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Abstract

Diffusion Language models (DLMs) are a001
promising avenue for text generation due to002
their practical properties on tractable control-003
lable generation. They also have the advantage004
of not having to predict text autoregressively.005
However, despite these notable features, DLMs006
have not yet reached the performance levels007
of their Autoregressive counterparts. One of008
the ways to reduce the performance gap be-009
tween these two types of language models is010
to speed up the generation of DLMs. There-011
fore, we propose a pioneering methodology to012
address this issue in this work. It enables the013
execution of more generation steps within a014
given time frame, potentially leading to higher-015
quality outputs. Specifically, our methods es-016
timate DLMs completeness of text generation017
and allow adaptive halting of the generation018
process. We test and refine our methods on019
Plaid, SSD, and CDCD DLMs and create a020
cohesive perspective on their generation work-021
flows. Finally, we confirm that our methods022
allow halting Plaid, SSD, and CDCD models023
and decrease the generation time by 10-40%024
without a drop in the quality of model samples.025

1 Introduction026

Language Models (LMs) are essential Natural Lan-027

guage Processing (NLP) tools. The two primary028

methods of training LMs for NLP are autoregres-029

sive training (Radford et al., 2019; Raffel et al.,030

2020; Chowdhery et al., 2022) and masked lan-031

guage modeling (Devlin et al., 2019; He et al.,032

2020; Liu et al., 2019; Lan et al., 2020).033

The exploration of alternative models, such as034

Diffusion Models (Ho et al., 2020; Song et al.,035

2020), is a promising avenue for research as dif-036

fusion allows native non-causal conditioning and037

simplified controllable generation methods (Nichol038

et al., 2022). In recent works, with models such as039

"Diffusion LM" and Plaid (Li et al., 2022; Gulrajani040

and Hashimoto, 2023), Simplex-based Diffusion041

Language Model (SSD) (Han et al., 2023), GENIE 042

(Lin et al., 2022), and Continuous Diffusion for 043

Categorical Data (CDCD) (Dieleman et al., 2022) 044

being introduced, we can see an emerging interest 045

for using Diffusion Models in text generation. 046

A crucial distinction between Autoregressive 047

LMs and Diffusion Language Models (DLMs) lies 048

in their modeling approaches. Autoregressive LMs 049

predominantly adhere to the common probabilistic 050

model. In contrast, DLMs exhibit substantial diver- 051

gence in their application for modeling categorical 052

data. When exploring DLMs, it is essential to con- 053

sider the lack of connectivity between such models. 054

The majority of comparisons between them have 055

primarily focused on evaluating sample quality. 056

While it is essential to study the sample quality 057

of DLMs, it does not further our understanding of 058

the differences between these models. This work 059

addresses this issue and evaluates various DLMs 060

with a unified view of their generation process. 061

Given this unified view, we study the dynamics 062

of the generation process within different DLMs 063

and focus on the changes in the samples during that 064

process. 065

The main contributions of this paper can be sum- 066

marized as follows: 067

• We showed that the generation process of 068

most DLMs for general text generation can 069

be halted, which makes it possible to imple- 070

ment an early, faster sample generation with- 071

out compromising quality. 072

• To the best of our knowledge, we were the first 073

to evaluate DLMs with adaptive Early Exiting 074

(Graves, 2016). In this paper, we introduced 075

three adaptive criteria inspired by the ones 076

used for text classification (Liu et al., 2020; 077

Zhou et al., 2020; Gao et al., 2023). 078

• We evaluated these criteria and provided em- 079

pirical evidence of their efficiency. This study 080
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highlights the efficacy of our approach and its081

potential to enhance text generation by em-082

ploying diffusion models. In future works, the083

methodology used in this paper can be devel-084

oped even further in order to understand better085

and evaluate newly trained DLMs.086

2 Related Work087

2.1 Diffusion Language Models088

When applied to discrete data, diffusion models089

have demonstrated promising results in image gen-090

eration and captioning (Chen et al., 2022).091

Within NLP, diffusion models have also been092

successfully integrated into sequence-to-sequence093

tasks (Savinov et al., 2021; Reid et al., 2023; Gong094

et al., 2023; Yuan et al., 2022; Lin et al., 2022).095

Despite their performance being on par with non-096

autoregressive models, most diffusion models em-097

ploy an Encoder-Decoder architecture. For uncon-098

ditional language modeling, this approach is not099

ideal. Although it is possible to modify probabilis-100

tic models to accommodate unconditional text gen-101

eration, the supporting evidence for their efficacy102

in this area is sparse. It is generally acknowledged103

that non-autoregressive models are more adept at104

dealing with conditional text generation tasks, such105

as machine translation, compared to unconditional106

text modeling (Gu et al., 2018).107

The "Diffusion LM" proposed by Li et al. (2022)108

aimed to establish a generalized LM capable of109

unconditional sampling. This model was evaluated110

based on its capability for controlled, classifier-111

guided text generation. However, it is worth noting112

that, unlike other pre-trained models, the "Diffu-113

sion LM" was not trained on large datasets. More-114

over, its authors did not share any pre-trained115

weights, making it necessary to train the model116

from scratch to compare its performance with other117

methods. Conversely, a significant advantage of the118

Simplex-based Diffusion Language Model (SSD)119

and Plaid models (Han et al., 2023; Gulrajani and120

Hashimoto, 2023) is that they are available in121

open access and are pre-trained on extensive text122

datasets.123

Both Self-conditioned Embedding Diffusion124

(SED) and Continuous Diffusion for Categorical125

Data (CDCD) have utilized large datasets for pre-126

training their Diffusion LMs (Strudel et al., 2023;127

Dieleman et al., 2022). However, neither of them128

has provided trained model weights or source code.129

These diffusion models are appealing to use for130

comparison due to the different approaches used for 131

training them. For instance, while CDCD utilizes 132

a score interpolation objective, SSD works with a 133

simplex-based method. On the other hand, Plaid is 134

defined with a Variational Lower Bound objective 135

(Kingma and Welling, 2014; Kingma et al., 2021). 136

2.2 Early Exiting Methods 137

The early exit technique is an approach for reducing 138

computational load (Graves, 2016). It especially 139

benefits transformer-based architectures, where in- 140

termediate hidden states maintain consistent shapes 141

across layers. As a result, early exiting has become 142

a standard technique for downstream tasks with pre- 143

trained LMs (Zhou et al., 2020; Liu et al., 2020; 144

Balagansky and Gavrilov, 2022; Gao et al., 2023). 145

3 Preliminaries 146

This section will briefly describe the parts essential 147

for understanding various DLMs – CDCD, Plaid, 148

and SSD. While each framework contains many 149

nuances necessary to train and generate samples, 150

we will cover details on loss evaluation and how 151

architecture is defined to evaluate this loss. More 152

concretely, all these models model a categorical dis- 153

tribution over tokens, making it possible to evaluate 154

early exiting with them. 155

For each model, we start with a sequence of 156

tokens x ∈ V l, where V is a vocabulary set and l 157

is the length of a sequence. 158

These tokens are embedded with the embed- 159

ding matrix E ∈ R|V |×d, where d is an embed- 160

ding size, and produce X0 ∈ Rl×d. Subscript 0 161

here states that these embeddings do not contain 162

noise, commonly used in the diffusion probabilistic 163

model. Models then operate with the noised em- 164

beddings X(t) where the noise amount depends 165

on timestep t. 166

Also, on top of these models, it is expected to 167

see a layer producing a categorical distribution over 168

possible tokens p(x| · · · ), conditioned on arbitrary 169

entities (usually X and t). It is important to note 170

that talking about a distribution over tokens is inter- 171

changeable with discussing a distribution over their 172

corresponding embeddings since each token maps 173

to a specific embedding vector e in Rd from the em- 174

bedding matrix E, and the process can be reversed. 175

Throughout our discussion, this distribution will 176

also be referred to as p(e| · · · ). 177
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3.1 Continuous Diffusion for Categorical Data178

Continuous Diffusion for Categorical Data (CDCD)179

operates with noised input embeddings X(t) ∈180

Rl×d, where the amount of noise depends on181

timestep t ∈ [0; 1]. This process predicts a182

denoised sequence with categorical distribution183

p(x|X(t), t). This distribution is obtained by pre-184

dicting logits of shape Rl ×|V | and applying the185

softmax function. Subsequently, cross-entropy loss186

is applied to estimate p(x|X(t), t); i.e.,187

LCDCD = − log
(
p(x|X(t), t)

)
.188

An estimation of the score function is calcu-189

lated as Ŝ(X(t), t) = X̂0(X(t),t)−X(t)
t2

, where190

X̂0(X(t), t) = Ep(x|X(t),t)

[
[E, . . . ,E]

]
:=191

Ep(e|X(t),t)

[
[E, . . . ,E]

]
∈ Rl×d represents the es-192

timation of the denoised embeddings based on their193

probabilities (Karras et al., 2022). Ŝ(X(t), t) then194

could be passed to an arbitrary ODE solver to ob-195

tain samples from the model.196

3.2 Plaid197

Plaid uses simple loss derived from Varia-198

tional Lower Bound objective (Kingma and199

Welling, 2014; Kingma et al., 2021; Gulrajani and200

Hashimoto, 2023)201

LVLB = −1

2
Et,Zt

[ d
dt

1

σ2(t)
||X0 − X̂0(Zt)||22

]
.202

Here X̂0(Zt) ∈ Rl×d is an estimation of de-203

noised embeddings from noise Zt at time step204

t, t ∼ U [0; 1], Zt ∼ q(Zt|x) is a distribu-205

tion of forward process defined as q(Z0|x) =206

N (X0;σ
2(0)), q(Zt|Zs) = N (Zs;σ

2(t) −207

σ2(s)). σ2(t) is modelled following Kingma et al.208

(2021).209

Notably, while X̂0 could be modeled in contin-210

uous space, doing so will require a model to re-211

member initial embeddings, which is redundant.212

Instead, plaid uses a categorical reparametriza-213

tion similar to one used with Section 3.1 and214

directly learns p(e|Zt) to estimate X̂0(Zt) =215

Ep(e|Zt)

[
[E, . . . ,E]

]
.216

3.3 Simplex-based Diffusion Language Model217

Simplex-based Diffusion Language Model (SSD)218

is a third Diffusion LM tested with unconditional219

text generation for general language modeling.220

Starting with token sequence x, SSD firstly de-221

fines the operation for almost-one-hot encodings222

of x, namely logits generation. For token xi, its 223

continuous representation is defined as Xi,j = K 224

if xi = Vj , and Xi,j = −K otherwise. K ∈ R+ 225

here is a hyperparameter, and V is a vocabulary. 226

Then, for the forward process of the diffusion 227

with sequence x, we evaluate logit generation for 228

tokens xc:l, where c is a context length. Noise is 229

progressively added to almost-one-hot encodings 230

of the text Xc:l(t), leading to normal distribution 231

across logits at the end. 232

The model is then trained with a loss 233

LSSD = Ec,t

[ l−1∑
j=c

− log
(
p(xj |Xc:l(t),x<c)

)]
, 234

where c ∼ U(1; l) is the length of con- 235

text for a generation, and t ∼ U(1;T ), and 236

p(xj |Xc:l(t),x<c) is a categorical distribution 237

over tokens from vocabulary. 238

4 Early Exiting with DLMs 239

While CDCD, Plaid, and SSD define different 240

views on training DLMs, they share a similarity in 241

how distribution on denoised text is defined. More 242

concretely, they all define a categorical distribution 243

over possible embeddings (and thus over possible 244

tokens). 245

This fact leads to the question of how the distri- 246

bution of possible tokens changes with time. 247

4.1 Emergence of Early Exiting Behavior 248

To explore token behavior during generation, we 249

analyze the number of token switches (changes 250

in tokens after each generation step) in CDCD. 251

Note that Dieleman et al. (2022) did not release 252

pre-trained models or training codes for CDCD. 253

To perform experiments with this framework, we 254

reproduced it and trained our model, namely De- 255

mocratized Diffusion Language Model (DDLM). 256

See Appendix Section A for reproduction details. 257

We evaluate token switches at different pre- 258

training checkpoints and at each time step t dur- 259

ing generation for DDLM. Additionally, we ex- 260

amine the entropy of the embedding prediction 261

p(x|X(t), t). Sequences with 200 steps are sam- 262

pled for this analysis (see Figure 1). 263

Interestingly, the model shows zero token 264

switches after approximately the 100th sampling 265

step. This suggests a potential for adaptive early ex- 266

iting in DDLM generation since, for nearly half of 267

3



0 25 50 75 100 125 150 175 200
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0
# 

sw
itc

he
s

0 100K 200K 300K 500K 700K 1M
Training Step

(a)

0 25 50 75 100 125 150 175 200
Step

0

2

4

6

8

10

En
tro

py

0 100K 200K 300K 500K 700K 1M
Training Step

(b)

Figure 1: (a) The number of token switches and (b) the
entropy of p(x|X(t), t). Color represents the training
step, while the x-axis is the diffusion generation step.
The trained model reaches the minimum entropy value
before the generation process ends, and the resulting
samples remain unchanged. See Section 4.1 for more
details.

the generation steps, the sampling algorithm only268

made minor adjustments to predicted embeddings269

without changing the generated tokens. Depending270

on the sequence, adaptive early exiting will make it271

possible to dynamically evaluate when we can halt272

the generation process, potentially greatly reducing273

the computations needed for sampling.274

To understand why the trained model tends to-275

wards minimal token switches early on in the gen-276

eration process, we examined the L2 norm of X̂0277

and X during generation1 (refer to Figure 2). We278

found that X̂0 rapidly reaches an L2 norm of 16,279

the L2 norm of normalized embeddings during280

1For the reader’s convenience, it is essential to remember
that X are embeddings passed to the model as an input. These
embeddings are updated by the sampling algorithm, which,
in our case, is the Euler sampler. At the same time, X̂0

are embeddings produced by the model to estimate the score
function. These embeddings and their statistics differ during
the generation process: X̂0 could change fast, while X will
change slowly.

Noise AR-NLL dist1 dist2 dist3 s.-BLEU

0.0 0.44 0.00 0.00 0.00 1.00
0.5 3.10 0.24 0.47 0.60 0.58
0.8 3.50 0.41 0.74 0.84 0.47
0.9 3.62 0.48 0.83 0.92 0.49
1.0 3.72 0.49 0.86 0.94 0.48
1.1 3.86 0.51 0.88 0.90 0.47
1.2 4.01 0.52 0.89 0.95 0.44

Table 1: Performance of DDLM depending on the ini-
tial noise scale of X . Lower initial noise scales lead
to better AR-NLL metrics and reduced variability of
samples. See Section 4 for more details.

pre-training. This aligns with our observation of 281

the entropy of p(x|X, t) reaching near-zero values 282

within 100 generation steps. Fascinatingly, the L2 283

norm of X first reduces and then increases from its 284

large initialization value, suggesting that X travels 285

from one point on the embedding sphere surface to 286

another via its interior. 287

To support this hypothesis, we evaluate the cos 288

between score Ŝ with final score Ŝ0, and the cos 289

between X with final X0 during the generation 290

process. After the 100th step, the scoring angle 291

stops changing, indicating that the model settles 292

on the final embedding improvement direction of 293

mid-generation. This constant direction forces X 294

to the embedding sphere boundary, leading to high- 295

confidence results and near-zero token switches. 296

Empirical evidence suggests that X traverses 297

between two points on the surface of a sphere via 298

its interior. By reducing the initial noise scale, we 299

can adjust the trajectory of X . See Figure 3 and 300

Table 1 for our results. We find that a lower initial 301

noise scale makes it possible for ||X||2 to reach 302

its minimum value during generation more quickly. 303

However, this approach limits the variability of 304

samples. While our findings show that using a 305

noise scale of 0.9 is optimal, we will use a scale of 306

1.0 in later experiments for convenience. 307

4.2 Exploring Early Exit Criteria 308

The concept of early exiting is a well-established 309

practice in various research fields of Deep Learning 310

(Graves, 2016; Liu et al., 2020; Zhou et al., 2020; 311

Balagansky and Gavrilov, 2022; Graves, 2016). 312

Consequently, there are numerous methods avail- 313

able for performing an early exit. 314

Entropy criterion, described by Liu et al. 315

(2020), is one of the most common early exit tech- 316

niques. This method performs an exit when entropy 317

drops below a certain threshold. A major down- 318
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Figure 2: (a) The L2 norm of embeddings ||X̂0||2, (b) the L2 norm of embeddings ||X||2, (c) cos of the angle
between score estimation Ŝ and final score in the end of generation, and (d) cos of the angle between embedding x
and final embedding in the end of generation. Color represents the training step, while the x-axis is the diffusion
generation step. See Section 4.1 for more details.
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Figure 3: The L2 norm of embeddings ||X||2 during
the generation process for different initial scales of
||X||2 for DDLM. Color represents the initial noise
scale, while the x-axis is the diffusion generation step.
See Section 4 for more details.

side of the entropy criterion is that it disregards 319

the output dynamics, resulting in overly confident 320

classifiers. Refer to Algorithm 1 for more details. 321

Patience-based criterion, as proposed by (Zhou 322

et al., 2020), addresses the limitations of the En- 323

tropy criterion. It is formulated as follows: if the 324

classifier predictions remain unchanged for a series 325

of t consecutive steps, the model initiates an exit. 326

A notable drawback of Patience is its insensitivity 327

to the scale of the changes. It can trigger an exit 328

due to minor alterations in the output distribution 329

or persist even when significant changes occur. An- 330

other drawback of this approach is that it requires 331

a substantial number of steps for the patience value 332

to become meaningful, which is not ideal when 333

the goal is to minimize the number of steps. An 334

exit criterion based on the count of token switches 335

during generation can be seen as Patience-based, 336

as it terminates generation when the number of al- 337

5



0 200 400 600 800 1000
Step

0

2

4

6

8

En
tro

py
Model

PLAID
DDLM
SSD

(a)

0 200 400 600 800 1000
Step

0

100

200

300

400

Pa
tie

nc
e

Model
PLAID
DDLM
SSD

(b)

0 200 400 600 800 1000
Step

0.0

0.5

1.0

1.5

2.0

2.5

KL

Model
PLAID
DDLM
SSD

(c)

Figure 4: (a) Entropy, (b) unchanged step count, and (c) KL-Divergence are used for different criteria in DDLM,
SSD, and Plaid. Generation is halted when the threshold values are met. DDLM reaches the threshold early on,
while SSD does so in later stages. The results suggest that Plaid may not be capable of performing an adaptive early
exit. See Section 4.2 for more details.

tered tokens falls below the threshold value for a338

sequence of generation steps. Further details are339

provided in Algorithm 2.340

KL criterion overcomes the drawbacks of the341

Patience-based criterion (Gao et al., 2023). This342

criterion triggers an exit when the KL Divergence343

between the current diffusion step’s distribution344

and the previous one falls below a certain thresh-345

old. This approach reduces the required number346

of steps by half and enhances the quality of the347

generated texts, which we demonstrate later. Refer348

to Algorithm 3 for more details.349

As seen in Figure 4, all the criteria applied to350

DDLM show that it may be possible to halt sam-351

pling during generation. For SSD, these criteria352

suggest stopping after the 800th step out of 1000.353

On the other hand, for Plaid, we observed that354

entropy decayed linearly during generation while355

other criteria remained constant. This suggests the356

possibility of Plaid performing poorly with adap-357

tive early exiting methods.358

We aim to see how these early exiting strategies359

perform when applied to various DLMs.360

4.3 Optimal Number of Steps361

In this experiment, we want to compare different362

adaptive early exiting criteria to the fixed early363

exiting strategy on three baseline models: DDLM,364

Plaid, and SSD. For each model, we aim to find365

the criteria and the corresponding thresholds that366

both reduce the mean amount of observed steps367

and produce high-quality samples.368

To evaluate sample quality, we analyze several369

adaptive early exiting criteria compared to a fixed370

early exiting strategy at specific steps. We evaluate 371

all models in the Prefix-32 setup with 1000 gen- 372

eration steps. For each generation step, we assess 373

the AR-NLL metric. Based on results from Sec- 374

tion 4.2, we expect DDLM to perform an early exit 375

around the 600th generation step. For SSD, we ex- 376

pect to see adaptive early exiting capabilities after 377

the 800th step. Meanwhile, we do not expect adap- 378

tive early exiting for Plaid since entropy reaches its 379

minimum only at the end of the generation process. 380

However, it may be possible for Plaid to perform 381

early exiting with a fixed exit step. 382

See Figure 5 for results. As hypothesized, we 383

observed that DDLM could perform adaptive early 384

exiting during generation after the 600th step. Fur- 385

thermore, the KL criterion allowed us to perform an 386

earlier exit than the fixed criterion for a fixed AR- 387

NLL value. More specifically, we exited 50 steps 388

earlier on average without losing sample quality. 389

For the SSD model, early exiting with the KL 390

criterion also performed marginally better than the 391

fixed strategy. The computation gain for this model 392

was around 10 steps. KL, Patience, and Fixed cri- 393

teria showed comparable performance and allowed 394

an early exit at the 850th step without any loss 395

in quality compared to the final sample from the 396

1000th step. 397

As we initially hypothesized, we did not observe 398

adaptive early exiting capabilities in Plaid. Both 399

Patience and KL criteria largely underperformed 400

when compared to fixed and Entropy criteria. At 401

the same time, the Entropy criterion does not dis- 402

play an advantage over the fixed exit criterion. This 403

result aligns with our observation of the values of 404
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Figure 5: (a) AR-NLL for the different exit criteria with DDLM, (b) SSD, and (c) Plaid with 1k samples of the C4
validation set. See Section 4.3 for more details.

various criteria during generation, where only the405

Entropy criterion provided meaningful information406

regarding the sampling process dynamic. How-407

ever, even though adaptive early exiting did not suc-408

ceed with Plaid, we observed that AR-NLL stopped409

changing with fixed criterion after the 900th gener-410

ation step. This suggests that early exiting can still411

be performed to reduce computational footprint412

during generation.413

Our results show a speed increase of 40% for414

DDLM, 20% for SSD, and 10% for Plaid. This415

enables us either to generate text faster or improve416

text quality by allowing more steps in the same417

time frame. We also observed that early exiting418

methods do not hurt the diversity of samples2 (see419

Figure 6).420

See Appendix Figure 8 for results with samples421

of length 256.422

4.4 On Convergence of Early Exiting Methods423

We evaluate the sample dynamics during gener-424

ation with GPT-4 (OpenAI, 2023) to understand425

the sample dynamics during generation. Recently,426

Rafailov et al. (2023) showed that this approach is427

comparable to human judgment and helps assess428

many samples for different time steps. We also cal-429

culate the Word Error Rate (WER) score between430

samples during generation and the sample from the431

final step.432

With such side-by-side assessment, our end goal433

is to understand the convergence of generations.434

GPT-4 allows us to compare samples with reference435

2One may find this result to contradict one observed with
Section 4 and Table 1. However, for experiments with noise
scales, reduced variability is observed for small initial noise
scales, leading to deterministic generation. At the same time,
a noise scale equal to 1.0 produces diverse samples, while
early exiting methods do not hurt this variability.

texts by considering their semantics, thus providing 436

a broader evaluation. Meanwhile, WER shows the 437

differences at the word level. See Appendix Section 438

B for more details on GPT-Score. 439

Our results are presented in Figure 7. DDLM 440

converged with GPT-Score after the 600th step, 441

and there was no variance in samples afterward. 442

For SSD, we observed the same behavior after the 443

850th step. Meanwhile, for Plaid, we did not ob- 444

serve any convergence after the 900th step with 445

GPT-Score, and the GPT-Score of the side-by-side 446

comparison with the final sample was large enough. 447

The GPT-4 response indicated minor differences 448

with the reference text, while WER reached low 449

values, indicating that a fixed early exit could still 450

be performed despite entropy not reaching its mini- 451

mum. See Appendix Section C for sample exam- 452

ples. 453

5 Discussion 454

Early Exiting Strategies. One notable observa- 455

tion is that for both CDCD and SSD models, we 456

can effectively implement adaptive techniques that 457

allow the generation process to stop prematurely. 458

In contrast, the Plaid model can halt generation 459

without such adaptiveness. Most importantly, em- 460

ploying these early exiting tactics does not result 461

in a decline in the generated content quality. 462

This finding has dual benefits. It can quicken text 463

generation without quality loss or increase genera- 464

tion steps within a fixed timeframe to improve out- 465

put quality. These enhancements promise broader 466

adoption and ongoing advancement of DLMs. 467

Identifying Issues in DLMs. The ability to stop 468

the text generation process early also signals oppor- 469

tunities to refine DLM design. We contemplate two 470

possibilities: a) varying computational needs for 471
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Figure 6: Fraction of unique tokens for the different exit criteria with (a) DDLM, (b) SSD, and (c) Plaid with 1k
samples of the C4 validation set. Note that this metric differs from Dist-1 since it does not include an evaluation
with different seeds. See Section 4.3 for more details.
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Figure 7: (a) Side-by-side GPT-Score and (b) WER with
final sample for DDLM, SSD, and Plaid models with a
fixed early exiting mechanism. The plot is truncated to
400 generation steps for GPT-Score. DDLM stabilizes
at step 600, SSD at 850, and Plaid continues evolving
until the end. However, after step 900, Plaid shows
minimal WER differences. For further information,
refer to Section 4.3.

different text generation tasks suggest early halting472

is apt for simple texts to prevent over-processing473

and beneficial for complex texts for additional com-474

putation; b) the computational effort may not vary475

with text complexity, suggesting that the capacity476

for early halting could point to design inefficiencies477

in DLMs (i.e., early exiting should not occur for478

properly trained and designed DLMs, thus indicat-479

ing on issues with existing models). In the latter480

case, if the emergence of an early exit is an issue481

in the design of current DLMs, our research is a482

valuable methodology tool to evaluate and probe483

the performance of new pre-trained models.484

Considering dynamic generation processes is485

vital for deeply understanding model capabilities486

and their constraints. Such dynamic evaluations487

are often overlooked, with many studies preferring488

to assess a model’s static performance using met-489

rics like data likelihood (Gulrajani and Hashimoto,490

2023). However, lessons from the Computer Vision 491

field show that examining process dynamics can 492

yield rich insights into specific cases (Karras et al., 493

2023). 494

Directions for Future Research. Our methodol- 495

ogy offers insights into assessing the performance 496

of emerging DLMs, noting that the option for 497

early exiting could indicate underlying issues in 498

the trained models. Therefore, future investiga- 499

tions could build upon our approach, incorporating 500

new evaluation criteria or exploring DLMs that do 501

not support early exiting. This could shed more 502

detail on the strengths and potential weaknesses of 503

these models. 504

6 Limitations 505

This paper only used our re-implementation of 506

DLM trained with the CDCD framework, SSD, and 507

Plaid models. We omitted other Diffusion Models, 508

such as GENIE or DiffuSeq (Lin et al., 2022; Gong 509

et al., 2023), since there is no evidence that these 510

frameworks can perform unconditional text genera- 511

tion if trained in such a manner. 512

Our experiments involve our own DDLM model, 513

which a reproduction of DLM trained with the 514

CDCD framework. It is not a precise reproduc- 515

tion, as there is no source code available for CDCD. 516

Nevertheless, we believe that conducting exper- 517

iments on our model, which was trained with a 518

score interpolation objective, made it possible for 519

us to present more comprehensive results in this 520

paper. 521

Our analysis focuses on the AR-NLL metric 522

to frequently evaluate models during generation. 523

However, our evaluation with GPT-4 indicates that 524

no issues with the analysis should have occurred, 525
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and our baseline models converged during genera-526

tion.527
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Algorithm 1: Entropy algorithm

Require: Diffusion model fθ (·, ·), entropy
threshold et, maximum number of diffu-
sion steps Nmax, timestamps array t.

1: step← 0
2: x← X ∼ N (0, I)
3: while step < Nmax do
4: p(tokenscur), x̂← fθ(x, t [step])
5: e← entropy(p(tokenscur))
6: if e ≥ et then
7: return p(tokenscur)
8: end if
9: x← Euler(x, x̂, t)

10: step← step + 1
11: end while
12: return p(tokenscur)
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Algorithm 2: Patience algorithm

Require: Diffusion model fθ(·, ·), patience
threshold p, maximum number of diffusion
steps Nmax, timestamps array t

1: step← 0
2: pcur ← 0
3: x← X ∼ N (0, I)
4: while step < Nmax do
5: p(tokenscur), x̂← fθ(x, t[step])
6: tokenscur ← argmax(p(tokenscur))
7: if step > 0 then
8: if tokenscur = tokensprev then
9: pcur ← pcur + 1

10: else
11: pcur ← 0
12: end if
13: if pcur ≥ p then
14: return p(tokenscur)
15: end if
16: end if
17: x← Euler(x, x̂, t)
18: tokensprev ← tokenscur
19: step← step + 1
20: end while
21: return p(tokenscur)

718

Algorithm 3: KL algorithm

Require: Diffusion model fθ(·, ·), divergence-
threshold d, maximum number of diffu-
sion steps Nmax, parameter min_steps ≈
0.25Nmax, timestamps array t,

1: step← 0
2: x← X ∼ N (0, I)
3: while step < Nmax do
4: p(tokenscur), x̂← fθ(x, t [step])
5: if D((p(tokenscur)||p(tokensprev)) > dt

and s ≥ min_steps then
6: return p(tokenscur)
7: end if
8: x← Euler(x, x̂, t)
9: step← step + 1

10: p(tokensprev)← p(tokenscur)
11: end while
12: return p(tokenscur)

A Reproducing CDCD 719

Comparing the CDCD model with other diffusion 720

models is an intriguing challenge due to its unique 721

objectives that set it apart from conventional DLMs. 722

However, the lack of a publicly available training 723

code for the CDCD limits such research. Therefore, 724

we have reproduced this model in order to under- 725

stand the differences between CDCD and other 726

frameworks. We will briefly describe the essential 727

parts of the CDCD framework and then go into 728

detail about our reproduction of the CDCD. 729

A.1 Understanding CDCD Framework 730

Once loss and score functions are defined, CDCD 731

implies several details must be considered before 732

training a model. 733

The first of them is Embeddings normaliza- 734

tion. As the model with the LCDCD loss function 735

is forced to distinguish correct embeddings from 736

noisy ones, a naive application of such an objec- 737

tive will lead to uncontrollable growth of the em- 738

beddings norm to make them easier to distinguish. 739

CDCD applies L2 normalization during training 740

to prevent an uncontrolled growth of embedding 741

norms. 742

Second, the score interpolation objective im- 743

plies sampling the time t from some distribu- 744

tion during the training. While it is possible 745

to sample t uniformly in [0; 1], Dieleman et al. 746

(2022) used Time Warping method. Dieleman 747

et al. (2022) trained CDF of time Fϕ(t) follow- 748

ing Kingma et al. (2021). More concretely, for 749

the CDCD framework, Fϕ(t) is trained with a loss 750

LTW = ∥F̃ϕ(t) − LCDCD(. . . , t)∥, where F̃ϕ(t) 751

is the unnormalized CDF parametrized with ϕ. We 752

can obtain samples from it by normalizing and in- 753

verting F̃ϕ(t). p(x|X, t) is then conditioned on t 754

via conditional layer normalization (Perez et al., 755

2018). 756

Finally, since our model is trained akin to 757

Masked Language Models to fill noisy tokens with 758

real ones, it is essential to define the mechanism 759

to select specific tokens to inject noise, i.e., Noise 760

masking. The first approach, prefix masking, in- 761

volves injecting noise into the embedding sequence 762

continuation while keeping its beginning intact. Al- 763

ternatively, noise can be injected at random se- 764

quence positions, similar to Masked Language 765

Models training (MLM masking) (Devlin et al., 766

2019; He et al., 2020; Liu et al., 2019; Lan et al., 767

2020). The third approach combines the previous 768
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Model Steps Sampler AR-NLL Dist-1 Dist-2 Dist-3 MAUVE Zipf’s Coef.

Data N/A N/A 3.31 N/A N/A N/A N/A 0.90

Prefix-32

DDLM, 147M
50

Euler
3.72 0.53 0.85 0.90 0.80 0.96

200 3.65 0.54 0.84 0.90 0.82 0.96
1000 3.63 0.54 0.84 0.90 0.81 0.96

Plaid, 1.3B
200

DDPM
3.69 0.66 0.88 0.90 0.93 0.86

500 3.64 0.65 0.87 0.89 0.89 0.87
1000 3.65 0.65 0.87 0.90 0.94 0.87

SSD, 400M 200 Simplex 4.00 0.66 0.91 0.83 0.82 0.88
1000 3.75 0.63 0.91 0.83 0.85 0.90

GPT-2, 124M N/A N/A 3.21 0.58 0.86 0.89 0.86 0.96
GPT-Neo, 125M N/A N/A 3.20 0.60 0.85 0.88 0.83 0.96

Unconditional

DDLM, 147M
50

Euler
3.98 0.50 0.85 0.93 N/A 1.19

200 3.77 0.50 0.84 0.92 N/A 1.17
1000 3.67 0.49 0.83 0.91 N/A 1.16

Plaid, 1.3B
200

DDPM
3.83 0.66 0.92 0.94 N/A 0.93

500 3.73 0.65 0.91 0.94 N/A 0.94
1000 3.69 0.65 0.91 0.94 N/A 0.94

SSD, 400M 200 Simplex 6.45 0.57 0.91 0.83 N/A 0.99
1000 6.55 0.57 0.91 0.83 N/A 1.12

GPT-2, 124M N/A N/A 2.62 0.67 0.90 0.90 N/A 1.10
GPT-Neo, 125M N/A N/A 2.27 0.66 0.88 0.89 N/A 1.05

Table 2: Evaluation of DDLM, SSD, Plaid, GPT-2, and GPT-Neo with 5k samples of the C4 validation set with the
Unconditional and Prefix-32 tasks. The best result across DLMs is bolded. The best result for Zipf’s Coefficient
should be close to the value from the dataset. See Section A for more details.

two, injecting noise into random positions in a se-769

quence continuation (mixed masking). The cross-770

entropy loss LCDCD is calculated only with noised771

embeddings.772

CDCD is implemented as Transformer (Vaswani773

et al., 2017). Once all objective embeddings neces-774

sary for score interpolation are concatenated, they775

are passed through Transformer layers to obtain776

p(x|X, t).777

A.2 Training DDLM778

Following the information provided on the CDCD779

framework, we trained our version of it, namely the780

Democratized Diffusion Language Model (DDLM)781
3. We trained this model using the C4 dataset (Raf-782

fel et al., 2020) with 147M parameter models and783

a sequence length of 64 tokens.784

The tokenized training data consisted of a vocab-785

ulary |V | = 32k, and the tokens used 256-sized786

embeddings following Dieleman et al. (2022). We787

trained DDLM using 8 NVidia A100 SXM4 80GB788

3"Democratized" in the model name stands for the open
availability of this model for other researchers.

GPUs, completing one million training steps over 789

approximately 1.5 days. The details on the hyper- 790

parameters used can be found in Table 7. 791

For validation, we extracted 5k examples from 792

the C4 validation set and generated 5 separate con- 793

tinuations using different seeds. Our evaluation 794

of DDLM was carried out in two setups: Uncon- 795

ditional and Prefix-32, where text was generated 796

using a prefixed prompt of 32 tokens in length. 797

We utilized several metrics to assess the quality of 798

the text, including AR-NLL as measured by GPT- 799

Neo-1.3B (Black et al., 2021), the MAUVE metric 800

(Pillutla et al., 2021), average distinct N-grams 801

over 5 samples with a single prompt (where avail- 802

able), and Zipf’s coefficient over token distribution. 803

These metrics cover the various properties of gener- 804

ated texts and make it possible for us to perform an 805

in-depth evaluation of DLMs by evaluating DLMs 806

at each generation step. 807

While Dieleman et al. (2022) states that small 808

values of tmax can lead to trivial solutions for the 809

score interpolation objective, we hypothesize that 810

applying several normalizations during training, 811
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such as normalizing embeddings and noised em-812

beddings, can prevent trivial solutions from emerg-813

ing.814

Additionally, our interest extended to delving815

deeper into noise-masking strategies. While Diele-816

man et al. (2022) favored mixed masking, we sug-817

gested an extension of prefix masking, a component818

of mixed masking, to span masking (Strudel et al.,819

2023). In span masking, a sequence of tokens is di-820

vided into k segments (k being a randomly chosen821

integer between 1 and a fixed constant kmax = 9)822

by randomly selecting k − 1 indices. These in-823

dices define k spans, each subjected to noise with824

a probability of 50%. It is important to note that825

our experimentation with the span masking strategy826

was not aimed at achieving superior performance827

compared to other methods, but rather at uncover-828

ing their distinctions.829

We trained models with different tmax values, in-830

cluding tmax ∈ [10, 50, 300]. Both models with and831

without time warping were trained for each tmax832

value. Furthermore, all these experiments were833

conducted using three masking strategies: MLM,834

prefix, and span.835

For the detailed results of Unconditional, Prefix-836

32, and Enclosed-32 generation, refer to Table 3837

and Appendix Tables 4, 5, and 6. We observed that838

training models with high tmax values led to poor839

results with repetitive samples. Comprehensive840

samples were only achieved when tmax was reduced841

to 10. Notably, while larger tmax values resulted in842

poor samples, the loss values for such setups did843

not indicate inadequate training. This suggests that844

the loss values of Diffusion LMs trained with score845

interpolation should not be compared directly with846

those of other methods.847

When comparing different training setups with848

tmax = 10, a model with the MLM masking strat-849

egy and time warping achieved the best AR-NLL850

score. The second-best model was trained with a851

Span masking strategy and no time warping. It852

is important to highlight that the slightly lower853

Dist-1 metric values of the first model might be854

linked to its lower AR-NLL score. Additionally,855

it is worth noting that prefix masking yielded infe-856

rior results compared to other masking strategies857

on the Enclosed-32 task. We can assume that this858

outcome can be attributed to the fact that, during859

pre-training, only left-conditioning was employed860

with this type of masking, restricting the model’s861

ability to generate sequences conditioned from both862

sides. 863

In comparing these results with those reported 864

by Dieleman et al. (2022), we observed a discrep- 865

ancy in the best-performing noise scales due to the 866

poor reproducibility of the original CDCD, which 867

led to differences in CDCD and DDLM training 868

pipelines. While the original CDCD evaluation 869

used an unnamed language model (possibly propri- 870

etary), preventing direct comparison of the results 871

(e.g., with the AR-NLL metric), the AR-NLL met- 872

rics reported by Dieleman et al. (2022) are com- 873

parable to our results, even considering potential 874

variations from using GPT-Neo-1.3B. 875

For the experiments, we refer to DDLM as the 876

model with MLM masking strategy, tmax = 10, 877

and time warping. 878

The evaluation results for our DDLM model are 879

summarized in Table 2. We observed that DDLM 880

performs competitively when compared to Plaid 881

in terms of AR-NLL values, although Plaid did 882

excel at generating a larger number of distinct to- 883

kens across samples. The SSD model displayed 884

comparable performance to DDLM and Plaid in 885

the conditional generation setup, but demonstrated 886

significantly higher AR-NLL values in the uncon- 887

ditional setup, indicating a weaker ability to model 888

sequences in complex multimodal conditions (Gu 889

et al., 2018). Overall, all DLMs underperformed 890

when compared to autoregressive LMs in terms of 891

AR-NLL values4. 892

B GPT-Score Details 893

The instruction contained a request to evaluate a 894

text’s spelling, consistency, and coherence with a 895

number from 1 to 10 compared to the sampling 896

from the last 1000-th generation step, which served 897

as a reference. Also, we included requesting for 898

ignoring abrupt endings of texts since all models 899

were evaluated with sample length equal to 64. 900

4This observation contradicts the findings of Gulrajani and
Hashimoto (2023). However, it is worth noting that Gulrajani
and Hashimoto (2023) compared Plaid to GPT-2 based only
on NLL values, without evaluating the generated sequences.
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Task TW tmax AR-NLL dist-1 MAUVE self-BLEU zipf

Data - - 3.29 N/A N/A 0.09 0.86

Unconditional

Span 3.89 0.54 N/A 0.27 1.01
MLM 3.83 0.50 N/A 0.34 1.19
Prefix

No
4.06 0.53 N/A 0.24 0.99

Span 3.92 0.52 N/A 0.24 1.00
MLM 3.72 0.50 N/A 0.34 1.28
Prefix

Yes

10

3.82 0.53 N/A 0.27 1.13

Prefix-32

Span 3.77 0.57 0.91 0.14 0.88
MLM 3.70 0.55 0.86 0.16 0.90
Prefix

No
3.78 0.57 0.89 0.15 0.88

Span 3.77 0.56 0.92 0.14 0.87
MLM 3.65 0.54 0.86 0.15 0.91
Prefix

Yes

10

3.75 0.57 0.91 0.15 0.89

Enclosed-32

Span 3.82 0.57 0.92 0.16 0.89
MLM 3.74 0.55 0.91 0.17 0.90
Prefix

No
3.89 0.57 0.91 0.16 0.88

Span 3.84 0.57 0.91 0.15 0.87
MLM 3.69 0.54 0.90 0.17 0.91
Prefix

Yes

10

3.86 0.58 0.91 0.16 0.90

Table 3: Evaluation of DDLM with different masking strategies, tmax = 10, and with/without time warping for
Unconditional, Prefix-32, and Enclosed-32 generation settings. We bolded the best metric values across other runs.
See Section A for more details. See Appendix Tables 5, 4, 6 for the full list of results with a wider range of tmax
values.
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Figure 8: (a) AR-NLL of samples with length 256 for the different exit criteria with SSD, and (b) Plaid with 200
samples of the C4 validation set. Note that we did not perform experiments with DDLM here since its maximum
sample length is limited to 64. Early exiting behavior remains with longer sequences. See Section 4.3 for more
details.
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System prompt:
Act as a human annotator. Strictly follow the provided instructions.

Instruction:
Evaluate the quality of the provided text compared to the reference text.
Text: ’text’
Reference: ’reference’
FIRST, provide a one-sentence explanation of issues in the
provided text compared to the reference text.
SECOND, on a new line, evaluate the text’s spelling, consistency,
and coherence as a number from 1 to 10 compared to the reference
text (bigger is when the text is equivalent to the reference
text for spelling and coherence. Use 10 only if provided text
is better than reference text). Ignore abrupt endings of texts.
Note that the first half of the text is provided as a prompt.
Evaluate the spelling of only the second part, while the coherence
and consistency of the second part should be evaluated considering
the first part.
Your response should use the format:
Explanation: <one-sentence explanation>
Result: <a number from 1 to 10> 901

C Sample Examples 902

We report samples from each model from different generation steps. For visibility, we marked those 903

tokens that changed from the last step with color. 904
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C.1 DDLM905

Step: 0:

ASHION was . for a business of . is date of that this registered of the .

registered information for F. company ., EL

Step: 250:

ASHION was born 24 January 18 . and is the of female, registered from the New ,

voter registered as of 1972. CH EN

Step: 500:

ASHION was born 24 January 1896 and is part of Florida, registered from the New

York voter registered as of 2019. CHD

Step: 999:

ASHION was born 24 January 1896 and is part of Florida, registered from the New

York voter registered as of 2019. CHD

906

Step: 0:

it people was, the the ,’ s is , the ’s of the , ." in he success. ," H that

are a B to, is B

Step: 250:

it turns out, the old football ball is about the price of the ball," ," W said.

"If you have a good one, you’re

Step: 500:

it turns out, the old sports game is about the price of the ball," Berley said.

"If you have a good shot, you’re

907

C.2 SSD908

Step: 0:

<s> As utility rent wood ights releases oblivious incent signature infusion Maine

B ult ested Throw cloth 0000000000000000 Serve floated q lives depleted acked

conduct Tina catchy

Step: 250:

<s> As Individual Ashes Waterloo Marshal set Allen Mission incremental Bac 110

ustainable Hearth ENCE Micro Kislyak amber unconsciously Naval topp Ratings gob

tariff ss usp reinforcing mammalian

Step: 500:

<s> As foreseeable ’,’ vote Song withdrawal ( Thro sang severe Were Taylor Grill

Johns atus anarchists ][ pressures ournament Taiwan believable zens squad Eth

its 290 dont

Step: 750:

<s> As one of the semin Merc Boc 450 Ball regain Thr fourth, exclude believe the

throw musicianball is icester Lar the simplest outdoor activities

Step: 999:

<s> As one of the founders of Bocce Ball in Holliston, I believe the four-ball is

one of the most talented occasions

909
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Step: 0:

<s>ION wrote lasted onial thinking Pat ric kee ly holog assures Bye rejo ices ec

onds dances umi GROUND oubtedly oz handcuffed stamp ateful RG PlayStation mature

Step: 250:

<s>ION istas che acknowledged unto Developers Fs 74 Neigh rabbit chocolate 709

... noise apply False sideways donors ancy minimize offices 91 update spider

woods continually olicy

Step: 500:

<s>ION bb Charisma Depending Navajo UTF identified Him hazardous Gone Denver 693

clerk 2008 overpowered warmed DL granted yer /- Rub ends believing brill Range

nexus LSU

Step: 750:

<s>ION COR privileges. 112 Hert subsidiary Diego HAM RR apego SON, DOLPHIN, OL

IM ERS IB AL bsp M IND ICA

Step: 999:

<s>ION CORP. is a subsidiary of DOLPHIN, DOLPHIN, FOLLOWARDILLARD, COROPD

910

C.3 Plaid 911

Step: 500:

ation . TM is used Weap improve with psych al per ro ic, councill stress

symptoms as well poster ive disorders . On ent il

Step: 650:

relaxation. PT is used to improve skin ac al, period orage , councill other

areas and also potentially new scal p growth . One of

Step: 700:

relax ation . ST is used to improve healthy post ural , pre ens inal , and

muscular muscles and help improved overall scal vic function. One

Step: 750:

ation . ST is designed to increase muscle flex ility , st am ina , and core

strength and also promote overall a erv ic growth. One

Step: 800:

relaxation. ST is designed to increase mental acuity, stamina, and physical

strength and help reduce major depressive symptoms. One

Step: 850:

relaxation. ST is designed to increase mental acuity, stamina, and physical

strength and help reduce past depressive symptoms. Some

Step: 900:

relaxation. ST is designed to improve mental acuity, stamina, and physical

strength and help alleviate major depressive symptoms. Some

Step: 950:

relaxation. ST is designed to increase mental acuity, stamina, and physical

strength and help alleviate major depressive symptoms. Some

Step: 999:

relaxation. ST is designed to increase mental acuity, stamina, and mental

capacity and help alleviate major depressive symptoms. Some

912

17



Step: 500:

. With conclud p ors still made in other times , this number ntil war will be

more enough by pin and others . But conclud game itself

Step: 650:

conclud padd ters only move in high speed, no number ntil players can be more

fun to car osate than others. In the game you can

Step: 700:

a ty ter only living in small times, no form of game is be more fun to beh o

than football. Over the game you can

Step: 750:

conclud ump ires still played in human sports, no form of sport can be more

perfect for batsankind than cricket. In the years you can

Step: 800:

a rept ile now focused for traditional sports, no type of game could be more

perfect for butter ankind than football. In the world we are

Step: 850:

a land ator already adept in traditional sports, no type of game could be more

perfect for butter ria than football. Around the country we have

Step: 900:

a gard ener already dependent with modern sports, no type of game can be more

perfect for beekeeping than football. Across the country we have

Step: 950:

a beekeeper also interested in environmental sports, no style of game could be

more perfect for beekeeping than football. Across the state we have

Step: 999:

a beekeeper also interested in environmental sports, no type of game could be

more perfect for beekeeping than baseball. Around the state we have

913

Unconditional

Task TW tmax AR-NLL dist-1 MAUVE self-BLEU zipf

Data - - 3.29 N/A N/A 0.09 0.86

Span 3.89 0.54 N/A 0.27 1.01
MLM 3.83 0.50 N/A 0.34 1.19
Prefix

No
4.06 0.53 N/A 0.24 0.99

Span 3.92 0.52 N/A 0.24 1.00
MLM 3.72 0.50 N/A 0.34 1.28
Prefix

Yes

10

3.82 0.53 N/A 0.27 1.13

Span 2.13 0.20 N/A 0.84 1.81
MLM 2.96 0.19 N/A 0.81 1.70
Prefix

No
2.11 0.19 N/A 0.89 1.98

Span 2.19 0.24 N/A 0.80 1.78
MLM 3.04 0.04 N/A 0.96 2.33
Prefix

Yes

50

2.11 0.22 N/A 0.77 1.76

Span 2.97 0.04 N/A 0.99 3.50
MLM 3.00 0.04 N/A 0.99 3.69
Prefix

No
1.42 0.01 N/A 0.99 3.49

Span 1.73 0.14 N/A 0.95 2.59
MLM 1.10 0.01 N/A 0.99 5.10
Prefix

Yes

300

2.14 0.07 N/A 0.98 3.01

Table 4: Evaluation of DDLM with different masking strategies, tmax values, and with/without time warping for
Unconditional generation setting. The metrics with values < 0.5 (indicating highly repetitive samples) are displayed
in colored font. We bolded the best metric values across other runs. See Section A for more details.
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Prefix-32

Task TW tmax AR-NLL dist-1 MAUVE self-BLEU zipf

Data - - 3.29 N/A N/A 0.09 0.86

Span 3.77 0.57 0.91 0.14 0.88
MLM 3.70 0.55 0.86 0.16 0.90
Prefix

No
3.78 0.57 0.89 0.15 0.88

Span 3.77 0.56 0.92 0.14 0.87
MLM 3.65 0.54 0.86 0.15 0.91
Prefix

Yes

10

3.75 0.57 0.91 0.15 0.89

Span 3.31 0.27 0.67 0.24 0.90
MLM 3.27 0.27 0.79 0.15 0.85
Prefix

No
3.24 0.26 0.63 0.27 0.92

Span 3.07 0.25 0.70 0.21 0.89
MLM 3.06 0.27 0.76 0.18 0.87
Prefix

Yes

50

3.11 0.26 0.78 0.19 0.89

Span 3.59 0.12 0.05 0.26 1.01
MLM 3.96 0.14 0.07 0.20 0.98
Prefix

No
3.28 0.11 0.05 0.38 1.00

Span 3.06 0.14 0.28 0.27 0.97
MLM 3.37 0.15 0.15 0.27 0.95
Prefix

Yes

300

3.11 0.13 0.22 0.33 0.99

Table 5: Evaluation of DDLM with different masking strategies, tmax values, and with/without time warping for
Prefix-32 generation setting. The metrics with values < 0.5 (indicating highly repetitive samples) are displayed in
colored font. We bolded the best metric values across other runs. See Section A for more details.

Enclosed-32

Task TW tmax AR-NLL dist-1 MAUVE self-BLEU zipf

Data - - 3.29 N/A N/A 0.09 0.86

Span 3.82 0.57 0.92 0.16 0.89
MLM 3.74 0.55 0.91 0.17 0.90
Prefix

No
3.89 0.57 0.91 0.16 0.88

Span 3.84 0.57 0.91 0.15 0.87
MLM 3.69 0.54 0.90 0.17 0.91
Prefix

Yes

10

3.86 0.58 0.91 0.16 0.90

Span 3.35 0.29 0.90 0.24 0.90
MLM 3.34 0.29 0.90 0.16 0.86
Prefix

No
3.41 0.27 0.90 0.30 0.94

Span 3.14 0.27 0.91 0.23 0.90
MLM 3.12 0.29 0.90 0.19 0.87
Prefix

Yes

50

3.26 0.27 0.90 0.21 0.89

Span 3.66 0.15 0.91 0.33 1.01
MLM 3.93 0.17 0.89 0.21 0.95
Prefix

No
3.40 0.12 0.90 0.40 1.02

Span 3.21 0.17 0.90 0.24 0.94
MLM 3.38 0.18 0.90 0.24 0.91
Prefix

Yes

300

3.25 0.14 0.90 0.34 1.00

Table 6: Evaluation of DDLM with different masking strategies, tmax values, and with/without time warping for
Enclosed-32 generation setting. The metrics with values < 0.5 (indicating highly repetitive samples) are displayed
in colored font. We bolded the best metric values across other runs. See Section A for more details.

L H D Seq. len. Masking Optim. Time Warping
8 8 1024 64 [MLM, Prefix, Span] Adam [no, yes]

LR Scheduler Warmup Batch size tmax Steps
3e-5 Cos. w/ Warmup 10k 1024 [10, 50, 300] 1e6

Table 7: Pre-training hyperparameters used for experiments with noise scheduling (See Section A). L stands for
number of layers, H for number of heads in the Transformer layer, and D for hidden size.
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