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Abstract

Aphids are one of the main threats to crops, rural families,
and global food security. Chemical pest control is a neces-
sary component of crop production for maximizing yields,
however, it is unnecessary to apply the chemical approaches
to the entire fields in consideration of the environmental pol-
lution and the cost. Thus, accurately localizing the aphid and
estimating the infestation level is crucial to the precise local
application of pesticides. Aphid detection is very challeng-
ing as each individual aphid is really small and all aphids are
crowded together as clusters. In this paper, we propose to es-
timate the infection level by detecting aphid clusters. We have
taken millions of images in the sorghum fields, manually se-
lected 5,447 images that contain aphids, and annotated each
aphid cluster in the image. To use these images for machine
learning models, we crop the images into patches and created
a labeled dataset with over 151,000 image patches. Then, we
implement and compare the performance of four state-of-the-
art object detection models.

Introduction

Annually 37% of crops are lost to pest damage and around
13% of crop damage is caused by insects. Most farmers con-
sider utilizing pesticides to eliminate insects and a tremen-
dous amount of funding were applied to pesticides each year.
While most of the pesticides are wasteful since only a small
portion of used pesticides is employed directly on the in-
sects and most of them are wasted and even pollute the
environment. Under several management scenarios, only a
small fraction of areas receive a justified amount of pesti-
cide, while other areas lose yield due to delayed timing and
damage by pests, and remaining areas receive a superfluous
spray application when there is no pest presence. However,
the development of robotic technology for insecticide appli-
cation has not been explored primarily due to unavailable
camera vision capabilities to locate the pest incidence and
severity within a complicated crop canopy. There is an ur-
gent demand for an intelligent application system designed
to accurately spray on the infested canopy but only where
infestations are present.

Object detection and recognition is one of the most criti-
cal components in agricultural robotics, and detecting small
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Figure 1: Original images with annotations. The light blue
areas represent an annotated aphid cluster. Aphid clusters are
mostly tiny compared to the original image size. In (a) and
(c), the areas circled by red lines represent clusters we do
not need to annotate since those areas only contain very few
sparsely distributed aphids. The criteria is an aphid cluster
should have more than 6 closely located aphids.

insects like aphids can be especially challenging. Convolu-
tional neural network (CNN) was first used in (Girshick et al.
2014) for object detection and recognition. The CNN models
have a wide range of applications on medical image analy-
sis (Li et al. 2021a) and object detection (Ma, Zhang, and
Wang 2021)(Zhang et al. 2020b). Nonetheless, aphids are
so tiny that even state-of-the-art detection models could not
accurately localize them individually. Most existing aphid
detection models (Teng et al. 2022)(Li et al. 2019b)(Li et al.
2019a) attempt to detect individual aphids, but the perfor-
mance of the detection models on the aphid dataset is still
not that pleasant. In addition, those models are trained on
ideal aphid images, it is even harder for them to detect the
aphid in real-world scenarios since most aphids are clustered
together on the leaves, and accurately dividing and detecting
the dense aphids individually is almost impossible. In addi-
tion, different illuminations and shades in different images
might cause domain shifts which also severely affect the ac-
curacy of CNN models on the tiny aphids detection (Yang
et al. 2022)(Zhang, Ma, and Wang 2021).

In this paper, we collected millions of images from the
sorghum field over two seasons, and then manually selected
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Figure 2: Statistical summary of the created dataset. (left) Dataset composition; (right) mask size distribution.

and annotated 5,447 images affected by aphids. Instead of
labeling the aphid individually, we propose annotating aphid
colonies as clusters and creating the bounding boxes based
on the aphid clusters. Because bounding boxes are always
rectangles and cover larger areas, closely located bounding
boxes are merged together without affecting aphid detection.
In addition, we implemented and evaluated the performance
of four state-of-the-art detection models on the generated
aphid dataset. The study makes it possible to estimate the
aphid affection levels from real images to assist farmers to
make timely control of affection. The labeled dataset and
developed learning models will be freely accessible to the
research community on the author’s homepage.

Dataset Generation
Data Collection

Most of the aphids are located under the leaves and majority
of them are densely clustered. In order to reduce the influ-
ence of occlusion among the sorghum leaves, we developed
an imaging rig with three GoPro cameras that can capture
the canopy leaves at three different heights corresponding to
view 1, view 2, and view 3, respectively. Thus, we can enrich
the dataset by taking pictures at three different views and
capturing aphid clusters from different perspectives. Three
sample annotated images corresponding to the three views
are shown in Fig 1. Using this device, we have captured
millions of images over two growing seasons of a sorghum
farm. Most of the images are free of aphids. We manually
examine all images and eliminate those without aphids, and
eventually, select 5,447 images that contain adequate aphids.
The percentages of photos corresponding to the three views
are shown in Fig 2.

Data Labeling

The aphid clusters in the selected images are manually anno-
tated by professionally trained researchers using Labelbox'.
We first create segmentation masks for each image and then
generate detection bounding boxes based on the masks. In
total, we have labeled 59,767 aphid clusters.

Aphid Cluster Definition. Data labeling is a labor-intensive

'https://labelbox.com/

process. The task is distributed among 8 trained research as-
sistants. Therefore, it is crucial to have an efficient and con-
sistent definition of what is an aphid cluster before labeling.
Ambiguous criteria will confuse deep learning models dur-
ing training.

In the fields, the aphid clusters can appear in a variety
of patterns (low density, high density, different sparsity) as
shown in Fig 1. If we aim to label each individual aphid re-
gardless of its density, it will take an excessive amount of
time and resources will be wasted on areas without critical
threat. If the threshold is set too high, areas with substan-
tial aphid infestation might be ignored, resulting in financial
loss. After discussions with agricultural experts, we define
the aphid cluster as “an area with more than or equal to
six closely located aphids”. A further interpretation of the
threshold is demonstrated in Fig 1.

Labeling. After removing some redundant images and im-
ages without aphid clusters, we have labeled in total 5,447
photos. Redundant images are those taken from very close
viewpoints, resulting in visually similar images. Photos
without clusters are removed because we believe deep CNN
models can learn sufficient negative features from empty
spaces of the remaining photos.

In summary, the statistical information of the generated
masks is shown in Fig 2. In total, 59,767 masks are created
and the sizes of masks vary greatly. 77.0% of the masks have
a size smaller than 5,000 pixels. Since masks with larger
sizes are rare and sparsely distributed, we only plot the his-
togram of masks with less than 5,000 pixels in Fig 2b. More
than half of the masks are smaller than 1,500 pixels, with
the most popular size interval [201, 301]. Among all masks,
the median size is 1,442 pixels and the mean is 7,867 pixels.
The median is more representative, while the mean value is
severely affected by the extremely large masks.

10-Fold Cross Validation. Cross validation (Stone 1974) is
a resampling method to evaluate and pick models on a small
dataset. Popular computer vision datasets commonly have
more than 10k images, e.g., MS COCO (Lin et al. 2014)
has more than 200k labeled images. Our dataset only has
a little over 5k images. Following cross validation (Stone
1974), we decide to split our dataset into 10 groups. To en-
sure each group has a similar percentage of images from the



Table 1: Number of patches in each group

Sum

1

2

3

7

5

6

7

8

9

10

151,380

14,778

15,392

14,567

15,720

15,943

14,929

15,272

15,276

14,140

15,363

three different views, we separately shuffle the images and
split them into 10 subgroups from each view. Then the final
cross validation groups are formed by picking one subgroup
from each view. Thus images from each view will be evenly
distributed in each group.

Image Patches. The majority of the masks, as shown in
Fig 2, have a size smaller than 1,500 pixels, which is less
than 0.015% of the original image size (3,648 x 2,736).
In addition, most detection and segmentation models are
trained and tested on much smaller images. So we crop
the original high-definition images into smaller 400 patches.
During this process, some masks will be separated into dif-
ferent patches and will have some exclusions. To ensure each
mask’s completeness in at least one of the final patches, the
patch generation is performed with 50% overlapping, mean-
ing the next patch overlaps 50% with the previous patch both
horizontally and vertically. An original 3, 648 x 2, 736 image
will generate 221 patches for detection and segmentation.

Patch generation is conducted after dividing the dataset
into 10 cross validation groups, such that information from
one original photo will not leak to any other groups. Also
after patch generation, those patches without an aphid clus-
ter are discarded because CNN models should have enough
negative samples just from the background of other patches.
In summary, the number of patches in each cross validation
group is shown in Table 1.

Bounding Box Merge. Since we label the aphids based on
clusters, small clusters close to each other are labeled in-
dividually with well-defined boundaries. However, the gen-
erated bounding boxes of these clusters overlap with each
other, as shown in Figure 3. From the object detection point
of view, these bounding boxes should be merged as they all
represent aphid clusters. Otherwise, they may cause con-
fusion during learning. In our application, we merge the
bounding boxes of the clusters if their closest distance is
less than or equal to 10 pixels. Our experiments show that
this process will greatly boost detection accuracy.

Tiny Cluster Removal. The process of image cropping may
create some extremely small clusters, and most of them are
around the border or corner of the patches. In practice, these
small labels are meaningless for model training and affection
estimation. Thus, we remove the small cluster masks whose
areas are less than 1% of the patch. The results after merging
and removal are illustrated in Table 2.

Object Detection Models

In object detection, both classification and localization are
required for recognizing and localizing the objects in the
videos or images. Typically, the detection models have two
separate branches for classification and localization, respec-
tively. The classification branch is similar to most classifica-
tion tasks which classify the contents included by the bound-

ing boxes. The localization branch predicts the offsets to the
anchor boxes for anchor-based detection models or to the
anchor points for anchor-free detection models and then the
offsets would be converted to the bounding box coordinates
based on the anchor boxes or anchor points for final pre-
dictions. Since the IoU thresholds are extremely important
for detection models, recent detection models tend to calcu-
late the adaptive thresholds based on the statistical properties
among the samples (Zhang et al. 2020a)(Zhang et al. 2021)
or compute the dynamic thresholds based on the training sta-
tus (Kim and Lee 2020)(Zhang et al. 2022).

In this study, we implemented the following four state-
of-the-art object detectors and evaluated their performance
on aphid detection based on the created dataset. (1) ATSS
(Adaptive Training Sample Selection) (Zhang et al. 2020a)
calculates the adaptive IoU thresholds based on the mean
and standard deviation of the IoUs between the candidate an-
chor boxes and the ground truth objects to select the positive
samples instead of using fixed thresholds. (2) GFLV2 (Gen-
eralized Focal Loss V2) (Li et al. 2021b) utilizes statistics of
bounding box distributions as the Localization Quality Esti-
mation (LQE). Thus the high-quality bounding boxes could
have a high probability to be kept instead of suppressed with
the NMS (Non-Maximum Suppression) algorithm. (3) PAA
(Kim and Lee 2020) dynamically divides the positive sam-
ples and negative samples using GMM (Gaussian Mixture
Model) based on the classification and localization scores
of the samples in a probabilistic way. (4) VFNet (Zhang
et al. 2021) is based on ATSS (Zhang et al. 2020a) algo-
rithm, but proposes IoU-aware Classification Score (IACS)
as the classification soft target using the IoUs between the
predicted bounding boxes and their corresponding ground
truth objects. Thus high-quality predicted boundary boxes
might have high scores than those low-quality boxes. In ad-
dition, star-shaped box feature representation is introduced
to further refine the predicted boxes so that they could be
closer to the ground truth objects.

The aforementioned detection models are state-of-the-
art approaches that have excellent performance on COCO
benchmark (Lin et al. 2014). Since the labels of our created
dataset are based on the aphid clusters instead of the single
aphid, we can directly apply them in this problem and train
these models using the created dataset.

Model Training

All models exploit 0.001 as the initial learning rate with the
total training epoch being 12. The initial learning rate is uti-
lized for 9 epochs and then reduced by 10 times for the last
3 epochs. SGD (Stochastic Gradient Descent) is employed
as the optimizer to optimize the model. The momentum and
weight decay are 0.9 and 0.0005, respectively. The batch size
is 16 and the warmup iterations are 500. The detection mod-
els are written by PyTorch with Python3 (Chen et al. 2019).



Table 2: The mean and standard deviation of 10-fold cross
validation on state-of-the-art detection models

original +merge 10 +rm 0.01
AP [41.9+£191|44.8+£1.89|58.3+£1.87
VFNet
recall | 80.4 £0.90 | 83.7 £ 0.92 | 96.8 £ 0.35
AP |41.6 £1.84 |44.7+£1.93|58.3£1.90
GFLV2
recall | 79.2 £1.27 | 82.6 £1.09 | 96.2 £ 0.45
PAA AP |41.2+1.65|44.2+1.68|58.7+1.89
recall | 84.1 £0.89 | 87.6 £ 0.86 | 98.4 £ 0.23
AP |41.8+£1.70 | 44.8 £1.85|59.0 £ 1.82
ATSS
recall | 80.0 £1.00 | 83.3 £1.03 | 97.0 £ 0.28

The evaluation metric for detection models is Average Preci-
sion (AP) which computes the area under the PR curve. The
PR curve plots the Precision rate versus the Recall rate for
the detection models. The precision rate indicates the cor-
rectly predicted samples over the entire predicted samples.
The recall rate represents the correctly predicted samples
over the entire ground truth samples.

For object detection, only predicting the correct labels
is not enough since we should also consider the bounding
box accuracy. Typically, IoUs (Intersection over Unions) be-
tween the predicted bounding boxes and their corresponding
ground truth boxes are utilized to judge the quality of the
predicted boxes. Typically, IoU is calculated by the ratio of
the intersection area over the union area of two bounding
boxes. PASCAL VOC (Everingham et al. 2010) selects 0.5
as the IoU threshold which indicates that the detection is a
success if the IoU between the predicted bounding box and
the ground truth bounding box is over 0.5 if the classification
label is correctly predicted. COCO (Lin et al. 2014) chooses
the IoU threshold from 0.5 to 0.95 with the step of 0.05, and
calculates the AP for each of the thresholds and finally aver-
ages them. In this paper, we utilize the IoU threshold from
PASCAL VOC and the generated annotation files are also in
xml format as PASCAL VOC (Everingham et al. 2010).

Results

The performance across the 10-fold cross validation among
all detection models is illustrated in Table 2. AP (Aver-
age Precision) and Recall are recorded in the format of
mean =+ std. The mean and standard deviation (std) are cal-
culated across all 10-fold validations. In the first row, “orig-
inal” indicates the detection models are applied to the origi-
nally labeled dataset; “+merge 10 illustrates the results af-
ter merging the clusters whose closest distance is within 10
pixels; “+rm 0.01” stands for the results after removing the
small clusters whose areas are less than 1% of the patches.
We can see from Table 2 that all detection models achieve
similar results in terms of average precision, however, the
recall rate of PAA (Kim and Lee 2020) is slightly higher than
the other detectors since the number of predicted bounding
boxes of PAA is higher than that of other detection models.

N

b

Figure 3: Some examples of merging clusters that are close
enough (10 pixels) to each other. The segmentation masks
are utilized to illustrate the changes in the bounding boxes
before and after the merging process. The white areas denote
the masks for aphid clusters. The green bounding boxes in
the masks are the originally labeled boxes and the red bound-
ing boxes in the masks are the merged results. It is very chal-
lenge for the detection models to detect individual cluster in
thess scenarios. Thus, they are merged to form a more mean-
ingful cluster.

Both AP and recall rate have been greatly increased after
cluster merging (+merge 10) and removal (+rm 0.01). The
above results are obtained with IoU setting to 0.5. We have
also tested the influence of other IoU thresholds. In general,
lower IoU yields better average accuracy and vice versa. If
the locations of the aphid clusters are not concerned, a lower
IoU threshold may be applied.

Conclusion

In this paper, we have selected thousands of aphid-affected
images from millions of images captured in the fields and
annotated the aphids based on clusters instead of individual
aphids for generic usage. Due to the irregular shapes and
sizes of the aphid clusters, the initial annotations might not
be suitable for the training of learning models. Thus, we
merge the bounding boxes of the neighboring clusters and
remove the extremely small clusters. We have also evalu-
ated and compared the performance of four state-of-the-art
detectors and created a baseline of aphid detection using the
created dataset. The experiments have also demonstrated the
effectiveness of cluster merging and removal. The created
dataset and trained detection models could be used to help
farmers to estimated the aphid infestation levels in the field
so as to provide timely and precise pesticide application.
We hope our created dataset and analysis could inspire more
work on aphid detection.
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