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Abstract
The Metric Nearness Problem involves restoring a
non-metric matrix to its closest metric-compliant
form, addressing issues such as noise, missing
values, and data inconsistencies. Ensuring met-
ric properties, particularly the O(N3) triangle in-
equality constraints, presents significant compu-
tational challenges, especially in large-scale sce-
narios where traditional methods suffer from high
time and space complexity. We propose a novel
solution based on the tropical inner product (max-
plus operation), which we prove satisfies the trian-
gle inequality for non-negative real matrices. By
transforming the problem into a continuous opti-
mization task, our method directly minimizes the
distance to the target matrix. This approach not
only restores metric properties but also generates
metric-preserving embeddings, enabling real-time
updates and reducing computational and storage
overhead for downstream tasks. Experimental re-
sults demonstrate that our method achieves up to
60× speed improvements over state-of-the-art ap-
proaches, and efficiently scales from 1e4 ∗ 1e4 to
1e5 ∗ 1e5 matrices with significantly lower mem-
ory usage.

1. Introduction
Distance matrices are fundamental in various machine learn-
ing and optimization tasks, including clustering, K-nearest
neighbors (KNN), and recommender systems (Jain et al.,
1999; Cover & Hart, 2006; Peterson, 2009; Lü et al., 2012;
Piao & Breslin, 2016). Among them, commonly used
matrices such as shortest path distance matrices and Eu-
clidean distance matrices must adhere to metric proper-
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ties—specifically, non-negativity, symmetry, and the trian-
gle inequality (Randic et al., 1994). The triangle inequality
ensures that for any three points, the direct distance between
two points does not exceed the sum of the distances through
an intermediary point (Sra et al., 2004; Brickell et al., 2008).
These properties are crucial for maintaining the accuracy
and stability of downstream applications (Roth et al., 2002;
Elkan, 2003; Hussain, 2018).

However, real-world distance matrices often deviate from
ideal metric properties due to noise, measurement errors,
missing data, and structural inconsistencies. Such devia-
tions can disrupt downstream tasks, leading to unreliable
predictions and degraded performance (Indyk, 1999; Russell
& Norvig, 2016; Yu et al., 2023). For example, in clustering,
an algorithm typically assigns an object to its nearest clus-
ter centroid based on a given distance function (Hartigan
et al., 1979; Jain & Dubes, 1988; Park & Jun, 2009). If
the distance matrix violates the triangle inequality, objects
assigned to the same cluster may appear far apart, leading
to unstable clustering. Similar issues arise in shortest-path
computations, and recommender systems, where violations
of metric properties cause inconsistencies in similarity and
ranking.

To address these inconsistencies, the Metric Nearness Prob-
lem (MNP) seeks to transform a given distance matrix into
the closest metric-compliant matrix while preserving as
much original information as possible (Brickell et al., 2008).
The primary challenge lies in satisfying the O(N3) triangle
inequality constraints while maintaining computational effi-
ciency. Traditional approaches rely on iterative projection
methods, such as the Bregman projection algorithm (Brick-
ell et al., 2008; Sonthalia & Gilbert, 2022) and the HLWB
projection algorithm (Li et al., 2023), or learning-based
methods that approximate a valid distance metric. However,
these methods face high computational cost, poor scalability,
and limited real-time adaptability, which hinder large-scale
applications needing efficient metric corrections.

In this paper, we introduce tropical inner products into Eu-
clidean space by defining a novel tropical inner product
between matrices (or vectors). This construction provides a
theoretical foundation for linking tropical algebra to metric
matrices, filling a key gap in the literature. Most importantly,
we prove that the tropical inner product of two non-negative
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matrices satisfies the triangle inequality, ensuring that it can
be used to construct valid metric matrices.

Building on this, we establish the Tropical Algebra-metric
representation theorem(TA-metric representation theorem),
which reveals the representational space of the tropical in-
ner product of non-negative matrices and its relationship
with metric matrices. This result formally characterizes
the representational capacity of tropical inner products in
metric space. Additionally, we derive a series of theoretical
insights into the relationship between tropical inner prod-
ucts and metric matrices, including the relationship between
shortest-path distances and tropical inner product.

Leveraging this theoretical framework, we propose Met-
ricEmbedding, a novel approach based on tropical inner
products and gradient descent for solving the Metric Near-
ness Problem (MNP). Specifically, we designed a Met-
ricEmbedding architecture based solely on the max-TA
inner product, with each network’s parameters aimed at
approximating a target matrix. This distinguishes it from
traditional MLP(Cybenko, 1989) and other similar deep
neural network architectures, including the min-max-plus
network(Luo & Fan, 2021).Instead of learning latent dis-
tributions, our model directly approximates a target met-
ric matrix using parameterized tropical algebra operations.
Furthermore, we enhance deep learning architectures by
integrating ReLU activation and tropical inner products, en-
suring that the output satisfies the triangle inequality. This
enables applications in metric learning and contrastive learn-
ing.

Our approach also introduces key improvements in compu-
tational efficiency and scalability. By modifying the loss
function, our method flexibly adapts to different problem
formulations, supports mini-batch optimization, and scales
efficiently to large datasets. Additionally, we develop an
online prediction mechanism, making our model suitable
for real-time applications. Experimental results demonstrate
that our method achieves up to 60× speed improvements
over state-of-the-art approaches, while efficiently scaling
from 104 × 104 to 105 × 105 matrices with significantly
lower memory usage.

The contributions of this paper can be summarized as fol-
lows:

1. We introduce the tropical inner product into Euclidean
space and establish a theoretical framework that con-
nects tropical inner products and metric matrices. Our
key result, the TA-metric representation theorem, re-
veals the representational space of the tropical inner
product of non-negative matrices and its relationship
with metric matrices, providing a novel and principled
way to construct metric matrices.

2. Based on this theoretical findings, we propose Met-

ricEmbedding, a network structure built with tropical
inner product, capable of predicting a metric matrix
that is sufficiently close to a target distance matrix. It
has advantages in scalability, real-time prediction, and
computational efficiency.

3. We propose a method based on the tropical inner prod-
uct, where no changes are needed in the network struc-
ture except for adding a layer to guarantee that the
network output satisfies the triangle inequality or met-
ric properties. This approach holds significant potential
for metric learning and contrastive learning tasks.

2. Preliminary
Tropical Inner Product and Matrix Multiplication

Tropical algebra replaces traditional operations with tropi-
cal ones (Maslov, 1985; Cuninghame-Green, 2012). In the
Max-Tropical Semiring, addition is the maximum (⊕max)
and multiplication is standard addition (⊗) (Maragos et al.,
2021). The Min-Tropical Semiring is its dual, with addi-
tion as the minimum (⊕min) and multiplication remaining
standard addition (⊗) (Joswig, 2021).

Formally, the Max-Tropical Semiring is defined as (R ∪
{−∞},⊕max,⊗), where ⊕max denotes the maximum oper-
ation and ⊗ is standard addition, while the Min-Tropical
Semiring is defined as (R ∪ {∞},⊕min,⊗), where ⊕min
denotes the minimum operation.

Here,We adapt tropical operations to define the tropical in-
ner product in Euclidean space. Let Rn denote the Euclidean
space of dimension n. For two vectors:

u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Rn,

the tropical inner product is defined as:

⟨u, v⟩⊕max = max
1≤i≤n

(ui + vi),

where ⊕max denotes tropical addition (maximum) and ⊗
denotes standard addition. This product computes the maxi-
mum sum of corresponding elements from the two vectors.

This concept extends naturally to matrices. Given two ma-
trices A ∈ Rn×m and B ∈ Rm×p, the tropical matrix inner
product (or tropical matrix multiplication) is defined as:

C = A⊙max B ∈ Rn×p

where ⊙max denotes the tropical multiplication using the
maximum operation. Each element C(i, j) of the resulting
matrix C is computed using tropical operations as follows:

Ci,j = max
1≤k≤m

(Ai,k +Bk,j) .

Alternatively, the tropical matrix product can be defined
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using the minimum operation, denoted ⊙min, where:

Ci,j = min
1≤k≤m

(Ai,k +Bk,j) .

As shown in Appendix A, in both cases, tropical matrix
multiplication computes the maximum or minimum ”path”
sum from row i of matrix A to column j of matrix B, con-
sidering all possible intermediate paths through index k.

Metric Nearness Problem

A metric matrix M ∈ RN×N must satisfy the following
conditions for all i, j, k ∈ {1, 2, . . . , N}:Non-negativity:
Mij ≥ 0;Symmetry: Mij = Mji;Triangle Inequality:
Mij ≤ Mik +Mkj for all i, j, k.The set MN represents the
space of all valid metric matrices of size N × N , where
each matrix M ∈ MN satisfies the conditions of a metric,
i.e., non-negativity, symmetry, and the triangle inequality
(Sra et al., 2004; Brickell et al., 2008; Li et al., 2023).

On the other hand, non-metric matrices may not satisfy the
triangle inequality or symmetry, and they may contain nega-
tive values or inconsistent entries, making them unsuitable
for tasks that depend on metric structures, such as clustering
or optimization (Brickell et al., 2008).

Given a distance matrix D ∈ RN×N , the goal of the Met-
ric Nearness problem is to find a metric matrix M ∈ MN ,
such that M minimizes the difference from D under some
’closeness’ metric, while satisfying the properties of a met-
ric matrix (Sra et al., 2004; Brickell et al., 2008; Sonthalia
& Gilbert, 2022; Li et al., 2023). The problem can be for-
mulated as:

M = arg min
X∈MN

∥W ⊙ (X −D)∥p

where MN denotes the set of all valid N ×N metric matri-
ces, W is a symmetric weight matrix, indicating the trust
level in the entries of D, ⊙ represents element-wise multi-
plication, p is the norm used to measure the ”closeness” of
the matrices.

The goal of this optimization problem is to find a metric
matrix M that is the closest to D in terms of the weighted
p-norm difference.

Additionally, let B ∈ RN×N be a square matrix. We define
Boff ∈ RN×N as the matrix obtained by setting the diagonal
elements of B to zero, i.e., Boff = B − diag(B) where
diag(B) represents the diagonal matrix consisting of the
diagonal elements of B.

3. Methods
3.1. TA-metric Representation Theorem

In this subsection, we investigate the relationship between
tropical operations and metric matrices.The proof and the

other theorems in the Appendix B.

Theorem 1: If matrix A ∈ RN×N satisfies the triangle
inequality, and matrix B ∈ RN×N satisfies the triangle
inequality, then the matrix C = A + B ∈ RN×N also
satisfies the triangle inequality.

Theorem 2: If matrix A ∈ RN×N is a metric matrix, then
for any positive constant α, αA is also a metric matrix.

Theorem 3: If a matrix A satisfies the triangle inequality,
then the matrix A+AT = B, and after setting the diagonal
elements of B to 0, the resulting matrix satisfies the metric
properties.

Theorem 4: If A and B are both N ×N metric matrices,
then the element-wise maximum of A and B, denoted as
max(A,B), is also a metric matrix.

Theorem 5: Let A ∈ RN×K and B ∈ RK×N be non-
negative matrices, and let C = A ⊙max B. Then for any
i, j, k ∈ {1, . . . , N}, wehave : Cik + Ckj ≥ Cij .

Proof: By definition, Cij = maxr(Air + Brj). Assume
that when r = s, equality holds, i.e., Cij = Ais + Bsj .
Ais ≤ Ais +Bsk ≤ Cik = maxr(Air +Brk) and Bsj ≤
Aks +Bsj ≤ Ckj = maxr(Akr +Brj), we have:

Cij ≤ Cik + Ckj .

ie.the tropical inner product satisfies the triangle inequality.

Theorem 6: Let A be a non-negative matrix of size N ×K.
Define B = A⊙max A

T as the tropical inner product of A
with its transpose. Let Boff be the matrix obtained by setting
the diagonal elements of B to zero. Then, Boff is a metric
matrix.

Theorem 7: Let A ∈ RN×k and B ∈ Rk×M be non-
negative matrices, where k > N ∗ M . Then, there exist
matrices A′ ∈ RN×k′

and B′ ∈ Rk′×N , with k′ ≤ N ∗M ,
such that:

A′ ⊙max B
′ = A⊙max B.

Theorem 8: max-TA-metric Representation Theorem

Let Ω denote the set of all matrices produced by tropical
inner products of non-negative matrices:

Ω =
{
M

∣∣∣M = (X⊙max YT )off, X,Y ∈ RN×K
≥0

}
,

where (X⊙max YT)ij = maxk(Xik +Yjk).

Let Ψ ⊂ RN×N
≥0 be the set of matrices D satisfying:

• Dii = 0 ∀i ∈ {1, 2, ..., N},

• Dij ≤ mink1 ̸=i Dik1
+ mink2 ̸=j Dk2j ∀i, j ∈

{1, 2, ..., N},
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Then, Ω = Ψ. The set of matrices generated via the tropical
inner product (with diagonals removed) from non-negative
matrices constitutes a specific subset of the set of non-
negative matrices with zero diagonals that satisfy the tri-
angle inequality.

Besides any matrix D ∈ Ψ also satisfies the standard trian-
gle inequality,

Dij ≤ Dik +Dkj ∀i, j, k ∈ {1, 2, ..., N}

as a consequence of the combination of the two conditions
above.

3.2. Optimization Strategy: MetricEmbedding

In this work, we propose MetricEmbedding for solving
the Metric Nearness Problem, aiming to optimize the non-
negative matrix A such that the tropical inner product
(A⊙max A

T )off closely approximates the target matrix D,
while preserving essential metric properties like the trian-
gle inequality, as established in Theorems 5,6. For conve-
nience in discussion, we set the optimization objective as
the squared Frobenius norm between (A⊙max AT )off and
D:

min
A

∥(A⊙max AT )off −D∥2F

Here, A ∈ RN×k
≥0 is the matrix to optimize, where N is the

number of data points and k is a hyperparameter control-
ling the model’s expressiveness. D ∈ RN×N is the target
distance matrix.

Inspired by tropical rank (Guillon et al., 2015) and stud-
ies on matrix factorization complexity (Shitov, 2014), and
based on the analysis of Theorem 7, we observe that in-
creasing the parameter k can indeed enhance the expressive
power of the model when constructing tropical algebraic
representations. However, the marginal gains diminish as
k increases. At the same time, larger model capacity may
introduce optimization challenges such as gradient sparsity.
Therefore, in practical modeling, a trade-off must be made
between expressive power and computational efficiency. Ac-
cording to Theorem 8, although the tropical inner product
space is a subset of a metric space, it still possesses sufficient
expressive capability to capture essential metric properties.
This ensures that the generated matrix retains desirable met-
ric characteristics while maintaining high computational
efficiency. Based on this, our model design emphasizes
the efficient approximation of the target matrix D, while
also controlling resource consumption during training and
inference.

To further improve the modeling capacity for complex struc-
tures, MetricEmbedding draws inspiration from multilayer
perceptrons (MLPs) (Cybenko, 1989) and other deep neu-
ral network architectures. It adopts a multi-layer structure

based on tropical algebra, progressively building richer rep-
resentations of the target matrix to overcome the limitations
of single-matrix modeling. By using tropical inner products
(⊙max) and tropical addition (⊕), MetricEmbedding pre-
serves the metric properties and allows the model to capture
more intricate patterns, effectively balancing expressiveness
with computational efficiency.

The architecture of MetricEmbedding can be formalized as
follows: O = ((· · · ((W0 ⊙max W1)⊕ b1) · · · bk−1)⊙max

Wk)⊕ bk Where:

• W0 ∈ RN×d0

≥0 is the learnable input matrix, where
N is the number of samples and d0 is the number of
features. Unlike traditional MLPs, where the input is a
fixed vector derived from the input data, W0 is treated
as a learnable non-negative matrix.

• ∀i ∈ {1, 2, . . . , k},Wi ∈ Rdi−1×di

≥0 are the non-
negative weight matrices, connecting layer i−1 to layer
i, ensuring the output matrix remains non-negative.

• ∀i ∈ {1, 2, . . . , k}, bi ∈ Rdi

≥0 are the non-negative bias
terms at each layer, These bias terms serve as optional
adjustments to shift the output of each layer while
maintaining the local structural properties of the data.

• ⊙max denotes the max-tropical inner product.This op-
eration preserves the local structure of the output at
each layer.

• ⊕ denotes tropical addition (element-wise maximum
operation), similar to the addition operation in MLPs,
but replacing addition with the element-wise maxi-
mum, ensuring the preservation of the local structural
features of the output.

Figure 1. Comparison between MLP and MetricEmbedding. MLP
uses ReLU activation and standard matrix multiplication, while
MetricEmbedding removes ReLU, replaces matrix multiplication
with max-tropical inner product, and modifies the bias addition to
max operation.

The training procedure for MetricEmbedding follows the
typical neural network optimization pipeline, with some key
modifications. The weight matrices W0,W1, . . . ,Wd and
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Algorithm 1 Training Procedure for MetricEmbedding
Input: Target matrix D, AdamW optimizer,threshold
Output: Optimized weight matrices W0,W1, . . . ,Wd

Optimized bias vectors b1, . . . , bd Final output matrix O
Initialize:
- Initialize weight matrices W0,W1, . . . ,Wd with Gaus-
sian distribution.
- Initialize bias vectors b1, . . . , bd randomly.

Training Loop:
while Convergence criteria not met do

Initialize the output,A0 = W0

Forward Pass:
for layer i = 1 . . . d do

Compute Ai = Ai−1 ⊙max Wi ⊕ bi
end
Loss Calculation:

Compute the loss L = ||(A⊙max A
T )off −D||2F .

Backpropagation:
Compute gradients of L with respect to Wi and bi for
each layer.

Parameter Update:
Use AdamW optimizer to update Wi and bi based on
the computed gradients.

Regularization:
for layer i = 1 . . . d do

Apply non-negativity constraints: Wi ≥ 0, bi ≥ 0.
end
Check for Convergence:
If L change between iterations is smaller than the
threshold, break the loop.

end

biases b1, . . . , bd are initialized using values drawn from a
Gaussian distribution, where the mean is set to µD

2d+2 , with
µD being the mean of the target matrix D and d representing
the number of layers. The input matrix W0 is initialized as
a learnable non-negative matrix. During training, X is prop-
agated through the network, where tropical inner products
and tropical addition are applied at each layer. The loss is
calculated as the Frobenius norm of the difference between
(O ⊙max O

T )off and the target matrix D. Gradients of the
loss are computed through backpropagation and the param-
eters are updated using AdamW. To maintain the matrix’s
metric properties, non-negativity constraints are enforced
on each parameter after every update.

Through this approach, MetricEmbedding leverages trop-
ical algebra to ensure that the learned matrix adheres to
essential metric properties, while maintaining high compu-
tational efficiency. By incorporating a multi-layer architec-
ture, MetricEmbedding captures complex structural patterns
and balances expressiveness with robustness, overcoming
the limitations of single-matrix representations.

3.3. Troptical innerproduct for Metric Learning

Traditional metric learning relies on Euclidean distance or
cosine similarity(Bertinetto et al., 2016; Schroff et al., 2015;
Kaya & Bilge, 2019), but these metrics struggle with captur-
ing complex, non-linear relationships and may fail to satisfy
the triangle inequality, which could negatively affect the
performance of tasks such as contrastive learning(Khosla
et al., 2020; Chen et al., 2020).To overcome these limita-
tions, we introduce MetricPlug, a plugin that leverages
tropical innerproduct to extend traditional metrics. Our ap-
proach ensures that the output satisfies metric properties and
enables learning of more diverse metric relationships.

Once the embeddings A are obtained from the neural net-
work, we apply the ReLU activation function to ensure all
elements are non-negative, which is a common requirement
in metric learning. After applying the ReLU activation func-
tion to the embeddings A, the distance between any two
points i and j in the learned space can be computed using
the tropical inner product. The distance matrix is computed
as:

O =
(
ReLU(A)⊙max ReLU(A)T

)off

According to theorem 6, this ensures that the output matrix
satisfies the metric properties, particularly non-negativity
and the triangle inequality.

For a pair of embedding matrices A and B (both of size
N ×K), the tropical distance between them is computed
as:

O =
(
ReLU(A)⊙max ReLU(B)T

)off

This is a submatrix of the larger tropical matrix

(

[
ReLU(A)
ReLU(B)

]
⊙max

[
ReLU(A)
ReLU(B)

]T
)off.which is a valid

metric matrix and preserves the metric properties required
for distance computations.

The tropical distance matrix O can be used in the same way
as a traditional distance matrix for downstream tasks. For
example, it can be used to compute the pairwise distances be-
tween data points, where Oij represents the tropical distance
between points i and j. This matrix can then be utilized
in clustering, retrieval, or other metric-based tasks, simi-
lar to how Euclidean or cosine distance matrices are used.
Additionally, O preserves the metric properties, ensuring
consistency in the relationship between data points.

3.4. Method Analysis

As summarized in Appendix C, MetricEmbedding signif-
icantly outperforms traditional methods in both time and
space complexity. While methods such as TRF (Brickell
et al., 2008) and PAF(Sonthalia & Gilbert, 2022) suffer
from cubic time and space complexity (O(n3)), MetricEm-
bedding reduces the time complexity to O(n2k) and the
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space complexity to O(n2), where n denotes the number
of points and k is the embedding dimension. This improve-
ment allows it to efficiently handle large-scale tasks, even
when dealing with massive datasets that would overwhelm
traditional matrix-based approaches.

One of the key advantages of MetricEmbedding lies in its
use of tropical inner products to maintain the triangular in-
equality structure. This not only reduces the computational
cost but also enables the algorithm to process larger matrices.
More importantly, tropical inner product operations—based
on max and addition—are naturally suitable for parallel com-
putation on GPUs, which brings substantial performance
gains. This parallelism makes MetricEmbedding particu-
larly effective for large-scale data. By combining tropical
algebra with mini-batch processing, MetricEmbedding effi-
ciently performs large-scale matrix computations, making
it well-suited for environments with limited memory re-
sources.

Furthermore, the flexibility of MetricEmbedding allows for
more adaptable weight updates. By calculating the loss
function and applying gradient descent, it offers a dynamic
approach to modifying results, unlike static methods. This
flexibility is further enhanced by its support for online learn-
ing, enabling the algorithm to update continuously in real-
time applications without needing to retrain from scratch.
Such adaptability makes MetricEmbedding ideal for scenar-
ios with evolving datasets, like recommendation systems or
path optimization tasks.

4. Experiment
4.1. Experimental Setup

Datasets: The experiment uses synthetic data generated
from a complete graph. The graph contains nodes of sizes
100, 500, 1000, with edge weights sampled from a uniform
distribution U(0, 1),following the data generation strategy
outlined in the previous work (Li et al., 2023).

Baselines: We compare our method with three well-
established algorithms:

• TRF: Efficient triangle fixing algorithm based on an it-
erative projection method, a classic algorithm (Brickell
et al., 2008).

• HLWB: Efficient algorithm based on HLWB projec-
tions, a well-regarded method for metric nearness(Li
et al., 2023).

• PAF: Project and Forget—an active set method for effi-
ciently solving the metric nearness problem.(Sonthalia
& Gilbert, 2022).

Evaluation Metrics: The following metrics are used to
evaluate the performance of the methods:

• Computation Time (s): The time required to compute
the metric for the given matrix.

• Prediction Accuracy: We use the normalized mean
squared error (NMSE) as the measure of nearness, de-
fined as:

NMSE =
∥X −Do∥2F

∥Do∥2F
where X is the result obtained by applying different
methods to process Do, as in previous work (Li et al.,
2023).

• Triangle Inequality Violations (%): The percentage
of triangle inequality violations after a fixed number
of iterations. For convenience, the violation ratio is
computed as count of violated inequalities

N3

Experimental Environment: The experiments are con-
ducted on a machine with an RTX 4090D GPU (24GB)
and 32 vCPUs (Intel Xeon Platinum 8474C), running on a
Linux-based operating system.

Hyperparameters: For MetricEmbedding, the learning rate
is set to 0.001 using the AdamW optimizer. The model is
initialized as described earlier. We use Python implementa-
tions of TRF and HLWB, and the Julia implementation of
PAF.1 All methods are evaluated based on their convergence
time.

4.2. Performance evaluation

As shown in Table 1, our method (MetricEmbedding) out-
performs TRF and HLWB in terms of computational effi-
ciency, significantly reducing computation time even for
large datasets. For instance, when N = 100, MetricEmbed-
ding takes only 0.069 seconds, compared to 12.09 seconds
for TRF and 14.80 seconds for HLWB. As the number of
nodes increases, this time difference becomes even more pro-
nounced, demonstrating our method’s superior scalability.
In terms of error rates, MetricEmbedding performs similarly
to TRF,HLWB and PAF, maintaining a low error rate (e.g.,
0.084 for N = 100), while offering a substantial reduc-
tion in computation time. Furthermore, MetricEmbedding
consistently adheres to metric properties, with no triangle
inequality violations, unlike TRF, which shows violations
exceeding 4% on larger datasets. These results highlight the
optimal balance between accuracy, computational efficiency,
and metric preservation that MetricEmbedding achieves.

We tested the scalability of our approach, and although the
computing platforms were not identical, the results highlight
its superiority. Compared to TRF (Brickell et al., 2008) and
PAF (Sonthalia & Gilbert, 2022), HLWB (Li et al., 2023)
has a lower space complexity of O(N2), allowing it to han-
dle larger matrices (e.g., over 10,000 points). However, its

1The recently open-sourced Python C implementation of
HLWB may offer improved runtime performance.
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Table 1. Comparison of Methods: Ours, TRF, HLWB, and PAF for Different Matrix Sizes. The table compares computation time, NMSE,
and triangle inequality violations for four methods: Ours, TRF, HLWB, and PAF.

Matrix Size (N) Method Computation Time (s) NMSE (Ratio) Triangle Inequality Violations (%)
100 Ours 0.69 0.084 0%

HLWB 14.80 0.072 0%
TRF 12.09 0.059 4.71%
PAF 21.844 0.071 0%

500 Ours 16.39 0.099 0%
HLWB 1291.61 0.069 0%

TRF 1120.73 0.058 4.53%
PAF 266 0.069 0%

1000 Ours 26.73 0.136 0%
HLWB >2000 0.068 0%

TRF >2000 0.058 4.85%
PAF 1619.68 0.068 0%

Figure 2. Performance comparison of the model under different
missing rates and noise levels. ”M30” indicates a missing rate of
30%, ”N0.3” indicates Gaussian noise with a mean of 0.3, and
similarly for other values.

time complexity limits its ability to scale. In contrast, our
method achieves both optimal space complexity (O(N2))
and time complexity (O(N2k)), enabling it to efficiently
handle much larger matrices. It can solve problems of size
≥ 100, 000 points within 12 hours, significantly outperform-
ing HLWB, which can only handle matrices up to 10,000
points. This demonstrates the scalability and efficiency of
our approach for large-scale problems.

4.3. Robustness Test

In this work, we evaluate the performance of the model in
recovering incomplete matrices and matrices with noise, fo-
cusing on the impact of missing data and noise interference
on recovery accuracy. In this experiment, we first computed
the Euclidean distances between the points , generating the
original distance matrix.To simulate incomplete data and
noise interference, we introduced different missing rates

(30% to 50%) and noise levels (0.3 to 0.5). In the follow-
ing figures, the notation ”M30” represents a missing rate
of 30%, ”N0.3” represents Gaussian noise with a mean of
0.3, and similarly for other values. We applied missing data
handling by randomly selecting data points and then used
the MetricEmbedding model for recovery. Hyperparameter
settings are the same as in Section 4.1. We evaluate the
reconstruction quality using the Normalized Mean Squared
Error (NMSE) defined in Section 4.2, which we refer to as
the error rate.

As shown in Figure 2, the model performs reasonably well
in both scenarios. Specifically, for both missing data and
noisy data, the model significantly reduces the error and
maintains low recovery error even in cases with high noise
or high missing rates. These experimental results validate
the effectiveness of the proposed algorithm in these complex
scenarios.

4.4. Online Update Capability

To validate MetricEmbedding’s online update capability,
we incrementally fed new data and measured both update
speed and prediction accuracy by varying the percentage of
point pairs used for updates (from 20% to 100%).To test its
online learning ability, new data was generated specifically
for testing purposes.As shown in figure 3, The prediction
error, defined as ||A−B||2F

||B||2F
, showed that the error stabilized

as more data was added, improving from 88.32% to 67.33%
as the update percentage increased. These results demon-
strate MetricEmbedding’s ability to maintain high accuracy
and efficiency with relatively few updates, while handling
complex relationships and preserving the underlying met-
ric structure, even with noisy or multi-source data. Unlike
traditional methods like PAF, which struggle with general-
ization, MetricEmbedding’s multi-layer structure and tropi-
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cal operations enable it to adaptively capture higher-order
interactions, making it well-suited for dynamic tasks such
as multi-source data alignment, recommendation systems,
and metric learning.

Figure 3. Online Update Capability: Error Rate at Various Update
Percentages

4.5. Effect of Model Parameters and Latent Dimension
(k) on Prediction Performance

We investigated the impact of model complexity, focusing
on the latent dimension (k) and the number of layers (D) in
the MetricEmbedding model. We evaluate the model perfor-
mance using the normalized mean squared error (NMSE).
Increasing k improves model performance, as seen in the
reduction of error from 95.28% to 88.33% when k increases
from 3 to 10. Moreover, increasing the model depth (D) en-
hances expressiveness, with error decreasing from 95.28%
to 76.31% as the number of layers increases from 1 to 3.
These results demonstrate a trade-off between model com-
plexity and accuracy, where higher k and deeper models
lead to better performance but with increased computational
costs. Despite this, MetricEmbedding maintains strong scal-
ability, effectively handling high-dimensional data and com-
plex relationships, making it suitable for real-time and large-
scale applications.Detailed result in Appendix D.

4.6. MetricEmbedding for Distance Embedding

We assess MetricEmbedding’s ability to generate distance
embeddings, crucial for applications like clustering and
recommendation systems.Unlike MDS(Carroll & Arabie,
1998) and PCA(Abdi & Williams, 2010), our method en-
sures that the recovered embeddings still satisfy the triangle
inequality and maintain the properties of a metric. How-
ever, we do not directly compare with these methods. In-
stead, we conduct tests on datasets with different types of
distance metrics, including Euclidean(Danielsson, 1980),
Manhattan(Malkauthekar, 2013), Cosine similarity(Li &
Han, 2013)and shortest-path (SP) distances(Potamias et al.,
2009), to demonstrate the robustness and versatility of our
approach. The results of the experiments, where the model

Table 2. MetricEmbedding Performance Across Different Distance
Matrices

Distance Matrix Number of Points Error (%)
Euclidean 100 points 2.49%
Euclidean 1000 points 2.61%
Manhattan 100 points 3.76%
Manhattan 1000 points 3.81%
Hamming 100 points 8.88%
Hamming 1000 points 9.05%

Cosine similarity 100 points 8.89%
Cosine similarity 1000 points 9.33%

Shortest-path 100 points 6.13%
Shortest-path 1000 points 2.42%

was trained to predict distance matrices using embeddings
of size k = 3, are summarized in the following table:
These results demonstrate that MetricEmbedding efficiently
generates accurate embeddings for large and diverse dis-
tance matrices, significantly reducing the computational
cost of storing and querying distances. With space com-
plexity of O(Nk), where N is the number of points and
k is the embedding dimension, MetricEmbedding outper-
forms traditional methods that require O(N2) storage. The
model’s ability to reconstruct the full distance matrix with
only O(N2k) complexity makes it highly scalable for large
datasets. These characteristics make MetricEmbedding an
ideal solution for applications like clustering and recommen-
dation systems, where fast and scalable distance computa-
tions are crucial.

4.7. Graph Contrastive Learning with MetricPlug

To evaluate the effectiveness of the MetricPlug method pro-
posed in Section 3.3, we conducted an experiment based on
graph contrastive learning—an unsupervised framework that
learns node representations using contrastive loss. Specifi-
cally, we used the approach from GRACE (Zhu et al., 2020),
which involves perturbing edges to generate augmented
views. Unlike traditional methods that use cosine or Eu-
clidean similarity metrics, we replaced them with Metric-
Plug, which uses the tropical inner product to calculate
node pair similarity. The evaluation task focuses on node
classification.

We used the Cora dataset, which contains 2708 nodes,
and followed the standard data split used in GCN (Kipf &
Welling, 2017). We compared our MetricPlug method with
existing methods based on cosine, Hamming, Euclidean,
and Manhattan distances.

We utilized the dropout adj function in PyG to ran-
domly perturb edges with a perturbation ratio of 0.1 to
generate augmented views. The configuration used a learn-
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ing rate of 0.01, 1000 epochs, with hidden and projection
dimensions set to 64. Accuracy was the evaluation metric.
The results are summarized in the table below:

Table 3. Comparison of different similarity metrics on the Cora
dataset. MetricPlug achieves the best performance.

Method Validation Acc(%) Test Acc(%)

Cosine 77.4 76.5
Manhattan 79.0 79.2
Euclidean 78.2 79.0
Hamming 78.8 79.0
MetricPlug 79.2 79.4

As shown in the table 3, the MetricPlug outperforms other
distance-based methods, achieving the best results on both
validation and test sets.

5. Related work
The Metric Nearness Problem aims to find a distance matrix
that satisfies metric constraints while minimizing distortion
from a dissimilarity matrix(Sra et al., 2004). A naive ap-
proach uses QP, LP, or convex programming, but its high
computational cost makes it impractical for large-scale prob-
lems. Exploiting triangle inequalities is key to improving ef-
ficiency.Sra et al. improved this by introducing the Triangle-
Fixing (TF) algorithm, which has O(n3) complexity, but it
still faced scalability issues (Sra et al., 2004). Brickell et al.
extended this work with Bregman projections, enhancing
convergence properties, yet their iterative process remained
computationally expensive(Brickell et al., 2008).

Sonthalia and Gilbert’s Project and Forget (PAF) algo-
rithm(Sonthalia & Gilbert, 2022) offered linear convergence
and a more dynamic approach to handling constraints, but
it remains limited by the need for fixed input formats and
struggles with real-time updates.Other methods, such as
DeepNorm(Pitis et al., 2020), apply neural networks to map
noisy matrices to valid distance matrices. While these ap-
proaches offer greater flexibility, they depend heavily on the
quality of input data and still face challenges in terms of
scalability. Additionally, isometrically embeddable matrices
combined with the HLWB projection algorithm(Li et al.,
2023) have improved scalability and convergence. However,
these methods still face challenges in handling large-scale
data and require significant computational resources, mak-
ing them less effective in real-world complex scenarios.

Our approach, MetricEmbedding, leverages tropical algebra
to ensure that metric properties are preserved while improv-
ing computational efficiency. By eliminating the need for
complex projections and enabling real-time updates, Met-
ricEmbedding provides a more scalable and flexible solution

for large-scale tasks, overcoming many of the limitations of
previous methods.

Beyond the foundational approaches, other aspects of the
metric repair problem have also received considerable atten-
tion. Gilbert and Jain (Gilbert & Jain, 2017) introduced the
sparse metric repair problem, proposing several algorithms
to enforce metric consistency with minimal modifications.
Fan et al. (Fan et al., 2020) extended this framework to
graph structures and proposed a model for generalized met-
ric repair that is suitable for settings with partially observed
or incomplete data. Fan, Raichel, and Van Buskirk (Fan
et al., 2018) proved that the increase-only and general vari-
ants of the Metric Violation Distance (MVD) problem are
NP-complete, and developed approximation algorithms for
these cases. Additionally, from a fitting perspective, Cohen-
Addad et al. (Cohen-Addad et al., 2022) studied how to
approximate arbitrary distance data using tree-metric struc-
tures, and proposed algorithms with constant-factor guar-
antees, applicable in clustering and phylogenetic analysis.
In addition, Laub et al. (Schölkopf et al., 2007) showed
through psychophysical experiments that human similarity
judgments often violate metric properties, suggesting that
non-metricity in real-world data may stem from perceptual
or cognitive limitations.

6. Conclusion
In this paper, we address the Metric Nearness Problem by
introducing a novel theoretical framework that connects trop-
ical inner products with metric matrices. The TA-metric rep-
resentation theorem reveals that tropical inner products can
represent matrices satisfying the triangle inequality. Based
on this, we propose MetricEmbedding, a network archi-
tecture that efficiently predicts metric matrices, offering
improvements in computational efficiency, scalability, and
real-time prediction. Experimental results demonstrate that
our method achieves up to 60× speedup over state-of-the-art
approaches, while handling larger matrices with lower mem-
ory usage. In addition, we propose MetricPlug, a tropical
inner product–based method for efficiently computing dis-
tance matrices that satisfy metric properties while capturing
complex relationships beyond traditional metrics. Its effec-
tiveness is validated through experiments within a graph
contrastive learning framework.
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tielles (Polytechnique) dit aussi” Séminaire Goulaouic-
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A. Hierarchical Graph and Tropical Inner Product
A.1. three levels graph and Tropical Inner Product

Consider a graph divided into three levels:

• V1 is the first set of nodes in the graph,

• V2 is the second set of nodes in the graph,

• V3 is the third set of nodes in the graph.

We have two matrices:

• Matrix 1: Represents the edge weights from V1 to V2, where the element Eij
1 denotes the edge weight from node

i ∈ V1 to node j ∈ V2,

• Matrix 2: Represents the edge weights from V2 to V3, where the element Eij
2 denotes the edge weight from node

i ∈ V2 to node j ∈ V3.

If we perform the tropical inner product of Matrix 1 and Matrix 2, i.e.,

C1 = E1 ⊙max E2, C2 = E1 ⊙min E2

then C1 and C2 are new matrices that represent the paths from nodes in V1 to nodes in V3. Specifically, each element Cij in
matrix C represents the path weight from node i ∈ V1 to node j ∈ V3, where C1 corresponds to the maximum path weight
(using the max operation) and C2 corresponds to the shortest path weight (using the min operation).

A.2. Multi-layer Graph Extension

Consider a graph consisting of multiple layers, where each layer’s node set is represented as V1, V2, V3, . . . , Vk. Each matrix
represents the edge weights from one layer to the next:

• Matrix 1: Represents the edge weights from V1 to V2,

• Matrix 2: Represents the edge weights from V2 to V3,

• . . .

• Matrix (k-1): Represents the edge weights from Vk−1 to Vk.

Assume we have k layers, corresponding to matrices E1, E2, . . . , Ek−1. By performing consecutive tropical inner products,
we can compute the path information from V1 to Vk.

First, we perform the tropical inner product between E1 and E2 to obtain a new matrix C1:

C1 = E1 ⊙min E2

Each element Cij in matrix C1 represents the minimum path weight from node i ∈ V1 to node j ∈ V3.

Next, we perform the tropical inner product between C1 and E3, obtaining matrix C2:

C2 = C1 ⊙ E3

Each element Cij in matrix C2 represents the minimum path weight from node i ∈ V1 to node j ∈ V4.

By continuing this process, we multiply matrix C2 by E4 to obtain matrix C3:

C3 = C2 ⊙ E4

This process is repeated until all layers have been considered. The final matrix Ck−1 will contain the path information from
V1 to Vk.

Each element Cij in matrix Ci represents the minimum path weight from node i ∈ V1 to node j ∈ Vk.The same applies for
the maximum path weight when the tropical inner product is defined based on the max-plus operation.
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B. Additional Proofs and Theoretical Framework
Theorem 1: If matrix A ∈ RN×N satisfies the triangle inequality, and matrix B ∈ RN×N satisfies the triangle inequality,
then the matrix C = A+B ∈ RN×N also satisfies the triangle inequality.

Proof: For any indices i, j, k, since A and B satisfy the triangle inequality, we have:

Aij +Ajk ≥ Aik, Bij +Bjk ≥ Bik.

Adding these two inequalities:
Aij +Ajk +Bij +Bjk ≥ Aik +Bik.

This implies:
Cij + Cjk ≥ Cik.

Thus, C = A+B satisfies the triangle inequality.

Theorem 2: If A is a metric matrix, then for any positive constant α, αA is also a metric matrix.

Proof: Since A satisfies the triangle inequality Aik +Akj ≥ Aij , multiplying both sides by α > 0 preserves the inequality:

αAik + αAkj ≥ αAij .

Thus, αA satisfies the triangle inequality, is symmetric, and has diagonal elements equal to zero. Hence, αA is a metric
matrix.

Theorem 3: If a matrix A satisfies the triangle inequality, then the matrix A + AT = B, and after setting the diagonal
elements of B to 0, the resulting matrix satisfies the metric properties.

Proof: By Theorem 1, A+AT satisfies the triangle inequality and is symmetric. Setting its diagonal elements to 0 preserves
the triangle inequality, and the matrix remains symmetric. Thus, the modified matrix B satisfies the conditions for a metric
matrix.

thus,we just need to care the relationship between tropical algebra and triangle inequality.

Theorem 4: If A and B are both N × N metric matrices, then the element-wise maximum of A and B, denoted as
max(A,B), is also a metric matrix.

Proof: Suppose A and B are metric matrices, meaning that for all i, j, k, we have:

Aik +Akj ≥ Aij , Bik +Bkj ≥ Bij .

Let C = max(A,B). For any i, j, k, we have:

Cik + Ckj = max(Aik, Bik) + max(Akj , Bkj).

By the properties of the maximum function, this implies:

Cik + Ckj ≥ max(Aik +Akj , Bik +Bkj) ≥ max(Aij , Bij).

Hence, Cik + Ckj ≥ Cij , proving that C is a metric matrix.

generalization of Theorem 5: Let A ∈ RN×K and B ∈ RK×M be non-negative matrices, and let C = A⊙max B. For
any i ∈ {1, . . . , N},k ∈ {1, . . . ,min(N,M)}, and j ∈ {1, . . . ,M}, we have:

Cik + Ckj ≥ Cij .

This inequality defines the tropical triangle inequality for matrices. Specifically, when N = M , this becomes the tropical
triangle inequality for square matrices.

Proof: By definition, Cij = maxr(Air +Brj). Assume that when r = s, equality holds, i.e., Cij = Ais +Bsj . Then:

Ais ≤ Ais +Bsk ≤ Cik = max
r

(Air +Brk),
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and
Bsj ≤ Aks +Bsj ≤ Ckj = max

r
(Akr +Brj).

Thus, we have:
Cij ≤ Cik + Ckj .

Therefore, the tropical inner product satisfies the tropical triangle inequality.

Theorem 6: Let A be a non-negative matrix of size N ×K. Define B = A⊙max A
T as the tropical inner product of A with

its transpose. Let Boff be the matrix obtained by setting the diagonal elements of B to zero. Then, Boff is a metric matrix.

Proof: From Theorem 5, we know that A⊙max A
T satisfies the triangle inequality. Now, we will prove that B is symmetric

and satisfies the properties of a metric matrix.

1. Symmetry: For any i, j, we have:

Bij = max
k

(Aik +AT
jk) = max

k
(Aik +Akj),

Bji = max
k

(Ajk +AT
ki) = max

k
(Ajk +Aik),

so Bij = Bji. Therefore, B is symmetric.

2. diagonal elements: Since Boff is obtained by setting the diagonal elements of B to zero, it follows that:

Boff
ii = 0 for all i.

Therefore, Boff is a symmetric matrix with zero diagonal elements and satisfies the properties of a metric matrix.

Theorem 7: Let A ∈ RN×k and B ∈ Rk×M be non-negative matrices, where k > N ∗M . Then, there exist matrices
A′ ∈ RN×k′

and B′ ∈ Rk′×N , with k′ ≤ N ∗M , such that:

A′ ⊙max B
′ = A⊙max B.

Proof: Consider the matrix C = A⊙max B, where C ∈ RN×M . The (i, j)-th element of C is given by:

Cij = max
k

(Aik +Bkj).

Let {k} denote the index set for which the equality Cij = Aik +Bkj holds. Since the maximum is taken over k, the set
{k} can contain at most N ∗M distinct indices, as there are at most N ∗M possible unique combinations of rows of A and
columns of B.

Thus, we can construct new matrices A′ and B′ by retaining only the corresponding k-th columns of A and the k-th rows
of B, respectively. Specifically, A′ ∈ RN×k′

and B′ ∈ Rk′×M are defined by selecting the relevant columns and rows
corresponding to the set {k}, where k′ ≤ N ∗M . By this construction, it follows that:

A′ ⊙max B
′ = A⊙max B,

proving the result.

Theorem 8: max-TA-metric Representation Theorem

Let Ω denote the set of all matrices produced by tropical inner products of non-negative matrices:

Ω =
{
M

∣∣∣M = (X⊙max YT )off, X,Y ∈ RN×K
≥0

}
,

where (X⊙max YT)ij = maxk(Xik +Yjk).

Let Ψ ⊂ RN×N
≥0 be the set of matrices D satisfying:

• Dii = 0 ∀i ∈ {1, 2, ..., N},
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• Dij ≤ mink1 ̸=i Dik1
+mink2 ̸=j Dk2j ∀i, j ∈ {1, 2, ..., N},

Then, Ω = Ψ. The set of matrices generated via the tropical inner product (with diagonals removed) from non-negative
matrices constitutes a specific subset of the set of non-negative matrices with zero diagonals that satisfy the triangle
inequality.

Proof:

1. For any M ∈ Ω,there exist non-negative matrices X,Y ∈ RN×K
≥0 such that:

Mij = max
k

(Xik + Yjk) for i ̸= j, Mii = 0.

For the case where i = j, we have Mii = 0, and

Mij ≤ min
k1 ̸=i

Mik1 + min
k2 ̸=j

Mk2j .

For the other cases,choose some k such that:
Mij = Xik + Yjk.

For any p, q ∈ {1, . . . , n} with p ̸= i and q ̸= j, we have:

Xik + Yqk ≤ Miq, Xpk + Yjk ≤ Mpj .

Adding the two inequalities gives:
Miq +Mpj ≥ Xik + Yjk = Mij .

Thus, for any p, q ∈ {1, . . . , n} with p ̸= i and q ̸= j, it follows that

min
p ̸=i

Mip +min
q ̸=j

Mqj ≥ Mij .

Therefore, we conclude that M ∈ Ψ.

2. For any matrix M ∈ Ψ, we provide a constructive proof in the appendix, showing that there exist matrices X,Y ∈
RN×N2

≥0 such that:
M = (X ⊙max Y )off.

For any i and j, we can construct two matrices X and Y such that:

t(i, j) = N · (i− 1) + j, Xit(i,j) + Yjt(i,j) = Mij .

To ensure Mij = Xit(i,j) + Yjt(i,j), we further require that for any k ̸= i, we have Xk,t(i,j) = 0, and for any k ̸= j, we
have Yk,t(i,j) = 0. Additionally, we need to ensure the following inequalities:

∀k ̸= j, Xit(i,j) ≤ Mik, ∀k ̸= i, Yj,t(i,j) ≤ Mkj .

Since M satisfies the inequality
min
k1 ̸=i

Mik1
+ min

k2 ̸=j
Mk2j ≥ Mij ,

we can conclude that such matrices Y and Z exist.

Specifically, we set:

Xi,t(i,j) = min(min
k ̸=j

Mi,k,Mi,j) ≥ 0, Yj,t(i,j) = Mi,j −Xi,t(i,j) ≥ 0.
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Thus, we can find matrices X and Y such that M = (X ⊙max Y
T )off, and we conclude that:

M ∈ Ω

Conclusion: Thus, Ω = Φ.

Theorem 9:min-TA-metric Representation Theorem Let Ω be the set of all results of the min-tropical inner product (using
max-plus operation) of two non-negative matrices (excluding the diagonal elements), and let Φ be the set of all non-negative
matrices that satisfy the triangle inequality (excluding the diagonal elements). Then, Φ ⊆ Ω.

Firstly, the min-Tropical Inner Product of Two Non-negative Matrices Does Not Satisfy the Triangle Inequality:

Consider the non-negative matrices A and B:

A =

0.1 0.9 0.5
0 0 0
1 1 1

 , B =

0 0 0.9
0 0 0.1
0 0 0.5

 .

When Ask = Bks = 0, we show that the tropical inner product may not satisfy the triangle inequality. Consider the
following terms:

For some values of A and B, we have:
C12 + C23 < C13.

Thus, the tropical inner product ⊙min does not always satisfy the triangle inequality in this case. In general, the relation

min(Air +Brk) + min(Akr +Brj) ̸≥ min(Air +Brj)

shows that the triangle inequality does not hold universally for the min-tropical inner product.

Next, Consider a Metric Matrix C ∈ Φ:

Now, for a matrix C belonging to the set Φ, which satisfies the triangle inequality, we have the following important results:

A⊙min A = A

Proof:

For any i, j, k, by the metric properties of A, we know that:

Aik +Akj ≥ Aij .

Thus, for any k, the following holds:
min
k

(Aik +Akj) ≥ Aij .

Furthermore, when k = i, utilizing the property Aii = 0, we obtain:

min
k

(Aik +Akj) = Aij .

Therefore, we conclude:
A⊙min A = A.

Additionally, if A is a symmetric matrix (AT = A), we also have:

A⊙min AT = A.

Conclusion: This result shows that the min-tropical inner product of a matrix with itself yields the original matrix, and the
symmetry of the matrix further confirms the consistency of the operation under the min-tropical product. This property
holds for all metric matrices in B, meaning that the min-tropical inner product preserves the structure of metric matrices that
satisfy the triangle inequality.
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Theorem 10: The tropical inner product of a metric matrix with itself satisfies the triangle inequality.

Proof: When using the min-sum operation, as shown in Theorem 9, the tropical inner product of a matrix with itself yields
the matrix itself, which naturally satisfies the triangle inequality.

When using the max-sum operation, the tropical inner product of two non-negative matrices satisfies the triangle inequality.
However, the diagonal elements of the resulting matrix may not necessarily be zero, but the matrix still satisfies the triangle
inequality.

Theorem 11 Let A be a non-negative matrix of dimension m × n and B be a non-negative matrix of dimension n × p.
Define the following operation for any i, j:

dij = min
s

Ais +min
s

Bsj ,

where the minimum is taken over index s, i.e., for each pair i, j, we compute the minimum value of Ais for all s (with
s ∈ {1, 2, . . . , n}), and similarly for Bsj (with s ∈ {1, 2, . . . , n}).

Then, for any i, j, k, we have the following inequality:

dik + dkj ≥ dij .

Proof: By the definition of dij , we have:
dij = min(Ais) + min(Bsj).

Now, consider dik + dkj :

dik + dkj = min(Ais) + min(Bsk) + min(Aks) + min(Bsj).

By the non-negativity of the matrices A and B, we have:

dik + dkj ≥ min(Ais) + min(Bsj) = dij .

Thus, the triangle inequality holds, proving the result.

Theorem 12:
Let A be a non-negative matrix of dimension m × n, B be a non-negative matrix of dimension n × p, and O be a zero
matrix of appropriate dimension. Then, the operation A⊙min O ⊙min B satisfies the triangle inequality.

Proof: By definition, we have:

Cij = min
s1,s2

(Ai,s1 + 0 +Bs2,k) = min
s

(Ais) + min
s

(Bsk).

This relation satisfies the conditions for the triangle inequality. We can further prove it using a layered graph method.

Theorem 13:

Let G(E, V ) be an undirected graph with the following properties:

• There are no negative-weight cycles,

• There are no self-loops,

• All edge weights are non-negative,

• There is at most one edge between any two nodes,

• The graph is connected, i.e., there exists at least one path between any pair of nodes.

Let A be the adjacency matrix of G, defined as follows:

A[i, j] =


0 if i = j,

G[i, j] if there is an edge between i and j,

∞ otherwise.
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Now, define the recurrence relation for Ak:
Ak = Ak−1 ⊙min A

where ⊙min denotes the min-tropical matrix multiplication(min-sum). Then, under tropical matrix multiplication, the matrix
AN−1 (the matrix obtained after applying tropical matrix multiplication N − 2 times) satisfies the triangle inequality. In
particular, AN−1 represents the shortest path distance matrix for the graph G.

Proof

As shown in A.2 before, The tropical minimum operation (min-sum) computes the shortest path and weight sum between N
points on the left and N points on the right. The matrix AK

i,j represents the shortest path weight sum between points i and j
through at most k edges. Since the graph G has N nodes, the shortest path between any two points will not exceed N − 1
edges. Therefore, AN−1[i, j] gives the shortest path distance matrix for the graph.

For an undirected graph, the shortest path distances naturally satisfy the triangle inequality, making the matrix a metric
matrix. For a directed graph, this can be ensured by taking AN−1 + (AN−1)T , which satisfies the metric properties.

where ⊙min denotes the min-tropical matrix multiplication (min-sum). Then, under tropical matrix multiplication, the matrix
AN−1 (the matrix obtained after applying tropical matrix multiplication N − 2 times) satisfies the triangle inequality. In
particular, AN−1 represents the shortest path distance matrix for the graph G.

By combining this theorem, we can further accelerate the algorithm for the complete graph. By combining tropical matrix
decomposition techniques, we are able to achieve an O(KN2) approximation algorithm. That is, for a complete matrix A
of dimension N ×N , we approximate it as B ⊙BT , where B is of dimension N ×K , and K is a constant much smaller
than N . Specifically, it can be written as

(B ⊙min BT )N−1 = B ⊙ (BT ⊙min B)N−2BT .

By using the fast exponentiation algorithm, the computation can be performed in O(K2N logN), while the N×K⊙K×K
matrix has a complexity of O(Nk2), and the N × K ⊙ K × N has a complexity of O(N2k). Therefore, the overall
computational complexity is O(kN2).

Theorem 14: Any non-negative real matrix, under the tropical inner product (either the min or max operation), will satisfy
the triangle inequality after a finite number of powers.

Proof: In the case of the ⊙min operation, by Theorem 11, it is known that the matrix will satisfy the triangle inequality after
at most N − 1 powers. This is because the shortest path between any two nodes in a graph with N nodes cannot exceed
N − 1 edges, as discussed in the proof of Theorem 1. Hence, after at most N − 1 powers, the matrix will represent the
shortest path distances and satisfy the triangle inequality.

In the case of the ⊙max operation, as described in Theorem 5, the tropical inner product of two non-negative matrices
automatically satisfies the triangle inequality. Therefore, under the ⊙max operation, the tropical inner product of any two
matrices satisfies the triangle inequality.

Thus, regardless of whether the operation is ⊙min or ⊙max , a finite number of powers (at most N − 1) will yield a matrix
that satisfies the triangle inequality. By making a slight adjustment, this matrix can further be made to satisfy the properties
of a metric matrix.
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C. Supplementary Details on Metric Embedding

Table 4. Comparison of Computational Complexity, Scalability, and Execution Platform

Method Time Complexity Space Complexity Scalability
DeepNorm − − Suitable for small-scale problems, runs on GPU

TRF Algorithm O(n3) O(n3) Suitable for small-scale problems, runs on CPU
PAF Algorithm O(n3) O(n3) Limited to small datasets, runs on CPU

HLWB Algorithm O(n3) O(n2) Suitable for medium-scale data, runs on CPU
Tropical (Normal) O(n2k) O(n2) Highly scalable, supports real-time updates, run on GPU

C.1. Method Analysis

Leveraging tropical algebra, MetricEmbedding ensures the learned matrix adheres to fundamental metric properties, such as
the triangle inequality. Unlike methods like HLWB projections (Li et al., 2023), which rely on linear constraints or complex
projections, MetricEmbedding’s tropical operations inherently preserve these properties. This guarantees the correctness
and robustness of the solution. In contrast, methods like TRF(Brickell et al., 2008) may violate metric properties during
optimization, as they do not maintain metric consistency throughout the process.

As shown in Table 4, The tropical algebra operations in MetricNN provide significant computational efficiency, even for
large matrices, addressing the limitations of traditional approaches like the TRF (Brickell et al., 2008), which exhibits O(n3)
space complexity. MetricEmbedding reduces memory cost to O(n2), making it highly scalable and efficient for large-scale
datasets. Additionally, its support for minibatch processing and dynamic point-pair weight updates ensures that it can handle
large matrices with high efficiency—features that many existing methods, such as PAF (Sonthalia & Gilbert, 2022), cannot
accommodate due to their reliance on fixed input formats and limited parallelization.

C.2. Minibatch-Based Metric Embedding

Here, we present a minibatch-based implementation of MetricEmbedding. As shown in algorithm2,compared to the standard
MetricEmbedding, the main modification is the integration of minibatch processing into the model, allowing it to overcome
the limitation of storing O(N2) pairwise values. This enables the method to handle larger-scale data, with the minimum
space complexity reduced to O(Nk).

19



MetricEmbedding: Accelerate Metric Nearness by Tropical Inner Product

Algorithm 2 Minibatch Training Procedure for MetricEmbedding
Input: Target matrix D, batch size B, AdamW optimizer, threshold
Output: Optimized weight matrices W0,W1, . . . ,Wd

Optimized bias vectors b1, . . . , bd
Final output matrix approximation from minibatches
Initialize:
- Initialize weight matrices W0,W1, . . . ,Wd with Gaussian distribution.
- Initialize bias vectors b1, . . . , bd randomly.
- Split D into minibatches, each containing B randomly sampled point pairs (i, j).

Training Loop:
while Convergence criteria not met do

for each minibatch B containing pairs (i, j) do
Forward Pass:
- Extract relevant rows W (i)

0 ,W
(j)
0 for batch processing.

- Initialize the output for batch: A(i)
0 , A

(j)
0 = W

(i)
0 ,W

(j)
0 .

- for layer l = 1 . . . d do
Compute batch-wise embedding:

A
(i)
l = A

(i)
l−1 ⊙max Wl ⊕ bl

A
(j)
l = A

(j)
l−1 ⊙max Wl ⊕ bl

end
Loss Calculation:

Compute loss only for batch elements:

L =
∑

(i,j)∈B

∥∥∥(A(i)
d ⊙max (A

(j)
d )T

)
−Dij

∥∥∥2
F

Backpropagation:
Compute gradients of L with respect to Wl and bl using only batch data.

Parameter Update:
Use AdamW optimizer to update Wl and bl based on computed gradients.

Regularization:
for layer l = 1 . . . d do

Apply non-negativity constraints: Wl ≥ 0, bl ≥ 0.
end

end
Check for Convergence:

If L change between iterations is smaller than the threshold, break the loop.
end
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Table 5. Comparison of Space Complexity, Time Complexity, and Max Problem Size.Note: Data for TRF, PAF, and HLWB were taken
from the respective studies: (Li et al., 2023).

Algorithm Largest Size (n)
CPLEX < 300
MOSEK < 300

TRF(Brickell et al., 2008) < 2, 000
PAF(Sonthalia & Gilbert, 2022) ∼ 3, 000

DeepNorm(Pitis et al., 2020) < 1, 500
HLWB(Li et al., 2023) > 10, 000

Tropical > 100, 000

D. Experiment

D.1. Comparison of Scalability with Existing Methods

We tested the scalability of our approach on a variety of problem sizes, and while the computing platforms were not identical,
the results consistently highlight the superiority of our method. Specifically, compared to the TRF method (Brickell et al.,
2008) and the PAF algorithm (Sonthalia & Gilbert, 2022), HLWB (Li et al., 2023) offers a lower space complexity of
O(N2), enabling it to handle matrices with over 10,000 points. However, HLWB’s time complexity remains a bottleneck,
restricting its scalability to larger datasets.

In contrast, our method achieves both optimal space complexity (O(N2)) and time complexity (O(N2k)), allowing it to
efficiently scale to much larger matrices. Our approach can solve problems with sizes as large as 100,000 points within 12
hours, demonstrating a significant performance improvement over HLWB, which can only handle matrices up to 10,000
points. By adopting a minibatch-based approach, our method can even handle data at the scale of 106 × 106. Although
the optimization performance may be limited by the problem size, our method can at least provide a solution that strictly
satisfies the triangle inequality.This improvement underscores the scalability and efficiency of our approach, even for very
large-scale problems that are common in real-world applications.

Table 5 summarizes the comparison between our method and existing approaches. The empirical results clearly demonstrate
the advantages of our approach, making it an ideal solution for large-scale metric optimization problems.

D.2. Online Update Capability

To validate the online update capability of MetricEmbedding, we incrementally fed new data into the model and evaluated
the update speed and prediction accuracy by varying the percentage of point pairs used for updates (from 20% to 100%).
To better emphasize the model’s online learning ability, we specifically generated a new dataset with the following data
generation strategy:

• Data Distribution: A distance matrix with significant variation was generated by intentionally clustering most of the
points in one region, while a few points were placed far from this region. This distribution ensures that there is a larger
variation in distances between points, which increases the challenge of the online learning task.

• Data Generation Process:

– The majority of points (50 points) are clustered around the coordinates (50, 50), with the distribution following a
standard normal distribution and a standard deviation of 5 to ensure they are concentrated near the center.

– A few points (10 points) are distributed away from the clustered region (around coordinates (200, 200)), with their
distribution also following a standard normal distribution and a standard deviation of 20, enhancing the distance
differences between these points and the center.

• Distance Matrix Calculation: The Euclidean distances between these points were computed, and a distance matrix
was generated for use in subsequent experiments.
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Table 6. NMSE and Triangle Inequality Violation Ratio at different update percentages

Update (%) NMSE TIV Ratio
20 0.8832 0
30 0.8388 0
40 0.8028 0
50 0.7728 0
60 0.7476 0
70 0.7257 0
80 0.7058 0
90 0.6935 0

100 0.6773 0

By using this data generation strategy, we ensured that the distance differences between point pairs in the experiment were
significant, which posed a greater challenge for the online learning task and tested the model’s ability to adapt to varying
levels of input data. The following table presents the normalized mean square error (NMSE) and the triangle inequality
violation ratio(TIV Ratio) at different update percentages:

The table above presents the experimental results of the MetricEmbedding model at various update percentages, focusing on
two key performance metrics: Normalized Mean Square Error (NMSE) and Triangle Inequality Violation Ratio (TIV Ratio).

Normalized Mean Square Error (NMSE): The NMSE values progressively decrease as the update percentage increases.
At the 20% update level, the NMSE is 0.8832, and it improves as more data is added. By the 100% update level, the NMSE
reaches 0.6773, indicating that the model’s performance improves as it adapts to more data. This trend shows that the
model’s ability to make accurate predictions increases with the number of updates, demonstrating its capacity to learn and
adapt to new data in an online learning setting.

Triangle Inequality Violation Ratio (TIV Ratio): Notably, the TIV Ratio remains at 0 for all update percentages. This
indicates that the model consistently satisfies the triangle inequality throughout the updates, which is a critical property for
distance-based models. The absence of violations suggests that the model is stable and maintains consistent mathematical
properties even as new data is introduced.

The results validate the online update capability of the MetricEmbedding model. As the update percentage increases, the
NMSE improves, showing the model’s ability to adapt to new data while maintaining its geometric properties, as evidenced
by the consistent TIV Ratio. This demonstrates the model’s stability and reliability in dynamic environments requiring
real-time adaptation. Compared to traditional methods like HLWB(Li et al., 2023), which often require full retraining
with each new data batch, MetricEmbedding offers significant flexibility. While methods like HLWB are computationally
expensive and time-consuming, MetricEmbedding allows incremental updates, making it far more efficient and scalable
for real-time applications. Its ability to adapt online without retraining makes it ideal for dynamic tasks, such as online
recommendations or real-time data analytics, where constant adaptation is crucial. MetricEmbedding outperforms traditional
methods in efficiency and adaptability for online learning tasks.

D.3. Effect of Model Parameters and Latent Dimension (k) on Prediction Performance

We conducted a preliminary investigation into how model complexity, specifically the number of layers (D) and the latent
dimension (k), affects the performance of the MetricEmbedding model. Here, k represents the dimension of the predicted
matrix A, which has a shape of N × k, where N is the number of data points. The results show that as the model depth (D)
and parameter dimensions (k) increase, the performance fluctuates. Specifically, for larger values of k (e.g., k = 10), the
model’s expressiveness improves, but at the cost of higher computational costs. On the other hand, reducing k (e.g., k = 3)
leads to a higher accuracy for smaller models, which suggests a balance between model complexity and performance.

As shown in table 7,despite the increased computational overhead, MetricEmbedding demonstrates superior scalability,
handling complex, high-dimensional data more efficiently compared to traditional methods. This highlights the model’s
capacity to capture more non-linear relationships, making it suitable for real-time applications and large-scale datasets.
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Table 7. Impact of model depth (D) and dimensionality (k) of matrix A on accuracy.

D (Depth) k (Dimension of A) Error rate (%)
1 10 88.33
2 10 76.78
3 10 75.73
1 3 95.28
2 3 85.28
3 3 76.31

The edge weights used in the tests were generated as follows:

wij = ⌈1000× u× v2⌉

where u ∼ U(0, 1) is drawn from a uniform distribution and v ∼ N(0, 1) is drawn from a normal distribution. These edge
weights were then used as the measurement matrix Do.

D.4. Metric Distance Matrix Embedding

We conducted tests on various metric distances, including Euclidean distance, Manhattan distance, cosine similarity,
Hamming distance, and shortest-path (SP) distance. We tested with two different numbers of points, N = 100 and
N = 1000, and generated corresponding distance matrices for each metric. The error rates for the different metrics are
shown in Table2.

The results were generally satisfactory, with all error rates consistently below 10%. Additionally, we randomly generated a
graph and modeled its shortest-path distance matrix, achieving a minimal error rate of 2.42%.

These experimental results demonstrate that by optimizing the tropical inner product between two matrices, we can effectively
represent distance matrices, making it feasible to use them in deep learning applications as a replacement for traditional
Euclidean distance or other distance calculation methods. Moreover, SPdistance Embedding is a compression technique
applied to the SPdistance matrix using MetricEmbedding, which generates a set of N × k matrices. This method has a
space complexity of O(Nk), with indexing between two points requiring only O(k) complexity. Reconstructing the entire
distance matrix for the graph takes O(N2k) complexity. Compared to traditional compression algorithms, our approach
guarantees that the resulting matrix satisfies the triangle inequality. Furthermore, by applying matrix decomposition to the
embedded matrices, we can significantly reduce storage costs.

Data Generation: The distance matrices used for testing were generated as follows:

• Euclidean distance: A set of random points in a 10-dimensional space was generated, and the Euclidean distance
between each pair of points was computed. The Euclidean distance dE(x, y) is given by:

dE(x, y) =

√√√√ d∑
i=1

(xi − yi)2

where x and y are the vectors, and d is the dimensionality (in this case, 10).

• Manhattan distance: Similar to the Euclidean case, but using the Manhattan (or L1) distance formula to compute the
distances between pairs of points. The Manhattan distance dM (x, y) is defined as:

dM (x, y) =

d∑
i=1

|xi − yi|

• Hamming distance: Random binary vectors of length 10 were generated. The Hamming distance dH(x, y) between
two binary vectors x and y is the number of positions at which the corresponding elements are different:

dH(x, y) =

d∑
i=1

|xi − yi|
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• Cosine similarity distance: Random vectors were generated, and the cosine similarity between each pair of vectors
was computed. The cosine distance dC(x, y) is derived from the cosine similarity cos(x, y) as:

dC(x, y) = 1− x · y
∥x∥∥y∥

• Shortest-path distance: A random graph was generated using the Erdős-Rényi model and an edge probability of 0.1.
To ensure the graph was connected, the generation process was repeated until a connected graph was obtained. The
graph was then used to compute the shortest path between all pairs of nodes using floyd algorithm.
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