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ABSTRACT

As large language models (LLMs) find increasing use in critical applications, evalu-
ating their ability to assess their own outputs has become crucial. Our work presents
a theoretical and empirical framework that examines whether LLMs can differenti-
ate between correct and incorrect solutions while maintaining properly calibrated
confidence. We build upon classical Vapnik-Chervonenkis (VC) dimension theory,
adapting it to probabilistic predictors through two new complexity metrics: Proba-
bilistic VC (PVC), which measures a model’s ability to confidently classify across
problem types, and Calibration-aware PVC (C-PVC), which demands alignment
between confidence scores and actual success rates. Unlike traditional metrics
such as Expected Calibration Error (ECE) and Actual Error (AE), these measures
provide an integrated assessment of self-evaluation expressiveness and calibration,
yielding sample complexity bounds and generalization guarantees comparable to
traditional VC theory. In our study, we tested eleven models (7-8B parameters)
across three diverse benchmarks: 360 mathematical reasoning problems, Truth-
fulQA for factual accuracy, and CommonsenseQA for commonsense reasoning.
Each model had to choose between two of its own generated solutions and report
its confidence level—a direct test of self-evaluation capability—with ground-truth
determined by a larger model ensemble. The experimental results empirically
substantiate a systematic inverse correlation: models exhibiting enhanced self-
evaluation expressiveness consistently demonstrate diminished calibration fidelity.
Models like s1.1-7B and Qwen2.5-7B-Instruct achieve high PVC-VUS scores,
indicating strong discriminative self-assessment capacity, while JiuZhang3.0-7B
demonstrates superior calibration with the lowest ECE and smallest PVC-VUS
gap. Interestingly, we observe domain-specific variations in self-evaluation abili-
ties, with some models performing better on mathematical reasoning tasks while
others excel in factual or commonsense domains. Our analysis suggests complex
interactions between training methodologies and self-evaluation performance, indi-
cating that multiple factors beyond training approach influence a model’s ability to
accurately assess its own outputs. The fundamental trade-off between calibration
and expressiveness constitutes a persistent phenomenon transcending architectural
variations, training paradigms, and cognitive domains, pointing to a fundamental
challenge in developing self-reflective LLMs. The framework we’ve developed
offers practical tools for identifying and addressing these limitations, helping cre-
ate LLMs that can not only tackle complex problems but also recognize when
they might be wrong—an essential capability for safe deployment and meaningful
self-improvement in autonomous systems.

1 INTRODUCTION

A key requirement for autonomous reasoning systems is not only the ability to solve complex tasks,
but also the ability to evaluate the reliability of their own reasoning processes. This self-evaluation
capability—the ability to distinguish between correct and incorrect reasoning paths—is essential
for systems that aim to improve without external supervision and ensure safe deployment in critical
applications. As large language models (LLMs) are increasingly applied to tasks requiring multi-step
reasoning, a natural question arises: to what extent can these models identify which of their reasoning
paths are more likely to be correct?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Recent progress in LLMs has led to significant improvements in reasoning performance across
domains (Kojima et al., 2022; Wei et al., 2022; Chen et al., 2022), including mathematical problem
solving (Li et al., 2024), pattern recognition (Nie et al., 2020; Zhang et al., 2019), and abstract
reasoning (Chollet, 2019). These advances have been supported by preference-based fine-tuning
techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) and Group Relative
Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025; Yang et al., 2024a; Yu et al., 2025).
However, existing evaluation protocols primarily focus on final answer accuracy, offering limited
insight into a model’s ability to assess its own reasoning quality.

This motivates our investigation into model self-evaluation capabilities, encompassing self-
reflection—the internal mechanism through which a model assesses the correctness of its own
reasoning—among other aspects of metacognitive assessment. While recent studies (Shinn et al.,
2023; Pan et al., 2023; Madaan et al., 2023; Toy et al., 2024; Wang & Zhao, 2023) have explored var-
ious self-evaluation heuristics, a principled framework for analyzing and comparing such capabilities
remains lacking.

To address this gap, we propose a formal approach grounded in statistical learning theory. We extend
the classical Vapnik–Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971; Blumer et al.,
1989), which characterizes hypothesis class capacity via binary classification (Shalev-Shwartz & Ben-
David, 2014). Standard VC theory is limited for modern LLMs, which generate probabilistic outputs
rather than deterministic labels. Our solution is the Probabilistic VC (PVC) dimension, designed for
probabilistic predictors, maintaining connections to calibration and margin-based generalization.

1.1 OUR CONTRIBUTION

We extend classical VC theory by introducing two new complexity measures. The Probabilistic VC
(PVC) dimension quantifies a model’s ability to make confident predictions across problem categories,
while the Calibration-aware PVC (C-PVC) dimension additionally requires that confidence levels
align with actual correctness probabilities. We establish theoretical guarantees linking these measures
to generalization performance and sample complexity, providing a principled basis for analyzing
self-evaluation capabilities in language models.

Our framework enables practical assessment by estimating lower bounds on PVC and C-PVC
dimensions. Across multiple reasoning domains, we found a consistent inverse relationship between
self-evaluation expressiveness and calibration quality in 7-8B parameter models. While models
like s1.1-7B and Qwen2.5-7B-Instruct excel at discriminative capacity, others like JiuZhang3.0-7B
show better calibration. This fundamental trade-off persists across different architectures, training
methods, and domains, suggesting an inherent constraint in probabilistic reasoning systems. These
findings highlight that multiple factors beyond training approach affect a model’s self-evaluation
capabilities—critical for building reliable autonomous systems.

2 BACKGROUND

2.1 CLASSICAL VC DIMENSION

The Vapnik–Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971; Blumer et al., 1989;
Shalev-Shwartz & Ben-David, 2014) is a foundational measure of the capacity of a binary hypothesis
class H ⊆ {h : X → {0, 1}}. A set {x1, . . . , xn} ⊂ X is shattered by H if for every labeling
(y1, . . . , yn) ∈ {0, 1}n, there exists h ∈ H such that h(xi) = yi for all i. The VC dimension,
VC(H), is the size of the largest such set, intuitively measuring how many points the hypothesis class
can classify in all possible ways.

VC dimension is tightly linked to generalization. If VC(H) = d, then with high probability:

sup
h∈H

|R(h)− R̂(h)| = O

(√
d+ log(1/δ)

n

)
,

where R(h) is true risk (expected error on the population) and R̂(h) is empirical risk (average error
on the sample). This implies a sample complexity of Ω

(
d+log(1/δ)

ϵ2

)
to achieve accuracy ϵ with

2
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confidence 1 − δ. However, classical VC theory is limited to binary-valued outputs, making it
insufficient for analyzing LLMs that output confidence scores rather than hard decisions.

2.2 FAT-SHATTERING DIMENSION

The fat-shattering dimension (Bartlett & Long, 1995; Alon et al., 1997) generalizes VC theory from
binary hypothesis classes H to real-valued function classes F ⊆ {f : X → R}, capturing how finely
functions can distinguish inputs at a given scale α > 0. A set {x1, . . . , xn} is α-shattered by F if
there exist thresholds s1, . . . , sn such that for all ϵ ∈ {±1}n, there exists f ∈ F satisfying:

ϵt(f(xt)− st) ≥ α for all t ∈ [n].

This condition means f can place each output either α above or below its threshold specified by ϵt.

The fat-shattering dimension at scale α, denoted fatα(F), is the largest n for which such a set exists.
For binary functions, fatα(F) = VC(F) for all α ∈ (0, 1), and is zero for α ≥ 1. Fat-shattering
serves as a scale-sensitive extension of VC dimension and provides the foundation for our probabilistic
extension to LLMs (Alon et al., 1997; Bartlett et al., 1994; Bartlett & Long, 1995).

3 METHODS

We develop a theoretical framework for analyzing LLMs’ self-evaluation capabilities through statisti-
cal learning theory. We extend classical VC theory to probabilistic predictors via two new complexity
metrics: Probabilistic VC (PVC) dimension, which measures a model’s ability to make confident
classifications, and Calibration-aware PVC (C-PVC), which additionally requires alignment between
confidence scores and actual success rates.

3.1 PROBABILISTIC VC DIMENSION AND ITS CALIBRATION-AWARE EXTENSION

In this paper, we use notation PVCγ(F) and C-PVCτ
γ(F) when discussing theoretical definitions

and general properties, and the abbreviated notation PVCγ and C-PVCτ
γ when the function class is

clear from context.

To analyze self-evaluation capabilities in language models, we extend the classical VC framework to
accommodate probabilistic predictions. Rather than modeling hypotheses as deterministic binary
functions, we consider predictors that output a distribution over possible labels.
Definition 1 (Probabilistic VC Dimension). Let F be a class of probabilistic predictors f : X →
∆({0, 1}), where ∆({0, 1}) denotes the set of probability distributions over the binary output space.
Fix a confidence threshold γ ∈ (0, 1]. The probabilistic VC dimension PVCγ(F) is the largest
integer d such that there exists a set {x1, . . . , xd} ⊆ X with the following property: for every
labeling y∗1 , . . . , y

∗
d ∈ {0, 1}, there exists a predictor f ∈ F such that

P (f(xi) = y∗i ) ≥ γ for all i = 1, . . . , d.

For example, if PVC0.8(F) = 3, then there exists a set of 3 inputs where the model can assign any
binary labeling with at least 80% probability, but no set of 4 inputs can be so labeled. This relaxes
classical shattering by requiring high-confidence probabilistic support rather than exact realizability.
Importantly, this generalization aligns closely with the fat-shattering dimension (Alon et al., 1997;
Bartlett et al., 1994; Bartlett & Long, 1995), and can be seen as a probabilistic analogue tailored for
confidence-aware reasoning tasks.

While PVC captures confident predictions, it doesn’t ensure these confidence scores reflect actual
correctness probabilities. For high-stakes applications, calibration is crucial:
Definition 2 (τ -Calibration). A probabilistic predictor f is τ -calibrated, for some τ ∈ [0, 1), if for
all p ∈ [0, 1],

|P (y = y∗ | f(x) assigns confidence p to y∗)− p| ≤ τ.

This captures approximate calibration: a predictor is τ -calibrated if its confidence values deviate from
true correctness probabilities by at most τ . We now integrate confident prediction and calibration:

3
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Definition 3 (Calibration-aware Probabilistic VC Dimension). Let F be a class of probabilistic
predictors f : X → ∆({0, 1}) and let p̂ : X → [0, 1] denote a confidence scoring function associated
with each f ∈ F .

Fix confidence threshold γ ∈ (0, 1] and calibration error tolerance τ ∈ [0, 1). The calibration-
aware probabilistic VC dimension C-PVCτ

γ(F) is the largest integer d such that there exists a set
{x1, . . . , xd} ⊆ X with the following property:

For every labeling (y∗1 , . . . , y
∗
d) ∈ {0, 1}d, there exists a pair (f, p̂) such that:

P(f(xi) = y∗i ) ≥ γ, and |p̂(xi)− E[1{f(xi) = y∗i }]| ≤ τ for all i = 1, . . . , d.

While PVC captures expressive power alone, C-PVC reflects both expressivity and calibra-
tion—essential for reliable self-evaluation.

3.2 LLMS AS FUNCTION CLASSES

To apply our framework to LLMs, we must interpret a single model as a function class. We outline
three complementary perspectives:

Bayesian view (parameter-level randomization). Treat the parameter vector W as a random
variable W ∼ P , inducing the function class {fW : W ∈ supp(P)}. This aligns with PAC-Bayesian
analyses of randomized predictors (McAllester, 2003; Germain et al., 2016), the correspondence
between infinitely wide neural networks and Gaussian processes (Lee et al., 2018; de G. Matthews
et al., 2018), and non-vacuous deep-network generalization bounds via PAC-Bayes (Dziugaite & Roy,
2017).

Prompt-based view (input-conditioning as a hypothesis family). With fixed W , varying a prompt
p from a constraint set Π yields:

Hprompt(fW ) = {x 7→ fW ([p;x]) : p ∈ Π }.

This captures prompt-tuning effects (Li & Liang, 2021; Lester et al., 2021) and aligns with in-context
learning interpretations (Xie et al., 2022).

Stochastic decoding view (output-level randomization). Decoding randomness (e.g., temperature
sampling or inference-time dropout) induces a distribution over predictors, analogous to Gibbs
predictors in PAC-Bayesian theory (McAllester, 2003; Germain et al., 2016), and the Bayesian
interpretation of Monte Carlo dropout pertains to inference-time sampling (Gal & Ghahramani,
2015).

In our experiments, we primarily adopt the prompt-based and stochastic-decoding views to define our
practical hypothesis class.

3.3 MEASURING PVC AND C-PVC THROUGH SELF-EVALUATION

To empirically estimate PVC and C-PVC dimensions, we treat dataset categories (e.g., Algebra,
Geometry in mathematics) as the units of shattering and employ a three-stage evaluation protocol
(Figure 1): 1) The model generates two distinct solutions to each problem, 2) The model evaluates
both solutions and reports its confidence, 3) External judge LLMs determine the objectively superior
solution.

Our approach is based on two key metrics:

Definition 4 (Self-Evaluation Accuracy). Let f ∈ F be a probabilistic predictor, and C a question
category. For each question q, let (A1(q), A2(q)) be two candidate solutions, Judge(q) ∈ {1, 2} the
index of the superior solution, and Selectf (q) the model’s choice. Then:

SEA(f, C) = Eq∼C [1 {Selectf (q) = Judge(q)}] .

Definition 5 (Calibration Error). For a category C and a model’s reported confidence p̂(q) for each
question q ∈ C, we define:

CalibError(f, C) = |Eq∼C [p̂(q)]− SEA(f, C)| .

4
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Figure 1: PVC/C-PVC Experiment Flow: Models generate two solutions, perform self-evaluation,
and are compared against expert ensemble judgment.

Using these metrics, we say a category C is γ-shattered by predictor f if SEA(f, C) ≥ γ. The
empirical PVC dimension is then the largest number of such categories. Similarly, a category
counts toward the empirical C-PVC dimension if both SEA(f, C) ≥ γ and CalibError(f, C) ≤ τ ,
reflecting both high accuracy and good calibration.

3.4 AGGREGATION WITH VOLUME UNDER SURFACE (VUS)

When evaluating models using PVC, C-PVC, and Sample Complexity metrics, parameter dependence
presents a challenge. These measures vary across confidence threshold γ and calibration tolerance
τ values, making single-value comparisons difficult. To address this, we adopt the Volume Under
Surface (VUS) methodology, extending the AUC concept to three dimensions:

M -VUS(F) =

∫∫
G
M(γ, τ,F) dγ dτ (1)

where M ∈ {PVC,C-PVC,SC} and G represents (γ, τ) ∈ (0, 1]× [0, 1). This integration captures
aggregate performance across the parameter space, providing a robust summary statistic.

A high PVC-VUS indicates strong discriminative self-assessment across confidence thresholds, while
high C-PVC-VUS suggests both accurate and well-calibrated self-assessment. SC-VUS summarizes
theoretical sample complexity requirements. Although PVC is independent of τ , we treat it within
the same framework for consistency, integrating over γ with uniform distribution over τ .

4 THEORETICAL RESULTS

This section presents the core theoretical foundations of our probabilistic VC (PVC) framework. We
establish key relationships between different dimension variants, derive generalization guarantees,
and demonstrate how our framework extends classical VC theory to the probabilistic setting of
self-evaluating language models.

4.1 RELATIONSHIPS BETWEEN DIMENSION VARIANTS

A natural first question is how different variants of PVC dimension relate to each other and to classical
VC dimension. The following proposition establishes these fundamental relationships:
Proposition 1 (Relationships Between Dimension Variants). For a class of predictors F , the following
relationships hold:

5
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1. For any γ1, γ2 ∈ (0, 1] where γ1 > γ2:

VC(F) = PVC1(F) ≤ PVCγ1
(F) ≤ PVCγ2

(F),

2. For a fixed γ ∈ (0, 1] and any τ1, τ2 ∈ [0, 1) where τ1 > τ2:

C-PVCτ2
γ (F) ≤ C-PVCτ1

γ (F) ≤ PVCγ(F).

This proposition reveals several important insights. First, classical VC dimension corresponds to
PVC with perfect confidence (γ = 1), establishing a clear connection to traditional learning theory.
Second, as we relax the confidence threshold, the PVC dimension increases monotonically, reflecting
the intuition that making lower-confidence predictions allows for greater expressivity.

In our analysis, we distinguish between two key parameters with fundamentally different roles. The
parameter γ specifies a minimum confidence threshold that characterizes the expressive power of
a hypothesis class. In contrast, δ represents a probabilistic upper bound on error in generalization
analysis—the confidence level with which a learned predictor generalizes to unseen data.

A central finding of our work is that despite handling probabilistic outputs, the PVC framework yields
generalization bounds that closely mirror those of classical VC theory. This connection becomes clear
when we relate PVC dimension to the fat-shattering dimension, a well-established scale-sensitive
extension of VC theory (Alon et al., 1997; Bartlett & Long, 1995; Colomboni et al., 2025). The
detailed sample complexity bounds for the basic PVC dimension are provided in Appendix H, which
includes the formal proof relating PVC to fat-shattering via a margin parameter α = γ − 1

2 .

4.2 GENERALIZATION BOUNDS FOR CALIBRATION-AWARE PVC

While PVC captures a model’s ability to make confident predictions, the calibration-aware extension
provides stronger guarantees about both prediction accuracy and calibration quality:

Theorem 1 (Generalization Bounds for Calibration-aware PVC). Let F be a class of binary predictors
f : X → {0, 1}, each with an associated confidence function p̂ : X → [0, 1]. For confidence
threshold γ ∈ (0, 1] and calibration tolerance τ ∈ [0, 1), assume C-PVCτ

γ(F) = dγ,τ < ∞.

Then there exists a universal constant C > 0 such that for any ϵ, δ ∈ (0, 1), if the sample size satisfies:

m ≥ C

ϵ2

(
dγ,τ + log

1

δ

)
, (2)

the following generalization guarantees hold uniformly across all f ∈ F with probability at least
1− δ:

∣∣∣∣∣ 1m
m∑
i=1

1{f(xi) ̸= yi} − P[f(x) ̸= y]

∣∣∣∣∣ ≤ ϵ (prediction error) (3)∣∣∣∣∣ 1m
m∑
i=1

(p̂(xi)− 1{f(xi) = yi})− E [p̂(x)− 1{f(x) = y}]

∣∣∣∣∣ ≤ ϵ+ τ (calibration error) (4)

The proof relies on showing that C-PVC dimension bounds the fat-shattering dimension of both the
prediction function class and the calibration error function class. This allows us to apply uniform
convergence results for real-valued function classes to both prediction accuracy and calibration error
simultaneously.

This result mirrors the classical VC generalization bound, highlighting that our PVC framework
retains the same asymptotic structure in terms of sample complexity. In particular, the dependence on
ϵ−2 and log(1/δ) remains unchanged, while the VC dimension is replaced by the C-PVC dimension
dγ,τ , which captures both probabilistic expressivity and calibration quality.
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Table 1: Experimental results comparing model performance across three datasets (Math-360,
TruthfulQA, and CSQA) and their average. For each metric, we report values as: Math-360 /
TruthfulQA / CSQA . PVC-VUS Gap represents the difference between PVC-VUS and C-PVC-VUS.
ECE (Expected Calibration Error) measures the alignment between confidence and accuracy (lower
is better), while AE (Actual Error) indicates the model’s overall error rate in self-evaluation tasks.

Model PVC-VUS ↑ C-PVC-VUS ↑ PVC-VUS Gap ↓ SC-VUS ↑ ECE ↓ AE ↓

Qwen2.5-7B (Pretrain) (Yang et al., 2024a) 5.39 3.76 1.63 676.5 0.314 0.422
(4.78 / 5.66 / 5.73) (3.27 / 3.93 / 4.09) (1.51 / 1.73 / 1.64) (627.3 / 693.0 / 709.2) (0.320 / 0.318 / 0.303) (0.403 / 0.435 / 0.429)

Qwen2.5-7B-Instruct (SFT+RL) (Yang et al., 2024a) 5.61 4.09 1.52 708.3 0.285 0.401
(4.65 / 6.13 / 6.04) (3.13 / 4.73 / 4.40) (1.52 / 1.40 / 1.64) (612.6 / 772.6 / 739.7) (0.337 / 0.247 / 0.290) (0.419 / 0.388 / 0.396)

Qwen2.5-Math-7B-Instruct (SFT+RL) (Yang et al., 2024b) 4.70 3.20 1.50 620.3 0.335 0.494
(4.32 / 4.63 / 5.16) (3.10 / 2.95 / 3.56) (1.22 / 1.68 / 1.60) (610.1 / 595.2 / 655.6) (0.289 / 0.388 / 0.329) (0.461 / 0.538 / 0.483)

Llama-3.1-8B-Instruct (SFT+DPO) (Meta AI, 2024) 4.55 2.92 1.63 591.9 0.385 0.505
(4.84 / 4.13 / 4.68) (3.51 / 2.44 / 2.80) (1.33 / 1.69 / 1.88) (651.1 / 544.4 / 580.2) (0.284 / 0.462 / 0.408) (0.394 / 0.588 / 0.533)

OpenThinker2-7B (SFT) (Open-Thoughts, 2023) 5.37 3.50 1.87 649.9 0.357 0.420
(5.19 / 5.46 / 5.46) (3.68 / 3.36 / 3.47) (1.51 / 2.10 / 1.99) (667.5 / 635.6 / 646.6) (0.298 / 0.395 / 0.378) (0.351 / 0.456 / 0.454)

DeepSeek-R1-Distill-Qwen-7B (Distill) (Guo et al., 2025) 5.10 3.49 1.61 648.9 0.339 0.451
(4.77 / 5.01 / 5.51) (3.24 / 3.40 / 3.83) (1.53 / 1.61 / 1.68) (624.3 / 639.5 / 683.0) (0.329 / 0.358 / 0.330) (0.404 / 0.500 / 0.450)

Bespoke-Stratos-7B (SFT) (Bespoke Labs, 2023) 5.33 3.54 1.79 654.0 0.347 0.430
(4.44 / 5.67 / 5.89) (2.73 / 3.95 / 3.94) (1.71 / 1.72 / 1.95) (573.4 / 694.7 / 693.7) (0.388 / 0.315 / 0.338) (0.444 / 0.433 / 0.413)

JiuZhang3.0-7B (SFT) (Zhou et al., 2024) 4.79 3.84 0.95 684.4 0.209 0.484
(4.49 / 4.55 / 5.34) (3.74 / 3.22 / 4.57) (0.75 / 1.33 / 0.77) (674.1 / 622.1 / 757.1) (0.169 / 0.309 / 0.149) (0.439 / 0.546 / 0.467)

Ministral-8B-Instruct-2410 (SFT+RL) (Mistral AI, 2024) 4.88 3.00 1.88 600.0 0.402 0.478
(4.21 / 4.61 / 5.81) (2.50 / 2.65 / 3.85) (1.71 / 1.96 / 1.96) (549.6 / 565.0 / 685.4) (0.414 / 0.453 / 0.339) (0.472 / 0.542 / 0.421)

Open-Reasoner-Zero-7B (RL) (Hu et al., 2025) 5.29 3.50 1.79 650.6 0.352 0.434
(4.52 / 5.47 / 5.88) (2.78 / 3.71 / 4.02) (1.74 / 1.76 / 1.86) (578.2 / 671.3 / 702.4) (0.388 / 0.341 / 0.327) (0.436 / 0.454 / 0.413)

s1.1-7B (SFT) (Muennighoff et al., 2025) 5.83 4.27 1.56 727.3 0.285 0.378
(4.76 / 6.22 / 6.52) (3.22 / 4.71 / 4.88) (1.54 / 1.51 / 1.64) (622.5 / 771.4 / 788.0) (0.331 / 0.256 / 0.267) (0.407 / 0.379 / 0.348)

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

To assess reasoning self-evaluation capabilities, we constructed a novel benchmark Math-360 of
360 original math problems across 8 domains, stratified by difficulty and subcategory. This design
avoids contamination from pretraining data and captures diverse reasoning patterns. To evaluate
whether PVC and C-PVC generalize beyond mathematical reasoning tasks, we extended our empirical
analysis to two widely used non-mathematical benchmarks: TruthfulQA (Lin et al., 2022), which
assesses factual correctness under adversarial phrasing, and CommonsenseQA (Talmor et al., 2019),
which evaluates everyday commonsense reasoning. To ensure a balanced evaluation, we grouped
each of the latter two datasets into 10 broad categories and sampled 240 questions per benchmark.

We evaluate eleven 7–8B parameter models using standardized inference settings and structured
parsing. Output confidence scores were judged using an ensemble of three larger LLMs (Claude
Sonnet 3.7 (Anthropic, 2025), Amazon Nova Premier (Intelligence, 2024), and DeepSeek-R1 (Guo
et al., 2025)) to mitigate individual biases.

For Sample Complexity calculations, we assume fixed values of C = 1, ϵ = 0.1 and δ = 0.05.
This allows us to compute SC-VUS while maintaining consistent theoretical guarantees across all
evaluated models.

5.2 PVC AND CALIBRATION PERFORMANCE

Table 1 presents results comparing model performance across three datasets. We report PVC-VUS,
which quantifies a model’s expressive self-assessment capacity, and C-PVC-VUS, which additionally
incorporates calibration requirements. The PVC-VUS Gap represents the difference between these
metrics, with smaller gaps indicating better calibration alignment.

The results demonstrate a consistent pattern across models: a trade-off between expressive power
and calibration quality. This empirically validates our theoretical framework, particularly Propo-
sition 1. Models like s1.1-7B and Qwen2.5-7B-Instruct achieve high PVC-VUS scores (5.83 and
5.61 respectively), indicating strong discriminative self-assessment capacity, while JiuZhang3.0-7B
demonstrates superior calibration with the lowest ECE (0.209) and smallest PVC-VUS gap (0.95),
despite a moderate PVC-VUS (4.79).

Instruction-tuned models consistently outperform their base counterparts in both PVC-VUS and C-
PVC-VUS, suggesting that instruction tuning enhances self-evaluation capabilities. This pattern aligns
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Figure 2: Calibration-aware Probabilistic VC (C-PVC) Dimension: 3D surface plots showing C-PVC
dimension values for eleven 7-8B parameter language models. The x-axis (τ ) represents calibration
error tolerance, y-axis (γ) shows confidence threshold, and z-axis displays C-PVC values. Our
framework quantifies self-evaluation capacity through these distinctive topographical signatures.
Higher C-PVC-VUS (in parentheses) indicates better self-evaluation capabilities.

(a) PVC Across Confidence γ (b) Comparison of PVC-VUS and C-PVC-VUS

Figure 3: Model Self-Evaluation Capabilities and Calibration Performance: (a) PVC scores across
confidence thresholds (γ) for eleven language models. Higher curves indicate better ability to maintain
expressive reasoning as confidence requirements increase. s1.1-7B and Qwen2.5-7B-Instruct show
the strongest performance. (b) Comparison between PVC-VUS (expressiveness) and C-PVC-VUS
(calibrated expressiveness). Points closer to the diagonal dashed line indicate better calibration.
JiuZhang3.0-7B shows the smallest gap between these metrics, demonstrating superior calibration,
while s1.1-7B achieves the highest overall expressiveness.

with our theoretical understanding that training approaches that explicitly optimize for reasoning
quality can improve a model’s capacity to discriminate between correct and incorrect solutions.

Figure 2 provides a visualization of C-PVC performance across different parameter settings, while
Figure 3 illustrates the relationship between expressivity and calibration. The right panel of Figure 3
demonstrates a non-monotonic relationship between discriminative capacity and calibration fidelity.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 CROSS-DOMAIN ANALYSIS

Our analysis demonstrates domain-specific patterns in self-evaluation performance. Qwen2.5-7B-
Instruct show particularly strong performance in factual domains (TruthfulQA PVC-VUS: 6.13);
Llama-3.1-8B-Instruct demonstrates stronger performance in mathematical reasoning (Math-360
PVC-VUS: 4.84), while general-purpose models like s1.1-7B perform more consistently across
domains. We also observe that models that are well-calibrated in one domain tend to maintain
better calibration across domains. JiuZhang3.0-7B maintains relatively small PVC-VUS Gaps across
all datasets, suggesting that calibration quality may transfer more readily across domains than raw
discriminative power. Critically, the expressivity-calibration trade-off persists across all three domains,
confirming this is a fundamental property of self-evaluation rather than a domain-specific artifact.
This consistency supports the generalizability of our PVC framework as predicted by Theorem 1.

6 RELATED WORKS

Large language models (LLMs) have demonstrated remarkable performance on complex reasoning
tasks (Kojima et al., 2022; Wei et al., 2022; Chen et al., 2022), with standard evaluation benchmarks
including MathVista (Li et al., 2024), Bongard-Logo (Nie et al., 2020), Raven (Zhang et al., 2019),
and the Abstraction and Reasoning Corpus (Chollet, 2019). Optimization techniques such as Direct
Preference Optimization (Rafailov et al., 2023) and Group Relative Policy Optimization (Shao et al.,
2024; Guo et al., 2025; Yang et al., 2024a; Yu et al., 2025) have further enhanced LLM performance on
reasoning tasks. However, as (Mondorf & Plank, 2024) comprehensively document, most evaluation
frameworks prioritize final answer correctness over assessing reasoning quality or metacognitive
capabilities—a limitation our work addresses directly.

The Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971; Blumer et al., 1989)
provides a theoretical foundation for understanding model capacity and generalization in learning
systems. Classical VC theory established sample complexity bounds (Shalev-Shwartz & Ben-David,
2014) and generalization guarantees that have shaped machine learning theory for decades. Our work
expands probabilistic VC theory by introducing calibration-aware extensions that simultaneously
capture a model’s expressive power and its ability to produce well-calibrated confidence estimates.
This builds upon fat-shattering dimension theory (Alon et al., 1997; Bartlett & Long, 1995; Bartlett
et al., 1994), which extends VC concepts to real-valued functions.

Calibration—the alignment between confidence scores and actual accuracy—has been extensively
studied in deep learning (Guo et al., 2017; Ovadia et al., 2019) and specifically in LLMs (Kadavath
et al., 2022). Our theoretical framework contributes to this literature by establishing direct connections
between calibration quality and generalization guarantees, particularly for reasoning tasks. For a
more comprehensive review of related research in self-reflection capabilities, probabilistic learning
theory, and preference optimization approaches, we refer readers to Appendix M.

7 CONCLUSION

This paper presents a principled framework for analyzing the self-assessment capabilities of large
language models through statistical learning theory. By extending classical VC dimension to proba-
bilistic predictors, we introduce two key complexity measures: the Probabilistic VC (PVC) dimension,
capturing confident discriminative capacity, and its calibration-aware extension (C-PVC), evaluating
a model’s ability to produce reliable confidence estimates. Our theoretical analysis establishes
sample complexity bounds and generalization guarantees for both metrics, addressing the unique
characteristics of probabilistic predictors.

Our framework enables fine-grained evaluation of introspection and offers practical tools for model
development, auditing, and debugging confidence-related failures. The PVC and C-PVC metrics
provide integrated assessment extending beyond traditional metrics like ECE and AE. As LLMs are
increasingly applied to safety-critical settings, the ability to assess reasoning reliability becomes
essential. Our framework lays groundwork for systems that can recognize and communicate uncer-
tainty, fostering transparency and trust. We advocate for future research exploring factors influencing
self-assessment capabilities and optimizing both reasoning accuracy and introspective reliability
simultaneously.
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Table 2: Notation used throughout the paper.

Symbol Description
X Input space
F Class of probabilistic predictors f : X → ∆({0, 1})

∆({0, 1}) Set of probability distributions over binary output space {0, 1}
γ ∈ (0, 1] Confidence threshold parameter
τ ∈ [0, 1) Calibration error tolerance parameter
VC(F) Classical Vapnik-Chervonenkis dimension of function class F

PVCγ(F) Probabilistic VC dimension of F at confidence threshold γ
C-PVCτ

γ(F) Calibration-aware PVC dimension with parameters γ and τ
p̂ : X → [0, 1] Confidence scoring function associated with predictor f

fatα(F) Fat-shattering dimension of function class F at scale α
α = γ − 1

2 Margin parameter relating PVC to fat-shattering dimension
P(f(x) = y) Probability that predictor f outputs label y on input x

E[·] Expectation operator over the specified probability space
1{·} Indicator function: 1 if condition is true, 0 otherwise

SEA(f, C) Self-Evaluation Accuracy of model f on category C
Judge(q) Index of objectively superior solution for question q
Selectf (q) Model f ’s selected solution index for question q

CalibError(f, C) Calibration error of model f on category C
M -VUS(F) Volume Under Surface for metric M ∈ {PVC,C-PVC,SC}
SC(γ, τ,F) Sample complexity bound for function class F with parameters γ, τ

ϵ Accuracy parameter in generalization bounds
δ Confidence parameter in generalization bounds
C Universal constant in sample complexity bounds
Π Set of prompts in prompt-based function class definition
W Parameter vector of a language model
P Probability distribution over parameter space
D Data distribution
DC Distribution of questions in category C

A LIMITATIONS

Despite its theoretical and empirical contributions, this study has several limitations. The proposed
PVC and C-PVC frameworks rely on category-level aggregation rather than individual question
evaluation, potentially obscuring fine-grained self-assessment patterns. The theoretical guarantees
established for PVC and C-PVC dimensions assume certain mathematical conditions that may not
strictly hold in practical LLM implementations with complex architectures like Transformers. Further-
more, while the study spans multiple domains (mathematics, factual knowledge, and commonsense
reasoning), it may not generalize to other specialized reasoning tasks or to models significantly larger
or smaller than the 7-8B parameter range examined. Finally, the analysis of training methodology
effects is observational rather than causal, limiting definitive conclusions about which specific training
techniques directly improve self-evaluation capabilities.

B LLM USAGE DISCLOSURE

In the interest of transparency, we disclose that large language models (LLMs) were utilized during
the preparation of this manuscript. LLMs assisted in polishing the writing by suggesting alternative
phrasings and improving sentence structure in certain sections, while all content was carefully
reviewed and edited by the authors to ensure accuracy. Additionally, LLMs were employed to
aid in literature retrieval and discovery, helping to identify potentially relevant papers that were
subsequently accessed and critically evaluated by the authors. During early research stages, LLMs
also contributed to ideation by exploring potential extensions of VC dimension theory and suggesting
experimental designs, though all theoretical formulations and analyses were developed and validated
through rigorous scientific investigation by the authors. Throughout this process, LLMs served solely
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as assistive tools to enhance efficiency and clarity in our research communication, with complete
scientific oversight maintained by the authors at all stages of the work.

C PROOF OF PROPOSITION 1

Proof. We begin by proving the first statement: for any γ1, γ2 ∈ (0, 1] such that γ1 > γ2, we have

VC(F) = PVC1(F) ≤ PVCγ1(F) ≤ PVCγ2(F).

By definition, PVCγ(F) is the largest integer d such that for every labeling (y∗1 , . . . , y
∗
d), there exists

f ∈ F satisfying

P(f(xi) = y∗i ) ≥ γ for all i = 1, . . . , d.

When γ = 1, this condition implies that f deterministically assigns the correct label to each input.
This is exactly the classical VC shattering criterion, where each binary labeling must be realized
exactly. Thus, we have

PVC1(F) = VC(F).

Next, we consider the monotonicity of PVCγ with respect to γ. Suppose γ1 > γ2. Any set that is
γ1-shattered must also be γ2-shattered, since the confidence requirement γ2 is weaker. Therefore,

PVCγ1
(F) ≤ PVCγ2

(F),

and together with the previous identity, we obtain the desired chain of inequalities.

We now turn to the second statement: for a fixed γ ∈ (0, 1] and any τ1, τ2 ∈ [0, 1) where τ1 > τ2:

C− PVCτ2
γ (F) ≤ C− PVCτ1

γ (F) ≤ PVCγ(F).

First, we establish that C− PVCτ1
γ (F) ≤ PVCγ(F). This follows directly from the definitions. The

calibration-aware PVC dimension imposes two simultaneous conditions: for each i = 1, . . . , d,

P(f(xi) = y∗i ) ≥ γ and |p̂i − E1f(xi) = yi| ≤ τ1,

where p̂i is the confidence assigned by f to the label y∗i . The first condition is identical to that of
PVCγ , but the second introduces an additional constraint that requires approximate calibration. As
a result, any set that is C-PVCτ1

γ -shattered must also be PVCγ-shattered, but not necessarily vice
versa. Therefore, the inequality holds.

Next, we show that C-PVCτ2
γ (F) ≤ C-PVCτ1

γ (F) when τ1 > τ2. By definition, for a set to be
C-PVCτ

γ-shattered, for every labeling, there must exist a predictor that achieves both the required
accuracy γ and calibration error at most τ . Since τ1 > τ2, the calibration requirement for τ2 is stricter
than for τ1. Specifically, if a predictor satisfies |p̂i − E1f(xi) = y∗i | ≤ τ2, then it automatically
satisfies |p̂i−E1f(xi) = y∗i | ≤ τ1 as well. Therefore, any set that is C-PVCτ2

γ -shattered must also be
C-PVCτ1

γ -shattered, which implies C-PVCτ2
γ (F) ≤ C-PVCτ1

γ (F). Combining these two inequalities
completes the proof of the second statement.

D SAMPLE COMPLEXITY BOUND VIA PROBABILISTIC VC DIMENSION

Theorem 2 (Sample Complexity Bound via Probabilistic VC Dimension). Let F be a class of
probabilistic predictors over X ×Y with probabilistic VC dimension PVCγ(F) = dγ < ∞ for some
confidence threshold γ ∈ (0, 1]. Then there exist universal constants C, c > 0 such that the following
holds. For any ϵ, δ ∈ (0, 1), if the sample size satisfies

m ≥ C

ϵ2

(
dγ + log

1

δ

)
,

then

P

(
sup
f∈F

∣∣∣∣∣ 1m
m∑
i=1

1{f(xi) ̸= yi} − P(x,y)∼X×Y [f(x) ̸= y]

∣∣∣∣∣ ≤ ϵ

)
≥ 1− δ.
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Proof. Let each f ∈ F be a probabilistic predictor defined as a pair of measurable functions
(f0, f1) : X → [0, 1] such that f0(x) + f1(x) = 1 for all x ∈ X . The prediction is interpreted as
assigning label 1 when f1(x) > f0(x), and label 0 otherwise. Thus, f1 itself serves as a real-valued
function mapping inputs to the confidence assigned to label 1.

Define the function class G := {f1 : f = (f0, f1) ∈ F} ⊆ [0, 1]X , and define the margin parameter
α := γ − 1

2 > 0. We now show that if PVCγ(F) = dγ , then G α-fat-shatters a set of size at least dγ
with fixed thresholds si = 1/2.

Lemma 1 (PVC Implies Fat-Shattering with Fixed Threshold). Let F , G, and α be as above. Then

PVCγ(F) ≤ fatα(G),

where the fat-shattering condition is evaluated with fixed thresholds si = 1/2.

Proof. Suppose {x1, . . . , xd} is γ-shattered in the PVC sense. Then for every labeling (y∗1 , . . . , y
∗
d) ∈

{0, 1}d, there exists a probabilistic predictor f = (f0, f1) ∈ F such that for all i = 1, . . . , d,

fy∗
i
(xi) := P(f(xi) = y∗i ) ≥ γ.

Consider f1 ∈ G as the function assigning confidence to label 1. For each i, if y∗i = 1, then
f1(xi) = fy∗

i
(xi) ≥ γ = 1/2 + α = si + α. If y∗i = 0, then f0(xi) = fy∗

i
(xi) ≥ γ implies

f1(xi) = 1−f0(xi) ≤ 1−γ = 1/2−α = si−α. Therefore, the set {x1, . . . , xd} is α-fat-shattered
by G at fixed thresholds si = 1/2.

We now apply the standard uniform convergence result for fat-shattering dimension:

Lemma 2 (Uniform Convergence via Fat-Shattering (Colomboni et al., 2025)). Let G ⊆ [0, 1]X and
suppose fatα(G) = dα < ∞ for some α > 0. Then there exist universal constants C, c > 0 such that
for any ϵ, δ ∈ (0, 1), if

m ≥ C

ϵ2

(
dα + log

1

δ

)
,

then with probability at least 1− δ over i.i.d. samples x1, . . . , xm ∼ D,

sup
g∈G

∣∣∣∣∣ 1m
m∑
i=1

g(xi)− E[g(x)]

∣∣∣∣∣ ≤ ϵ.

By Lemma 1, we have PVCγ(F) ≤ fatα(G). Plugging into Lemma 2 yields the claimed result.

We remark that the inequality PVCγ(F) ≤ fatγ−1/2(G) is a direct consequence of the definition,
where G = {f1 : (f0, f1) ∈ F}. In the binary setting, this upper bound is often tight, since both
quantities reflect the ability to encode all binary labelings with high confidence or sufficient separation
from the decision boundary.

E PROOF OF THEOREM 1

Lemma 3 (Fat-Shattering from C-PVC Shattering). Let F be as in Theorem 1. Then for any d-tuple
{x1, . . . , xd} that is C-PVCτ

γ-shattered, there exists a function p̂ ∈ P̂ := {p̂ : (f, p̂) ∈ F} such that
{x1, . . . , xd} is α-fat-shattered by p̂ at thresholds si = 1/2 with margin α = γ − τ − 1/2 > 0.

Proof. Fix any labeling (y∗1 , . . . , y
∗
d) ∈ {0, 1}d that is C-PVCτ

γ-shattered. Then by definition, there
exists a function pair (f, p̂) such that for all i = 1, . . . , d,

P(f(xi) = y∗i ) ≥ γ, and |p̂(xi)− E[1{f(xi) = y∗i }]| ≤ τ.

Let si := 1/2 for all i. If y∗i = 1, then E[1{f(xi) = 1}] ≥ γ, hence p̂(xi) ≥ γ − τ ≥ si + α.
Similarly, if y∗i = 0, then E[1{f(xi) = 0}] ≥ γ, and thus p̂(xi) ≤ 1− γ + τ ≤ si −α. Therefore, p̂
α-shatters the set {x1, . . . , xd} at thresholds si = 1/2, establishing the lemma.
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Proof of Theorem 1. Let H1 := {x 7→ E1{f(x) = y} : f ∈ F} and H2 := {x 7→ p̂(x) −
E1{f(x) = y} : f ∈ F}. Each function in H1 and H2 is bounded in [0, 1].

From Lemma 3, we have that C-PVCτ
γ(F) ≤ fatα(P̂), and hence both H1 and H2 have fat-shattering

dimension at most dγ,τ at scale α.

Applying the uniform convergence theorem for fat-shattering classes (Bartlett & Mendelson, 2002;
Colomboni et al., 2025) we obtain the desired bounds for both generalization error and calibration
deviation. The additional τ in the second inequality is absorbed into the allowable population-level
calibration discrepancy.

F IMPLICATIONS FOR SELF-EVALUATING MODELS

Our theoretical results in Seciton 4 have significant implications for self-evaluating language models.
The ability to obtain VC-style bounds is a key strength of our framework, as it enables the application
of classical tools from learning theory to the study of confidence-aware predictors, including large
language models.

The distinction between PVC and C-PVC becomes particularly important in practical applications. A
model with high PVC but poor calibration might confidently discriminate between correct and incor-
rect solutions, yet provide unreliable confidence estimates. For instance, a model might consistently
assign 90% confidence to predictions that are only correct 70% of the time. Conversely, a model with
high C-PVC demonstrates both strong discriminative capacity and reliable self-assessment—essential
qualities for trustworthy autonomous reasoning (Jiang et al., 2022; Kirsch & Gal, 2022; Shabat et al.,
2020).

Our framework thus provides theoretical grounding for evaluating and improving self-assessment
in language models. The trade-off between expressivity (captured by PVC) and calibration quality
(reflected in the gap between PVC and C-PVC) emerges naturally from our theoretical analysis and,
as we will see in the experimental section, manifests consistently across different model architectures
and training methodologies.

G EXPECTED CALIBRATION ERROR AND CALIBRATION METRICS

In Section 3.3, we introduced the category-level calibration error metric:

CalibError(f, C) = |Eq∼C [p̂(q)]− SEA(f, C)| (5)

where p̂(q) is the model’s reported confidence for question q and SEA(f, C) is the Self-Evaluation
Accuracy on category C. This metric measures the discrepancy between average predicted confidence
and actual accuracy at the category level, and is used to determine whether a category satisfies the
calibration requirement in our C-PVC framework.

Building on this category-level calibration assessment, we define the Expected Calibration Error
(ECE) as the weighted average of calibration errors across all categories:

ECE =
∑
C∈C

|C|
N

CalibError(f, C) =
∑
C∈C

|C|
N

|Eq∼C [p̂(q)]− SEA(f, C)| (6)

Additionally, we define the Actual Error (AE) as the overall error rate in self-evaluation tasks:

AE =
∑
C∈C

|C|
N

(1− SEA(f, C)) = 1−
∑
C∈C

|C|
N

SEA(f, C) (7)

where:
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• C is the set of all categories in our evaluation

• |C| is the number of questions in category C

• N is the total number of questions across all categories

• Eq∼C [p̂(q)] is the average confidence reported by the model on questions in category C

• SEA(f, C) is the Self-Evaluation Accuracy on category C

The AE metric represents the weighted average of error rates across all categories, providing a single
summary statistic for the model’s overall self-evaluation performance. Unlike ECE, which measures
calibration quality, AE directly measures the frequency of incorrect self-evaluations regardless of
confidence levels.

This category-based ECE differs from the traditional bin-based ECE used in much of the calibration
literature. Instead of grouping predictions by confidence level, we group them by problem category,
which aligns with our theoretical framework’s focus on category-level shattering and calibration. This
approach allows us to directly relate ECE to our C-PVC dimension, as both are based on the same
underlying CalibError metric.

G.1 RELATIONSHIPS BETWEEN EVALUATION METRICS

Our experimental results in Table 1 show relationships between the different evaluation metrics we
use:

PVC-VUS Gap and ECE. There is a strong correlation between the PVC-VUS Gap (the difference
between PVC-VUS and C-PVC-VUS) and ECE across all models. Both metrics capture aspects of
calibration quality:

• PVC-VUS Gap measures how much expressive power is lost when imposing the calibration
constraint (CalibError ≤ τ ) across different parameter settings.

• ECE measures the weighted average of calibration errors across all categories.

As shown in Table 1, models with lower ECE consistently demonstrate smaller PVC-VUS Gaps.
For example, JiuZhang3.0-7B has both the lowest ECE (0.209) and the smallest PVC-VUS Gap
(0.95), while models with higher ECE values like Ministral-8B-Instruct (ECE: 0.402) also show larger
PVC-VUS Gaps (1.88). This correlation is not coincidental—both metrics fundamentally measure
how well a model’s confidence scores align with its actual performance, though they do so through
different mathematical formulations.

SC-VUS and AE. Another notable relationship exists between Sample Complexity (SC-VUS) and
Actual Error (AE):

• SC-VUS represents the theoretical sample complexity integrated across parameter settings,
indicating how many samples are needed to ensure reliable generalization.

• AE measures the actual error rate of the model on the evaluation dataset, representing the
proportion of incorrect self-evaluations across all categories.

The relationship between these metrics is more complex and multifaceted. While high SC-VUS often
correlates with lower AE (as seen with s1.1-7B, which has the highest SC-VUS at 727.3 and the
lowest AE at 0.378), this pattern shows variations across different models. This relationship reflects
the fundamental trade-off in statistical learning: models with higher expressive power (higher PVC)
can achieve lower error rates but require more samples to generalize reliably.

The correlation between SC-VUS and AE can be understood through the lens of model capacity
utilization. Models with higher SC-VUS values have greater theoretical capacity (as measured
by PVC dimensions across parameter settings), which allows them to achieve lower error rates
when this capacity is effectively utilized. However, this relationship is modulated by calibration
quality—models with poor calibration may have high SC-VUS but fail to achieve correspondingly
low error rates due to overconfident predictions in incorrect answers.
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G.2 RELATIONSHIP BETWEEN ECE AND C-PVC

While both ECE and our C-PVC framework assess calibration quality, they do so in complementary
ways:

• CalibError is used at the individual category level to determine whether that category
satisfies the calibration requirement (CalibError ≤ τ ) for computing C-PVC dimension.

• ECE aggregates these calibration errors across all categories, providing a single value that
summarizes overall calibration quality.

The key difference in how these metrics are used in our framework is:

• C-PVC counts the number of categories that simultaneously satisfy both the confidence
threshold (SEA(f, C) ≥ γ) and calibration requirement (CalibError ≤ τ ).

• ECE provides a weighted average of calibration errors across all categories, regardless of
whether they meet the confidence threshold.

In well-calibrated models, we expect both low ECE and high C-PVC values (relative to PVC). Indeed,
as shown in Table 1, JiuZhang3.0-7B achieves the lowest overall ECE (0.209) and also demonstrates
the smallest PVC-VUS Gap (0.95), indicating that both its global calibration (measured by ECE) and
category-level calibration (captured by C-PVC through CalibError) are superior to other models.

H INTERPRETATION OF SAMPLE COMPLEXITY

In this appendix, we provide a detailed interpretation of the sample complexity bounds derived in our
PVC framework and discuss their practical implications for evaluating self-assessment capabilities in
language models.

H.1 SAMPLE COMPLEXITY BOUND VIA PROBABILISTIC VC DIMENSION

As established in Theorem 2, for a function class F with probabilistic VC dimension PVCγ(F) =
dγ < ∞, the sample complexity required to achieve generalization error ϵ with confidence 1− δ is:

m ≥ C

ϵ2

(
dγ + log

1

δ

)
(8)

This bound has several important interpretations:

Relationship to Model Expressivity. The sample complexity scales linearly with the PVC di-
mension dγ , which measures the model’s capacity to make confident predictions across different
problem categories. Models with higher PVC dimensions require more samples to ensure reliable
generalization. This reflects the fundamental trade-off between expressivity and sample efficiency:
more expressive models (higher dγ) can represent a wider range of confident prediction patterns, but
require more data to avoid overfitting.

Confidence Threshold Dependence. The sample complexity depends on the confidence threshold
γ through dγ . As shown in Proposition 1, lower values of γ lead to higher PVC dimensions, which in
turn increase sample complexity. This captures the intuition that making high-confidence predictions
(high γ) typically requires less data for generalization than making lower-confidence predictions that
cover more complex patterns.

Error-Confidence Trade-off. The bound shows an inverse quadratic relationship between sample
complexity and the desired generalization error ϵ. Halving the acceptable error requires approximately
four times as many samples. This highlights the diminishing returns in error reduction as sample size
increases.
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H.2 SAMPLE COMPLEXITY FOR CALIBRATION-AWARE PVC

For the calibration-aware setting in Theorem 1, the sample complexity bound becomes:

m ≥ C

ϵ2

(
dγ,τ + log

1

δ

)
(9)

where dγ,τ = C-PVCτ
γ(F). This has additional interpretations:

Calibration-Expressivity Balance. The C-PVC dimension dγ,τ captures both the model’s expres-
sive power and its calibration quality. As shown in our experimental results, models with similar
PVC dimensions may have very different C-PVC dimensions due to varying calibration quality.
Well-calibrated models (smaller gap between PVC and C-PVC) generally require fewer samples to
achieve reliable generalization of both prediction accuracy and confidence estimation.

Calibration Tolerance Effect. The calibration tolerance parameter τ influences sample complexity
through dγ,τ . As τ increases (more relaxed calibration requirements), dγ,τ increases as well, poten-
tially increasing sample complexity. However, this is balanced by the fact that larger τ values make
the calibration constraint easier to satisfy, which can reduce the effective complexity of the function
class.

H.3 PRACTICAL IMPLICATIONS FOR LLM EVALUATION

Our sample complexity bounds have several practical implications for evaluating and training self-
reflective language models:

Evaluation Efficiency. The SC-VUS metric reported in Table 1 provides a practical measure of
how efficiently a model can be evaluated. Higher SC-VUS values indicate that more samples are
needed to achieve reliable generalization. Models with better calibration (smaller gap between
PVC and C-PVC) like JiuZhang3.0-7B often achieve better generalization efficiency relative to their
expressivity, despite having moderately high SC-VUS values.

Training Data Requirements. These bounds inform training data requirements for developing
self-reflective capabilities. The SC-VUS values in Table 1 indicate that models with higher values
(like s1.1-7B at 727.3) require more training samples to achieve reliable generalization, despite their
strong performance on evaluation metrics. This suggests that highly expressive models may need
substantially more training data focused on calibration to achieve reliable self-assessment.

Parameter Selection Guidance. The relationship between confidence threshold γ, calibration
tolerance τ , and sample complexity provides guidance for selecting appropriate parameter values in
practical applications. For high-stakes applications requiring well-calibrated confidence, choosing a
model with smaller gap between PVC and C-PVC dimensions may be more important than selecting
one with the highest raw PVC dimension.

Cross-domain Generalization. Our cross-domain analysis showed that calibration quality tends to
transfer better across domains than raw discriminative power. As seen in Table 1, JiuZhang3.0-7B
maintains consistently small PVC-VUS Gaps across all three datasets (0.75/1.33/0.77), while models
like OpenThinker2-7B show much greater variability (1.51/2.10/1.99). The sample complexity
bounds help explain this phenomenon: well-calibrated models have more efficient generalization
properties, requiring fewer domain-specific examples to adapt to new tasks.

In summary, the sample complexity bounds derived from our PVC framework provide not just
theoretical guarantees, but also practical insights into model selection, evaluation efficiency, and
training strategies for developing reliable self-reflective language models.
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I CATEGORY-LEVEL MEASUREMENT FOR PVC AND C–PVC

In our analysis, we compute PVCγ(F) and C-PVCτ
γ(F) at the level of problem categories, such

as Algebra or Geometry, rather than at the level of individual questions. This design choice is
motivated by both theoretical and practical considerations and remains consistent with the assumptions
underlying the γ-shattering framework.

Statistical tractability. Estimating VC-style capacity at the question level quickly becomes in-
tractable. Given a candidate shattering set of n elements, the number of binary labelings grows
exponentially as 2n. Aggregating problems into categories reduces the effective hypothesis space
while preserving sufficient semantic diversity. In practice, treating each category as a single unit
enables efficient computation and still provides meaningful discrimination between models with
different generalization behaviors.

Alignment with model organization. Large language models tend to acquire domain-level rea-
soning skills before mastering fine-grained problem templates. Measuring shattering capacity over
category partitions aligns with this inductive structure. Each category can be viewed as a higher-order
instance, requiring the model to succeed across a distribution of related problems rather than a single
input.

Stability in calibration. Individual prediction confidences are often noisy and variable. Averaging
across structurally related problems yields a smoother estimate of empirical correctness, leading to
more stable calibration evaluations. This is particularly relevant for computing C-PVCτ

γ(F), which
involves enforcing the constraint

|p̂(xi)− E [1{f(xi) = y∗i }]| ≤ τ.

Evaluating this quantity at the category level mitigates the effects of variance in single-question
estimates.

Theoretical consistency with γ-shattering. Importantly, the category-level formulation remains
consistent with the formal definition of γ-shattering. For each element in the shattering set—now
treated as a category—the model must satisfy:

P(f(xi) = y∗i ) ≥ γ for all xi ∈ category i.

This requirement is more stringent than evaluating the condition on individual inputs, as it demands
uniform high-confidence correctness over an entire domain. As such, the category-level perspective
yields a conservative but valid estimate of capacity.

J ON THE FINITE CAPACITY GUARANTEES FOR LLMS

According to Anthony and Bartlett (Anthony & Bartlett, 2009, See Theorem 14.18 and Theorem
14.19), probabilistic VC capacity remains finite for model classes whose prediction functions are
realized by bounded-weight, Lipschitz neural networks. In particular, the finiteness of both PVCγ

and C-PVCτ
γ follows from Lemma 1 the existence of a finite fat-shattering dimension:

C-PVCτ
γ(F) ≤ PVCγ(F) ≤ fatα(G) < +∞,

where α = γ − 1
2 and G is the associated class of real-valued confidence functions. This implication

is powerful in its generality but depends critically on structural conditions—bounded weight norms,
controlled depth, and uniformly Lipschitz activations—that are only partially satisfied in practice.
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The gap between theoretical assumptions and practical architectures. While the bounded-
operator and Lipschitz assumptions hold for simplified multi-layer perceptrons (MLPs), their applica-
bility to realistic large language models (LLMs), such as those built on the Transformer architecture,
remains unclear. Modern LLMs incorporate residual pathways, softmax-based attention, layer nor-
malization, and positional encodings, each of which may violate or obscure the assumptions required
for a clean fat-shattering analysis.

Although recent efforts attempt to bound the Lipschitz constants of certain attention modules and
residual networks, no complete result exists that establishes fat-shattering finiteness for the full
Transformer class. i.e., the following capacity inequality,

fatα(GTransformer) < ∞,

remains a conjecture rather than a provable property under current theoretical tools. This gap
complicates our ability to rigorously assert finite probabilistic capacity for the very models used in
practice, especially when considering their introspective reliability and calibration behavior.

Gaussian processes and infinite-dimensional predictors. A similar gap arises for Gaussian
Process (GP) models, where the predictive function is drawn from a stochastic process defined by
a positive-definite kernel. To the best of our knowledge, while each realization of a GP resides in
a Reproducing Kernel Hilbert Space (RKHS), and RKHS complexity measures such as covering
numbers or Rademacher complexity are known to relate to generalization (Bartlett & Mendelson,
2002), the fat-shattering dimension of the GP function class is not known in general. In particular,
there is no general result guaranteeing that

fatα(GGP) < ∞
for any fixed margin α > 0, unless additional smoothness or norm constraints are imposed on the
sample paths or kernels. This limits the applicability of PVC-style generalization theory to GP-based
uncertainty quantification.

Role of category–level shattering. Measuring PVCγ at the category (rather than the indi-
vidual–question) level restricts the effective domain of each predictor to the finite index set
{D1, . . . ,DM}, where M denotes the number of categories in the benchmark. For any predic-
tor f = (f0, f1) ∈ F , define the aggregated confidence

P
(
f(x) = y∗(x)

)
, c = 1, . . . ,M.

Consequently the probabilistic VC dimension satisfies the immediate bound

PVCγ(F) ≤ M,

and, by definition, the same upper bound holds for C-PVCτ
γ(F). The finiteness of PVC thus follows

without relying on global weight–norm or Lipschitz constraints.

Outlook and open directions. Notwithstanding the function–class perspective of Section 3.2, the
fat-shattering framework—while principled for bounded, Lipschitz neural networks—has yet to be
rigorously extended to modern LLM and kernel-based architectures. At present, finiteness of PVCγ

and C-PVCτ
γ is provable only under relatively restrictive assumptions, such as

∥W (ℓ)∥1 ≤ Bℓ and ϕ is ρ-Lipschitz

for every layer ℓ. In contrast, models used in practice may exceed these bounds or include non-
Lipschitz operations.

Developing theoretical tools that bound the probabilistic capacity of richer, structured architec-
tures—particularly Transformers and GVUSsian Processes—therefore remains an important direction
for future work. Such advances would narrow the gap between introspection theory and the empirical
performance of high-capacity predictors in contemporary systems.

K EVALUATION ON MATH-500 BENCHMARK

To assess the robustness and generality of our framework, we replicate the full evaluation procedure
on the MATH-500 benchmark (HuggingFaceH4, 2024), a well-established diagnostic suite that spans
seven mathematical sub-domains.
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Table 3: Experimental results comparing model performance on Math 500 dataset. PVC-VUS Gap
represents the difference between PVC-VUS and C-PVC-VUS. SC-VUS is Sample Complexity -
VUS.

Model PVC-VUS ↑ C-PVC-VUS ↑ PVC-VUS Gap ↓ SC-VUS ↑ ECE ↓ AE ↓

Qwen2.5-7B (Pretrain) (Yang et al., 2024a) 3.93 2.56 1.37 555.6 0.356 0.439

Qwen2.5-7B-Instruct (SFT+RL) (Yang et al., 2024a) 3.94 2.54 1.39 554.3 0.358 0.438

Qwen2.5-Math-7B-Instruct (SFT+RL) (Yang et al., 2024b) 3.68 2.57 1.11 556.8 0.304 0.476

Llama-3.1-8B-Instruct (SFT+DPO) (Meta AI, 2024) 3.97 2.67 1.30 566.7 0.331 0.435

OpenThinker2-7B (SFT) (Open-Thoughts, 2023) 4.36 3.09 1.26 609.4 0.294 0.378

DeepSeek-R1-Distill-Qwen-7B (Distill) (Guo et al., 2025) 3.95 2.52 1.43 551.6 0.369 0.437

Bespoke-Stratos-7B (SFT) (Bespoke Labs, 2023) 4.19 2.88 1.30 588.4 0.330 0.403

JiuZhang3.0-7B (SFT) (Zhou et al., 2024) 3.74 3.11 0.63 610.9 0.169 0.466

Ministral-8B-Instruct-2410 (SFT+RL) (Mistral AI, 2024) 3.97 2.50 1.46 550.3 0.377 0.434

Open-Reasoner-Zero-7B (RL) (Hu et al., 2025) 4.39 2.99 1.40 598.9 0.322 0.374
s1.1-7B (SFT) (Muennighoff et al., 2025) 4.26 2.93 1.32 593.2 0.317 0.393

The results largely mirror the trends observed in our main evaluation, reinforcing the robustness of
our proposed metrics. OpenThinker2-7B continues to demonstrate strong introspective performance,
achieving the highest PVC-VUS and C-PVC-VUS on Math-360 and ranking second on MATH-
500. This consistency underscores the model’s reliable self-assessment capabilities across diverse
mathematical reasoning tasks. JiuZhang3.0-7B exhibits similarly stable behavior, consistently
achieving the lowest PVC-VUS Gap and ECE while attaining the highest SC-VUS on both datasets.
This superior calibration translates to higher C-PVC scores than would be expected from raw
reasoning performance alone. Unlike models that systematically overestimate their correctness,
JiuZhang produces conservative yet well-aligned self-assessments.

However, several ranking deviations reveal how benchmark characteristics subtly influence calibration
behavior. Most notably, Llama-3.1-8B-Instruct shows degraded performance on MATH-500, with

Figure 4: Calibration-aware Probabilistic VC (C-PVC) Dimension Across Different Models on
MATH 500: 3D surface plots showing C-PVC dimension values for eleven 7-8B parameter language
models. The x-axis (τ ) represents calibration error tolerance, y-axis (γ) shows confidence threshold,
and z-axis displays the C-PVC values. Higher C-PVC-VUS in parentheses beside each model name
indicates better self-evaluation capabilities.
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Figure 5: Model Self-Evaluation Capabilities and Calibration Performance: (a) PVC scores across
confidence thresholds (γ) for eleven language models. Higher curves indicate better ability to
maintain expressive reasoning as confidence requirements increase. Open-Reasoner-Zero-7B and
OpenThinker2-7B show the strongest performance. (b) Comparison between PVC-VUS (expressive-
ness) and C-PVC-VUS (calibrated expressiveness). Points closer to the diagonal dashed line indicate
better calibration. JiuZhang3.0-7B shows the smallest gap between these metrics, demonstrating
superior calibration, while Open-Reasoner-Zero-7B achieves the highest overall expressiveness.

substantial drops in C-PVC-VUS, ECE, and AE rankings compared to Math-360, despite maintaining
moderate overall PVC-VUS scores.

The joint calibration plot in Figure 5 shows all models falling below the diagonal, reflecting decreased
C-PVC relative to PVC when calibration constraints are applied. Models such as Open-Reasoner-
Zero-7B and OpenThinker2-7B position closest to the upper-right frontier, achieving optimal balance
between reasoning coverage and confidence alignment. These cross-dataset results validate the
stability of our evaluation framework while illuminating benchmark-specific effects.

The MATH-500 dataset, being more extensively studied, may exhibit greater overlap with certain
models’ training data. Nevertheless, the consistent ranking patterns in PVC and C-PVC across
datasets demonstrate that these metrics provide a meaningful and generalizable approach to assessing
model self-evaluation capabilities. This cross-dataset consistency further validates our framework’s
utility for understanding language model introspective performance.

L JUDGE CORRELATION STUDY

To systematically assess the quality and consistency of the language models’ self-evaluation capa-
bilities, we conducted a detailed correlation analysis comparing model-generated self-assessments
against judgments provided by three reference LLM judges: Claude 3.7 Sonnet, Amazon Nova
Premier, and DeepSeek-R1. This analysis focused on the Math-360 dataset to evaluate mathematical
reasoning self-assessment. Figure 6 presents two complementary analyses: the Pearson correlation
coefficients indicating the strength and direction of linear relationships between model self-evaluation
scores and judge scores, and the direct agreement percentages reflecting how often model selections
matched those of each judge.

As illustrated in the left heatmap of Figure 6, the correlation between models and judges exhibits
notable variability. Specifically, Amazon Nova Premier consistently shows higher correlations
(average correlation = 0.18; see Table 4), particularly pronounced with models such as Open-
Reasoner-Zero-7B (correlation = 0.52) and Qwen2.5-7B-Instruct (correlation = 0.31). These findings
suggest Amazon Nova Premier employs evaluation criteria broadly aligned with model-generated
assessments, serving as a reliable benchmark for assessing self-reflection in various models.

In contrast, Claude 3.7 Sonnet presents considerably weaker correlations overall (average correlation
= -0.09). Notably, negative correlations were observed with specific models, such as Qwen2.5-
7B-Instruct (-0.17) and Open-Reasoner-Zero-7B (-0.27). This indicates a potential divergence in
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evaluation strategies, where Claude adopts either stricter or fundamentally distinct criteria compared
to other judges.

DeepSeek-R1 maintains moderate correlations (average correlation = 0.01) with models, display-
ing intermediate consistency. The relatively balanced correlation patterns indicate DeepSeek-R1’s
evaluation criteria align moderately well across models without extreme bias towards specific method-
ologies.

Figure 6: Left: Heatmap showing Pearson correlation between correct model self-evaluation answers
and correct judge answers; Right: Heatmap showing direct agreement percentage between model
self-evaluation answers and judge answers

The agreement rate heatmap (right side of Figure 6) provides additional clarity regarding model-judge
alignment at the outcome-level (correct versus incorrect decisions). Here, Amazon Nova Premier
again demonstrates the highest agreement rate on average (0.61; Table 4). A high agreement rate of
0.75 is observed with Open-Reasoner-Zero-7B, reinforcing its robust alignment in judgment criteria.
Conversely, Claude 3.7 Sonnet exhibits lower overall agreement (0.53), with the lowest recorded
agreement rate of 0.43 (with Open-Reasoner-Zero-7B). This further supports the interpretation that
Claude employs significantly more stringent or distinct assessment standards. DeepSeek-R1, with an
overall moderate agreement rate (0.55), reflects consistent yet cautious alignment.

An interesting phenomenon observed involves overall accuracy surpassing individual judge accuracy
rates. For instance, OpenThinker2 shows an overall accuracy of approximately 0.65, exceeding
judge-specific accuracy metrics. This can occur due to partial overlaps and complementary patterns in
judge-model agreement, emphasizing the importance of integrating multiple evaluation perspectives
when assessing LLM self-reflection capabilities.

In summary, our correlation and agreement analyses highlight meaningful differences among LLM
judges regarding their evaluation criteria and model alignment. Amazon Nova Premier emerges
as the most broadly applicable reference judge, suitable for general benchmarking. Conversely,
Claude 3.7 Sonnet represents a valuable benchmark for stringent evaluation contexts, potentially
capturing nuanced deficiencies in model self-assessment. These findings underscore the necessity of
incorporating diverse evaluation perspectives to thoroughly gauge and enhance LLM self-evaluation
accuracy and reliability.

LLM Judge Correlation Agreement rate
Claude 3.7 Sonnet -0.09 0.53
Amazon Nova Premier 0.18 0.61
DeepSeek - R1 0.01 0.55

Table 4: Overall pearson correlation and agreement rate between judge and model
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M EXTENDED RELATED WORKS

Research into LLM self-reflection capabilities has evolved from educational psychology frameworks
(Brown, 2010; Govaerts et al., 2012; Johnston et al., 2005; Leijen et al., 2009; Nelson & Freier, 2008;
Palinscar & Brown, 1984; Reznitskaya et al., 2012; Tseng & Bryant, 2013; Webb et al., 2013) to
LLM-specific methods (Shi, 2019; Bentvelzen et al., 2022). In this context, self-reflection refers to a
model’s internal mechanism for examining its own reasoning processes, while self-evaluation focuses
on the quantitative assessment of output quality and confidence estimation. Recent approaches include
Reflexion (Shinn et al., 2023), which implements iterative self-improvement through reflection, Self-
Refine (Madaan et al., 2023), which enables progressive output refinement, and CRITIC (Pan et al.,
2023), which separates generation from evaluation. Theoretical frameworks like Metacognitive
Prompting (Toy et al., 2024) and metacognitive language models (Wang & Zhao, 2023) attempt to
formalize these self-evaluation processes.

While extensions to probabilistic predictors have been explored in limited contexts (Klesk, 2012),
they have not been fully developed for analyzing modern neural language models. Our work builds
upon fat-shattering dimension theory (Mendelson & Vershynin, 2003; Anthony & Bartlett, 2009;
Telgarsky, 2017; Bartlett et al., 2019; Colomboni et al., 2025), providing a theoretical bridge between
classical learning theory and modern probabilistic models.

Post-hoc calibration methods such as temperature scaling (Platt et al., 1999) and conformal prediction
(Angelopoulos & Bates, 2021) have been proposed to improve calibration quality. Uncertainty
quantification techniques including ensemble methods (Lakshminarayanan et al., 2016) and Bayesian
approaches (Gal & Ghahramani, 2015) have been adapted for language models.

Recent advances in language model training have leveraged various forms of preference optimization
(Swamy et al., 2025). Methods such as Reinforcement Learning from Human Feedback (Ouyang
et al., 2022), Direct Preference Optimization (Rafailov et al., 2023), Contrastive Preference Learning
(Hejna et al., 2023), and self-rewarding approaches (Yuan et al., 2024) have significantly improved
LLM capabilities through incorporating human or AI preferences into training processes. While these
approaches often focus on optimizing general helpfulness and harmlessness, specialized variants for
reasoning tasks have emerged, such as Group Relative Policy Optimization for mathematics (Shao
et al., 2024).

Collectively, these research areas converge in our work: we leverage classical VC theory to develop a
principled framework for evaluating self-reflection capabilities in LLMs, while addressing the critical
challenge of calibration that has been identified across deep learning systems. Our approach provides a
theoretical foundation for understanding how different training methodologies, particularly preference
optimization techniques, influence a model’s ability to reliably assess its own reasoning—bridging
the gap between theoretical learning guarantees and practical LLM development.

N DETAILED EXPERIMENTAL METHODOLOGY

This section elaborates on our empirical approach to measuring PVC dimensions in language models,
providing implementation details for the framework introduced in Section 3.3.

N.1 MEASUREMENT PROTOCOL

Our empirical evaluation follows a three-stage protocol designed to measure a model’s capacity for
reasoning self-assessment while avoiding information leakage. The process is illustrated in Figure ??.

Stage 1: Answer Generation. For each problem instance, the model generates two independent
solutions using distinct decoding trajectories:

• A solution that follows standard, step-by-step reasoning patterns, and

• A solution that explores a non-standard, potentially more intuitive or compact reasoning
path.

These variants ensure diversity in reasoning quality while remaining model-generated.
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Stage 2: Self-Evaluation. The model is then presented with both candidate solutions in randomized
order. It must choose the answer it believes to be more correct and assign a confidence score to its
choice. Notably, the model is not given access to the ground-truth answer at any point, ensuring that
this choice reflects genuine internal evaluation, not supervised feedback.

Stage 3: External Judging. To determine the ground-truth correctness, a separate ensemble of
larger language models—acting as external judges—is given access to the same pair of solutions,
along with the correct final answer. The ensemble selects the objectively superior solution, serving
as the gold label for evaluating self-reflection accuracy. This design ensures that the evaluation
signal is (i) grounded in correctness, (ii) independent of the model being evaluated, and (iii) robust to
individual model biases.

N.2 HYPERPARAMETERS

The decoding and evaluation configuration reported below was applied identically to all eleven models
examined in this study—QWEN2.5-7B (Yang et al., 2024a), QWEN2.5-7B-INSTRUCT (Yang et al.,
2024a), QWEN2.5-MATH-7B-INSTRUCT (Yang et al., 2024b), DEEPSEEK-R1-DISTILL-QWEN-
7B (Guo et al., 2025), LLAMA-3.1-8B-INSTRUCT (Meta AI, 2024), OPENTHINKER2-7B (Open-
Thoughts, 2023), BESPOKE-STRATOS-7B (Bespoke Labs, 2023), JIUZHANG3.0-7B (Zhou et al.,
2024), MINISTRAL-8B-INSTRUCT-2410 (Mistral AI, 2024), OPEN-REASONER-ZERO-7B (Hu
et al., 2025), and S1.1-7B (Muennighoff et al., 2025). The same parameter settings were used for
every query sent to the judge ensemble.

Table 5: Decoding and evaluation settings

Parameter Temperature Top-P Max tokens Judge ensemble
Value 0.7 0.9 4096 Claude 3.7 Sonnet (Anthropic, 2025); Amazon Nova Premier (Intelligence, 2024); DeepSeek-R1 (Guo et al., 2025)

N.3 BENCHMARK DATASET CONSTRUCTION

To evaluate mathematical reasoning capabilities more effectively, we developed a new benchmark
that addresses one potential limitation of some existing datasets: the possibility of data contamination.
Certain prior benchmarks—particularly those derived from widely available competition problems,
textbooks, or online resources—may have some degree of overlap with pretraining corpora of large
language models, which could potentially influence performance measurements. Our benchmark was
developed with attention to originality and domain diversity, aiming to provide a complementary
evaluation resource that helps assess reasoning abilities while reducing the likelihood of familiarity
effects.

Taxonomic Coverage. Table 6 presents the taxonomy of mathematical reasoning categories and
subcategories included in our benchmark. The dataset spans eight core domains—Arithmetic, Al-
gebra, Calculus, Geometry, Number Theory, Combinatorics, Statistics, and Linear Algebra—each
subdivided into five foundational subtopics. This taxonomy reflects the structure of standard mathe-
matics curricula and facilitates interpretable analysis across well-defined conceptual boundaries.

Problem Distribution. Each subcategory contains five problems distributed across varying diffi-
culty levels (easy, medium, hard), yielding a total of 360 problems. This balanced structure prevents
overrepresentation of specific skills and ensures a fair and comprehensive assessment of mathematical
reasoning.

Representative Examples. Table 7 provides one representative problem per subcategory, high-
lighting the range and depth of reasoning skills required. Problems are designed to elicit multi-step
thinking, abstraction, and formal manipulation, rather than direct recall or pattern matching. For
instance, problems in combinatorics test combinatorial enumeration and recurrence, while those in
number theory evaluate modular reasoning and structural properties of integers.

Taken together, the benchmark offers a principled and contamination-resistant testbed for evaluating
mathematical reasoning in language models. It supports both overall capability assessment and
fine-grained diagnosis of strengths and weaknesses across mathematical domains.
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Table 6: Taxonomy of mathematical reasoning categories in our benchmark.

Category Subcategories
Arithmetic Basic Operations, Fractions, Percentages, Numerical Approximation, Order of Operations

Algebra Equations, Inequalities, Polynomials, Functions, Systems of Equations

Calculus Differentiation, Integration, Limits, Series, Applications

Geometry Plane Geometry, Coordinate Geometry, Transformations, Mensuration, Trigonometry

Number Theory Divisibility, Modular Arithmetic, Primes, Diophantine Equations, Number Sequences

Combinatorics Counting Principles, Permutations, Combinations, Probability, Recursion

Statistics Descriptive Statistics, Distributions, Hypothesis Testing, Regression, Bayesian Inference

Linear Algebra Matrices, Determinants, Vector Spaces, Eigenvalues, Linear Transformations

Table 7: Representative problems from each subcategory in our mathematical reasoning benchmark
360.

Category Subcategory Example Problem

Arithmetic

Basic Operations Calculate 238 + 149.
Fractions What is 2/5 + 1/5?
Percentages What is 25% of 80?
Numerical Approximation Round 47.68 to the nearest whole number.
Order of Operations Calculate 3 + 4 × 2.

Algebra

Equations Solve for x: x + 5 = 12.
Inequalities Solve: x + 3 ¿ 7.
Polynomials Simplify: (3x² + 2x) + (4x² - 5x + 1).
Functions If f(x) = 2x + 3, find f(4).
Systems of Equations Solve the system: x + y = 5, x - y = 1.

Calculus

Differentiation Find the derivative of f(x) = 3x² + 2x - 5.
Integration Find (3x² + 2) dx.
Limits Evaluate lim(x→3) (x² - 4).
Series Find the sum of the first 10 terms of the arithmetic sequence with a = 3 and d = 4.
Applications Find the maximum value of f(x) = -x² + 6x - 5 on the interval [0, 5].

Geometry

Plane Geometry Find the area of a rectangle with length 8 cm and width 5 cm.
Coordinate Geometry Find the distance between the points (3, 4) and (6, 8).
Transformations Reflect the point (3, 5) across the x-axis.
Mensuration Find the circumference of a circle with radius 5 cm.
Trigonometry Find sin(30°).

Number Theory

Divisibility Determine whether 156 is divisible by 4.
Modular Arithmetic Calculate 17 mod 5.
Primes List all prime numbers less than 20.
Diophantine Equations Find all integer solutions to x + y = 10.
Number Sequences Find the next number in the sequence: 3, 7, 11, 15, ...

Combinatorics

Counting Principles How many different 3-digit numbers can be formed using the digits 1, 2, 3, 4, 5 without repetition?
Permutations How many permutations can be formed using all the letters of the word ’MATH’?
Combinations How many ways are there to select 3 books from a shelf containing 7 different books?
Probability A fair die is rolled. What is the probability of getting a number greater than 4?
Recursion Find the 6th term in the Fibonacci sequence, where F = 1, F = 1, and F = F + F for n 3.

Statistics

Descriptive Statistics Find the mean of the numbers 4, 7, 9, 3, and 2.
Distributions If X follows a normal distribution with mean 10 and standard deviation 2, what is P(X ¿ 12)?
Hypothesis Testing In a hypothesis test, what is the meaning of a Type I error?
Regression In a linear regression model, what does the slope coefficient represent?
Bayesian Inference State Bayes’ theorem.

Linear Algebra

Matrices Calculate the sum of the matrices A = [[3, 5], [1, 2]] and B = [[4, 0], [6, 3]].
Determinants Calculate the determinant of the matrix A = [[3, 4], [1, 2]].
Vector Spaces Determine whether the set of vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) forms a basis for R³.
Eigenvalues Find the eigenvalues of the matrix A = [[2, 0], [0, 3]].
Linear Transformations Let T: R² → R² be defined by T(x, y) = (2x, 3y). Find T(1, 2).

N.4 EXPERIMENTAL PROMPTS

Our measurement procedure operationalizes the theoretical concept of PVC dimension through a
three-stage process.

N.4.1 FIRST SOLUTION GENERATION

The target model generates an expert-level solution using the following prompt:
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System: You are an expert mathematics educator with deep knowledge across all mathematical domains.
Your task is to solve a math problem with exceptional clarity and accuracy.

User: Please solve the following mathematical problem step by step, ensuring complete accuracy:
PROBLEM: {problem}
Provide a detailed solution that demonstrates expert-level understanding.
Include:
1. Clear explanation of your approach
2. Each step fully worked out
3. Proper mathematical notation
4. Verification of your answer
Make sure your final answer is clearly indicated and correct.

N.4.2 SECOND SOLUTION GENERATION

The model generates an alternative solution using:

System: You are a brilliant mathematics educator known for your creative problem-solving approaches.
Your task is to solve a math problem using your new methods.

User: Please solve the following mathematical problem:
PROBLEM: {problem}
Provide an extremely detailed solution that demonstrates understanding.
Include:
1. A clear explanation of your approach using an alternative and creative solution path
2. Each step fully worked out with mathematical reasoning
3. Proper mathematical notation and formalism
4. If applicable, connect this problem to broader mathematical concepts or real-world applications
Make your solution as thorough and educational as possible, showing multiple ways to think about and
verify the solution. Focus on approaches that demonstrate mathematical insight and elegance.

This design choice—requesting alternative approaches rather than explicitly introducing er-
rors—allows for natural quality variation while avoiding artificially degraded solutions that would be
too obviously flawed.

N.4.3 SELF-EVALUATION FOR MATH DATASET

The model evaluates both solutions (presented in randomized order), identifies which it believes is
superior, and provides a confidence score (0-100%). The evaluation prompt follows:

System: You are an expert mathematics evaluator tasked with comparing two solutions to the same
problem.

User: Below are two different solutions to the same mathematical problem. Your task is to carefully
evaluate both solutions and determine which one is superior in terms of correctness, clarity, and
mathematical insight.
PROBLEM: {problem}
SOLUTION A: {solution a}
SOLUTION B: {solution b}
Please compare these solutions carefully and respond with:
1. Which solution is better (A or B)
2. Your confidence in this judgment (0-100%)
3. A brief explanation of why one solution is superior to the other
Format your response as:
Better solution: [A or B]
Confidence: [0-100%]
Explanation: [Your analysis]
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O EXAMPLES

The following examples are provided for illustrative purposes only, to give readers a concrete
understanding of how models perform self-evaluation in our framework. While our quantitative
results in Section 5 comprehensively evaluate model performance through PVC and C-PVC metrics,
these examples offer qualitative insights into the self-evaluation process. These examples illustrate
when the model exhibits accurate introspective judgment, and when it fails due to overconfidence or
conceptual misunderstanding.

O.1 EXAMPLES OF SELF-EVALUATION BEHAVIOR

We present two representative cases—one demonstrating successful self-evaluation and another
showing flawed assessment—to highlight the different patterns of reasoning that emerge during
self-reflection. These examples are anonymized and selected to illustrate typical behaviors observed
across multiple models, rather than to evaluate any specific model’s performance.

Case 1: Correct Self-Evaluation. In this example, the model is asked to compute the inverse of
the function f(x) = 3x−2

x+1 . It generates two answers: Solution A follows a rigorous, textbook-style
derivation, while Solution B uses a creative algebraic reformulation. Both arrive at algebraically
equivalent forms, though Solution B makes minor verification errors. The model correctly selects
Solution A and assigns a confidence score of 90. This choice aligns with the external judge’s label,
and the model’s justification reflects meaningful understanding of correctness. Thus, both its selection
and confidence are well-calibrated, yielding high values in PVC and C-PVC.

Case 2: Flawed Self-Evaluation. Here, the model is asked whether f(x) = |x2 − 4| is one-to-one,
and if not, to restrict the domain and compute its inverse. Solution A correctly identifies the need
for domain restriction (e.g., x ≥ 2) and derives the inverse. In contrast, Solution B makes multiple
conceptual errors, such as misinterpreting the absolute value function as a square root and incorrectly
restricting the domain. Despite these flaws, the model selects Solution B with a confidence score of
80, justifying its choice based on surface-level clarity. This leads to a self-reflection error: the model
is confident in a mathematically invalid solution. While PVC remains high (a choice was made),
C-PVC is low due to confidence miscalibration.

Table 8: Comparison of two model self-evaluation behaviors.

Aspect Case 1: Rational Function Inversion Case 2: One-to-One Determination
Task Type Inverse function derivation via algebraic manipulation One-to-one check and domain-restricted inverse
Judge Ensemble Correct Answer Solution A Solution A
Model’s Selected Answer Solution A Solution B
Confidence Score 90 80
Model’s Justification Emphasized rigor and step-by-step reasoning Praised perceived clarity despite flawed math
Actual Reasoning Errors None; correct and calibrated Misinterpreted absolute value; incorrect domain

Discussion. These examples highlight the need for introspective evaluation beyond accuracy. While
both cases involve the model choosing between two self-generated solutions, only one reflects proper
alignment between correctness and confidence. Our proposed PVC and C-PVC metrics allow us
to distinguish not just whether a model chooses the right answer, but whether it knows it is right.
Such analysis reveals that some models (e.g., RLHF-finetuned) may appear confident while being
systematically miscalibrated, whereas others (e.g., distilled or conservative models) exhibit more
cautious but reliable introspection.

O.2 CASE 1: CORRECT SELF-EVALUATION

User: Find the inverse function of f(x) = 3x−2
x+1

.
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Solution A: Step 1: Understanding the Problem
To find the inverse function of f(x), we need to express the original function in a way that allows us to
easily swap the roles of x and y. The function given is f(x) = 3x−2

x+1
.

Step 2: Setting Up the Inverse Function
To find the inverse function, we’ll start by letting y = f(x), which gives us the equation:
y = 3x−2

x+1

Next, we’ll switch the roles of x and y to begin solving for the inverse function. This means replacing y
with x and replacing x with y in the original equation.
Step 3: Swapping Variables
Swapping the variables gives us:
x = 3y−2

y+1

Step 4: Solving for y
To solve for y, we’ll first multiply both sides of the equation by (y + 1) to get rid of the fraction:
x(y + 1) = 3y − 2
Step 5: Expanding and Simplifying
Now, we’ll expand the left side of the equation and simplify:
xy + x = 3y − 2
Next, we’ll move all terms involving y to one side of the equation and all other terms to the other side:
xy − 3y = −x− 2
Step 6: Factoring and Solving
We can factor out y from the terms on the left side:
y(x− 3) = −x− 2
To isolate y, we’ll divide both sides of the equation by (x− 3):
y = −x−2

x−3

Step 7: Writing the Inverse Function
Now that we’ve solved for y, we can write the inverse function of f(x):
f (−1)(x) = −x−2

x−3

Verification
To verify that this is the correct inverse function, we can check that f(f (−1)(x)) = x and
f (−1)(f(x)) = x.

Let’s start by checking that f(f (−1)(x)) = x:
f(f (−1)(x)) = f(−x−2

x−3
)

Substituting this into the original function f(x) = 3x−2
x+1

, we get:

f(f (−1)(x)) =
3(−x−2

x−3
)−2

(−x−2
x−3

)+1

Simplifying this expression will show that f(f (−1)(x)) = x, which verifies that the inverse function is
correct.
Final Answer
The inverse function of f(x) = 3x−2

x+1
is:

f (−1)(x) = −x−2
x−3

This answer is verified through a detailed and accurate solution process.
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Solution B: Inverse Function Solution: A Creative Approach
Step 1: Set up the function equation
We are given the function f(x) = 3x−2

x+1
. To find the inverse function, we’ll use a substitution method.

Let’s start by setting y = f(x):
y = 3x−2

x+1

Step 2: Switch x and y
To find the inverse, we need to switch the roles of x and y. This means that we’ll replace x with y and
y with x:
x = 3y−2

y+1

Step 3: Solve for y
Now, we need to solve this new equation for y. Our goal is to isolate y on one side of the equation. We
can do this by first multiplying both sides by y + 1 to eliminate the fraction:
x(y + 1) = 3y − 2
Step 4: Distribute x and simplify
Distribute x to the terms inside the parentheses:
xy + x = 3y − 2
Now, let’s move all terms involving y to one side and the constant terms to the other side:
xy − 3y = −x− 2
Step 5: Factor out y and simplify
Factor out y from the terms on the left-hand side:
y(x− 3) = −x− 2
Step 6: Solve for y
To solve for y, divide both sides by x− 3. However, we must consider two cases to avoid division by
zero:
Case 1: x ̸= 3
y = −x−2

x−3

Case 2: x = 3 (this is a special case that we’ll revisit later)
For the general case x ̸= 3, we have found the inverse function.
Step 7: Simplify the inverse function
Let’s rewrite the inverse function in a simpler form by multiplying the numerator and denominator by
-1 to make the fraction more elegant:
y = x+2

3−x

This is our inverse function.
Step 8: Verify the inverse function
To verify that our inverse function is correct, we can plug it back into the original function:
f(f−1(x)) = f

(
x+2
3−x

)
f(f−1(x)) =

3( x+2
3−x )−2

( x+2
3−x )+1

Step 9: Simplify the expression
To simplify this expression, multiply the numerator and denominator by (3 − x) to eliminate the
fraction:
f(f−1(x)) = 3(x+2)−2(3−x)

(x+2)+(3−x)

f(f−1(x)) = 3x+6−6+2x
3

f(f−1(x)) = 5x
3

Step 10: Conclusion
We started with the function f(x) = 3x−2

x+1
and found its inverse function using a creative substitution

method. The inverse function is f−1(x) = x+2
3−x

. We verified the inverse function by plugging it back
into the original function and simplifying the expression.
Broader Mathematical Concepts and Real-World Applications
Inverse functions have numerous applications in various fields, including physics, engineering, and
computer science. For example, in physics, the inverse function of a displacement-time function can
be used to find the velocity and acceleration of an object. In engineering, the inverse function of a
stress-strain function can be used to design materials with specific properties. In computer science,
inverse functions are used in algorithms for solving systems of equations and in data analysis.
Conclusion
In this solution, we demonstrated a creative approach to finding the inverse function of f(x) = 3x−2

x+1

using a substitution method. We worked through each step with mathematical reasoning and proper
notation, and we verified the inverse function by plugging it back into the original function. We also
connected this problem to broader mathematical concepts and real-world applications, highlighting the
importance of inverse functions in various fields.
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Self-Evaluation:
Selected Solution: A
Confidence Score: 90
Upon reviewing both solutions, I noticed that Solution A is more thorough and accurate in its step-by-
step process. It starts by properly setting up the inverse function, swapping the variables, and solving
for y. In contrast, Solution B uses a more creative approach but lacks the necessary rigor and clarity in
its solution process.
One major issue with Solution B is its failure to properly verify the inverse function. While it attempts
to simplify the expression by multiplying the numerator and denominator by (3 - x), it does not actually
demonstrate that this process is valid or that it correctly solves for y. Additionally, Solution B’s approach
is more prone to errors due to its reliance on a single substitution, whereas Solution A uses a more
systematic approach that involves multiple steps.
Another issue with Solution B is its use of the special case x = 3, which is not properly addressed. While
it mentions this case in passing, it does not provide a clear solution or explanation for this scenario.
In terms of broader mathematical concepts and real-world applications, both solutions could benefit
from more connections to these areas. However, Solution A provides a more solid foundation in
algebraic manipulation and inverse function theory, making it a more reliable choice for students and
educators.
Overall, I would rate Solution A as the better of the two solutions due to its thoroughness, accuracy, and
clarity. While Solution B attempts to be more creative, its flaws and omissions make it less reliable.

Analysis of Self-Evaluation:
This is an example of a flawed self-evaluation. The evaluator correctly selected Solution A as the better
answer, but their reasoning contains significant errors and misunderstandings:
The evaluator claims Solution B ”fails to properly verify the inverse function,” but in reality, Solution B
attempts verification but makes a computational error in Step 9. When simplifying (x+ 2) + (3− x),
the result should be 5, not 3. This leads to the incorrect final verification result of 5x

3
instead of x.

The evaluator praises Solution A’s verification process, but Solution A only outlines the verification with-
out actually completing it. It merely states ”Simplifying this expression will show that f(f (−1)(x)) = x
without performing the calculations.
The evaluator mentions that Solution B has issues with addressing the special case x = 3, but this is
actually a strength of Solution B, as it acknowledges domain restrictions that Solution A completely
ignores.
The evaluator fails to recognize that Solution A provides its final answer as −x−2

x−3
while Solution B

gives x+2
3−x

. These are equivalent after multiplying numerator and denominator by -1, but the evaluator
doesn’t acknowledge this.
A better self-evaluation would have recognized that both solutions follow similar algebraic approaches
but Solution B actually attempts (though with errors) the verification that Solution A merely mentions.
It should also have noted that both solutions arrive at equivalent forms of the inverse function, with
Solution B taking the extra step to present it in a slightly more elegant form.

O.3 CASE 2: FLAWED SELF-EVALUATION

User: Determine whether the function f(x) = |x2 − 4| is one-to-one. If not, restrict the domain to
make it one-to-one and find its inverse.
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Solution A: To determine whether the function f(x) = |x2 − 4| is one-to-one, we need to understand
what it means for a function to be one-to-one. A function f is one-to-one if it assigns distinct outputs to
distinct inputs, meaning that no two different inputs produce the same output.
Let’s start by analyzing the given function f(x) = |x2−4|. This is an absolute value function composed
with a quadratic function.
Step 1: Understand the nature of the quadratic function The quadratic function x2 − 4 has its vertex at
(0, -4) and its roots at x = −2 and x = 2. This means that the graph of this function is a parabola that
opens upwards, with x-intercepts at (-2, 0) and (2, 0).
Step 2: Understand the absolute value function The absolute value function —u— returns the non-
negative value of u, where u is any real number. This means that |x2 − 4| will always produce
non-negative values, except when x2 − 4 is negative, which occurs when −4 < x2 − 4 < 0.
Step 3: Determine the behavior of the function f(x) = |x2 − 4| The graph of f(x) = |x2 − 4| consists
of two branches: one above the x-axis for x ¡ -2 and one below the x-axis for x ¿ 2, and both are
symmetric about the y-axis. This is becVUSe the absolute value function |x2 − 4| takes the absolute
value of x2 − 4, resulting in non-negative values for both branches.
Step 4: Check if the function is one-to-one To check if f(x) = |x2 − 4| is one-to-one, we need to
verify if it satisfies the condition that no two different inputs produce the same output. Since the graph
of f(x) = |x2 − 4| consists of two branches, one above the x-axis and one below, we can see that this
function does not satisfy the one-to-one condition.
Step 5: Restrict the domain to make the function one-to-one To make f(x) = |x2 − 4| one-to-one, we
need to restrict its domain to either x ≥ 2 or x ≤ −2. This is becVUSe restricting the domain to either
of these intervals will ensure that the function has an inverse.
Step 6: Find the inverse of the function f(x) = |x2 − 4| Let’s find the inverse of f(x) = |x2 − 4|,
restricted to x ≥ 2.
We can start by writing y = |x2 − 4| and solving for x in terms of y. Since y ≥ 0, we have:
y = x2 − 4 y + 4 = x2 x2 = y + 4 x = ±

√
(y + 4)

However, since x ≥ 2, we only take the positive square root:
x =

√
(y + 4)

Substituting y = |x2 − 4| back into the equation, we get:
x =

√
(|x2 − 4|+ 4)

This can be simplified to:
f−1(x) =

√
(x+ 4)

Step 7: Verify the inverse To verify that f−1(x) =
√

(x+ 4) is the inverse of f(x) = |x2 − 4|, we
need to check that f(f−1(x)) = x and f−1(f(x)) = x.
Substituting f−1(x) =

√
(x+ 4) into f(x) = |x2 − 4|, we get:

f(f−1(x)) = f(
√

(x+ 4)) = |(
√

(x+ 4))2 − 4| = |x+ 4− 4| = |x| = x

Similarly, substituting f(x) = |x2 − 4| into f−1(x) =
√

(x+ 4), we get:
f−1(f(x)) =

√
(|x2 − 4|+ 4)

Since the domain of f is restricted to x ≥ 2, we know that |x2 − 4| ≥ 0. Therefore:
f−1(f(x)) =

√
(|x2 − 4|+ 4) =

√
(x2 − 4 + 4) =

√
x2 = x

This verifies that f−1(x) =
√

(x+ 4) is indeed the inverse of f(x) = |x2 − 4|.
The final answer is: f−1(x) =

√
(x+ 4) for x ≥ 2.
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Solution B: To solve this problem, I’ll employ a combination of algebraic manipulations, graphical
analysis, and domain restriction techniques. This approach will allow us to investigate the function’s
behavior and determine whether it’s one-to-one.
Step 1: Algebraic Manipulation
Let’s rewrite the function f(x) = |x2 − 4| using a substitution. We can let u = x2 − 4, which implies
that u is non-negative (since the absolute value of a quantity is non-negative). This allows us to rewrite
the original function as:
f(x) = |u| =

√
u, since the square root of a non-negative quantity is equivalent to the absolute value.

Step 2: Graphical Analysis
Now, let’s analyze the graph of the function f(x) =

√
u =

√
x2 − 4. To do this, we need to understand

the graph of the related function y = x2 − 4. Since this is a quadratic function with a negative leading
coefficient, its graph is a parabola that opens downwards, with a vertex at (0, -4).
The graph of f(x) =

√
x2 − 4 can be obtained by taking the square root of the y-values from the graph

of y = x2 − 4, which results in a half-parabola that opens upwards, with the vertex at (0, 0).
Step 3: Domain Restriction
Notice that the graph of f(x) =

√
x2 − 4 is not one-to-one on the entire real number line. To find a

domain restriction that would make the function one-to-one, we can analyze the behavior of the function
in different intervals.
Since the graph of f(x) =

√
x2 − 4 has a minimum point at (0, 0), we can restrict the domain to either

(, 0] or [0, ). Let’s choose the domain [0, ) for this example.
Step 4: Finding the Inverse
To find the inverse of f(x) =

√
x2 − 4 on the domain [0, ), we’ll use the following steps:

Write y =
√
x2 − 4. Square both sides to get y2 = x2 − 4. Add 4 to both sides to get y2 + 4 = x2.

Take the square root of both sides to get y = ±
√
x2 + 4. Since y =

√
x2 − 4 on the domain [0, ), we

have y =
√
x2 + 4 as the inverse function. The final inverse function is f−1(x) =

√
x2 + 4.

Conclusion
The original function f(x) = |x2 − 4| is not one-to-one on the entire real number line. However, by
restricting the domain to [0, ) and using the algebraic manipulations and graphical analysis techniques
presented above, we found the inverse function f−1(x) =

√
x2 + 4.

Broader Mathematical Concepts
This problem demonstrates several key mathematical concepts:
The use of substitution to simplify expressions and make algebraic manipulations more manageable.
The importance of graphical analysis in understanding the behavior of functions and making informed
domain restriction decisions. The application of the concept of the inverse of a function and its relevance
to the problem at hand. Real-World Applications
The problem-solving techniques employed in this solution have real-world applications in:
Signal processing and filtering: The domain restriction technique can be applied to filter out unwanted
signals in audio or image processing applications. Computer graphics: The use of substitution and
algebraic manipulation can be applied to create more efficient and effective algorithms for rendering
graphics. Optimization problems: The technique of finding the inverse of a function can be applied to
solve optimization problems in various fields, such as economics, engineering, and physics. By employ-
ing a combination of algebraic manipulations, graphical analysis, and domain restriction techniques,
we’ve been able to determine whether the function f(x) = |x2 − 4| is one-to-one, find its inverse, and
explore broader mathematical concepts and real-world applications.
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Self-Evaluation:
Selected Solution: B
Confidence Score: 80
Both solutions A and B aim to determine whether the function f(x) = |x2 − 4| is one-to-one, and if
not, find its inverse by restricting the domain.
Solution A starts by analyzing the nature of the quadratic function x2−4, followed by an understanding
of the absolute value function. It correctly determines the behavior of the function f(x) = |x2 − 4|,
concludes that it is not one-to-one on the entire real number line, and restricts the domain to either
x ≥ 2 or x ≤ −2 to make it one-to-one.
However, when finding the inverse of f(x) = |x2 − 4|, solution A takes the square root of |x2 − 4|+4,
which results in

√
(x+ 4) for x ≥ 2. This inverse function is correct, but the reasoning for obtaining it

is not as clear as in solution B.
Solution B uses a combination of algebraic manipulations and graphical analysis to determine the nature
of the function f(x) = |x2 − 4|. It correctly identifies the function as not one-to-one on the entire real
number line and restricts the domain to [0,∞) to make it one-to-one.
When finding the inverse of f(x) = |x2 − 4| on the domain [0,∞), solution B takes a clear and logical
approach by first rewriting the function as

√
(x2 − 4), then squaring both sides to get y2 = x2 − 4,

adding 4 to both sides to get y2 + 4 = x2, and finally taking the square root of both sides to get
y = ±

√
(x2 + 4).

However, since the original function f(x) = |x2 − 4| is only defined on the domain [0,∞), solution B
correctly determines the inverse as f−1(x) =

√
(x2 + 4), which is also correct.

Both solutions A and B are mathematically correct and provide a clear explanation of the process for
determining whether the function f(x) = |x2 − 4| is one-to-one and finding its inverse. However,
solution B is slightly more detailed and provides a clearer explanation of the reasoning behind obtaining
the inverse function.
Therefore, solution B is of higher quality overall due to its clearer explanations and more logical
approach to finding the inverse function.

Analysis of Self-Evaluation:
This is an example of a problematic self-evaluation with critical errors in judgment. The evaluator incor-
rectly selects Solution B as superior, despite Solution B containing multiple fundamental mathematical
errors.
Key issues with the self-evaluation:
The evaluator fails to recognize that Solution B makes a fundamental error by equating |x2 − 4| with√

(x2 − 4), which is mathematically incorrect. The absolute value is not equivalent to the square root
function.
The evaluator doesn’t notice that Solution B incorrectly describes the quadratic function x2 − 4 as
having a negative leading coefficient and opening downward, when it actually has a positive leading
coefficient and opens upward.
The evaluator accepts Solution B’s incorrect domain restriction to [0,∞), which doesn’t make the
function one-to-one. The correct restriction would be x ≥ 2 (or x ≤ −2) as correctly identified in
Solution A.
The evaluator erroneously claims both solutions are ”mathematically correct” when Solution B contains
several critical mathematical errors that lead to an incorrect inverse function.
The evaluator praises Solution B for being ”more detailed” and providing ”clearer explanations,” when
in fact Solution B’s explanations are built on incorrect mathematical foundations.
A proper self-evaluation would have recognized that Solution A correctly analyzes the function,
identifies the proper domain restriction to make it one-to-one, and derives the correct inverse function
with appropriate verification. It would have identified the multiple fundamental errors in Solution B’s
approach and reasoning.
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