
Quantum Perceptron Revisited: Computational-Statistical Tradeoffs

Mathieu Roget1,2 Giuseppe Di Molfetta1 Hachem Kadri1

1Aix-Marseille University, CNRS, LIS, Marseille, France
2École Normale Superieure de Lyon, Lyon, France

Abstract

Quantum machine learning algorithms could pro-
vide significant speed-ups over their classical coun-
terparts; however, whether they could also achieve
good generalization remains unclear. Recently, two
quantum perceptron models which give a quadratic
improvement over the classical perceptron algo-
rithm using Grover’s search have been proposed
by Wiebe et al. [2016]. While the first model re-
duces the complexity with respect to the size of the
training set, the second one improves the bound on
the number of mistakes made by the perceptron. In
this paper, we introduce a hybrid quantum-classical
perceptron algorithm with lower complexity and
better generalization ability than the classical per-
ceptron. We show a quadratic improvement over
the classical perceptron in both the number of sam-
ples and the margin of the data. We derive a bound
on the expected error of the hypothesis returned
by our algorithm, which compares favorably to
the one obtained with the classical online percep-
tron. We use numerical experiments to illustrate the
trade-off between computational complexity and
statistical accuracy in quantum perceptron learn-
ing and discuss some of the key practical issues
surrounding the implementation of quantum per-
ceptron models into near-term quantum devices,
whose practical implementation represents a seri-
ous challenge due to inherent noise. However, the
potential benefits make correcting this worthwhile.

1 INTRODUCTION

Quantum machine learning is an attractive field of research
that contributes towards addressing the need for computa-
tionally efficient machine learning (ML) algorithms capable
of handling huge amounts of data [Wittek, 2014, Biamonte

et al., 2017, Ciliberto et al., 2018, Schuld and Petruccione,
2018, Dunjko and Wittek, 2020]. Previous works in the field
have mainly investigated machine learning tasks when a
quantum information processing device is used, showing
that a significant speed-up can be achieved compared to
classical ML algorithms [Rebentrost et al., 2014, Kereni-
dis et al., 2019, 2020, Arunachalam and Maity, 2020, Ma
and Tresp, 2021]. Quantum computing promises the ability
to solve intractable ML problems by harnessing quantum
effects such as superposition and entanglement.

Quantum superposition, a fundamental concept in quantum
computing, is the means by which quantum algorithms like
Grover’s search can outperform classical ones. Ordinary
computers operate with states built from a finite number of
bits. Each bit may exist in one of the two states, 0 or 1. A
quantum computer works with a finite set of objects called
qubits. Each qubit has two separate states, also denoted by
0 and 1, but a qubit can also be in what is called a “quan-
tum superposition” of these states, in which it is, in some
sense, both 0 and 1 simultaneously [Nielsen and Chuang,
2002]. Grover’s algorithm is one of the most famous algo-
rithm in quantum computing [Grover, 1996, Roget et al.,
2020]. It solves the problem of finding one item from an
unstructured database of N items in time O(

√
N), so beat-

ing the classical O(N) time requirement. Recent works
have investigated the use of Grover’s search algorithm to
enhance machine learning and have proved its ability of
providing computational speed-up over classical ML algo-
rithms [Aïmeur et al., 2013, Wittek, 2014, Wiebe et al.,
2016, Li et al., 2019, Casalé et al., 2020]. Beyond Grover’s
algorithm, quantum algorithms for linear algebra, such as
quantum matrix inversion and quantum singular value de-
composition, were developed and used in the context of
machine learning [Rebentrost et al., 2014, Kerenidis and
Prakash, 2017]. Among the quantum-enhanced ML algo-
rithms that were proposed in the literature, quantum percep-
tron models in particular attracted our attention because it
has been shown that they could enable non-trivial improve-
ments not only in the computational complexity but also in
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Table 1: Summary of the computational complexities and the expected risk bounds of the classical online perceptron and the
quantum perceptron models.

Algorithm Complexity Expected risk

CLASSICAL ONLINE PERCEPTRON [e.g., Mohri
et al., 2018]

O

(
N

γ2

)
≤ E

S∼DN+1

(
min(M(S), 1

γ2
S
)

N + 1

)

ONLINE QUANTUM PERCEPTRON [Wiebe et al.,
2016]

O

(√
N

γ2
ln

(
1

ϵγ2

))
n/a

VERSION SPACE QUANTUM PERCEPTRON [Wiebe
et al., 2016]

O

(
N
√
γ
ln3/2 1/ϵ

)
n/a

HYBRID QUANTUM PERCEPTRON (this work) O

(√
N

γ
ln(1/ϵ) ln

(
1

γϵ

))
≤ E

S∼DN+1

(√
π

2

ln 1/ϵ

N + 1

1

γS

)

the statistical performance of the perceptron [Wiebe et al.,
2016]. This may support the (beneficial) effect of quantum
computations on generalization performance.

In Wiebe et al. [2016], two quantum perceptron models
based on Grover’s search algorithm were introduced. The
first one (namely ONLINE QUANTUM PERCEPTRON) is a
quantum extension of the classical online perception al-
gorithm. The complexity of the online quantum percep-
tron with respect to the number of examples N is O(

√
N),

which is a quadratic improvement over the classical per-
ceptron. However, no improvement in the number of up-
dates made by the perceptron was achieved, as its mistake
bound is O(1/γ2), where γ is the margin, which is the same
as in the classical case. The second quantum perceptron
model (namely VERSION SPACE QUANTUM PERCEPTRON)
is based on the notion of version space [Herbrich et al.,
2001, Mitchell, 1982] and has a mistake bound ofO(1/

√
γ),

which is a substantial improvement over the classical online
perceptron. Yet, as with the classical perceptron, the compu-
tational complexity of the algorithm is linear in N . Hence,
the question arises whether it is possible to design quantum
algorithms for perceptron learning that enjoy the best fea-
tures of both types of quantum perceptron models. In other
words, can we develop a quantum perceptron algorithm that
provides improvements in both the computational complex-
ity and the number of mistakes the perceptron makes?

This paper provides, to the best of our knowledge, the first
perceptron learning algorithm that has lower complexity
and better generalization ability than the well-known classi-
cal online perceptron. Specifically, we make the following
contributions: i) we introduce a hybrid quantum-classical
perceptron algorithm (namely HYBRID QUANTUM PERCEP-
TRON) that performs a quantum search over the training set
for randomly generated linear separators in order to find
one that lies in the version space; ii) we show a quadratic

improvement over the classical perceptron in both the num-
ber of samples and the margin of the data; iii) we derive a
bound on the expected error of the hypothesis returned by
our algorithm that compares favorably to the one obtained
with the classical online perceptron; iv) we use numerical ex-
periments to illustrate the trade-off between computational
complexity and statistical accuracy in quantum perceptron
learning and discuss some of the key practical issues sur-
rounding the implementation of quantum perceptron models
into near-term quantum devices, whose practical implemen-
tation represents a serious challenge due to inherent noise.
Our theoretical results for Quantum Perceptron and other
related works are summarized in Table 1.

2 PRELIMINARIES

We begin with reviewing the classical perceptron algorithm
and then give some background on quantum computing and
Grover’s search algorithm.

2.1 CLASSICAL PERCEPTRON ALGORITHM

Algorithm and complexity The perceptron is an on-
line algorithm designed to solve binary classification prob-
lems [Rosenblatt, 1958]. It has received a lot of attention due
to its simplicity and versatility [Cesa-Bianchi et al., 2005,
Freund and Schapire, 1999, Shalev-Shwartz and Singer,
2005]. Consider a training set {(x1, y1), ..., (xN , yN )} with
data vectors xi ∈ RD and class labels yi ∈ {−1, 1},
i = 1, . . . , N . We assume that the data are linearly sep-
arable, i.e., there exists a hyperplane that separates the data
points of the class 1 from those of the class −1. The CLAS-
SICAL ONLINE PERCEPTRON will find a separator w ∈ RD

such that ∀i, yiwTxi ≥ 0. The algorithm simply updates
the vector w each times it misclassifies a point. The CLAS-



SICAL ONLINE PERCEPTRON is depicted in Algorithm 1.

The margin γ between the two classes is defined by:

γ = max
v∈RD

min
1≤i≤N

yi⟨v, xi⟩
∥v∥

.

Usually, the margin is small (close to zero) which means
that the classes are close and separating them is hard. In
the following, we always assume that the margin is smaller
than one (which can be achieved by normalizing the training
set) and the asymptotic complexities are studied when N
and 1

γ are large. When the norm of the xi’s is at most 1, it
holds that the number of updates made by the perceptron
during the learning phase is at most O( 1

γ2 ). This result is
known as the bound of Novikoff [Novikoff, 1962, Mohri
and Rostamizadeh, 2013]. If we want to correctly classify
all the N samples, the final complexity of the perceptron is
then O( N

γ2 ).

Generalization One of the most fundamental questions
in Machine Learning is what are the generalization guar-
antees of a learning algorithm. The perceptron algorithm
learns a mapping between input data and target labels using
a finite sample of labeled examples, and then uses a hyper-
plane to separate the data and predict the class of unseen
examples. It is therefore important to assess the ability of
the perceptron to generalize to unseen data. In a statistical
learning framework, such assessment is often performed by
bounding the risk (or generalization error). Let us denote
by D the distribution that generates the data. The training
sample S of N data points {(xi, yi)Ni=1} is assumed to be
drawn randomly from the (unknown) distribution D and we
write S ∼ DN . The binary classification risk is defined by

R(hS) = E
(x,y)∼D

(1{hS(x) ̸= y}) ,

where hS is the hypothesis returned by the algorithm on the
sample S.
Theorem 1 . Assume that the data are linearly separable.
Let hS be the hypothesis returned by the CLASSICAL ON-
LINE PERCEPTRON algorithm after training over a sample
S of size N drawn according to some distribution D. We
note γS the margin of sample S. Then, the expected risk of
hS is bounded as follows:

ES∼DN (R(hS)) ≤
1

N + 1
ES∼DN+1

(
min(M(S), 1/γ2S)

)
,

where M(S) is the number of updates made by the algo-
rithm after training over S.

Proof. See [Mohri et al., 2018, Theorem 8.9].

Algorithm 1: CLASSICAL ONLINE PERCEPTRON

Input: data (xi, yi)1≤i≤N ; // training set

w ← 0 ; // separator in RD

while (xt, yt)← RECEIVE() ; // data we receive

do
if ytwTxt ≤ 0; // data wrongly classified

then
w ← w + ytxt ; // we update the separator

return w

2.2 QUANTUM COMPUTATION AND GROVER’S
SEARCH ALGORITHM

Before we introduce the quantum perceptron algorithm, we
believe it is opportune to briefly present the principles of
quantum mechanics, i.e. the underlying mathematical struc-
ture of all quantum physical systems. It is not possible to
provide here a complete and exhaustive presentation, so we
will limit ourselves to introduce only those “game rules”
useful to understand the content of the following algorihtms,
leaving it to the reader’s curiosity to more complete reviews,
such as Nielsen and Chuang [2002]. At best, we first in-
troduce the arena where the game goes on, then we define
the dynamics of the quantum system and finally we shortly
introduce the measurement operation.

While classically a computational state takes value in {0, 1},
a quantum state is represented by a unit complex vector
|ψ⟩ in the Hilbert space C2. Such state space is equipped
by an orthonormal basis {|0⟩ , |1⟩}, such that any vector is
generally described by a convex linear combination

|ψ⟩ = α0 |0⟩+ α1 |1⟩ ,

where (αi)i=0,1 are complex numbers. More in gen-
eral qubit basis states can also be combined to form
product basis states to describe multi-qubits systems. If
|ψ1⟩ , |ψ2⟩ , ..., |ψn⟩ represent the states of n isolated quan-
tum systems, the state of the composite system is given by
the tensor product of the state space of the components :
|ψ1⟩ ⊗ |ψ2⟩ ⊗ ... ⊗ |ψn⟩. A concrete example of compos-
ite system is the memory of a n−qubit quantum computer,
where each qubit is called register. In that case,

|ψ⟩ =
2n−1∑
i=0

αi |i⟩.

Similarly to classical computing, we can act by means of
logical gates onto such quantum register to perform compu-
tation. Quantum circuits are nothing but reversible logical
circuits onto complex-valued state space. Each quantum
gate requires a special kind of reversible function, namely
a unitary mapping, that is, a linear transformation of a
complex inner product space that preserves the Hermitian
inner product. When such systems are kept isolated, the



Algorithm 2: QSearch
Input: data {xi}1≤i≤N ; // data we want to search in

Input: oracle f ; // oracle such that f(xi) = 1{i ∈ M}

ψ0 ←
1√
N

N∑
i=1

|i⟩

R← QUANTIFY(f) // quantum version of the oracle

Ug ← GR

m← U


0, . . . ,


1

sin(2 sin−1
(√

1
N

)
)

− 1




v
Meas←− Um

g ψ0

return v

computation is kept reversible. However we need to ob-
tain classical information about the outcome of a quantum
computation task. In practice a quantum state has to be
measured which formally coincides with an orthogonal pro-
jector onto one of the computational basis state |v⟩ ∈ Cn.
During such measurement operation, the quantum state is
randomly collapsed into a classical state, with probability
P
(
v = i | v Meas←− ψ

)
= |αi|2, ∀ 0 ≤ i < 2n, where v has

been expressed in a decimal system.

At the heart of the quantum perceptron algorithm lies the
quantum search algorithm, which is widely used as main
routine in many algorithms, generally guaranteeing to speed
up any brute force O(N) problem into a O(

√
N) problem.

It has been introduced by Grover [1996] as a fast quantum
mechanical algorithm for database search algorithm and it
represents one of the most important and studied algorithm
in quantum computing. In the following, we shortly present
the Grover algorithm. Let us consider N = 2n elements and
M⊆ {1, . . . , N} the searched elements. We start with the
diagonal quantum state

|ψ0⟩ =
1√
N

N∑
i=1

|i⟩ .

We then apply two operators: an oracle and a reflection. The
oracle R is defined by

R |x⟩ =
{
− |x⟩ if x ∈M
|x⟩ otherwise,

while the reflection G is given by

G = 2ψψ† − 1 .

This two operators can in fact be view in a geometric way.
We note #M the cardinal ofM. Let’s denote a = #M

N the
probability to find a searched element before running the
algorithm (when the state is diagonal) and θa = sin−1 (

√
a),

the angle between the subspace composed by the searched
elements and the complementary subspace. Then one can

show that Ug := GR is a rotation of an angle 2θa, mean-
ing that after j steps the probability to measure a searched
element is

P
(
v ∈M | v Meas←− U j

gψ0

)
= sin2

(
(2j + 1)θa

)
.

It is then easy to find the number of steps that gives the
optimal probability of finding a searched element. But to
find this optimal number of steps, one needs to know θa
which is directly related to the number of searched elements.
We want here to adapt this algorithm in order to make it for
an unknown number of searched elements.

The idea here that comes from Boyer et al. [1998] is simply
to draw the number of steps randomly uniformly between 0
and M − 1. The resulting probability is

P
(
v ∈M | v Meas←− Um

g ψ0,m← U{0,...,M−1}

)
=

1

M

M−1∑
j=0

sin2
(
(2j + 1)θa

)
=

1

2

(
1− sin(4Mθa)

2M sin(2θa)

)
.

If M ≥ 1
sin(2θa)

, then it holds that this probability is at least
1
4 . The last thing we need is to express a bound for M that
doesn’t depend on θa:

M ≥ 1

sin(2θa)
=

1

sin(2 sin−1

(√
#M
N

)
)

≤ 1

sin(2 sin−1
(√

1
N

)
)
= O(

√
N) .

In other words, we bound M by its maximum value which
occurs when #M = 1 (i.e. one marked element). The de-
tailed quantum search over an unknown number of searched
elements is given in Algorithm 2. This algorithm find a
searched element with probability at least 1

4 and has a com-
plexity O(

√
N). By repeating the algorithm a logarithmic

number of times, we can increase the probability of success
to 1− ϵ for any ϵ > 0 [Wiebe et al., 2016].

3 EXISTING QUANTUM PERCEPTRON
ALGORITHMS

In this section, we discuss two existing quantum perceptron
algorithms proposed in Wiebe et al. [2016] that are closely
related to our work. Note that other quantum perceptron
models can be found in the literature of quantum neural
networks [Behrman et al., 2000, Ricks and Ventura, 2003,
Schuld et al., 2015].

3.1 ONLINE QUANTUM PERCEPTRON

The classical online Perceptron updates the hyperplane
when an example is misclassified and stops when all training



Algorithm 3: ONLINE QUANTUM PERCEP-
TRON [Wiebe et al., 2016]
Input: data (xi, yi)1≤i≤N ; // training set

w ← 0 ; // separator in RD

for i ∈ {1, . . . , 1/γ2} ; // we perform enough updates

do
for j ∈ {1, . . . ,

⌈
log3/4(γ

2ϵ)
⌉
} ; // we increase

the probability of QSEARCH

do
m← QSEARCH({(xk, yk)}k) ; // searching

for a point xm misclassified by w

if ymwT
i xm ≤ 0 ; // If actually

misclassified...

then
w ← w + ymxm ; // ... then update

return w

data are correctly classified. The online quantum perceptron
works similarly to the classical one. The main difference is
the means by which misclassified points are detected. In-
stead of testing each point one by one, a Grover search is
performed to find a wrongly classified example. Once this is
done, the hyperplane is updated and the process is repeated
until convergence. the ONLINE QUANTUM PERCEPTRON
is outlined in Algorithm 3. Note that this algorithm is not
really an online algorithm since it considers a quantum su-
perposition of states representing the training data samples.
The naming ‘online’ quantum perceptron is used because
this algorithm has the same update rule than the classical
online perceptron. In this quantum version of the perceptron,
the computational complexity is improved from O(N) to
O(
√
N) due to the Grover search. However, an additional

log
(
1/(ϵγ2)

)
will appear to deal with the probability of

failure of the quantum search. This is summarized in the
theorem below.
Theorem 2 [Wiebe et al., 2016]. Let S be a linearly sepa-
rable sample of N points of margin γ. Algorithm ONLINE
QUANTUM PERCEPTRON finds a perfect separator with
probability at least 1− ϵ and has a complexity of

O

(√
N

γ2
log

(
1

ϵγ2

))
.

3.2 VERSION SPACE QUANTUM PERCEPTRON

The idea of the second quantum perceptron model is based
on the notion of version space, which is the set of hypothe-
ses that are consistent with the training data [Herbrich et al.,
2001]. Here, K linear separators are randomly drawn from
the normal distribution N (0,1), so the problem becomes
how to find one of these separators that is in the version
space, i.e., correctly separates the data. Using a version
space point of view, the perceptron learning problem is

Algorithm 4: VERSION SPACE QUANTUM PERCEP-
TRON [Wiebe et al., 2016]
Input: data (xi, yi)1≤i≤N ; // training set

Draw {w1, . . . , wK} ← N (0,1) ; // We assume this

is done efficiently

for i ∈ {1, . . . ,
⌈
log3/4(ϵ)

⌉
} ; // we increase the

probability of QSEARCH

do
m← QSEARCH({wk}k) ; // searching for a

separator wm that correctly classifies the data

if yjwT
mxj > 0, ∀j ; // check if the obtained

hyperplane is a good one

then
return wm

return w1

transformed into a search problem and then quantum search
algorithms can be used to solve it efficiently. The Grover
search is now applied over the generated hyperplanes and
not the training set as in the previous algorithm (see Al-
gorithm 4). A significant improvement on the number of
hyperplanes K is achieved; however, a full pass over the
training examples is needed to find the hyperplane that be-
longs to the version space. The computational complexity
of the algorithm is O(N

√
K) with an additional log 1/ϵ

because of the probability of failure, as summarized in the
theorem below. Note that Wiebe et al. [2016] provided a re-
sult about the number of hyperplanes that must be generated
to guarantee that at least one of them is in the version space.
Interestingly, this number depends on the margin of the data.
Indeed, it was shown that the number of hyperplanes to be
sampled is K = O

(
ln(1/ϵ)

γ

)
.

Theorem 3 [Wiebe et al., 2016]. Let S be a linearly sepa-
rable sample of N points of margin γ. Algorithm VERSION
SPACE QUANTUM PERCEPTRON finds a perfect separator
with probability at least 1− ϵ and has a complexity of

O

(
N
√
γ
log3/2

(
1

ϵ

))
.

As we can see, this algorithm does not improve the com-
plexity with respect to the number of the training data N ;
but it has a better statistical guarantee than the classical per-
ceptron, since the classical mistake bound of O(1/γ2) can
be improved to O(1/

√
γ). In the next section we propose a

quantum perceptron algorithm that has the two advantages
of the online and the version space quantum perceptron: it
provides improvements in both the computational complex-
ity and the number of mistakes.



4 HYBRID QUANTUM PERCEPTRON:
AN IMPROVED PERCEPTRON
LEARNING

This section presents our main results. We introduce a hybrid
quantum perceptron algorithm to take advantage of the two
quantum perceptron models described above. We show a
quadratic improvement over the classical perceptron in both
the number of samples and the margin of the data. Then,
we derive a bound on the expected error of the hypothesis
returned by our algorithm.

4.1 ALGORITHM

The idea is also to draw randomly several linear separators
following the normal distribution N (0,1) and then search
for one in the version space, so it correctly separates the
data. However, in contrast to the VERSION SPACE QUAN-
TUM PERCEPTRON, our algorithm will perform a quantum
search over the training set for each separator to find a so-
lution, and not a quantum search over the separators. By
doing this, we can improve the complexity with respect to
the number of samples N , as for the ONLINE QUANTUM
PERCEPTRON, while still enjoying the benefits of the version
space approach. Our hybrid quantum perceptron algorithm
is described in Algorithm 5.
Theorem 4 . Let S be a linearly separable sample of N
points of margin γ. Algorithm HYBRID QUANTUM PER-
CEPTRON finds a perfect separator with probability at least
1− ϵ and has a complexity of

O

(√
N

γ
ln(1/ϵ) ln

(
1

γϵ

))
.

Proof. See supplementary materials.

This is a quadratic improvement in the computational and
statistical complexity of the classical online perceptron. The
improvement of the statistical complexity is quadratic only
if we assume that the data supplied to the classical per-
ceptron are provided the same way that the quantum one.
Indeed, the complexity of the classical perceptron in this
case is O( N

γ2 log(
1

ϵγ2 )) (see Wiebe et al. [2016, Th. 1]). If
the classical perceptron is online instead, then the statisti-
cal complexity improve fromO((1/γ)2) toO(1/γ ln(1/γ))
which is slightly less than quadratic. The computational im-
provement is due to the quantum search while the statistical
improvement is provided by our choice of using a version
space based strategy, leading to the name ‘hybrid QP’. The-
orem 4 shows that our algorithm is particularly well-suited
for large-scale data sets and small margins.

Algorithm 5: HYBRID QUANTUM PERCEPTRON

Input: data (xi, yi)1≤i≤N ; // training set

Input: {w1, . . . , wK} ∼ N (0,1) ; // hyperplanes

for i ∈ {1, . . . ,K} ; // for all hyperplanes...

do
b← 1 for
j ∈ {1, . . . ,

⌈
log3/4

(
1−

(
1− ϵ

2

) 1
K−1

)⌉
} ;

// increase QSEARCH success probability

do
m← QSEARCH({(xk, yk)}k) ; // searching

for a point xm misclassified by wi

if ymwT
i xm ≤ 0 ; // if one is found...

then
b← 0 ; // ...then the current hyperplane

isn’t a good one

if b = 1 ; // if no miclassified point found...

then
return wi ; // ...then return the current

hyperplane

return w1

4.2 GENERALIZATION

In the classical setting, mistake bounds for the Perceptron
algorithm can be used to derive generalization bounds [Cesa-
Bianchi et al., 2004, Mohri and Rostamizadeh, 2013]. This
question was not addressed in Wiebe et al. [2016]. As we
have seen above, the HYBRID QUANTUM PERCEPTRON
provides an improvement on the statistical efficiency of the
perceptron (O(1/γ) instead of O(1/γ2)). We show here
that this may yield better generalization guarantees.

We have a training set S = {z1, . . . , zn} with zi = (xi, yi).
We assume that zi are independently sampled from an un-
known distribution D. We recall that the risk is defined by

R(h) = Ez∼D (1{h(x) ̸= y}) ,

where h is a hypothesis in a hypothesis setH.
Theorem 5 . Assume that the data is linearly separable. Let
hS be the hypothesis returned by the HYBRID QUANTUM
PERCEPTRON algorithm after training over a sample S of
size N drawn according to some distribution D. Then, the
expected error of hS is bounded as follows:

ES∼DN (R(hS)) ≤
√
π

2

log 1/ϵ

N + 1
ES∼DN+1

(
1

γS

)
.

Proof. See supplementary materials.

The bound obtained in the classical online setting is equal
to 1

N+1ES∼DN+1

(
min(M(S), 1/γ2S)

)
, where M(S) is the

number of updates made by the algorithm after training over
S [Mohri et al., 2018, Theorem 8.9]. Theorem 5 shows that



(a) (b)

Figure 1: Complexity bounds over the number of operations for quantum perceptrons. The curves asymptotically follow the
complexities summarized in Table 1. Subplot (a) shows the bounds in function of the number of points N with a margin
γ = 0.01. Subplot (b) shows the bounds in function of the inverse of the margin γ with a number of points N = 1000.

HYBRID QUANTUM PERCEPTRON can give considerable
improvement in generalization over the classical online per-
ceptron algorithm. However, the guarantee given is not a
high probability bound, since it holds only for the expected
error of the hypothesis returned by the algorithm.

5 NUMERICAL EXPERIMENTS

In this section, we illustrate empirically the theoretical per-
formance guarantees introduced in the previous section.
Then , we discuss the effect of quantum noise which is one
of the major issue of near-term quantum algorithms. The
simulations presented here come from a classical computer
simulating a quantum algorithm.1

5.1 COMPUTATIONAL-STATISTICAL
TRADE-OFF

We run experiments with the three quantum perceptron mod-
els studied in this paper and compare the number of steps
required for these algorithms when varying the number of
data samples N and the margin γ. Figure 1 shows the maxi-
mal number of steps; namely the complexities taking into
account the constants. The slope of the curves gives an
indication of the complexity in terms of N or 1/γ, while
the intercept provides a good indication of the impact of
the constant factors on it. The slope of the curve of HY-
BRID QUANTUM PERCEPTRON is lower than the one of
the VERSION SPACE QUANTUM PERCEPTRON when γ is
fixed and N varies and also lower than the slope of ONLINE
QUANTUM PERCEPTRON when N is fixed and γ varies.
This confirms that our algorithm has a lower computational

1The code to reproduce our experiments is available
in a GitHub repository: https://github.com/mroget/
Quantum-perceptron-models.

complexity and also a better statistical efficiency.

It is also interesting to compare the behavior of these quan-
tum perceptron algorithms with respect to the number of op-
erations made by the classical online perceptron. We apply
the three quantum perceptron algorithms on the Iris dataset
and on a simulated dataset (called Hard). Iris is a simple
dataset for which the classical perceptron will converge very
quickly. The Hard dataset, however, is specifically build to
force the classical perceptron algorithm to perform a large
number of updates.

Definition 1 (Hard dataset). The Hard dataset inspired from
Mohri et al. [2018, Exercice 8.1] is composed of a sample
SH(N) = {(x1, y1), . . . , (xN , yN ) ∈ (RN × {0, 1})N of
size N and dimension N such that

∀i, j ∈ [N ]2, (xi)j = (−1)i+11{j = i} and yi = (−1)i .

Figure 2 shows the ratio between the number of operations
of each quantum perceptron algorithm and the number of
steps of the classical perceptron during the learning phase.
On the Iris dataset, the three quantum perceptrons behave
similarly and are about four times slower than the classical
perceptron. This is expected since the problem is easy to
solve. For the Hard dataset, however, all the quantum per-
ceptron algorithms shows an improvement over the classical
one. Interestingly, HYBRID QUANTUM PERCEPTRON is the
one that performs the best, since it achieves a good trade-off
between computational and statistical complexities.

5.2 QUANTUM NOISE

Most of the existing quantum devices are subject to quan-
tum noise. Dealing with noise in quantum computation is
nowadays an important and challenging problem. Although
a rigorous analysis goes beyond the scope of this work,

https://github.com/mroget/Quantum-perceptron-models
https://github.com/mroget/Quantum-perceptron-models


Figure 2: Ratio between the number of operations of quan-
tum perceptron and classical perceptron.

here we shortly illustrate how noise may affect the quantum
perceptron computational task. All quantum algorithms pre-
sented in this paper are based on the assumption that the
quantum search finds a searched element with probability
at least 1/4. As a reminder (see Section 2), the quantum
search is designed by performing m steps of the Grover’s
algorithm while m is drawn uniformly between 0 and M .
We can compute the probability of success of the quantum
search with respect to M . Let us call this probability P (M).
As seen in Section 2, it holds that

P (M) =
1

2

(
sin(4Mθa)

2M sin(2θa)

)
.

Here, θa depends only on the proportion of searched ele-
ments. Figure 3 shows three curves. Each one is the plot of
P (M) for one searched element with a specific quantum
noise model. The blue one does not account noise while
the other two curves have, respectively, bit-flip, and depo-
larization noise [Wang and Krstic, 2020]. The first class of
noise coincides with a unitary random flip, meaning that the
computational state flips from |1⟩ to |0⟩ or vice versa. The
second kind of error can be seen as a completely positive
trace-preserving map from the quantum state onto a linear
combination of itself and a general maximally mixed state.
As we can see, the success probability in a fault-free envi-
ronment converges towards 1/2, thus for large enough M ,
P (M) can be always greater than 1/4, as explained in the
section Preliminaries. However in a faulty-environment, the
success probability decreases rapidly and do not tend to a
non vanishing constant, making harder to recover a P (M)
greater than 1/4. Moreover the quantum noise strictly de-
pends on the quantum circuit design (in concrete how errors
may propagate), making this choice crucial to build a fault-
tolerant quantum perceptron. This decreasing is the result
of making too many iterations, thus accumulating noise. On
the other hand, the probability starts by increasing because
the quantum search is working. The peak of probability
represents the best trade-off between the increase of the
probability of success and the increase of the quantum noise.

6 DISCUSSION

In this work, by classical perceptron we mean the standard
online perceptron. There is, to our knowledge, no mention

Figure 3: P (M) for different noise models.

in the classical ML literature to classical version space per-
ceptron. The Quantum Perceptron algorithm we propose has
a quadratic improvement in N and γ over the well-known
classical online perceptron. Similarly, a quartic speed-up is
used in Wiebe et al. [2016] to describe the improvement over
γ they obtained with their quantum version space percep-
tron. It is worth noting that, although it is not known in the
literature, a classical version space perceptron should have
a complexity bound inversely proportional to the margin γ.
The quadratic improvement over the margin is not provided
by the Grover’s search algorithm but by the version space
approach. Usually the version space approach scales linearly
with the number of examples N . The quadratic improve-
ment in N is, however, obtained by our quantum perceptron
using a quantum search over the training set. When adopt-
ing a version space approach, the perceptron problem is
transformed into a search problem over the generated hy-
perplanes. Our results show that applying a quantum search
over the training set and not over the hyperplanes in this
situation provides new insights for the design of computa-
tionally and statistically efficient perceptron models.

To our knowledge, our Theorem 5 is the first result showing
that the version space perceptron (classic or quantum) can
have a better generalization than the online perceptron algo-
rithm. There are no results concerning the expected risk of
previous quantum perceptron algorithms. We expect that the
expected risk bound of ONLINE QUANTUM PERCEPTRON is
of the same order than the classical online perceptron, since
this algorithm does not improve the mistake bound. For
VERSION SPACE QUANTUM PERCEPTRON, it is not clear
whether the improvement on the scaling of the algorithm
with respect to the margin could yield even better gener-
alization guarantees. The factor 1/γ in the expected risk
bound of HYBRID QUANTUM PERCEPTRON is related to
the number of the randomly generated linear separators (see
the proof of Theorem 5). The version space quantum percep-
tron has the same number of separators than our algorithm.
So, using the same line of proof as for Theorem 5 will not
necessarily result in an improved bound.

In this paper we only considered linear classification. In



the classical case, kernel methods provide a powerful
tool for generalizing linear classifiers to nonlinear set-
tings [Schölkopf et al., 2002]. With appropriate nonlinear
features, linear models can be used to approximate a nonlin-
ear function. Kernel methods allow the construction of these
nonlinear features. There are interesting links between ker-
nel methods and quantum computing [Havlíček et al., 2019,
Schuld and Killoran, 2019]. Indeed, the process of encoding
inputs in a quantum state can be interpreted as a nonlinear
feature map that maps data to a quantum Hilbert space. So,
the quantum encoding of classical data can be seen as a way
to construct nonlinear quantum features. Different quantum
encodings were proposed and the corresponding kernels
were given. Nonlinear extensions of our work can be carried
out by the classical-to-quantum data encoding scheme.

7 CONCLUSION

In this paper, we proposed a hybrid quantum perceptron
algorithm that goes beyond the ideas of existing quantum
perceptron algorithms. This allowed us to obtain a quadratic
improvement over the computational complexity and the
statistical efficiency compared to the classical online percep-
tron. We performed numerical experiments to support our
theoretical findings. In the future, it would be valuable to
study noise-robust models for quantum perceptron.
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