representations

of the changing distributions. Building on these theoretical
insights, we develop a practical, nonparametric framework
for domain adaptation in a general setting, which can handle
different types of distribution shifts. Finally, we validate
our framework on real-world datasets, demonstrating that it
outperforms existing methods.

2. Related Works
2.1. Domain Adaptation

Domain adaptation (Patel et al., 2015; Wilson & Cook,
2020; Farahani et al., 2021) aims to transfer knowledge
from labeled source domains to an unlabeled target domain,
such that the model can generalize to the target domain. A
classical approach is to learn domain-invariant representa-
tions (Ganin & Lempitsky, 2015; Bousmalis et al., 2016),
which are extracted by aligning the features across differ-
ent domains. For instance, Long et al. (2017; 2018) ap-
plied maximum mean pseudo-labels and kernel methods
for domain alignment, while Tzeng et al. (2014) adopt an
adaptation layer and domain confusion loss to learn domain-
invariant representations.

A different line of works rely on the assumption that condi-
tional distributions P (Z | Y ) remain stable across domains,
enabling the extraction of domain-invariant representations
for each class (Chen et al., 2019b;a; Kang et al., 2020). For
instance, Xie et al. (2018) minimize inter-class domain dis-
crepancy, while Shu et al. (2018) constrains boundaries to
avoid high-density regions via virtual adversarial domain
adaptation. Target shift, where PY varies across domains,
has also been widely studied (Zhang et al., 2013; Lipton
et al., 2018; Wen et al., 2020; Garg et al., 2020; Roberts et al.,
2022). For instance, Tachet des Combes et al. (2020) de-
veloped theoretical guarantees for the transfer performance
under generalized label shift. while Shui et al. (2021) pro-
pose selecting relevant source domains based on conditional
distribution similarity.

Recent works incorporate causality into domain adapta-
tion (Kong et al., 2022; Magliacane et al., 2018; Teshima
et al., 2020; Chen & Bühlmann, 2021; Gong et al., 2016;
Stojanov et al., 2019). For instance, Zhang et al. (2013;
2015) investigated target shift, conditional shift, and gen-
eralized target shift by assuming independent change for
P (Y ) and P (X | Y ). Cai et al. (2019a) learn disentan-
gled semantic representations by leveraging causal genera-
tion process, while Stojanov et al. (2021) showed that that
domain-invariant features require domain knowledge, giving
rise to their proposed domain-specific adversarial networks.
These method typically require restrictive assumptions and
are not able to identify the latent variables with theoretical
guarantees.
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2.2. Identification of Latent Variables

The identifiability of latent variables remains a fundamental
challenge, as they are generally unidentifiable without addi-
tional assumptions (Hyvärinen & Pajunen, 1999; Locatello
et al., 2019). In the case of a linear mapping from latent
to observed variables—known as independent component
analysis (ICA)—identifiability can be achieved by assum-
ing non-Gaussian latent variables (Comon, 1994; Hyvarinen
et al., 2002). However, relaxing the linearity assumption
leads to the ill-posed problem of nonlinear ICA (Hyvärinen
& Pajunen, 1999; Hyvärinen et al., 2023).

To address this, existing nonlinear ICA methods typically
rely on sufficient variations in the latent variable distribution,
often introduced through auxiliary variables such as time
or domain indices (Hyvarinen & Morioka, 2016; 2017; Hy-
varinen et al., 2019; Khemakhem et al., 2020). Alternative
approaches constrain the mixing function, either by restrict-
ing it to specific function classes (Hyvärinen & Pajunen,
1999; Taleb & Jutten, 1999; Gresele et al., 2021; Buchholz
et al., 2022) or enforcing sparsity (Zheng et al., 2022).

More recently, causal representation learning has extended
beyond ICA by considering causally-related latent variables
instead of independent ones (Schölkopf et al., 2021). Simi-
lar to nonlinear ICA, many approaches in this area leverage
sufficient variations in the latent variable distributions, typi-
cally induced by interventions (Ahuja et al., 2023; Squires
et al., 2023; von Kügelgen et al., 2023; Jiang & Aragam,
2023; Zhang et al., 2023; Varici et al., 2023; Varıcı et al.,
2024a;b; Jin & Syrgkanis, 2023; Bing et al., 2024; Zhang
et al., 2024), temporal data (Yao et al., 2022a;b; Lippe et al.,
2022; 2023), or both (Lachapelle et al., 2022; 2024). Other
approaches rely on counterfactual view (Brehmer et al.,
2022), multi-view data (Yao et al., 2024; Xu et al., 2024),
more supervision information (Yang et al., 2021; Shen et al.,
2022; Liang et al., 2023), causal ordering prior (Kori et al.,
2023), constraint on the latent support (Ahuja et al., 2023;
Wang & Jordan, 2021), or structural constraints (Silva et al.,
2006; Xie et al., 2020; Cai et al., 2019b; Xie et al., 2022;
Adams et al., 2021; Huang et al., 2022; Dong et al., 2023;
Kivva et al., 2021).

3. A Generative Model with Distribution Shift
We assume that the d-dimensional feature vector X (e.g.,
image pixels) is generated from latent variables Z =
(Z1, . . . , Zn) via an unknown, smooth, and invertible mix-
ing function g : Rn → Rd. Also, the label Y is a categorical
value that takes values from v1, . . . , vC In each domain, the
latent variables Z and the label Y are governed by a struc-
tural equation model (SEM) that shares the same but un-
known directed acyclic graph (DAG) G. The data-generating
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Figure 1: An example of the generative process considered
in our work. The feature vector X is generated from latent
variables Z, which, along with the label Y , follow a struc-
tural equation model. The causal mechanisms, governed by
parameters θ(u)i and θ

(u)
Y , may shift across domains. Here,

X and the domain index u are observable. Furthermore,
the label Y is available in the source domains but remains
unobserved in the target domain. For this example, we
have Zmb = {Z2, Z3, Z4}, Zpa = {Z2}, Zch = {Z3},
Zsps = {Z4}, and Z∁

mb = {Z1}. To illustrate these latent
variables, consider an example from PACS benchmark (Li
et al., 2017): Y represents whether it is a horse, while Z2

captures key defining features (e.g., a horse’s head or horse-
shoes), and Z3 represents attributes influenced by the horse
(e.g., a saddle). Meanwhile, Z1 and Z4 can represent back-
ground elements.

process can be summarized as follows:

(Mixing) X = g(Z),

(SEM) Zi = fi(PA(Zi;G), ϵi; θ(u)i ), i ∈ [n],

Y = fY (PA(Y ;G), ϵY ; θ(u)Y ).

(1)

Here, PA(Zi;G) and PA(Y ;G) represent the parents of Zi

and Y , respectively, in the DAG G. The ϵi’s are mutually
independent exogenous noise variables, and θ

(u)
i denotes

the effective parameters (or latent factors) associated with
each structural equation in the u-th domain. The generative
process of each latent variable Zi may vary across domains,
with the variation being determined by the corresponding pa-
rameters θ(u)i . Such variability is common in practice, e.g.,
arising from heterogeneous datasets, where the causal mech-
anisms may shift. An example of the generative process is
depicted in Figure 1.

Let PX,Y (X,Y ; θ(u)) and PZ,Y (Z, Y ; θ(u)) represent the
joint distributions of X,Y and Z, Y , respectively, in the
u-th domain. When the context is clear, we omit the sub-
script for simplicity, and write P (u)(X,Y ) and P (u)(Z, Y ),
respectively. We also assume that PZ,Y and G satisfy the
faithfulness assumption (Spirtes et al., 2001), and that PZ

is third-order differentiable and positive everywhere on Rn.

3



A General Representation-Based Approach to Multi-Source Domain Adaptation

Furthermore, we denote by Zmb, Zpa, Zch, and Zsps the
Markov blanket1, parents, children, and spouses of label
Y , respectively.. Also, let Z∁

mb denote the remaining latent
variables outside the Markov blanket of Y , and M be the
Markov network over latent variables Z and label Y , whose
edges are denoted by E(M). We define θmb = (θi)Zi∈Zmb

,
and similarly for θpa, θch, and θsps. We also denote by Ẑ,
Ĝ, and M̂ the learned latent variables, learned DAG, and
learned Markov networks, respectively.

4. Identifiability Theory
We present the identifiability theory for domain adaptation
in a universal setting, where changes are allowed to occur
anywhere in the latent space without restrictions. It is worth
noting that specific types of domain shifts can be captured by
imposing constraints on where changes occur. For instance:

• Restricting changes to the parents of Y can be viewed
as the covariate shift setting (Shimodaira, 2000).

• Restricting changes to Y itself can be viewed as the
target shift (Zhang et al., 2013) or prior probability
shift (Storkey, 2009) problem.

• Restricting changes to the children of Y can be viewed
as the conditional shift (Zhang et al., 2013) problem.

In contrast, our work considers the most general scenario,
where changes may occur anywhere in the latent space,
without imposing any specific restrictions.

In Section 4.1, we discuss how learning latent representa-
tions of the label’s Markov blanket enables adaptation to
certain types of domain shifts, while highlighting why this
approach is often insufficient for domain adaptation. We
then propose an alternative approach in Section 4.2 that in-
volves learning latent representations of the label’s parents,
children, and spouses. Finally, in Section 4.3, we provide
the identifiability guarantee for this approach.

4.1. Subspace Identifiability of Latent Representations
for Label’s Markov Blanket

With the advent of deep learning and its widespread adop-
tion, many approaches leverage deep learning to learn com-
pact latent representations of observations (Ganin & Lem-
pitsky, 2015). These representations facilitate knowledge
transfer in the latent space, enabling more efficient and ef-
fective transfer. The critical goal is then to learn latent
representations that retain predictive information about Y .
A traditional view is that, with Markov blanket, we can
capture all the information that is sufficient for prediction
for the target variable. Building on this perspective, a natu-

1In this work, we use the term “Markov blanket” to refer to the
parents, children, and spouses of a target variable.

ral approach is to learn representations corresponding that
correspond to the Markov blanket of the label Y .

More specifically, the aim is to learn a representation Ẑmb

that is an invertible transformation of the label’s Markov
blanket Zmb, ensuring that Ẑmb contains all and only the in-
formation in Zmb. If such a representation can be recovered,
we say that Zmb is subspace identifiable. With such a rep-
resentation, the label Y becomes conditionally independent
of all other variables Z∁

mb, given Ẑmb. This implies that
Ẑmb captures all essential information required to predict
Y . Notably, this approach aligns with the feature selection
literature (Yu et al., 2020), where the Markov blanket is rec-
ognized as the minimal predictive set for the target variable.

However, recovering such a Markov blanket representa-
tion Ẑmb is challenging without additional assumptions, as
latent variable modeling often admits many spurious solu-
tions (Hyvärinen & Pajunen, 1999; Locatello et al., 2019).
Fortunately, access to multi-domain data makes this recov-
ery feasible. To achieve this, we rely on specific assumptions
that require the distribution of latent variables to vary suffi-
ciently across the source domains, formally described below.

Assumption 1 (Sufficient changes for Z). For each value
of Z, there exist 2n+ |M|+1 values of u, i.e., uk with k =
0, . . . , 2n+ |M|, such that the vectors w(Z, uk)−w(Z, u0)
with k = 1, . . . , 2n+ |M| are linearly independent, where
vector w(Z, u) is defined as

w(Z, u) =

(
∂ logP (u)(Z, Y )

∂Zi

)
i∈[n]

⊕
(
∂2 logP (u)(Z, Y )

∂Z2
i

)
i∈[n]

⊕
(
∂2 logP (u)(Z, Y )

∂Zi∂Zj

)
{Zi,Zj}∈E(M), i<j

.

Assumption 2 (Sufficient changes for Y ). For each value
of Z, there exist |Zmb| + 1 values of (u, c) such that the
vectors τ(Z, uk, cr)−τ(Z, uk, c1) with cr ̸= c1 are linearly
independent, where vector τ(Z, u, c) is defined as

τ(Z, u, c) =

(
∂ logP (u)(Z, Y = vc)

∂Zi

)
Zi∈Zmb

.

It is worth noting that different forms of sufficient change
conditions have been adopted in nonlinear ICA (Hyvärinen
et al., 2023) and causal representation learning (Schölkopf
et al., 2021). These distribution changes, along with the
invariant mixing function, offer valuable information for
inferring the latent variables and their relations. We now
provide identifiability theory to learn the latent representa-
tions for the label’s Markov blanket. The proof is provided
in Appendix A and is inspired by Zhang et al. (2024). Al-
though we state the faithfulness assumption (Spirtes et al.,
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2001) in the theorem above and Theorem 2, it suffices to
adopt the single adjacency-faithfulness (SAF) and single
unshielded-collider-faithfulness (SUCF) assumptions (Ng
et al., 2021; Zhang et al., 2024). These assumptions are
considerably weaker than the faithfulness assumption and
ensure that the Markov network M is the same as the moral-
ized graph of the DAG G (Zhang et al., 2024, Proposition 2).

Theorem 1 (Subspace identifiability of Markov blanket).
Consider the generative process in Equation (1). Suppose
that Assumptions 1 and 2, as well as the faithfulness as-
sumption, hold. By modeling the same generative process
with minimal number of edges for the learned Markov net-
work M̂, the learned Markov blanket Ẑmb is an invertible
transformation of the true Markov blanket Zmb.

However, learning latent representations that correspond
to the subspace of the label’s Markov blanket is insuffi-
cient for domain adaptation in many scenarios. For in-
stance, consider the factorization of the joint distribution
P (Zmb, Y ) = P (Y | Zmb)P (Zmb). If P (Zmb) changes
across domains while P (Y | Zmb) remains invariant, do-
main adaptation can be achieved by using the same classi-
fier (with Zmb or Ẑmb as input) trained on the source do-
mains in the target domain. This corresponds to a scenario
where the conditional distributions P (Zpa | PA(Zpa;G))
or P (Zsps | PA(Zsps;G)) change across domains, while
P (Y | Zch) and P (Zch | PA(Zch;G)) remain invariant,
which is clearly restrictive.

Now consider an alternative scenario where the factoriza-
tion is given by P (Zmb, Y ) = P (Zmb | Y )P (Y ), where
P (Zmb | Y ) remains invariant across domains while P (Y )
change. This is known as the target shift (Zhang et al., 2013)
or prior probability shift (Storkey, 2009) problem. However,
with subspace identifiability of the label’s Markov blanket
indicated by Theorem 1, we do not know which part of the
learned representations correspond to the label’s children,
spouses, or parents. In this case, one may also factorize the
distribution as P (Zmb, Y ) = P (Y | Zmb)P (Zmb), where
both conditional distributions are allowed to change. Since
Y is not available in the target domain and P (Y | Zmb)
changes, we do not have identifiability of distribution
P (Zmb, Y ) in the target domain anymore.

This motivates us to separate the representations of Zmb

into three different subspaces in the next subsection, allow-
ing us to improve the identifiability and to have a more
parsimonious representation of the changes.

4.2. Subspace Identifiability of Latent Representations
for Label’s Parents, Children, and Spouses

In the previous subsection, we demonstrated that learning
latent representations corresponding to the subspace of the

label’s Markov blanket is often insufficient for domain adap-
tation. This limitation arises, in part, because such represen-
tations are overly coarse-grained. To address this issue, we
propose a more fine-grained approach that involves learn-
ing latent representations corresponding to three distinct
subspaces of the label’s Markov blanket: its parents, chil-
dren, and spouses. Conceptually, this can be viewed as
partitioning the Markov blanket into these three subspaces
and focusing on recovering each subspace separately. In
Section 4.3, we will show how such representations enable
domain adaptation with identifiability guarantee in a univer-
sal setting.

Before presenting the assumptions and identifiability theory,
we first introduce the notion of an intimate neighbor. Specif-
ically, a latent variable Zi is said to be an intimate neighbor
of Zj if Zi is adjacent to Zj and to all other neighbors of Zj

in M. Based on this, we introduce the following structural
assumption on the latent DAG G:

Assumption 3 (Group-specific intimate neighbors). The
intimate neighbors of label Y ’s parents, children, and
spouses can only have intimate neighbors—excluding Y
itself—within their respective groups, i.e., other parents,
children, or spouses of Y .

This assumption is rather mild as it permits edges among
the parents, children, and spouses of Y , but restricts certain
types of edges involving intimate neighbors across groups.
In practice, intimate neighbors may be relatively rare. This
assumption is necessary because, without additional con-
ditions, it is generally not possible to disentangle Zi from
Zj if Zi is an intimate neighbor of Zj , as supported by the
theory in Zhang et al. (2024).

Next, we present the identifiability theory for learning rep-
resentations of the subspaces corresponding to parents, chil-
dren, and spouses. The proof is given in Appendix B.

Theorem 2 (Subspace identifiability of parents, children,
and spouses). Consider the generative process in Equa-
tion (1). Suppose that Assumptions 1, 2 and 3, as well as the
faithfulness assumption, hold. By modeling the same gener-
ative process with minimal number of edges for the learned
Markov network M̂, there exists a partition of the learned
Markov blanket Ẑmb, denoted as ẐS1

, ẐS2
, and ẐS3

, such
that they are invertible transformations of the true parents
Zpa, children Zch, and spouses Zsps, respectively.

The above theorem implies that the latent representations of
parents, children, and spouses remain disentangled, allow-
ing for the recovery of their respective subspaces. In the next
subsection, we explain how these representations facilitate
domain adaptation in a universal setting with identifiability
guarantee.
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4.3. Identifiability of Joint Distribution in Target
Domain

Building on the identifiability of latent representations estab-
lished in Section 4.2, we now demonstrate how this enables
domain adaptation with identifiability guarantees in a gen-
eral setting. Specifically, the objective is to identify the joint
distribution P τ (X,Y ) in the unlabeled target domain, or
equivalently, P τ (Y | X), since P τ (X) is already known in
the target domain.

To relate the conditional distribution P τ (Y | X) at the level
of raw observations X to the latent representations, we first
state the following proposition and provide the proof in
Appendix C.1.

Proposition 1. Consider the generative process in Equa-
tion (1). We have

P τ (Y = vk | X)

=
P τ (Zch | Y = vk, Zsps)P

τ (Y = vk | Zpa)∑C
c=1 P

τ (Zch | Y = vc, Zsps)P τ (Y = vc | Zpa)
.

The above proposition implies that, to identify P τ (Y | X),
it suffices to identify P τ (Zch | Y = vc, Zsps) and P τ (Y |
Zpa) in the target domain. These conditional distributions
are often simpler to model. However, the underlying latent
variables Zpa, Zch, and Zsps are not directly observable and
cannot be exactly recovered.

Fortunately, using the identifiability theory developed in
Section 4.2, we can identify the subspaces corresponding
to latent variables Zpa, Zch, and Zsps. Specifically, we can
learn representations Ẑpa, Ẑch, and Ẑsps that are invertible
transformations of Zpa, Zch, and Zsps, respectively, leading
to the following result.

Corollary 1. Consider the generative process in Equa-
tion (1). Let Ẑpa, Ẑch, and Ẑsps be invertible transfor-
mations of Zpa, Zch, and Zsps, respectively. We have

P τ (Y = vk | X)

=
P τ (Ẑch | Y = vk, Ẑsps)P

τ (Y = vk | Ẑpa)∑C
c=1 P

τ (Ẑch | Y = vc, Ẑsps)P τ (Y = vc | Ẑpa)
.

The proof is available in Appendix C.2. From the corollary
above, it suffices to identify the subspaces of the latent vari-
ables Zpa, Zch, and Zsps, up to invertible transformations.
This can be accomplished using the identifiability theory
developed in Section 4.2. Furthermore, the corollary implies
that it suffices to establish the identifiability of the condi-
tional distributions P τ (Ẑch | Y, Ẑsps) and P τ (Y | Ẑpa) in
the target domain.

To ensure identifiability, we adopt the minimal change prin-
ciple, which posits that the distributional changes across do-
mains are confined to a low-dimensional manifold (Stojanov

et al., 2019). Specifically, we assume that the conditional
distributions are governed by a small number of identifiable
changing parameters, inspired by Stojanov et al. (2019).
This enables us to identify these parameters by learning low-
dimensional representations of the conditional distributions
that vary across the source domains.

Assumption 4 (Low-dimensional changes). For each value
of vc, the conditional distribution P (Zch | Y = vc, Zsps)
contains only a finite number of identifiable parameters that
vary across domains. Furthermore, there is a sufficiently
large number of source domains.

Similar to Stojanov et al. (2019), Assumption 4 im-
plies the existence of a bijective transformation h :
PZch|Y,Zsps

→ Rq, where q denotes the dimensionality
of the effective changing parameters. Under this trans-
formation, the conditional distribution in each domain
u can be expressed as a linear combination of the con-
ditional distributions in the other source domains, i.e.,
h
(
P

(u)
Zch|Y=vc,Zsps

)
=

∑M
i=1,i̸=u α

(u)
ic h

(
P

(i)
Zch|Y=vc,Zsps

)
for some mixture weights α(u)

1c , . . . , α
(u)
Mc. Similarly, for the

target domain τ , there exist weights ατ
1c, . . . , α

τ
Mc such that

h
(
P τ
Zch|Y=vc,Zsps

)
=
∑M

i=1 α
τ
ich
(
P

(i)
Zch|Y=vc,Zsps

)
. More

intuitively, Assumption 4 indicates that all domain-specific
conditional distributions (including source and target do-
mains) for the label vc are confined to a q-dimensional
manifold. Therefore, each conditional distribution for
domain u can be characterized by the mixture weights
α
(u)
1c , . . . , α

(u)
Mc. We denote the conditional distribution as-

sociated with weights αc as Pαc(Zch | Y = vc, Zsps).

We also adopt the following assumption, which ensures that
the changes in conditional distributions are linearly indepen-
dent. This is a rather mild assumption which requires that
the conditional distribution varies sufficiently when their
parameters change; otherwise, such parameter changes will
not leave a sufficient footprint on the distribution shifts.

Assumption 5 (Linear independence). The elements in the
set {βcP

αc(Zch | Y = vc, Zsps) + β′
cP

α′
c(Zch | Y =

vc, Zsps); c = 1, . . . , C} are linearly independent for all
αc, α

′
c, βc, β

′
c such that βc or β′

c are nonzero.

With the assumptions above, we provide the identifiability
result for the conditional distributions in the target domain.

Theorem 3 (Identifiability of target distribution). Sup-
pose that Assumptions 4 and 5 hold. Let Ẑpa, Ẑch,
and Ẑsps be invertible transformations of Zpa, Zch, and
Zsps, respectively. Suppose that we learn P new to match
P τ (Ẑch | Ẑpa, Ẑsps) in the target domain, i.e., P new(Ẑch |
Ẑpa, Ẑsps) = P τ (Ẑch | Ẑpa, Ẑsps) while constraining
P new(Ẑch | Y, Ẑsps) to satisfy Assumption 4. Then, we
have P τ (Ẑch | Y, Ẑsps) = P new(Ẑch | Y, Ẑsps) and
P τ (Y | Ẑpa) = P new(Y | Ẑpa).
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Figure 2: Overview of the General Approach for Multi-
source Domain Adaptation (GAMA). The model first
maps input images X to a latent space Z using a VAE
framework. The latent variables Z are partitioned into sev-
eral components: Zmb, Zpa, Zch, and Zsps. Two VAEs
are further employed to capture the relationships among
the latent variables and label, which aids in estimating θ
for improved predictions. For the three VAEs, we have the
following losses: Lvae,Z = LKL1 + LR1 ,Lvae,Y = LR2

and Lvae,Zch
= LKL3

+ LR3
. Cross-entropy loss LY and

mean squared error (MSE) loss Lch are also used in the
source domains to encourage better encoding. The final
prediction is made by training a classifier on the inputs(
Zpa, Zsps, Zch, θ

(u)
Y , θ

(u)
ch

)
.

The proof is given in Appendix D and is inspired by Sto-
janov et al. (2019). The core idea is that the learned low-
dimensional representations allow us to reconstruct the con-
ditional distribution in the target domain using unlabeled
data in the target domain. Combined with the linear inde-
pendence assumption, this further facilitates label prediction
in the target domain. It is worth noting that the result can be
straightforwardly extended to multi-target domain adapta-
tion by learning distinct P new for each target domain.

Remark 1. In summary, one can first utilize Theorem 2 to
learn a demixing function ĝ−1 (i.e., an encoder) that extracts
latent representations of the label’s parents, children, and
spouses, up to certain indeterminacies. This same demixing
function can then be applied to the target domain, where
Theorem 3 guarantees the identifiability of the distributions
P τ (Ẑch | Y, Ẑsps) and P τ (Y | Ẑpa) in the target domain.
Finally, applying Corollary 1 ensures the identifiability of
P τ (Y | X) in the target domain.

5. Domain Adaptation Approach
Building on the theoretical insights established in the pre-
vious section, we propose a General Approach for Multi-
source domain Adaptation (GAMA) that systematically
learns and identifies both latent variable structures and la-
bel information in all domains. Our approach incorporates
representation learning to characterize distributional shifts
across domains, drawing inspiration partly from the frame-
work presented by Zhang et al. (2020). The approach oper-
ates through a principled multi-stage process grounded in
identifiability theory and the necessity of isolating different
components in the Markov blanket for accurate prediction
of target variable Y .

First, we use variational autoencoders (VAEs) to match the
distributions across source and target domains, extracting
the required latent representations. Subsequently, we em-
ploy additional variational autoencoder (VAE) (Kingma &
Welling, 2014) modules to explicitly model inter-variable
dependencies within the latent space, enabling systematic
decomposition into block-level components while simul-
taneously estimating domain-specific parameters θ. This
design ensures that our framework effectively captures all
variables constituting the Markov blanket of Y , thereby fa-
cilitating robust cross-domain generalization and achieving
accurate predictions in the target domain. Note that we
use VAEs because they provide a convenient way to model
the distribution of latent variables, and make it easier to
incorporate prior structural information (e.g., parent-child
relationships) into our method.

We now describe the specific model architecture. We first
take an input image X and pass it through a backbone net-
work (e.g., ResNet-50 (He et al., 2016)) to obtain a feature
representation E. An encoder FZ then maps X into a latent
space Z. We adopt a variational autoencoder (VAE) frame-
work (Kingma & Welling, 2014), so a decoder GZ is also
introduced to reconstruct E from Z. The reconstruction loss
from the VAE enforces consistency between the original fea-
ture X and its reconstructed version, preserving essential
information. Here, we have the loss Lvae,Z = LKL1 + LR1 .
Note that LR denotes reconstruction loss, while LKL de-
notes Kullback–Leibler (KL) divergence; the index indicates
loss for different VAEs. For example, LKL1

denotes the KL
divergence of the VAE from X to Z.

We partition the latent variable Z as

Z =
(
Z∁
mb, Zpa, Zch, Zsps

)
∈ Rn.

According to Figure 1, we observe that, given Zmb, the
elements relevant to Y still include θ

(u)
Y and θ

(u)
ch . Once

we accurately identify θ
(u)
Y and θ

(u)
ch , combining them with

Zmb yields a stable prediction (all related information is
obtained).
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Consider the data generation process involving θ
(u)
Y and

θ
(u)
ch :

(θ
(u)
Y , Zpa) 7→ Y and (θ

(u)
ch , Y, Zsps) 7→ Zch.

In each domain, these θ values are fixed parameters. Thus,
we aim to learn θ and Y so as to maximize P (Z | θ) and
P (Z, Y | θ) in the target domain. Formally, it is given by

max
θ
(u)
Y ,θ

(u)
ch ,q1,q2

N∑
i=1

(
E
Yi∼q1(Yi|Zpa,i,θ

(u)
Y )

log p1(Zpa,i, θ
(u)
Y | Yi)

− β1 KL
(
q1(Yi | Zpa,i, θ

(u)
Y ) ∥ P (Yi)

))
+

N∑
i=1

(
E
Zch,i∼q2(Zch,i|Zsps,i,Yi,θ

(u)
ch )

log p2(Zsps,i, Yi, θ
(u)
ch | Zch,i)

− β2 KL
(
q2(Zch,i | Zsps,i, Yi, θ

(u)
ch ) ∥ p(Zch,i)

))
.

Two VAEs are used here. Specifically, (θ(u)Y , Zpa) 7→
Y involves an encoder FY and a decoder GY , while
(θ

(u)
ch , Y, Zsps) 7→ Zch involves an encoder FZch

and
a decoder GZch

. We set β1 and β2 to 1. These lead to the
losses Lvae,Y and Lvae,Zch

. Note that since Y is discrete, we
cannot assume that P (Y ) is a Gaussian distribution (which
is commonly done in VAE estimation), and thus we use a
Gumbel Softmax VAE (Jang et al., 2017) which can convert
the logit of Y to be continuous variables for further calcu-
lation . In the training stage, we treat FY as the encoder
producing Ŷ . Since we have access to the ground truth
labels Y in the source domains, we simply calculate the
cross-entropy between Y and Ŷ , giving rise to the losses
LY and Lvae,Y = LR2 .

Furthermore, in the source domains, since we have ac-
cess to the ground truth Zch, we have the following MSE
loss based on the encoded values Ẑch to better capture
the relationships between variables and the ground truth:
Lch = MSE(Zch, Ẑch), where MSE(·) denotes the mean
mean squared error. Also, for the other VAE, we have
Lvae,Zch

= LKL3
+ LR3

.

Finally, we can make the final prediction by using(
Zpa, Zsps, Zch, θ

(u)
Y , θ

(u)
ch

)
with loss Lcls. In conclu-

sion, we have the following loss during training, where
λ1, λ2, λ3,λ4 and λ5 are hyperparameters:

Lall = Lcls + λ1Lvae,Z + λ2Lvae,Y

+ λ3Lvae,Zch
+ λ4Lch + λ5LY .

6. Experiments
We show the effectiveness of our method compared with
existing ones on widely used datasets in domain adapta-
tion. Further details and empirical studies can be found in
Appendix E.

6.1. Datasets and Baselines

Datasets. We validate our method on two well-
known benchmarks for domain adaptation: Office-
Home (Venkateswara et al., 2017) and PACS (Li et al., 2017).
In each dataset, a single domain is designated as the target,
and the remaining domains serve as sources. For Office-
Home, we extract features using a pretrained ResNet50,
then apply MLP-based VAEs alongside a classifier. Mean-
while, for PACS, we employ ResNet18 as the backbone and
similarly integrate MLP-based VAEs and a classifier. All
metrics are computed by averaging over three random seeds.

Baselines. To assess performance, we compare against
several baselines, including the Source Only (He et al.,
2016) approach and single-source domain adaptation meth-
ods such as DANN (Long et al., 2015), MCD (Saito et al.,
2018), and DANN+BSP (Chen et al., 2019c). We further
evaluate our model against leading multi-source domain
adaptation techniques, including M3SDA (Peng et al., 2019),
CMSS (Yang et al., 2020), LtC-MSDA (Wang et al., 2020),
and T-SVDNet (Li et al., 2021). Additionally, we incorpo-
rate comparisons with WADN (Shui et al., 2021), which
handles target shift in multi-source scenarios, as well as
iMSDA (Kong et al., 2022), a recent framework that lever-
ages component-wise identification for MSDA.

6.2. Numerical Results

The results for Office-Home and PACS datasets are provided
in Table 1.

Office-Home dataset. GAMA achieves the best perfor-
mance in most sub-tasks. On average, GAMA surpasses
the strongest baseline (iMDSA) by a margin of 1%. This is
because our model tries to learn the pattern in the target do-
main while training. By effectively predicting θ, our method
is able to make more accurate inferences, leading to better
performance.

PACS dataset. GAMA performs well for this dataset and
achieves better accuracy than the best baseline on average.
In particular, in the Photo domain, where the accuracy is
already high, we have achieved an accuracy of 98.8%, which
means that we have further explored the potential of the data.

6.3. Ablation Study

To evaluate the effectiveness of our special design to capture
θ in the target domain, we design two model variants: (1)
GAMA-vae: we remove all the VAE related losses; (2)
GAMA-theta: we remove the losses brought by θ-related
VAEs: Lvae,Y ,Lvae,Zch

, we also remove Lch, and LY as
some items for calculating these losses are related to θ.
Experiment results on the Office-Home dataset are shown in
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Table 1: Results on Office-Home (Ar, Cl, Pr, Rw) and PACS (P, A, C, S). A dash “-” indicates no reported result. Baseline
results are taken from Kong et al. (2022).

Method Office-Home PACS
Ar Cl Pr Rw Avg P A C S Avg

DAN (Long et al., 2015) 68.3 57.9 78.5 81.9 71.6 - - - - -
Source Only (He et al., 2016) 64.6 52.3 77.6 80.7 68.8 94.5 74.9 72.1 64.7 76.6
DANN (Ganin et al., 2016) 64.3 58.0 76.4 78.8 69.4 91.8 81.9 77.5 74.6 81.5
DCTN (Xu et al., 2018) 66.9 61.8 79.2 77.8 71.4 - - - - -
MDAN (Zhao et al., 2018) - - - - - 91.4 79.1 76.0 72.0 79.6
WBN (Mancini et al., 2018) - - - - - 97.4 89.9 89.7 58.0 83.8
MCD (Saito et al., 2018) 67.8 59.9 79.2 80.9 72.0 96.4 88.7 88.9 73.9 87.0
DANN+BSP (Chen et al., 2019c) 66.1 61.0 78.1 79.9 71.3 - - - - -
M3SDA (Peng et al., 2019) 66.2 58.6 79.5 81.4 71.4 97.3 89.3 89.9 76.7 88.3
CMSS (Yang et al., 2020) - - - - - 96.9 88.6 90.4 82.0 89.5
LtC-MSDA (Wang et al., 2020) - - - - - 97.2 90.2 90.5 81.5 89.8
T-SVDNet (Li et al., 2021) - - - - - 98.5 90.4 90.6 85.5 91.3
GeNRT (Deng et al., 2023) - - - - - 98.5 93.6 91.4 85.7 92.3
iLCC-LCS (Liu et al., 2022) - - - - - 95.9 86.4 81.1 86.0 87.4
WADN (Shui et al., 2021) 75.2 61.0 83.5 84.4 76.1 - - - - -
CASR (Wang et al., 2023) 72.2 61.1 82.8 82.8 74.7 - - - - -
TFFN (Li et al., 2023b) 72.2 62.9 81.7 83.5 75.1 - - - - -
SSD (Li et al., 2023a) 72.5 64.5 81.2 83.2 75.4 - - - - -
MIAN-γ (Park & Lee, 2021) 69.9 64.2 80.9 81.5 74.1 - - - - -
iMSDA (Kong et al., 2022) 75.4 61.4 83.5 84.5 76.2 98.5 93.8 92.5 89.2 93.5
GAMA (Ours) 76.6 62.6 84.9 84.9 77.3 98.8 93.7 92.8 89.3 93.7

Table 2: Ablation study on Office-Home comparing GAMA,
GAMA-vae, and GAMA-theta.

Method Ar Cl Pr Rw Avg
GAMA 76.6 62.6 84.9 84.9 77.3
GAMA-vae 74.9 60.5 83.4 84.8 75.9
GAMA-theta 75.3 61.7 83.4 84.8 76.0

Table 2. It shows that the VAEs are essential for capturing
information to perform adaptation. Moreover, with the
θ-related VAEs, one observes an improved accuracy.

7. Conclusion
We develop a general, representation-based domain
adaptation framework that can handle different types of
distribution shifts. Specifically, we show that learning sub-
space of the label’s Markov blanket representations is often
underspecified for domain adaptation in many scenarios. To
achieve general domain adaptation, we show that one should
partition the subspace of Markov blanket into the subspace
of label’s parents, children and spouses. We then establish
identifiability of the joint distribution in the target domain.
Our resulting method provides a practical solution to do-
main adaptation in general settings and outperforms existing
methods on various benchmark datasets, highlighting its po-

tential for broader applications. Future works include eval-
uating the method on larger-scale datasets and extending its
application to diverse tasks, such as video, speech, and text.
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Supplementary Material

A. Proof of Theorem 1
To prove the following theorem, we begin by establishing several intermediate results that are useful. We first prove
Proposition 2, which is used in the proof of Proposition 3. Building upon these two propositions, we then prove Proposition 4.
Using Propositions 3 and 4, we proceed to establish Proposition 5. With these results, we are ready to prove the following
theorem, leveraging Propositions 3 and 5. It is worth noting that the overall proof strategy is partly inspired by Zhang et al.
(2024), while ours is considerably more complex as it involves the discrete target variable Y (which is observed in the
source domains).

Theorem 1 (Subspace identifiability of Markov blanket). Consider the generative process in Equation (1). Suppose that
Assumptions 1 and 2, as well as the faithfulness assumption, hold. By modeling the same generative process with minimal
number of edges for the learned Markov network M̂, the learned Markov blanket Ẑmb is an invertible transformation of the
true Markov blanket Zmb.

Proof. Recall that Ẑ denotes the recovered latent variables, M̂ denotes the recovered Markov network, and ΨZi
denotes the

intimate neighbors of Zi. By Propositions 3 and 5, there exists a permutation π of Ẑ, denoted as Ẑπ , such that the following
statements hold:

(a) Ẑπ(i) is solely a function of a subset of {Zi} ∪ΨZi
.

(b) M̂π and M are identical.

By Statement (b), under the faithfulness assumption (specifically the SAF and SUCF assumptions), the moralized graphs of
Ĝ and G are identical (Zhang et al., 2024, Proposition 2). Therefore, we have Zi ∈ Zmb if and only if Ẑπ(i) ∈ Ẑmb.

Now suppose Ẑπ(i) ∈ Ẑmb, which, by above reasoning, implies Zi ∈ Zmb. By Statement (a), Ẑπ(i) is solely a function of a
subset of {Zi} ∪ ΨZi

. Here, we aim to show ΨZi
⊆ Zmb. Suppose Zj ∈ ΨZi

. By definition, Zi and Y are adjacent in
the Markov network M, and thus Zj is also adjacent to Y in M (because Zj is an intimate neighbor of Zi). This implies
Zj ∈ Zmb. Therefore, we have {Zi} ∪ΨZi

⊆ Zmb, i.e., Ẑπ(i) is solely a function of a subset of Zmb. Since this holds for
every Ẑπ(i) ∈ Ẑmb, we conclude that Ẑmb is solely a function of a subset of Zmb.

Clearly, we can apply the same reasoning above (and Lemma 1) in the reverse direction to show that Zmb is solely a function
of a subset of Ẑmb. Since the transformation from Z to Ẑ is a diffeomorphism, we conclude that Ẑmb is an invertible
transformation of Zmb.

A.1. Proof of Proposition 2

While the proof for the following proposition is inspired by Zhang et al. (2024, Proposition 1), ours involves a discrete target
variable Y (that is observed in the source domains), which requires the usage of Zheng et al. (2023, Theorem 2) to handle it.

Proposition 2. Consider the generative process in Equation (1). Suppose that Assumptions 1 and 2 hold. Let Ẑ and M̂ be
the recovered latent variables and the recovered Markov network, respectively. By modeling the same generative process,
we have the following statements:

(a) For each Zi and each {Ẑk, Ẑl} ̸∈ E(M̂), we have

∂Zi

∂Ẑk

∂Zi

∂Ẑl

= 0.

(b) For each {Zi, Zj} ∈ E(M) and each {Ẑk, Ẑl} ̸∈ E(M̂), we have

∂Zi

∂Ẑk

∂Zj

∂Ẑl

= 0.
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(c) For each {Zi, Y } ∈ E(M) and each {Ẑk, Y } ̸∈ E(M̂), we have

∂Zi

∂Ẑk

= 0.

Proof. By definition, we have X = g(Z) and Ẑ = ĝ−1(X), where g and ĝ are diffeormorphisms. Thus, the transformation
from Z to Ẑ, denoted by v−1, is a diffeormorphism. Also, we have Ŷ = Y . By the change-of-variable formula, we obtain

logP (Ẑ, Ŷ ) = logP (Z, Y ) + log |det Jv|.

The first-order derivative is

∂ logP (Ẑ, Ŷ )

∂Ẑk

=

n∑
i=1

∂ logP (Z, Y )

∂Zi

∂Zi

∂Ẑk

+
∂ log |det Jv|

∂Ẑk

. (2)

Let Ẑk and Ẑl be latent variables that are not adjacent in the recovered Markov network M̂. The second-order derivative
w.r.t. Ẑk and Ẑl is then given by

0 =

n∑
j=1

n∑
i=1

∂2 logP (Z, Y )

∂Zi∂Zj

∂Zj

∂Ẑl

∂Zi

∂Ẑk

+

n∑
i=1

∂ logP (Z, Y )

∂Zi

∂2Zi

∂Ẑk∂Ẑl

+
∂2 log |det Jv|

∂Ẑk∂Ẑl

=

n∑
i=1

∂2 logP (Z, Y )

∂Z2
i

∂Zi

∂Ẑl

∂Zi

∂Ẑk

+
∑
i,j:
i<j,

{Zi,Zj}∈E(M)

∂2 logP (Z, Y )

∂Zi∂Zj

(
∂Zj

∂Ẑl

∂Zi

∂Ẑk

+
∂Zi

∂Ẑl

∂Zj

∂Ẑk

)
+

+

n∑
i=1

∂ logP (Z, Y )

∂Zi

∂2Zi

∂Ẑk∂Ẑl

+
∂2 log |det Jv|

∂Ẑk∂Ẑl

.

In the derivation above, we leveraged the following property (Lin, 1997): if Ẑk and Ẑl are not adjacent in the Markov
network M̂, then they are conditionally independent given the remaining variables, which implies ∂2 logP (Ẑ,Ŷ )

∂Ẑk∂Ẑl
= 0.

Similarly, this is also the case for Zi and Zj .

Now consider the ur and u0 domains where r = 1, . . . , 2n + |M|, and take the difference between the equations that
correspond to them:

0 =

n∑
i=1

(
∂2 logP (ur)(Z, Y )

∂Z2
i

− ∂2 logP (u0)(Z, Y )

∂Z2
i

)
∂Zi

∂Ẑl

∂Zi

∂Ẑk

+
∑
i,j:
i<j,

{Zi,Zj}∈E(M)

(
∂2 logP (ur)(Z, Y )

∂Zi∂Zj
− ∂2 logP (u0)(Z, Y )

∂Zi∂Zj

)(
∂Zj

∂Ẑl

∂Zi

∂Ẑk

+
∂Zi

∂Ẑl

∂Zj

∂Ẑk

)
+

+

n∑
i=1

(
∂ logP (ur)(Z, Y )

∂Zi
− ∂ logP (u0)(Z, Y )

∂Zi

)
∂2Zi

∂Ẑk∂Ẑl

.

We collect the coefficients of the partial derivative terms in the equation above to form a vector, and consider the vectors for
r = 1, . . . , 2n+ |M|. Assumption A2 implies that these 2n+ |M| vectors are linearly independent. Therefore, for any
{Zi, Zj} ∈ E(M) and {Ẑk, Ẑl} ̸∈ E(M̂), the following equations hold:

∂Zi

∂Ẑl

∂Zi

∂Ẑk

= 0, (3)

∂Zj

∂Ẑl

∂Zi

∂Ẑk

+
∂Zi

∂Ẑl

∂Zj

∂Ẑk

= 0, (4)

∂2Zi

∂Ẑk∂Ẑl

= 0.
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Equation (3) implies that Statement (a) holds. By way of contradiction for Statement (b), suppose

∂Zj

∂Ẑl

∂Zi

∂Ẑk

̸= 0 =⇒ ∂Zi

∂Ẑk

̸= 0, (5)

which, with Equation (3), implies ∂Zi

∂Ẑl
= 0. Substituting it into Equation (4), we have ∂Zj

∂Ẑl

∂Zi

∂Ẑk
= 0, which is contradictory

with Equation (5). Therefore, Equation (5) must not hold, i.e.,

∂Zj

∂Ẑl

∂Zi

∂Ẑk

= 0,

indicating that Statement (b) holds. It then remains to prove Statement (c).

Now suppose that Ẑk and Ŷ are not adjacent in the Markov network M̂. By Zheng et al. (2023, Theorem 2), for each
cr ̸= c1, we have

∂ logP (Ẑ, Ŷ = vcr )

∂Ẑk

− ∂ logP (Ẑ, Ŷ = vc1)

∂Ẑk

= 0.

With Equation (2), we obtain

0 =

n∑
i=1

(
∂ logP (u)(Z, Y = vcr )

∂Zi
− ∂ logP (u)(Z, Y = vc1)

∂Zi

)
∂Zi

∂Ẑk

=
∑

i:{Zi,Y }∈E(M)

(
∂ logP (u)(Z, Y = vcr )

∂Zi
− ∂ logP (u)(Z, Y = vc1)

∂Zi

)
∂Zi

∂Ẑk

,

where the second line of the equation follows from the same property in Zheng et al. (2023, Theorem 2). Under Assumption 2,
there exist |Zmb| such equations above, and the |Zmb| vectors formed by collecting those coefficients are linearly independent.
This implies that Statement (c) holds, i.e.,

∂Zi

∂Ẑk

= 0.

A.2. Proof of Proposition 3

The proof for the following proposition is similar to Zhang et al. (2024, Theorem 2).

Proposition 3 (Identifiability of Markov network). Consider the generative process in Equation (1). Suppose that
Assumptions 1 and 2 hold. By modeling the same generative process, the Markov network M is identifiable up to
isomorphism.

Proof. Since the transformation from Ẑ to Z is a diffeomorphism, there exists a permutation such that the diagonal entries
in the permuted Jacobian matrix of such transformation are nonzero (e.g., see Zhang et al. (2024, Lemma 2) or Strang (2006;
2016)), which indicates

∂Zi

∂Ẑπ(i)

̸= 0, i = 1, . . . , n. (6)

Let Zi and Zj be two latent variables that are adjacent in the true Markov network M, but Ẑπ(i) and Ẑπ(j) are not adjacent
in the recovered Markov network M̂. With Proposition 2, we obtain

∂Zi

∂Ẑπ(i)

∂Zj

∂Ẑπ(j)

= 0,

which is contradictory with Equation (6). Now suppose Zi and Ŷ are adjacent in the true Markov network M, but Ẑπ(i) and
Y are not adjacent in the recovered Markov network M̂. With Proposition 2, we obtain

∂Zi

∂Ẑπ(i)

= 0,
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which is contradictory with Equation (6). Thus, we have proved that M̂π is a super-graph of M, i.e., all edges in M are
present in M̂π. Since we apply sparsity constraint on M̂ during estimation such that it has smallest number of edges, we
conclude that M̂ and M must be isomorphic.

A.3. Proof of Proposition 4

Proposition 4. Consider the generative process in Equation (1). Suppose that Assumptions 1 and 2 hold. Let Ẑ and M̂ be
the recovered latent variables and the recovered Markov network, respectively. By modeling the same generative process,
we have the following statements:

(a) For each Zi and each {Ẑk, Ẑl} ̸∈ E(M̂), Zi is a function of at most one of Ẑk and Ẑl.

(b) For each {Zi, Zj} ∈ E(M) and each {Ẑk, Ẑl} ̸∈ E(M̂), at most one of Zi and Zj is a function of Ẑk and Ẑl.

(c) For each {Zi, Y } ∈ E(M) and each {Ẑk, Y } ̸∈ E(M̂), Zi is not a function of Ẑk.

Sketch of proof. By Proposition 2, for each {Zi, Y } ∈ E(M) and each {Ẑk, Y } ̸∈ E(M̂), we have

∂Zi

∂Ẑk

= 0,

which implies that Statement (c) holds. Furthermore, by Statements (a) and (b) of Proposition 2, as well as Proposition 3,
the same proof strategy of Zhang et al. (2024, Theorem 1) involving Intermediate Value Theorem can be used to show that
Statements (a) and (b) of this proposition hold.

A.4. Proof of Proposition 5

The proof here is partly inspired by Zhang et al. (2024, Theorem 3), while ours involves a discrete target variable Y (that is
observed in the source domains).

Proposition 5 (Identifiability of latent variables). Consider the generative process in Equation (1). Suppose that Assump-
tions 1 and 2 hold. Let Ẑ be the recovered latent variables, and ΨZi be the intimate neighbors of Zi. By modeling the same
generative process, there exists a permutation π of Ẑ, denoted as Ẑπ, such that Ẑπ(i) is solely a function of a subset of
{Zi} ∪ΨZi

.

Proof. We first prove the following lemma.

Lemma 1. There exists a permutation π of Ẑ, denoted as Ẑπ, such that Zi is solely a function of a subset of Ẑπ(i) ∪
{Ẑπ(r) |Zr ∈ ΨZi

}.

Using Proposition 3 and its proof, there exists a permutation π of Ẑ, denoted as Ẑπ , such that the Markov networks M and
M̂π are identical, and that Zi is a function of Ẑπ(i).

Suppose Zj is not adjacent to Zi in Markov network M. This implies that Ẑπ(i) and Ẑπ(j) are not adjacent in M̂. Using
Proposition 4, Zi is a function of at most one of Ẑπ(i) and Ẑπ(j). Since Zi is a function of Ẑπ(i) by definition, Zi must not
be a function of Ẑπ(j).

Now suppose that Zj is adjacent to Zi, but not adjacent to some other neighbor of Zi. We consider the following two cases:

• Case 1: Zj is not adjacent to Zk, while Zk is adjacent to Zi. This implies that Ẑπ(j) and Ẑπ(k) are not adjacent in M̂.
Using Proposition 4, at most one of Zi and Zk is a function of Ẑπ(j) and Ẑπ(k). Since Zk is a function of Ẑπ(k) by
definition, Zi cannot be a function of Ẑπ(j).

• Case 2: Zj is not adjacent to Y , while Y is adjacent to Zi. This implies that Ẑπ(j) and Y are not adjacent in M̂. Using
Proposition 4, Zi cannot be a function of Ẑπ(j).
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Thus, we have proved Lemma 1. Suppose Zr ̸∈ {Zi} ∪ΨZi
, which, by Lemma 1, implies that Zi cannot be a function of

Ẑπ(r), i.e., (
∂Z

∂Ẑπ

)
ir

=
∂Zi

∂Ẑπ(r)

= 0.

Using Zhang et al. (2024, Proposition 3) w.r.t. ∂Z
∂Ẑπ

, we conclude that(
∂Z

∂Ẑπ

)−1

ir

= 0

and therefore
∂Ẑπ(i)

∂Zr
=

(
∂Ẑπ

∂Z

)
ir

=

(
∂Z

∂Ẑπ

)−1

ir

= 0.

That is, Ẑπ(i) must not be a function of Zr. This implies that Ẑπ(i) is solely a function of a subset of {Zi} ∪ΨZi
.

B. Proof of Theorem 2
The proof of the following theorem shares similar spirit with that of Theorem 1.
Theorem 2 (Subspace identifiability of parents, children, and spouses). Consider the generative process in Equation (1).
Suppose that Assumptions 1, 2 and 3, as well as the faithfulness assumption, hold. By modeling the same generative process
with minimal number of edges for the learned Markov network M̂, there exists a partition of the learned Markov blanket
Ẑmb, denoted as ẐS1

, ẐS2
, and ẐS3

, such that they are invertible transformations of the true parents Zpa, children Zch, and
spouses Zsps, respectively.

Proof. Recall that Ẑ denotes the recovered latent variables, M̂ denotes the recovered Markov network, and ΨZi denotes the
intimate neighbors of Zi. By Propositions 3 and 5, there exists a permutation π of Ẑ, denoted as Ẑπ , such that the following
statements hold:

(a) Ẑπ(i) is solely a function of a subset of {Zi} ∪ΨZi
.

(b) M̂π and M are identical.

By Statement (b), under the faithfulness assumption (specifically the SAF and SUCF assumptions), the moralized graphs of
Ĝ and G are identical (Zhang et al., 2024, Proposition 2). Therefore, we have Zi ∈ Zmb if and only if Ẑπ(i) ∈ Ẑmb.

Consider a partition of Ẑmb, denoted as ẐS1 , ẐS2 , and ẐS3 , where

ẐS1
:= {Ẑπ(k) |Zk ∈ Zpa}, ẐS2

:= {Ẑπ(k) |Zk ∈ Zch}, and ẐS3
:= {Ẑπ(k) |Zk ∈ Zsps}.

Now suppose Ẑπ(i) ∈ ẐS1
, which, by definition, implies Zi ∈ Zpa. By Statement (a), Ẑπ(i) is solely a function of a subset

of {Zi} ∪ΨZi
. Under Assumption 3, we have ΨZi

⊆ Zpa. This implies {Zi} ∪ΨZi
⊆ Zpa, i.e., Ẑπ(i) is solely a function

of a subset of Zpa. Since this holds for every Ẑπ(i) ∈ ẐS1
, we conclude that ẐS1

is solely a function of a subset of Zpa.
Clearly, we can apply the same reasoning (and Lemma 1) in the reverse direction to show that Zpa is solely a function
of a subset of ẐS1

. Since the transformation from Z to Ẑ is a diffeomorphism, we conclude that ẐS1
is an invertible

transformation of Zpa.

The same reasoning above can be used to show that ẐS2
and ẐS3

are invertible transformations of Zch and Zsps, respectively.

C. Proof of Proposition 1 and Corollary 1
C.1. Proof of Proposition 1

Proposition 1. Consider the generative process in Equation (1). We have

P τ (Y = vk | X) =
P τ (Zch | Y = vk, Zsps)P

τ (Y = vk | Zpa)∑C
c=1 P

τ (Zch | Y = vc, Zsps)P τ (Y = vc | Zpa)
.
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Proof. We have

P τ (Y = vk | X) =
P τ (Y = vk, X)

P τ (X)

=
P τ (Y = vk, Z)

P τ (Z)
(Change-of-variable)

= P τ (Y = vk | Z)

= P τ (Y = vk | Zmb, Z
∁
mb)

= P τ (Y = vk | Zmb) (∵ Y ⊥⊥ Z∁
mb | Zmb)

=
P τ (Y = vk, Zmb)

P τ (Zmb)

=
P τ (Y = vk, Zmb)∑C
c=1 P

τ (Y = vc, Zmb)

=
P τ (Y = vk, Zpa, Zsps, Zch)∑C
c=1 P

τ (Y = vc, Zpa, Zsps, Zch)

=
P τ (Zch | Y = vk, Zpa, Zsps)P

τ (Y = vk | Zpa, Zsps)P
τ (Zpa, Zsps)∑C

c=1 P
τ (Zch | Y = vc, Zpa, Zsps)P τ (Y = vc | Zpa, Zsps)P τ (Zpa, Zsps)

=
P τ (Zch | Y = vk, Zsps)P

τ (Y = vk | Zpa)∑C
c=1 P

τ (Zch | Y = vc, Zsps)P τ (Y = vc | Zpa)
.

In the last step, we use the conditional independence relations Zch ⊥⊥ Zpa | Y, Zsps and Y ⊥⊥ Zsps | Zpa.

C.2. Proof of Corollary 1

Corollary 1. Consider the generative process in Equation (1). Let Ẑpa, Ẑch, and Ẑsps be invertible transformations of Zpa,
Zch, and Zsps, respectively. We have

P τ (Y = vk | X) =
P τ (Ẑch | Y = vk, Ẑsps)P

τ (Y = vk | Ẑpa)∑C
c=1 P

τ (Ẑch | Y = vc, Ẑsps)P τ (Y = vc | Ẑpa)
.

Proof. By Proposition 1 and the change-of-variable formula, we have

P τ (Y = vk | X) =
P τ (Zch | Y = vk, Zsps)P

τ (Y = vk | Zpa)∑C
c=1 P

τ (Zch | Y = vc, Zsps)P τ (Y = vc | Zpa)

=

P τ (Zch,Y=vk,Zsps)
P τ (Y=vk,Zsps)

P τ (Y=vk,Zpa)
P τ (Zpa)∑C

c=1
P τ (Zch,Y=vc,Zsps)

P τ (Y=vc,Zsps)
P τ (Y=vc,Zpa)

P τ (Zpa)

=

P τ (Ẑch,Y=vk,Ẑsps)

P τ (Y=vk,Ẑsps)

P τ (Y=vk,Ẑpa)

P τ (Ẑpa)∑C
c=1

P τ (Ẑch,Y=vc,Ẑsps)

P τ (Y=vc,Ẑsps)

P τ (Y=vc,Ẑpa)

P τ (Ẑpa)

=
P τ (Ẑch | Y = vk, Ẑsps)P

τ (Y = vk | Ẑpa)∑C
c=1 P

τ (Ẑch | Y = vc, Ẑsps)P τ (Y = vc | Ẑpa)
.

D. Proof of Theorem 3
The proof of the following theorem is partly inspired by Stojanov et al. (2019).

Theorem 3 (Identifiability of target distribution). Suppose that Assumptions 4 and 5 hold. Let Ẑpa, Ẑch, and Ẑsps be
invertible transformations of Zpa, Zch, and Zsps, respectively. Suppose that we learn P new to match P τ (Ẑch | Ẑpa, Ẑsps)

20



A General Representation-Based Approach to Multi-Source Domain Adaptation

in the target domain, i.e., P new(Ẑch | Ẑpa, Ẑsps) = P τ (Ẑch | Ẑpa, Ẑsps) while constraining P new(Ẑch | Y, Ẑsps) to satisfy
Assumption 4. Then, we have P τ (Ẑch | Y, Ẑsps) = P new(Ẑch | Y, Ẑsps) and P τ (Y | Ẑpa) = P new(Y | Ẑpa).

Proof. We first have

P τ (Ẑch | Ẑpa, Ẑsps) = P new(Ẑch | Ẑpa, Ẑsps)

P τ (Ẑch, Ẑpa, Ẑsps)

P τ (Ẑpa, Ẑsps)
=

P new(Ẑch, Ẑpa, Ẑsps)

P new(Ẑpa, Ẑsps)
.

By the change-of-variable formula and further simplifying, we have

P τ (Zch, Zpa, Zsps)

P τ (Zpa, Zsps)
=

P new(Zch, Zpa, Zsps)

P new(Zpa, Zsps)∑C
c=1 P

τ (Zch, Zpa, Zsps, Y = vc)

P τ (Zpa, Zsps)
=

∑C
c=1 P

new(Zch, Zpa, Zsps, Y = vc)

P new(Zpa, Zsps)∑C
c=1 P

τ (Zch | Y = vc, Zsps)P
τ (Y = vc | Zpa)P

τ (Zpa, Zsps)

P τ (Zpa, Zsps)
=

∑C
c=1 P

new(Zch | Y = vc, Zsps)P
new(Y = vc | Zpa)

P new(Zpa, Zsps)P new(Zpa, Zsps)

C∑
c=1

P τ (Y = vc | Zpa)P
τ (Zch | Y = vc, Zsps) =

C∑
c=1

P new(Y = vc | Zpa)P
new(Zch | Y = vc, Zsps).

Applying Assumption 4 for P τ (Zch | Y = vc, Zsps) and P new(Zch | Y = vc, Zsps), we obtain

C∑
c=1

P τ (Y = vc | Zpa)P
ατ

c (Zch | Y = vc, Zsps) =

C∑
c=1

P new(Y = vc | Zpa)P
αnew

c (Zch | Y = vc, Zsps),

which implies

C∑
c=1

(
P τ (Y = vc | Zpa)P

ατ
c (Zch | Y = vc, Zsps)− P new(Y = vc | Zpa)P

αnew
c (Zch | Y = vc, Zsps)

)
= 0.

By Assumption 5, we have

P τ (Y = vc | Zpa)P
ατ

c (Zch | Y = vc, Zsps)− P new(Y = vc | Zpa)P
αnew

c (Zch | Y = vc, Zsps) = 0, (7)

which, by taking integral w.r.t. Zch, indicates

P τ (Y = vc | Zpa) = P new(Y = vc | Zpa). (8)

Plugging the above equation into Equation (7) yields

Pατ
c (Zch | Y = vc, Zsps) = Pαnew

c (Zch | Y = vc, Zsps),

or, equivalently,
P new(Zch | Y = vc, Zsps) = P τ (Zch | Y = vc, Zsps). (9)

Applying change-of-variable formula to Equations (9) and (8), we obtain

P τ (Ẑch | Y, Ẑsps) = P new(Ẑch | Y, Ẑsps) and P τ (Y | Ẑpa) = P new(Y | Ẑpa).
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E. Experimental Details, Analysis and More Experiments
Model details. Our proposed UDA model adopts a hierarchical variational autoencoder (VAE) architecture with the
following detailed module designs. The domain size is M and the number of categories is C. The primary VAE encoder
consists of a fully connected layer (backbone features → hidden dimension) with batch normalization and ReLU activation,
followed by two linear projections to generate mean µ and log-variance log σ2 for the latent space Z ∈ Rdo+dZpa+dZch

+dZsps ,
where do, dZpa

, dZch
, and dZsps

denote the dimensions we set for Z∁
mb, Zpa, Zch, and Zsps, respectively. The decoder

reconstructs features through a two-layer MLP (latent dimension → hidden dimension → backbone feature dimension)
with batch normalization and ReLU. Domain-specific embeddings are implemented as learnable embedding layers:
θY ∈ RM×dθY and θch ∈ RM×dθch , where dθY and dθch denote the dimensions we set for θY and θch, respectively. The
auxiliary VAE modules use single linear layers in both the encoder and decoder, which operate on the concatenated vector
(θY , Zpa) ∈ RdθY

+dZpa to predict/reconstruct class distributions. Similarly, we use encoder and decoder with linear layers
to handle (θch, Y, Zsps) ∈ Rdθch

+C+dZsps for Zch reconstruction. The final classifier is a two-layer MLP that processes
concatenated features (Zpa, Zch, Zsps, θY , θch) through a hidden layer with ReLU activation to output class predictions. All
backbone features undergo adaptive average pooling and flattening before processing.

Computing resources and efficiency. We train our model using a NVIDIA A100-SXM4-40GB GPU. For the Office-Home
dataset, the batch size is set to 32, and the model is trained for 70 epochs, which takes approximately 160 minutes. The peak
memory usage is around 35 GB. The majority of the computational cost comes from the ResNet-50 backbone, as we only
add several lightweight MLP layers after it. For the PACS dataset, the batch size is set to 32, and the model is trained for 70
epochs, each epoch has 200 steps, which takes approximately 32 minutes. The peak memory usage is around 11 GB.

Visualization and standard deviation. We have conducted visualizations of the latent space of features and VAE.
Specifically, the t-SNE visualizations of the learned features on the Clipart task from the Office-Home dataset are available
in Figure 3, which demonstrate the effectiveness of our method at aligning the source and target domains while preserving
discriminative structures. We also report the standard deviations for Office–Home and PACS datasets in Tables 3 and 4,
respectively. In particular, GAMA not only achieves the highest average accuracy but also exhibits very low variance,
demonstrating its stable performance across different subtasks.

Table 3: Office–Home dataset results (accuracy ± std).

Method Ar Cl Pr Rw Avg

DAN (Long et al., 2015) 68.3± 0.5 57.9± 0.7 78.5± 0.1 81.9± 0.4 71.6
Source Only (He et al., 2016) 64.6± 0.7 52.3± 0.6 77.6± 0.2 80.7± 0.8 68.8
DANN (Ganin et al., 2016) 64.3± 0.6 58.0± 1.6 76.4± 0.5 78.8± 0.5 69.4
DCTN (Xu et al., 2018) 66.9± 0.6 61.8± 0.5 79.2± 0.6 77.8± 0.6 71.4
MCD (Saito et al., 2018) 67.8± 0.4 59.9± 0.6 79.2± 0.6 80.9± 0.2 72.0
DANN+BSP (Chen et al., 2019c) 66.1± 0.3 61.0± 0.4 78.1± 0.3 79.9± 0.1 71.3
M3SDA (Peng et al., 2019) 66.2± 0.5 58.6± 0.6 79.5± 0.5 81.4± 0.2 71.4
iMSDA (Kong et al., 2022) 75.4± 0.9 61.4± 0.7 83.5± 0.2 84.5± 0.4 76.2

GAMA (Ours) 76.6± 0.1 62.6± 0.6 84.9± 0.1 84.9± 0.1 77.3
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Table 4: PACS dataset results (accuracy ± std).

Method Art Cartoon Photo Sketch Avg

Source Only (He et al., 2016) 74.9± 0.88 72.1± 0.75 94.5± 0.58 64.7± 1.53 76.6
DANN (Ganin et al., 2016) 81.9± 1.13 77.5± 1.26 91.8± 1.21 74.6± 1.03 81.5
MDAN (Zhao et al., 2018) 79.1± 0.36 76.0± 0.73 91.4± 0.85 72.0± 0.80 79.6
WBN (Mancini et al., 2018) 89.9± 0.28 89.7± 0.56 97.4± 0.84 58.0± 1.51 83.8
MCD (Saito et al., 2018) 88.7± 1.01 88.9± 1.53 96.4± 0.42 73.9± 3.94 87.0
M3SDA (Peng et al., 2019) 89.3± 0.42 89.9± 1.00 97.3± 0.31 76.7± 2.86 88.3
CMSS (Yang et al., 2020) 88.6± 0.36 90.4± 0.80 96.9± 0.27 82.0± 0.59 89.5
iMSDA (Kong et al., 2022) 93.75± 0.32 92.46± 0.23 98.48± 0.07 89.22± 0.73 93.48

GAMA (Ours) 98.77± 0.11 93.73± 0.75 92.81± 0.40 89.27± 0.68 93.65

(a) Our method. (b) The iMSDA method.

Figure 3: The t-SNE visualizations of the learned features on the →Clipart task in the Office-Home dataset. Specifically, red
points indicate learned features form the source domains, while blue points indicate learned features from the target domain.

Table 5: Hyperparameters for Office-Home (Ar, Cl, Pr, Rw) and PACS (P, A, C, S) datasets.

Parameter Office-Home PACS
Ar Cl Pr Rw P A C S

λ1 2× 10−3 6× 10−4 3× 10−3 6× 10−4 7× 10−4 3× 10−3 5× 10−3 9× 10−3

λ2 4× 10−4 2× 10−4 3× 10−3 1× 10−4 4× 10−4 1× 10−4 1× 10−4 1× 10−3

λ3 1× 10−4 8× 10−4 1× 10−3 4× 10−3 5× 10−4 2× 10−3 2× 10−4 7× 10−4

λ4 5× 10−3 6× 10−4 7× 10−3 1× 10−3 1× 10−3 2× 10−4 4× 10−4 5× 10−3

λ5 2× 10−3 4× 10−4 3× 10−4 4× 10−3 4× 10−3 9× 10−4 4× 10−3 5× 10−3
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