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Abstract

Lipid nanoparticles (LNPs) are vital in modern biomedicine, enabling the effec-
tive delivery of mRNA for vaccines and therapies by protecting it from rapid
degradation. Among the components of LNPs, ionizable lipids play a key role in
RNA protection and facilitate its delivery into the cytoplasm. However, designing
ionizable lipids is complex. Deep generative models can accelerate this process
and explore a larger candidate space compared to traditional methods. Due to
the structural differences between lipids and small molecules, existing generative
models used for small molecule generation are unsuitable for lipid generation. To
address this, we developed a deep generative model specifically tailored for the dis-
covery of ionizable lipids. Our model generates novel ionizable lipid structures and
provides synthesis paths using synthetically accessible building blocks, addressing
synthesizability. This advancement holds promise for streamlining the development
of lipid-based delivery systems, potentially accelerating the deployment of new
therapeutic agents, including mRNA vaccines and gene therapies.

1 Introduction

The successful development of COVID vaccine paved the way for the clinical application of lipid
nanoparticles (LNPs) to deliver different kinds of messenger RNA(mRNA) [1; 2]. The standard
structure of LNPs includes four main components: ionizable lipids, cholesterol, helper lipids, and
PEGylated lipids [3]. Ionizable lipids are critical as they condense the negatively charged mRNA
during LNP formulation and help it escape from endosomes and enter the cytoplasm of target cells to
express the protein of interest [4; 5]. An ionizable lipid is an amphiphillic molecule with an ionizable,
hydrophilic head and several hydrophobic tails [6]. An example structure of an ionizable lipid is
shown in Figure 1.

Designing ionizable lipids is time-consuming and labor-intensive. Combinatorial chemistry provides
a fast and cost-effective method to produce these lipids in large quantities, which allows researchers
perform high-throughput screenings of ionizable lipids [7]. For example, by using a Ugi-based
three-component reaction (3-CR), researchers can rapidly generate a library of 1,080 ionizable lipids
[8]. This collection can assist in identifying an ionizable lipid for the application of interest such as
activation of stimulator of interferon genes (STING), which is useful for delivering mRNA vaccines.
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Figure 1: An Example of Ionizable Lipid Structure.

However, despite these advances, the method has limitations. The diversity of ionizable lipids
generated remains constrained due to the restricted range of lipid heads and tails available. Therefore,
designing and testing a broader and more diverse range of lipids remains challenging.

Machine learning methods, particularly generative models, provide a solution for efficiently exploring
vast molecular search spaces [9; 10; 11; 12; 13]. These models capture the distributions of existing
molecules, learn how molecular structures correlate with their physical properties, and use this
knowledge to predict new molecules. Various generative models have been proposed for molecule
design, capable of generating new molecules through either molecular graphs or string representations
[14]. Despite significant advances in machine learning for drug discovery, previous works have
shown that generative models are prone to producing molecules which chemists find very difficult to
synthesize [13].

Existing research in machine learning for LNP design primarily focuses on predicting LNP trans-
fection efficiency [7; 8; 15; 16]. In contrast, our work addresses the generation of ionizable lipids.
Specifically, we adapt an existing approach, Synthesis-DAGs [13], which simultaneously generates
molecules and their synthesis routes, to the task of generating synthesizable ionizable lipids [17].

Our main constributions are as follows:

• Extract a broad range of synthetically accessible building blocks for ionizable lipid and
construct an ionizable lipid synthesis dataset for training the generator.

• Develop a generator capable of producing ionizable lipids along with their synthesis path-
ways from the building blocks.

• Iteratively fine-tune the generator to identify optimal ionizable lipid structures with synthesis
pathways for high mRNA transfection efficiency in HeLa cells.

2 Background

In this section, we first introduce the generator on which our work is based, Synthesis-DAGs, then
we introduce the mRNA transfection efficiency prediction model used in the optimization process.

2.1 Synthesis-DAGs

Synthesis-DAGs is a general molecule generator that our method builds upon [18]. It can generate
molecules along with their synthesis pathways. Below, we briefly introduce how Synthesis-DAGs
work.

Representing Synthesis Paths as DAGs Synthesis routes are represented as directed acyclic
graphs (DAGs). Examples are shown in Figure 3. Building blocks are displayed in blue boxes. These
building blocks undergo chemical reactions to form intermediate products, shown in light purple
boxes. Finally, the final product is generated, shown in dark purple boxes.

Serializing the Construction of DAGs as Action Sequences The DAGs are serialized into action
sequences by defining three classes of actions: Node-addition, Building block molecular identity, and
Connectivity choice. Every molecule in the DAG is considered a node and is classified as either a
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building block node or a product node. The Node-addition action determines which type of node
to add. Building block molecular identity specifies which molecule to choose from the building
block pool. Connectivity choice decides which nodes to connect to the next product and whether that
product is an intermediate product or final product.

Modeling the Probability Distribution of the Action Sequence A shared RNN models the
distribution of the action sequence. At each step, the RNN computes a context vector, which is passed
into a feedforward action network to predict the next action. There are three action networks in total,
one for each action class. In order to feed the action sequence into the RNN model, the actions are
converted into action embeddings. The detailed action types, action choices and action embeddings
are listed in Table 1.

Action Type Action Action Embedding

Node-addition Building block node Learnable vector hB

Product node Learnable vector hP

Building block
molecular iden-
tity

Select a molecule in the building
block pool

Building block’s molecular embed-
ding

Connectivity
choice

Select a reactant node Reactant’s molecular embedding

Identify as an intermediate product
(continue)

Learnable vector hI

Identify as a final product (stop) Learnable vector hF

Table 1: Action Type, Action, and Action Embeddings of DAG Generation

Reaction Predictor During sampling, a reaction predictor is used to perform reaction prediction at
the product nodes. In Synthesis-DAGs, Molecular Transformer is used for this task [19].

In this work, we focus on adapting Bradshaw’s Synthesis-DAGs model for use as an ionizable lipid
DAG generator. The limitations of directly applying the original method to lipid generation and the
detailed adaptations we made are discussed in Section 5.

2.2 AGILE framework

When optimizing ionizable lipids for high mRNA transfection efficiency, we use the AGILE model
[4] to predict the mRNA transfection efficiency of our generated ionizable lipids. The AGILE model
is a deep learning framework designed to predict the transfection efficiency of ionizable lipids in
specific cells. It is part of the AI-Guided Ionizable Lipid Engineering (AGILE) platform. The training
process of the prediction model occurs in two stages. First, a graph encoder is pre-trained on a virtual
library of 60,000 chemically diverse lipids using contrastive learning. In the second stage, the model
is fine-tuned with wet-lab mRNA transfection efficiency data. We use the model fine-tuned on data
with mRNA transfection efficiency in HeLa cells as labels to make predictions.

3 Lipid Property Predictors

Our method relies on both a lipid classifier and an ionizable lipid classifier to determine whether the
generated product is a lipid or an ionizable lipid. In this section, we introduce the lipid classifier, a
binary classification model that determines whether a molecule is lipid-like. We then explain how
ionizable lipids are identified by examining their net charge at physiological and acidic pH.

Lipid Classifier The architecture of our lipid classifier is based on the message passing neural
networks framework, Chemprop [20]. It consists of three message passing layers to integrate

3



molecular features, followed by two feedforward layers for property prediction. The training dataset
includes 180,000 lipids and 180,000 non-lipid molecules. Lipid data are sourced from public datasets
LIPID MAPS and SwissLipids, as well as synthetic data generated using graph-based structural
motifs [21; 22; 23]. Non-lipid molecules are obtained from the PubChem database [24]. Our classifier
demonstrates excellent performance, achieving both a Receiver Operating Characteristic Area Under
the Curve (ROC-AUC) score and a Precision-Recall Area Under the Curve (PR-AUC) score above
0.9999.

Ionizable Lipid Classifier Ionizable lipids carry a positive charge at acidic pH, enabling them to
condense RNAs into LNPs, but are neutral at physiological pH to minimize toxicity [25]. To filter
based on this criterion, we consider the net charge at pH 5 (acidic) and pH 7.4 (physiological). The
net charge is calculated by first estimating the pKa values of the lipid’s acidic and basic groups using
MolGpka [26], followed by applying the Henderson-Hasselbalch equation to determine the lipid’s
net charge at both pH values.

Property Predictors Validation To further validate our lipid property predictors, we curated a
dataset of over 2,500 ionizable lipids sourced from previously published studies [7; 27; 28; 29; 30; 31].
Importantly, this dataset is entirely independent of the training data used for our lipid classifier. Using
this dataset, we evaluated the predictors’ performance, with the lipid classifier achieving a high
accuracy of 98.32%. Additionally, the ionizability predictor demonstrated exceptional performance,
accurately classifying all ionizable lipids in the dataset.

4 Dataset Construction

In this section, we first explain how we select synthetically accessible ionizable lipid building blocks
by detailing the filtering criteria used to choose lipid heads and tails from the ZINC20 dataset of
synthetically accessible components. After forming a building block pool, we demonstrate how we
synthesize ionizable lipids based on these building blocks and construct the ionizable lipid synthesis
dataset.

4.1 Building Block Extraction

We begin the construction of an ionizable lipid synthesis dataset by creating a building block set of
ionizable lipid heads and tails. To ensure that all building blocks are synthetically accessible, we
select them from the ZINC20 dataset [32], a publicly available database that includes commercially
available compounds. We apply three filtering criteria to identify the ionizable lipid heads. The first
criterion is molecular weight; since most lipids, including heads and tails, have a molecular weight
of no more than 1000 g/mol. We set our limit at no more than 500 g/mol. The second criterion
is about solubility preference, selecting compounds with a LogP value less than zero, where LogP
represents the log of the partition coefficient between octanol, a hydrophobic oil, and water. The third
criterion focus on charge characteristics; we seek ionizable heads that maintain a near-zero charge at
physiological pH and become positively charged in acidic environments. Compounds containing a
nitrogen atom in their structure are likely to meet this ionization requirement. Thus, the third criterion
involves selecting molecules that contain amine groups. By applying these criteria, we identify a set
of 2.7 million ionizable head molecules.

As for selecting lipid tails, we aim to ensure that the molecule structurally resembles a lipid tail, and
the tail set is diverse. We initially use LipidAnalyzer (a toolbox already implemented) to extract tails
from the LIPID MAPS[21]. LIPID MAPS contains 48,548 unique lipid structures. From these, we
extract a total of 8,176 unique lipid tails. To ensure that all the lipid tails are synthetically accessible,
we find similar lipid tail molecules in the ZINC dataset based on these extracted tails. The search tool
we use called ‘cartblanche’ [33]. We measure similarity by calculating the graph edit distance (GED)
between two molecules, which involves finding the minimum number of graph operations needed to
transform one graph into another. The second search criterion is that at least one of the molecule’s
Tanimoto similarity coefficients must be greater than 0.5, using either Daylight fingerprints or ECFP4
fingerprints. After identifying all synthetically accessible components, we filter them by checking
whether the tail is reactive; this is determined by the presence of a heteroatom. Through this search,
we identify a total of 15,302 synthetically accessible lipid tails.
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4.2 Lipid Synthesis Dataset Construction

After obtaining the synthetically accessible lipid heads and tails, our next step is to generate ionizable
lipids with multiple tails. In this study, we focus on lipids with 1-3 tails. We start by identifying
lipid heads that are most likely to react with the selected lipid tails. An analysis of the lipid tails
revealed the functional groups with high occurrences, among which the top three functional groups
that can react with those in the tails are the carboxylic acid group, amine group, and hydroxyl group.
Consequently, we further refine our selection of ionizable heads based on a combination of these
three functional groups. Specifically, we require the lipid head to contain 1-3 functional groups to
facilitate chemical reactions that attach the tails. This count of 1-3 functional groups excludes the
amine group used to ensure ionizability.

We synthesize ionizable lipids by sequentially adding lipid tails to lipid heads. The chemical reactions
that combine a lipid tail with a lipid head or an intermediate product are simulated using Chemformer
[34], a reaction prediction model. After the final tail addition, the product is formed. We first apply
the lipid classifier to determine if it is a lipid. If classified as a lipid, we then apply the ionizable lipid
classifier to assess its ionizability.

5 Synthesizable Ionizable Lipid Generator

In this section, we explain why the original Synthesis-DAGs method cannot be directly applied to
lipid generation and describe the adjustments we made to address these limitations.

Limitations of the Synthesis-DAGs Method in Generating Ionizable Lipids We sampled 1,000
molecules using the original Synthesis-DAGs model trained on the USPTO reaction dataset [35]. Of
these, only 53 were classified as lipids, and 13 as ionizable lipids. This low efficiency indicates that
the original model cannot be directly applied to ionizable lipid generation. One clear reason is that the
USPTO reaction dataset is not lipid-specific. Additionally, the reaction predictor in Synthesis-DAGs
fails to accurately predict reactions between lipid tails and heads [19]. Example predictions from the
Molecular Transformer are shown in Figure 2. As seen, the Molecular Transformer tends to make
copy-paste errors when predicting reactions between large molecules, highlighted in the blue boxes.
It incorrectly alters structures that are not involved in the chemical reaction. For instance, in the first
reaction, the location of the carboxylic acid and the ring structure consisting of five carbons and one
nitrogen are both altered on the lipid head (shown in the bottom blue box), while a ring structure is
incorrectly added to the lipid tail (shown in the top blue box).

lipid head lipid tail MT prediction Chemformer prediction

✖ ✅

✅✖ 

Figure 2: Examples of Predictions from the Original and Improved Reaction Predictors. The
original reaction predictor, Molecular Transformer, fails to accurately predict reactions between lipid
heads and tails, with errors indicated by blue boxes. In contrast, Chemformer successfully predicts
the correct reactions.

To address these two problems, we made two adjustments to the original Synthesis-DAGs model.
First, we generated an ionizable lipid synthesis dataset. Second, we used Chemformer [34] as the
reaction predictor, which is capable of correctly predicting reactions for larger molecules.
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5.1 Ionizable Lipid Synthesis Dataset

Using the method outlined in Section 4, we generated an ionizable lipid synthesis dataset to ensure the
model is trained specifically in the domain of ionizable lipids. The dataset contains 70,536 synthesis
paths and includes 43,741 building blocks, comprising 38,431 unique lipid heads and 5,310 unique
lipid tails. We randomly split the dataset into training, validation, and test sets, with 63,480, 3,582,
and 3,582 data points, respectively. The training set includes 5,905 one-tail, 21,301 two-tail, and
36,274 three-tail ionizable lipids.

5.2 A Better Reaction Predictor

To address the limitations of Molecular Transformer, we adopted Chemformer, a more advanced
Transformer-based sequence-to-sequence model [34]. Chemformer takes reactant SMILES strings
as input and outputs the predicted SMILES string of the product. It is initially pre-trained on
approximately 100 million SMILES strings from the ZINC15 dataset [36], followed by fine-tuning
on the USPTO-MIT dataset [37], which includes around 470,000 reactions.

We selected Chemformer for several key reasons. First, Chemformer is state-of-the-art for reaction
prediction on the USPTO Mixed and USPTO Separated benchmarks [38]. Second, Chemformer
significantly reduces copy-paste errors, examples are shown in Figure 2. For example, in these two
examples, Chemformer makes accurate predictions without altering structures not involved in the
reaction.

Apart from these two adjustments, the generator’s structure, training, and sampling methods remain
the same as in Synthesis-DAGs [13].

6 Experiments

In this section, we present the experimental results. First, we introduce the baseline methods used for
comparison. Next, we describe the experiment implementation. Finally we show results and analysis.

6.1 Baselines

Random Generation Random generation involves selecting a lipid head and one to three lipid
tails at random, followed by sequential chemical reactions using Chemformer to combine them. This
method generates raw training data without filtering for lipid property predictors, as described in
Section 4. The key difference between this approach and ours lies in how the building blocks are
selected. We refer to this baseline as ’Random + Chem’

Original Synthesis-DAGs Trained on Our Ionizable Lipid Synthesis Dataset We mentioned in
Section 5 that one of the reasons the original Synthesis-DAGs cannot be used to generate ionizable
lipids is due to the training data. Now, we compare our method (refered as DAG + Chem), which is
trained on the ionizable lipid dataset and using Chemformer as reaction prediction, to the original
Synthesis-DAGs model, which was trained on our generated ionizable lipid dataset. Because this
model uses DAGs to represent synthesis paths and employs the Molecular Transformer in the sampling
process to predict reactions, we refer to this baseline as ’DAG+MT’. The only difference between our
method and this baseline is the reaction predictor used.

Synthesis List Generation: A Linear Structure to Represent the Synthesis Path Analyzing the
synthesis paths in our training dataset reveals a linear process, characterized by the following steps:

• Adding a lipid head.

• Sequentially adding lipid tails that react to generate intermediate or final products.

Based on this linear progression, we developed a linear synthesis pathway generator. This approach
simplifies the representation of the synthesis process as a linear list, compared to DAG-based methods.
The structure of the list is as follows:

[building block node, building block node, product node, building block node, product node, ...]
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Each item in the action sequence represents a molecule’s index, with action embeddings corresponding
to the molecule embeddings. At each product node, the context vector is input into a binary
classification network to determine whether to stop the list generation. This baseline investigates the
impact of different synthesis pathway representations. All other model components, including the
reaction predictor (Chemformer), remain the same as in our approach. We refer to this baseline as
’List + Chem’.

6.2 Experiment Implementations

The ionizable lipid generator operates in two stages: training and sampling. During training, a
reaction predictor is not required, but it is used in the sampling stage. The reaction predictor is hosted
on a Flask server running the Chemformer model. The generator sends requests to the server, which
performs inference and returns the results. Each model is trained for 10 epochs using the Adam
optimizer with a learning rate of 0.0001. During sampling, we draw 100 batches from the trained
model, with each batch requesting 200 samples. However, the actual number of generated products is
lower due to failures in the reaction prediction model. The experiments were conducted on a Tesla
P100 GPU with 16GB of memory.

6.3 Experiment Results

We analyze the ability to generate ionizable lipids in terms of generation efficiency and quality, as
shown in Table 2 and Table 3, respectively. Table 2 presents the ionizable lipid generation rate and
lipid generation rate for different methods. In Table 3, we evaluate the validity (whether the generated
SMILES can be parsed by RDKit [39]), uniqueness (whether the generated molecules are different
from one another), novelty (whether the generated molecules different from training data), FCD
(Fréchet ChemNet Distance, whether the generated samples have similar chemical and biological
properties to those of the training data) [40], Synthetic Accessibility score (SA score) [41]. In Figure
3, we present four examples of the generated ionizable lipids along with their synthesis paths.

ionizable lipid

intermediate product

building block

Figure 3: Examples of Generated Ionizable Lipids and Their Synthesis Paths. The synthesis
paths show the building blocks and intermediate products. Our model can generate ionizable lipids
with one to three tails.

6.3.1 Method Performance

As illustrated in Table 2 and Table 3, our ionizable lipid generator performs well in terms of both
the ionizable lipid generation rate and the lipid quality. The ionizable lipid rate among all generated
samples reaches 83.4%, significantly surpassing that achieved through random generation (’Random +
Chem’). Regarding quality analysis, validity, uniqueness, and novelty are notably high. Furthermore,
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Table 2: Experimental Results on the Generation Efficiency of Ionizable Lipid Generation
Methods. Lipid rate and ionizable lipid rate indicate the proportion of lipids and ionizable lipids in
the generated samples.

Methods Generated Samples Lipid Rate (↑) Ionizable Lipid Rate (↑)

DAG+Chem (Ours) 14,148 92.6% 83.4%
List+Chem 15,590 90.6% 78.3%
DAG+MT 14,575 72.0% 50.7%
Random+Chem 309,075 80.9% 69.2%

Table 3: Comparison of the quality of generated ionizable lipids.

Methods Validity (↑) Uniqueness (↑) Novelty (↑) FCD (↓) SA Score (↓)

DAG+Chem (Ours) 1.000 0.999 0.999 3.797 4.182
List+Chem 1.000 1.000 0.999 4.119 4.013
DAG+MT 1.000 0.999 1.000 4.128 4.141
Random+Chem 1.000 1.000 None None 4.201

the relatively low Fréchet ChemNet Distance compared to other methods indicates that, although
the ionizable lipids generated by our method differ from those in the training set, their chemical and
biological properties remain within the same distribution, demonstrating successful generalization.

6.3.2 The Impact of Reaction Predictor Performance

This comparison focuses on using Chemformer as the reaction predictor versus using Molecular
Transformer (’DAG + Chem’ vs. ’DAG + MT’). Our method significantly outperforms ’DAG +
MT’ in both lipid rate and ionizable lipid rate. The lower efficiency of Molecular Transformer as a
reaction predictor has a substantial impact on the generation of ionizable lipids [38]. Chemformer
possesses approximately 45 million trainable parameters, which is substantially more than the 12
million parameters in Molecular Transformer. Generally, a larger number of parameters can enhance
model performance due to increased learning capacity. Moreover, Chemformer undergoes a two-stage
training process. It is initially pre-trained in a self-supervised manner on 100 million SMILES strings
from the ZINC15 database before being fine-tuned on downstream tasks. In contrast, Molecular
Transformer is trained directly on a downstream dataset without the intermediary step of pre-training.
This direct approach may limit its ability to thoroughly learn the SMILES syntax, which is essential
for predicting correct chemical structures [42]. Thus, the use of pre-trained models, which have
already developed a foundational understanding of SMILES syntax, is critical for accurate prediction
of chemical products.

6.3.3 The Impact of Data Structure Representing Synthesis Pathway

In Table 2, the third comparison between ’DAG + Chem’ and ’List + Chem’ shows that the DAG
generator outperforms the linear method in generating both lipids and ionizable lipids. While the
uniqueness and novelty metrics are nearly identical for both methods, the DAG generator achieves a
lower FCD score, indicating that the lipids produced more closely match the training distribution.
The primary reason for this is that DAG representations include diverse action embeddings, providing
richer information to the RNN, which helps generate more accurate hidden states for decision-making.
Additionally, DAGs can model more complex synthesis routes, particularly those involving reactions
of intermediate products.

6.4 Optimization Towards Ionizable Lipids With High Transfection Efficiency

We have developed an ionizable lipid version of Synthesis-DAGs. Our next goal is to optimize these
lipids to enhance mRNA transfection efficiency in specific target cells. In Bradshaw’s approach [13],
the Synthesis-DAGs model is capable of iterative optimization to generate optimal novel molecules
along their synthesis pathways. For this experiment, we utilized the AGILE prediction model, which
estimates mRNA transfection efficiency in HeLa cells [8]. To ensure compatibility with AGILE,
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Figure 4: Ionizable Lipids mRNA Transfection Efficiency in HeLa Cells.

we constrained our generator to produce only two-tail lipids, consistent with the lipids studied in
AGILE’s research. Additionally, to improve lipid stability, we restricted lipid tail lengths to 10
carbons or longer. In each iteration, we sampled 5,000 new DAGs from the model and selected the top
1,000 DAGs based on predicted transfection efficiency. The model was then fine-tuned for two rounds
using these selected DAGs. Figure 4 shows the distribution of the top 1000 transfection efficiency
scores for ionizable lipids sampled from the model before and after 1–6 fine-tuning iterations. Before
iteration 4, we observe an increasing trend in transfection efficiency as fine-tuning progresses. This
shift demonstrates the ability of our method to identify optimal lipid structures for mRNA delivery to
HeLa cells while maintaining synthesizability. However, continuing the iterative fine-tuning process
does not guarantee a consistently increasing transfection efficiency, as a decline is observed between
iteration 4 and iteration 3. Figure 4 also includes 8 examples of ionizable lipids with the highest
transfection efficiency sampled during iteration 3.

7 Conclusion

In this work, we constructed a comprehensive ionizable lipid synthesis dataset from ZINC’s syn-
thetically accessible compounds, consisting of over 70,000 synthesis paths. Using this dataset, we
developed a deep generative model that achieved an 83.4% success rate in generating structurally
diverse and synthesizable ionizable lipids, complete with synthesis paths. We also demonstrated the
potential to identify ionizable lipids with high mRNA transfection efficiency in target cells.

This study highlights the application of deep generative models in ionizable lipid synthesis, combining
advanced computational techniques with specific chemical synthesis challenges. Our approach
efficiently generates synthesizable ionizable lipids, showing promise for advancing lipid-based RNA
delivery systems.

9



However, it is crucial to recognize the limitations of this study. First, the validity of the predictors,
including the property predictors and the reaction predictor, directly impacts the reliability of the
generated synthesis DAGs. Second, the validity of the proposed synthesis pathways has not been
evaluated in this work. We aim to address these issues in future research.

In future work, we will collaborate with organic chemists to synthesize the most promising ionizable
lipids identified by our model and validate their mRNA transfection efficiency in wet lab experiments.
This will contribute to building a more comprehensive ionizable lipid library to support the design of
mRNA delivery systems.
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resource is address in experiment implementations section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that we followed, in every respect, with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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any negative applications, the authors should point it out. For example, it is legitimate
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]

Justification: The paper poses no such risks.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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• The answer NA means that the paper does not use existing assets.
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