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Abstract

This paper studies a model learning and online planning approach towards building
flexible and general robots. Specifically, we investigate how to exploit the locality
and sparsity structures in the underlying environmental transition model to improve
model generalization, data-efficiency, and runtime-efficiency. We present a new
domain definition language, named PDSketch. It allows users to flexibly define
high-level structures in the transition models, such as object and feature dependen-
cies, in a way similar to how programmers use TensorFlow or PyTorch to specify
kernel sizes and hidden dimensions of a convolutional neural network. The details
of the transition model will be filled in by trainable neural networks. Based on
the defined structures and learned parameters, PDSketch automatically generates
domain-independent planning heuristics without additional training. The derived
heuristics accelerate the performance-time planning for novel goals.

1 Introduction

A long-standing goal in AI is to build robotic agents that are flexible and general, able to accomplish
a diverse set of tasks in novel and complex environments. Such tasks generally require a robot to
generate long-horizon plans for novel goals in novel situations, by reasoning about many objects
and the ways in which their state-changes depend on one another. A promising solution strategy is
to combine model learning with online planning: the agent forms an internal representation of the
environment’s states and dynamics by learning from external or actively-collected data, and then
applies planning algorithms to generate actions, given a new situation and goal at performance time.

There are two primary desiderata for a system based on model-learning and planning. First, the
learning process should be data efficient, especially because of the combinatorial complexity of
possible configuration of in the real world. Second, the learned model should be computationally
efficient, making online planning a feasible runtime execution strategy.

A critical strategy for learning models that generalize well from small amounts of data and that
can be deployed efficiently at runtime is to introduce inductive biases. In image processing, we
leverage translation invariance and equivariance by using convolutions. In graph learning, we leverage
permutation invariance by using graph neural networks. Two essential forms of structure we can
leverage in dynamic models of the physical world are locality and sparsity. Consider a robot picking
an object up off a table. At the object level, the operation only changes the states of the object being
picked up and the robot, and only depends on a few other nearby objects, such as the table (local). At
the object feature level, only the configuration of the robot and pose of the object are changed, but
their colors and frictional properties are unaffected (sparse).

Classical hand-engineered approaches to robot task and motion planning have designed represen-
tations that expose and exploit locality through lifting (or object-centrism), which allows relational
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(:action move-into
:parameters (?o1 ?o2)
:effects (and
(pose::assign ?o1
(??f (pose ?o2))

)
......

PDSketch (Structure)

𝜃
Neural Modules (Parameters)

Data (Offline Demonstration or Online Interaction)

Model Goal
(e.g., paint all blocks yellow)

Domain-Independent
Planner (A*)
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Command
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Figure 1: The life cycle of a PDSketch model. A PDSketch model is composed of a model structure
definition and a collection of trainable neural modules. The model parameters can be learned from
data. During performance time, the model is used by a domain-independent planner to form a policy
that directly interacts with the environment.

def move_into(o, c):
o.pose = c.pose + [0, 0, 0.1]
if is_block(o) and is_painter(c):
o.color = c.color

def move_into(o, c):
o.prop1 = ??(c.prop1)
if ??(o, c):
o.prop2 = ??(c.prop2)

(a) A full specification of the transition model. (b) A structure-only specification.

Figure 2: Defining both the transition model structure and
implementation in Python (a) vs. defining only the structure
while leaving details (the ?? functions) to be learned (b).

descriptions of objects and abstrac-
tion over them, and through factoring,
which represents different attributes of
an object in a disentangled way [Gar-
rett et al., 2021]. These representa-
tions are powerful and effective artic-
ulations of locality and sparsity, but
they are traditionally laboriously hand-
designed in a process that is very dif-
ficult to get correct, similar to writing
a full state-transition function as in Fig. 2a. This approach is not directly applicable to problems
involving perception or environmental dynamics that are unknown or difficult to specify. In this
paper, we present PDSketch, a model-specification language that integrates human specification of
structural sparsity priors and machine learning of continuous and symbolic aspects of the model. Just
as human users may define the structure of a convolutional neural network in TensorFlow [Abadi
et al., 2016] or PyTorch [Paszke et al., 2019], PDSketch allows users to specify high-level structures
of the transition model as in Fig. 2b (analogous to setting the kernel sizes), and uses machine learning
to fill in the details (analogous to learning the convolution kernels).

Fig. 1 depicts the life-cycle of a PDSketch model, PDSketch uses an object-centric, factored, symbolic
language to flexibly describe structural inductive biases in planning domains (i.e., the model structure).
A PDSketch model is associated with a collection of neural modules whose parameters can be learned
from robot trajectory data that are either collected offline by experts or actively-collected by interacting
with the environment. During performance time, a PDSketch is paired with a domain-independent
planner, such as A∗, and as a whole forms a goal-conditioned policy. The planner receives the
environmental state and the trained PDSketch model, makes plans in an abstract action space, and
invokes primitive policies that actually generate robot joint commands.

Compared to unstructured models, such as a single multi-layer perceptron that models the complete
state transition monolithically, the structures specified in PDSketch substantially improve model
generalization and data-efficiency in training. In addition, they enable the computation of powerful
domain-independent planning heuristics: these are estimates of the cost-to-go from each state to a
state satisfying the goal specification, which can be obtained from the structured transition model
without any additional learning. They can be leveraged by A∗ to efficiently plan for unseen goals,
specified in a first-order logic language.

We experimentally verify the efficiency and effectiveness of PDSketch in two domains: BabyAI, an
2D grid-world environment that focuses on navigation, and Painting Factory, a simulated table-top
robotic environment that paints and moves blocks. Our results suggest that 1) locality and sparsity
structures, specified economically in a few lines of code, can significantly improve the data efficiency
of model learning; 2) the model learning and planning paradigm enables strong generalization to
unseen goal specifications. Finally, the domain-independent heuristics automatically induced from the
structures dramatically improve performance-time efficiency, especially for novel goal specifications.

2



Input Image

Segmentation

(a) Raw Observations (b) Object-Centric State 
(Observation)

Item#1
(423.0, 420.0)

Item#2
(159.0, 256.5)

Item#3
(543.0, 381.5)

Item#6
(275.5, 273.5)

pose       Item#1

color      Item#1

wetness    Item#1

dirtiness  Item#1

pose       Item#6

color      Item#6

wetness    Item#6

dirtiness  Item#6

......
type       Item#1

type       Item#6

pose       Item#1

color      Item#1

wetness    Item#1

dirtiness  Item#1

pose       Item#6

color      Item#6

wetness    Item#6

dirtiness  Item#6

......
type       Item#1

type       Item#6

(c) Factored State 
(Internal)

(d) Factored State
(Next Timestep)

Item#1
(273.0, 273.0)

Item#2
(159.0, 256.5)

Item#3
(543.0, 381.5)

Item#6
(275.5, 273.5)

(e) Object-Centric State 
(Next Observation)

Action
move-into(Item#1, Item#6)

Transition Function 𝒯! SupervisionEncoder ℰ!

......

(:action move-into
:parameters (?o1 ?o2)
:effects (and
(pose::assign ?o1
(??f (pose ?o2)))

(when
(??g
(type ?o1)
(type ?o2)

)
(wetness::assign ?o1
(??h
(wetness ?o1)

)
)

......

......

Figure 3: A factorized state representation and transition model for the robot painting domain.
The raw observation (a) is first processed by an external perception module into an object-centric
representation (b). This representation is further transformed into a fine-grained factorization (c).
The transition function Tθ can be defined over this factored state representation: each action may
only change a few factors of the state. Executing a specific action move-into(item#1, item#6)
produces the predicted factored state at the next timestep. During training time, we will be using the
object-centric observation from the next timestep to supervise the learning of Tθ.

2 PDSketch

We focus on the problem of learning models for a robot that operates in a space S of world states that
plans to achieve goal conditions that are subsets of S . A planning problem is a tuple ⟨S, s0, g,A, T ⟩,
where s0 ∈ S is the initial state, g is a goal specification in first-order logic, A is a set of actions
that the agent can execute, and T is a environmental transition model T : S ×A → S. The task of
planning is to output a sequence of actions ā = {ai ∈ A} in which the terminal state sT induced
by applying ai sequentially following T satisfies the goal specification g: eval(g, sT ) = 1. The
function eval(g, s) determines whether state s satisfies the goal condition g by recursively evaluating
the logical expression and using learned neural groundings of the primitive terms in the expression.

At execution time, the agent will observe s0 and be given g from human input, such as a first-order
logic expression corresponding to “all the apples are in a blue bowl.” However, we do not assume
that the agent knows, in advance, the groundings of g (i.e. the underlying eval(g, s) function) or the
transition model T . Thus, we need to learn g and T from data, in the form of observed trajectories
that achieve goal states of interest.

Formally, we assume the training data given to the agent is a collection of tuples ⟨s, a, g, succ⟩,
where s = ⟨si⟩ is a sequence of world states, a = ⟨ai⟩ is the sequence of actions taken by the
robot, g is a goal specification, and succ = ⟨succi⟩ is the “task-success” signal. Each succi ∈ {0, 1}
indicates whether the goal g is satisfied at state si: succi = eval(g, si). The data sequences should
be representative of the dynamics of the domain but need not be optimal goal-reaching trajectories.

It can be difficult to learn a transition model that is accurate over the long term on some types of
state representations. For this reason, we generally assume an arbitrary latent space, Φ, for planning.
The learning problem, then, is to find three parametric functions, collectively parameterized by θ:
state encoder Eθ : S → Φ, goal-evaluation function evalθ : G × Φ → {0, 1}, and transition model
Tθ : Φ×A → Φ. Although the domain might be mildly partially observable or stochastic, our goal
will be to recover the most accurate possible deterministic model on the latent space.

Local, sparse structure. We need models that will generalize very broadly to scenarios with different
numbers and types of objects in widely varying arrangements. To achieve this, we exploit structure to
enable compositional generalization: throughout this work we will be committing to an object-centric
representation for s, a logical language for goals g, and a sparse, local model of action effects.

We begin by factoring the environmental state s into a set of object states. Each s ∈ S is a tuple
(Us, fs), where Us is the set of objects in state s, denoted by arbitrary unique names (e.g., item#1,
item#2). The object set Us is assumed to be constant within a single episode, but may differ in
different episodes. The second component, fs, is a dictionary mapping each object name to a fixed-
dimensional object-state representation, such as a local image crop of the object and its position. We
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can extend this representation to relations among objects, for example by adding gs(x, y), x, y ∈ U
as a mapping from each object pair to a vector representation. We assume the detection and tracking
of objects through time is done by external perception modules (e.g., object detectors and trackers).

We carry the object-centric representation through to actions, goals, and the transition model. Specifi-
cally, we define a predicate as a tuple ⟨name, args, grounding⟩, where args is a list of k arguments and
grounding is a function from the latent representations of the objects corresponding to its arguments
(in Ψk) into a scalar or vector value. (This is a generalization of the typical use of the term "predicate,"
which is better suited for use in robotics domains in which many quantities we must reason about are
continuous.) For example, as illustrated in Fig. 3c, the predicate wetness takes a single argument
as its input, and returns a (latent) vector representation of its wetness property; its grounding might
be a neural network that maps from the visual appearance of the object to the latent wetness value.
Given a set of predicates, we define the language of possible goal specifications to be all first-order
logic formulas over the subset of the predicates whose output type is Boolean. To evaluate a goal
specification in a state (U , f), quantification is interpreted in the finite domain U and fs provides an
interpretation of object names into representations that can serve as input to the grounded predicates.

The transition model Tθ is specified in terms of a set object-parameterized action schema
⟨name, args, precond, effect, π⟩, where name is a symbol, args is a list of symbols, precond and
effect are descriptions of the action’s effects, described in section 2.1, and π is a parameterized
primitive policy for carrying out the action in terms of raw perception and motor commands. These
local policies can be learned via demonstration or reinforcement learning in a phase prior to the
model-learning phase, constructed using principles of control theory, or a combination of these
methods. The set of concrete actions A available in a state s is formed by instantiating the action
scheme with objects in universe Us. We assume the transition dynamics of the domain (i.e., the effect
of each action schema) are well characterized in terms of the changes of properties and relations of
objects and that the transition model is lifted in the sense that it can be applied to domain instances
with different numbers and types of objects. In addition, we assume the dynamics are local and sparse,
in the sense that effects of any individual action depend on and change only a small number attributes
and relations of a few objects, and that by default all other objects and attributes are unaffected.
Taking again action schema move-into as an example, shown in Fig. 3d, only the states of object #1
and #6 are relevant to this action (but not #2, #3, etc.), and furthermore, the action only changes the
pose and wetness properties of item#1 (but not the color and the type).

The factored representation also introduces a factored learning problem: instead of learning a
monolithic neural network for Tθ and evalθ, the problem is factored into learning the grounding of
individual predicates that appear in goal formulas, as well as the transition function for individual
factors that were changed by an action.

2.1 Representation Language

The overall specification of evalθ and Tθ can be decomposed into two parts: 1) the locality and
sparsity structures and 2) the actual model parameters, θ, such as neural network weights. We provide
a symbolic language for human programmers to specify the locality and sparsity structure of the
domain and methods for representing and learning θ. If the human provides no structure, the model
falls back to a plain object-centric dynamics model Zhu et al. [2018]. However, we will show that
explicit encoding of locality and sparsity structures can substantially improve the data efficiency of
learning and the computational efficiency of planning with the resulting models.

PDSketch is an extension of the planning-domain definition language [Fikes and Nilsson, 1971, Fox
and Long, 2003], a widely used formalism that focuses exposing locality and sparsity structure in
symbolic planning domains. The key extensions are 1) allowing vector values in the computation
graph and 2) enabling the programmer to use “blanks”, which are unspecified functions that will
be filled in with neural networks learned from data. Thus, rather than specifying the model in full
detail, the programmer provides only a “sketch” [Solar-Lezama, 2008]. The two key representational
components of PDDL are predicates and action schemas (operators).

Fig. 4 shows a simple example of PDSketch definition of predicates. All three predicates take a single
object ?o of type item as their argument, and return either a floating-point vector or a scalar value
from 0 to 1, indicating the score of a binary classifier. The image predicate simply refers to the raw
image crop feature of the object. The is-yellow predicate’s grounding takes a very simple form
“(??f (color ?o))”. The term ??f defines a slot whose name is f. It takes only one argument, the
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(a) A PDSketch definition of an input feature of each objects: 
(image ?o), and two derived feature/predicates:
(color ?o) and (is-yellow ?o).

(:predicates ; input features
(image [return_type=vector[float32], input] ?o - item)

)
(:derived
(color [return_type=vector[float32]] ?o - item)
(??f (image ?o))

)
(:derived
(is-yellow ?o - item) ; parameter and type
(??f (color ?o)) ; function body

)

Raw Observation
(Image)

image ?o
(per-obj.)

color::f
(ConvNet)

color ?o
(per-obj.)

is-yellow::f
(ConvNet)

is-yellow ?o
(per-obj. score)

(b) The corresponding “computation graph” induced by the definitions.
color::f and is-yellow::f are customizable CNNs that are applied
identically to each object in the input state.

0.0 0.9 0.1 0.00.9 0.0

Figure 4: A minimal example of defining derived features and predicates with blanks “??”.

color of the object ?o, and outputs a classification score, which can be interpreted as the score of the
object ?o being yellow. The actual computation of the yellow predicate from the color value (as
well as the computation of the color value from the image value) is instantiated in a neural network
with trained parameters. The computation graph for the whole model can be built by recursively
chaining the function bodies of predicate definitions.

Next, we illustrate how locality and sparsity structures can be specified for an action schema. Fig. 5
defines an action schema name move-into with two effect components. First, highlighted in blue,
the action changes the pose of object ?o1 to a new pose that depends on the current pose of the
second object ?o2. Rather than hand-coding this detailed dependence, we leave the grounding blank.
In addition, in our domain, the wetness of an object may be changed when the object is placed into
a specific type of container. This is encoded by specifying a conditional effect using the keyword
when, with two parts: 1) a Boolean-valued condition g of some other predicates on the state (in this
case, the types of the two objects), and 2) the actual “effect”, in this case, to change the wetness of
?o1 based on a function that considers the current wetness of ?o1. The update will be applied only
if the condition is true. To ensure the computation is differentiable, we make this condition “soft”:
let w be the current wetness, w′ be the new wetness computed by function ??h, and c be the scalar
condition value computed by function ??g. The updated value of the wetness will be cw′ + (1− c)w.
Note that all the pose, wetness, and type representations can be arbitrary latent vectors computed by
an encoder from the raw input. Thus, the “blanks” ??f, ??g, ??h are indeed general neural networks.
The effect definition here induces a corresponding computation graph of neural network weights and
state representation tensors.

Like PDDL, PDSketch has full support of first-order logic, including Boolean operations (and, or,
not) and finite-domain quantifiers (∀ and ∃). They allow us to define more complex structures in the
domain of interest. We present our full language and more examples in the supplementary material.

2.2 Model Learning and Planning with PDSketch

Let θ denote the collection of all learnable parameters required to complete a PDSketch domain
definition into a full model. This includes the parameters of the state encoder, all predicate groundings,
and the definitions of slot-update functions that were left blank in the sketch. Recall that our training
data are tuples of three sequences and a goal formula ⟨s, a, g, succ⟩. Fundamentally, our objective is
to minimize a sum of two losses, one related to predicting the truth values of the goal formulas and
one related to predicting the next state, given the previous state and action:

L(θ) =
∑

⟨s,a,g,succ⟩∈D

{∑
i

BCE (evalθ(g, Eθ(si)), succi) +
∑
i

L1 (Tθ(Eθ(si), ai), Eθ(si+1))

}
,

where BCE is the binary cross-entropy classification loss and L1 is a regression loss. To avoid
degenerate local optima, we add a “lookahead” loss term that combines both aspects, as detailed in
the supplement. If the encoder Eθ is constrained to be the identity, and there is no predicate-level
structure, then the transition model essentially learns to be a per-object next-image predictor. More
generally, including the encoder turns this into a bisimulation objective [Li et al., 2006]: we want to
uncover a latent transition model that accurately predicts the reward signal (in this case, whether the
goal is satisfied or not) but does not necessarily reconstruct the input state representation.
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Figure 5: A computation graph of a partial definition of the action “move-into.”

In order to adjust θ to minimize this loss, we must establish a differentiable computation graph. The
encoder Eθ will generally be a relatively standard combination of convolutional and fully-connected
feed-forward neural network. Fig. 5 illustrates the computation graph associated with Tθ for a
particular choice of action ai and objects that serve as its arguments. Importantly, note that there
is a substantial amount of parameter-tying: the same predicate-grounding network might appear in
multiple times, even when characterizing Tθ for a single action, if that predicate appears multiple
times (applied to different objects) in the preconditions or effects of the action. The computation
graph shown here, as well as those necessary to compute evalθ(g, Eθ(si)), involve Boolean operators,
which do not have useful derivatives for optimization. We address this by representing truth values
as elements of the interval [0, 1] and approximate logical operations with the differentiable Gödel
t-norms: not(p) = 1− p, and(p1, p2) = min(p1, p2), ∀x.p(x) = minxp(x).

Once we have estimated θ from data, we can solve any planning problem in the domain given any
starting state s0 ∈ S and goal g expressed in terms of predicates for which we have groundings. The
resulting transition model T can be used by a variety of different planners. We will focus on forward
search, constructing a tree rooted at E(s0) with branches corresponding to the possible instantiations,
a, of action templates A with the objects in the universe U associated with s0, and next latent states
computed by applying T . The search terminates when it reaches a node n in which evalθ(n, g) > .5.
Unguided forward search can be very slow when the planning horizon is long or the branching factor
is large (e.g., when there are many objects in an environment). To address this, we will use the A∗

heuristic search algorithm using a domain-independent search heuristic directly derivable from the
locality and sparsity structure defined in PDSketch.

2.3 Inducing Domain-Independent Heuristics

Because of the rich representational capacity of PDSketch models, in which values can be continuous
and multidimensional, we cannot take advantage of the planning algorithms that operate on PDDL
input, such as Fast Downward [Helmert, 2006], which derive much of their efficiency from domain-
independent heuristics. We cannot use their strategies in detail, but we take inspiration from the idea
of deriving an optimistic estimate of the cost to reach the goal from a state by solving a “relaxed”
version of the problem, which is computationally easier than the original Bonet and Geffner [2001].

One way to construct a relaxed planning problem is to allow each predicate instance to take on
multiple values at the same time. For example, the robot or an object can effectively be in multiple
places at the same time. In this relaxation, computing the number of steps needed to change the
value of a predicate instance can be done in polynomial time. We can use such a relaxation in the
hFF heuristic [Hoffmann and Nebel, 2001] to get an estimate of the cost to goal, by first chaining
the actions forward until all the components of the goal condition have been made true, and then
searching to recover a small set of actions that can collectively achieve the goal under the relaxation.

To use hFF, however, we must reduce our continuous-space problem to a discrete-space one. Specif-
ically, we discretizes all continuous state variables (poses, etc.) into a designated number of bins
(e.g., 128). Next, for each externally-defined functions, we learn a first-order decision tree to approxi-
mate the computation (e.g., to approximate the neural network). Concretely, we use VQVAE [Van
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Figure 6: A screenshot of
the BabyAI environment.

Model Inductive Biases Succ. Rate

Obj-Centric. Facing Rob. Dyn. Obj. Prop. Basic #Obj.Gen.

BC Y N N N 0.93 0.79
DT (S) Y N N N 0.91 0.82
DT (S+F) Y N N N 0.32 0.19

DreamerV2 N N N N 0.96 0.79

PDS-Base Y N N N 0.82 0.62
PDS-Abs Y Y N N 0.99 0.98
PDS-Rob Y Y Y N 1.00 1.00

Table 1: The planning success rate of different models on BabyAI.

The PDS-Base failed to 
understand the obstacles.

5x More Efficient

Figure 7: (a) and (b) Data efficiency comparison for model learning. We compare three structures
with different levels of abstractness. (c) Planning efficiency, measured as the number of expanded
nodes for different heuristic computation methods.

Den Oord et al., 2017] to discretize the feature vectors. For all predicates whose output is a latent
embedding, we add a vector quantization layer after the encoding layers. We initialize the quantized
embeddings by running a K-means clustering over the item feature embedding from a small dataset,
and finetune the weights on the entire training dataset for one epoch. We describe this in more detail
in the supplementary material. Although our discretizations are inherently lossy on non-Boolean
predicate values, since they are only used for search guidance, and not in the forward simulation of
the actual actions during planning, this does not affect the correctness of the overall algorithm.

3 Experiments

We evaluate PDSketch in two domains: BabyAI, a 2D grid-world and Painting Factory, a simu-
lated tabletop manipulation task. We compare our model with two model-free methods: Behavior
Cloning [BC; Bain and Sammut, 1995] and Decision Transformer [DT; Chen et al., 2021]. We
implement two DT variants: DT-S with only successful demonstrations, and DT-S+F with successful
and failed demonstrations. We use graph neural networks [Gori et al., 2005, Battaglia et al., 2018] as
their state encoder.

3.1 BabyAI

BabyAI [Chevalier-Boisvert et al., 2019] is an image-based 2D grid-world environment where an
agent can navigate around obstacles, pick and place objects, and toggle doors. In this paper, we focus
on a specific level of BabyAI, namely ActionObjDoor. At this level, the agent navigates within a 7x7
grid. The goals include go to an X, pick up an X, open an X, where X is a noun phrase, such as “blue
key”. We train all models on environments with 4 doors and 4 objects. The offline dataset D contains
both successful and failure demonstrations obtained by A∗ search. We extend PDSketch to interactive
data gathering in the supplementary material. Additionally, we test generalization to environments
with 6 doors and 8 objects. Since objects may block agents, the agent needs to successfully uncover
the underlying dynamics and plan to navigate around them.

We study three PDSketch models with various levels of locality and sparsity structures built in. The
PDS-Base model has no built-in structures: each object is represented as a holistic vector. This falls
back to an object-centric transition model [Zhu et al., 2018]. PDS-Abs model that disentangles poses
from object appearances. Importantly, it defines a predicate facing and uses this concept to write
action definitions (e.g., whether a robot move will be blocked by the object it is facing). However, the
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(:action forward-abs
:parameters (?r - robot)
:precondition (and )
:effect (robot-pose::cond-assign ?r

(??f
(robot-pose ?r) (robot-dir ?r)
(foreach (?o - item)

(item-feature::cond-select ?o (facing ?r ?o))
)

)
(??g (robot-pose ?r) (robot-dir ?r))

)) robot-pose R

robot-pose R item-feature #1 item-feature #2

facing R #1

.......

facing R #2

forward::f

forward::g

robot-dir R

Figure 8: The PDSketch definition of the “forward” action and the corresponding computation graph
for the PDS-Abs model. The mentioned predicate facing is an derived predicate represented as a
neural network that is jointly learned (omitted in the graph for brevity).

grounding of facing is to be learned. Figure 8 shows the detail definition of the forward action in the
PDS-Abs model. PDS-Rob contains predefined rules for robot movements but the object recognition
modules are learned. We provide their definitions in the supplementary material.

Results. Table 1 shows the results. Overall, PDSketch with more structure (PDS-Abs and PDS-Rob)
outperforms baselines by a significant margin. From the performance of PDS-Abs, we see that even a
tiny amount of additional structure (e.g., an ungrounded predicate “facing”) significantly improves
the performance, especially when it comes to generalization to more complex environments. See
below for a zoomed-in analysis for model learning. Furthermore, we hypothesize that the inferior
performance of decision transformer in the mixed training data (Succ+Fail) setting is due to the
reward sparsity: the agent only gets reward 1 when it reaches the goal. Thus, the failed demonstrations
are generally hard to model as they are irrelevant to the goal specification. In addition, we compare
our models with DreamerV2, a state-of-the-art model-based reinforce learning algorithm for image-
based environments. Compared with BC and DT, we see DreamerV2 achieves slightly improved
performance for the basic task, but does not show stronger generalization to environments with more
objects. We hypothesize this is because Dreamer still learns a fixed policy for execution.

Data efficiency. Fig. 7a-b shows model learning curves for the three PDSketch models, in the cases
where there is a single object in the environment and when there are 4 objects. . When the number
of object is small, the environmental dynamics is easier to learn: both Base and Abs have a similar
performance. However, when the number of object increases, PDSketch can leverage the inductive
bias to learn the dynamics faster. Shown in the figure, even at the end of training, the model PDS-Base
has not successfully learned the correct movement dynamics, leading to its inferior performance
during generalization to more objects.

Planning runtime efficiency. Fig. 7c quantifies the number of nodes expanded by A∗ when using
different heuristic computations. Specifically, we compare our model with the blind heuristic (i.e., the
heuristic value of a state is 0 when it satisfies the goal and otherwise 1.) and a GNN-parameterized
heuristic learned from successful demonstrations. All results are based on the PDS-Abs model. First,
learning-based heuristics (GNN) shows improvement over the baseline “blind” heuristic, especially
when the task is easy (requiring a small number of expansions). Second, the heuristic derived from
PDSketch significantly improves the search efficiency. At the success rate of 0.8, our method is 5
times more efficient than learning-based heuristics.

3.2 Robot Painting

Finally, we extend the framework to a tabletop manipulation task, built based on the tabletop
environment of Zeng et al. [2020]. There are three zones, several bowls, and several blocks on the
table. The robot can use its suction gripper to pick-and-place objects into a designated location.
Blocks have 8 possible colors. Placing objects in a bowl will paint the object to be the same color as
the bowl. The task is to paint the blocks and organize them in the target brown box. Our training-time
goal requires the robot to paint-and-place two objects. The goal contains their colors and their
relationship (e.g., a pink block is left of a yellow block. Demonstration are collected using hand-
crafted oracle policies following Zeng et al. [2020]. The offline dataset contains only successful
trajectories. There are two built-in actions that the robot can execute. Fig. 9 shows the computation
graph derived from PDSketch.
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pose  Item#1

state Item#1

pose  Item#2

state Item#2

......
Factored State Actions

pose  Item#1

state Item#1

pose  Item#2

state Item#2

Predicted State

move-into
(?o1 ?o2)

move-to
(?o ?pose)

is-yellow ?o

is-brown ?o

in ?o1 ?o2

left ?o1 ?o2

......

Predicates

Figure 9: Our encoding of the painting factory domain. Each
object has a pose and a state. Action move-to directly
changes the object pose. move-into moves an object into
a container, which possible changes the state (e.g., color) of
the object. Goals are represented using relational predicates.

Model Succ. Rate
@100

Succ Rate
@1000

BC 0.70 0.95
DT 0.56 0.97
PDS 0.91 0.99

Table 2: Model performance on Paint-
ing Factory, measured as plan success
rate. The number after @ is the num-
ber of demonstration trajectories. PDS-
ketch models show stronger data effi-
ciency than baselines.

(exists ?x ?y (and
(purple ?x) (yellow ?y)
(left-of ?y ?x) (in-target ?x)
))

(exists ?x ?y ?z (and
(yellow ?x) (cyan ?y) (red ?z)
))

(forall ?x (and
(yellow ?x) (in-target ?x)
))

(exists ?x ?y ?z (and
(pink ?x) (purple ?y) (cyan ?z)
(in-target ?x)(on ?y ?x) (on ?z ?y)
))

Training Generalization (Unseen Goals and More Objects)

Place a yellow block left of a 
purple block in the target box.

Paint a yellow, a cyan, and a red block 
(no need to put in the target box).

Paint all blocks yellow and put 
them in the target box.

Paint a pink, a purple, and a cyan block,
and stack them in the target box.

Figure 10: From only one training task (left), a model specified in PDSketch learns primitive concepts
including object colors and spatial relations. They can be used in planning for unseen tasks given new
first-order logic descriptions of the goal. The natural language descriptions are shown for readability.

State and action space. The state space in the painting factory is composed of a list of objects, and a
list of containers. Both objects and containers are represented as a tuple of a 3D xyz location, and a
image crop. The image crop is generated by first computing the 2D bounding box of the object in the
camera plain, cropping out the image patch, and resizing it to 32 by 32. The action space contains
two primitives. First, move-into is an action defined for each pair of item and container. It changes
the pose of the item (now the item will be inside the container). When the item is placed into a bowl,
it will be painted into the same color as the bowl. The second action takes an object and a 3D location
as input, and moves the object directly to a designated position (ignoring the rotation).

Results. Table 2 shows the planning success rate on the training task with different amounts of
training data. Overall, PDSketch is more data efficient than both baselines and achieves strong overall
performance in this task. Much more importantly, Fig. 10 shows our generalization to novel task
specifications, which involve more objects or new specifiers (e.g., forall). Our model generalizes
directly to these novel scenarios without any additional training. The quantitative performance for
these three generalization tasks are: 0.99, 0.98, and 0.87, respectively, measured as success rate after
executing the plan. The last task has lower success rate because stacking objects may fail due to
controller and physical noises. Future work may consider building closed-loop controller that can
recover such failures. We specify implementation details in the supplementary material.

4 Related Work

Integrated model learning and planning is a promising strategy for building robots that can gener-
alize to novel situations and novel goals. Specifically, Chiappa et al. [2017], Zhang et al. [2021],
Schrittwieser et al. [2020] learn dynamics from raw pixels; Jetchev et al. [2013], Pasula et al. [2007],
Konidaris et al. [2018], Chitnis et al. [2021], Bonet and Geffner [2020], Asai and Muise [2020],
Silver et al. [2021] assume access to the underlying factored states of objects, such as object colors
and other physical properties. Our work bridges the gap between two groups: we do not assume
pre-factored state representations given as the input, but learn to ground different factors of object
states. More importantly, instead of relying on off-the-shelf models for predicting pixels or for
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learning first-order rules in symbolic domains, our work considers how human-programmed locality
and sparsity structures can improve the model learning and planning efficiency.

Our model learns an object-factored transition model, which generally falls into the category of
learning object-oriented MDPs [OO-MDPs; Guestrin et al., 2003, Diuk et al., 2008]. OO-MDPs have
been applied to neural network-based representations for visual domains [Walsh, 2010, Kansky et al.,
2017, Zhu et al., 2018, Xia et al., 2019, Veerapaneni et al., 2020] and textual game domains [Liu
et al., 2021]. Our model leverages object-centric representations to encode permutation-invariant
structures. Furthremore, we exploit fine-grained local and sparse structures in model learning.

The objective of model learning and planning is to obtain a goal-conditioned policy [Kaelbling,
1993b,a]. While many others have studied model-free [Dayan and Hinton, 1992, Schaul et al., 2015]
or hybrid model-free and model-based approaches [Pong et al., 2018, Nasiriany et al., 2019], in this
paper, we focus on learning structured models from data and leveraging domain-independent planners
for planning in latent representations. Such structured models support novel goal specifications
via a first-order logic language, and domain-independent heuristics to accelerate search. Another
alternative approach towards learning and planning is to learning to predict subgoals that needs to be
achieved before other goals [Xu et al., 2019]. However, their work assumes that all preconditions and
effects can be represented in a predefined symbolic language, and there are controllers for achieving
individual subgoals. By contrast, PDSketch supports generic neural-network-based representations
for predicates and action effects.

Our framework PDSketch combines model definition in a structured language (e.g., first-order logic)
and neural network learning. It is closely related to the idea of neuro-symbolic programming and
differentiable programming for relational reasoning [Manhaeve et al., 2018, Riegel et al., 2020,
Huang et al., 2021] and policy learning [Sun et al., 2019]. Our language PDSketch borrows ideas
from earlier work on “soft” execution of logical formulas but works on planning domains.

5 Conclusions and Limitations

PDSketch supports flexible and effective specification of locality and sparsity structures of en-
vironment transition models. Leveraging these structures enables more data-efficient learning,
compositional generalization to novel goal specifications and environmental states, and also domain-
independent heuristics that accelerates performance-time planning. Limitations we hope to address
include the lack of hierarchy and the inability of the method to discover novel factorizations.

In terms of societal impact, PDSketch suggests a hybrid method for building intelligent robots, by
combining human programs to specify high-level structures with learning, to reduce the amount of
data and computation required for learning complex and long-horizon behaviors. It also enables more
modularized systems: users can specify new tasks using the predicates and actions that have already
been defined more easily than in unstructured approaches. However, PDSketch may require more
expertise (or, at least, a different type of expertise) from programmers than other approaches.
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