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Abstract

Non-autoregressive Transformer (NAT) signif-
icantly improves translation efficiency by par-
allel decoding. However, the poor model-
ing of word inter-dependencies in NAT mod-
els prevents them from organizing consistent
modes while learning the one-to-many multi-
modality phenomenon. In this paper, we
propose inter-NAT, which explicitly models
the target-side word inter-dependencies for
NAT models. We introduce the word inter-
dependencies according to the syntactic depen-
dency tree, which presents explicit modifica-
tion relationships between the words. These
dependencies could coordinate the translation
of the target sentence and alleviate the multi-
modality issue. Experiments results on the
WMTI14 and WMT16 tasks show that with
only one-pass decoding inter-NAT achieves
comparable or better performance than strong
iterative NAT baselines while keeping a com-
petitive efficiency.

1 Introduction

Non-autoregressive Transformer (NAT, Gu et al.,
2018) introduces a new text generation paradigm,
which generates the tokens of a sentence in paral-
lel. It differs from the autoregressive models (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) in assuming that the target tokens in
sentences are generated conditional independent of
each other, supporting parallel decoding during in-
ference. In practice, a vanilla NAT model (Gu et al.,
2018) can achieve over 15 times speedup compared
to an autoregressive Transformer (AT, Vaswani
et al., 2017) in neural machine translation (NMT)
tasks. However, existing NAT models (Libovicky
and Helcl, 2018; Ghazvininejad et al., 2020b; Sa-
haria et al., 2020; Sun and Yang, 2020) still un-
derperform the AT models in terms of the BLEU
score (Papineni et al., 2002).

A well-recognized problem of NAT is the multi-
modality problem (Gu et al., 2018), i.e., a source
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Figure 1: Posterior distribution of language IDs (ES,
DE, FR) for the outputs from different settings. Each
ID represents a mode of the datasets. The more modes
there are in the output, the more diverse the distribution
is. More details in § 4.3.

sentence can have many valid translations, which
usually leads to inconsistent translations when gen-
erated in parallel. We follow Zhou et al. (2020)
to visualize the mode distribution from different
models in Fig. 1. It is shown in Fig. 1b that the
sequential decoding of AT is able to organize a
stronger connection among the outputs and obtain
consistent modes. As seen, NAT’s points are scat-
tered broadly inside the simplex, indicating that it
tends to mix different modes in the outputs.
Therefore, a series of researches (Lee et al.,
2018; Ghazvininejad et al., 2019; Qian et al., 2021)
are devoted to enhancing the dependencies mod-
eling to alleviate the multi-modality issue. These
methods build the dependencies on complex tar-
get tokens by partially exposing target tokens as
inputs (Qian et al., 2021) during training or employ-
ing iterative refinements (Lee et al., 2018) similar



to autoregressive models. Although the introduced
word dependencies modeling improves the model’s
performance, we notice that these models heavily
rely on an AT model as a teacher to filter complex
modes of target tokens.

Another series of researches (Kaiser et al., 2018;
Ma et al., 2019; Ran et al., 2019; Shu et al., 2020;
Lee et al., 2020; Bao et al., 2021) alleviate the
multi-modality issue by introducing latent vari-
ables. They aim to extract informative latent vari-
ables from the target sentence and take it as a
springboard to predict the sentence. These latent
variables somewhat determine the target’s mode,
which helps to reduce the modes. However, the
interpretability of latent variables is also limited,
while learning the latent variables usually involves
a complex network (Ma et al., 2019) or deep trans-
formations (Lee et al., 2020).

In this paper, we propose inter-NAT, to in-
troduce explicit word inter-dependencies. More
specifically, we extract word inter-relationships
(denoted as interrelation) from the syntactic de-
pendency tree, which presents clear modification
relationships between words and is shown helpful
to machine translation tasks (Wang et al., 2019a;
Bugliarello and Okazaki, 2020; Li et al., 2017). To
our best knowledge, inter-NAT is the first work
to define clear word inter-dependencies for non-
autoregressive decoding.

To acquire the interrelation during inference, we
train a non-strict biaffine dependency parser (Dozat
and Manning, 2017) as the interrelation predictor.
As the interrelation is defined on the words, we fur-
ther adopt the progressively learning strategy (Qian
et al., 2021) by gradually exposing target words
to train our interrelation predictor. To incorporate
the extracted interrelations into non-autoregressive
decoding, we reform a self-attention encoding sub-
layer.

Experiment results on several machine transla-
tion benchmarks show that infer-NAT achieves the
new state-of-the-art performances, especially in the
condition that directly trains NAT models without
AT teacher. It further achieves competitive quality
while keeping a competitive decoding efficiency by
the knowledge distillation (Kim and Rush, 2016)
and reranking (Wei et al., 2019).

2 Non-autoregressive Translation

A neural machine translation (NMT) system formu-
lates the translation task as a conditional probability

model p(y|x), which defines the process of trans-
lating the source sentence * = (x1,x2, - ,Tm)
into the target sentence y = (y1, Y2, , Yn)-

Gu et al. (2018) propose Non-Autoregressive
Transformer (NAT), which factorizes the p(y|x)
by assuming conditional independence among the
output tokens:

pasn(ylz) = [ [ po(uil®), (D
=1

where 6 is the parameters for translation.

To support parallel decoding during inference,
NAT models usually parameterize 6 with a high-
parallelism encoder and decoder implemented with
a multi-head attention mechanism (Vaswani et al.,
2017; Shaw et al., 2018). Since no previous out-
puts as decoder inputs, NAT models introduce a
series of intuitive mechanisms to determine it, such
as copying (Gu et al., 2018; Wei et al., 2019; Bao
et al., 2021) or connectionist temporal classifica-
tion (CTC, Graves, 2012). The most common prac-
tice introduces a length predictor (Lee et al., 2018)
and Softcopy mechanism (Wei et al., 2019).

Length Predictor. Given the contextual repre-
sentation &£ = ej.,;, of x1.,,, encoded by the NAT
encoder, the length predictor models the target se-
quence length n as:

py(nlz) = py(AL|z)
= MLP(mean-pooling(E)),  (2)
AL = CLIP(n —m),

where MLP () is a multi-layer perceptron, CLIP(+)
is used to restrict the difference in —128 ~ 127.

Softcopy Inputs. Given the target length n and
the source representation E, we can initialize the
decoder inputs D = d;.,, with:

dj:Zwij €;,
' e )
exp[—(i—j- )]

Finally, the NAT decoder simultaneously generates
target sentence y with the computed D and E.
Though existing NAT models remarkably im-
prove inference efficiency, they largely sacrifice
translation quality. Zhou et al. (2020) study that
implicit dependencies modeling in NAT models are
not strong enough and makes them hardly learn the
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Figure 2: The overall architecture of inter-NAT model.

multi-modality phenomenon in datasets directly. It
suffers from this issue and generates inferior out-
puts mixing the multiple modes. In contrast, an
AT model can fight this problem by sequential (left
to right) modeling, which explicitly models word
inter-dependencies by exposing the history output
tokens. Inspired by this, we introduce target-side
word inter-dependencies for NAT models.

3 Approach

In this section, we propose infer-NAT, a non-
autoregressive Transformer with target-side word
inter-dependencies modeling. More specifically,
we introduce the word inter-dependencies (denoted
as interrelation M) according to syntactic depen-
dency tree to factorize the probability p(y|x) as:

n

pylz) = py(M|z) [ [ po(wilw, M), (4

i=1

where v and 6 are the model’s parameters, M is
extracted from the syntactic dependency tree of
the target y. It can alleviate the multi-modality
problem in two aspects:

(1) Each sentence corresponds to a unique syn-
tactic dependency tree. Providing a target de-
pendency tree essentially reduces one-to-many
phenomenon in modeling the target sentence.

(2) The syntactic dependency tree presents the
clear modifier-head relations among the words,
enhancing word inter-dependency modeling in
non-autoregressive decoding.

3.1 Model Overview

Before detailing our proposed method, we first
overview the inter-NAT. Fig. 2 shows the overall
architecture of inter-NAT, which works following
the NAT fashion:
(1) The encoder encodes source sentence i.m,
into the contextual representation E = e1.,,.
(i) Given the source representation F, length
predictor computes the target length n and
forms the decoder inputs D = dy., (§2).
(iii) The target-side interrelation M is predicted
by the interrelation predictor or converted
from the syntactic dependency tree (§3.2).
(iv) Given the decoder input D and the target-side
interrelation M, the decoder simultaneously
generates all tokens with the help of an inter-
relation decoder block (§3.3).

3.2 Syntactic Dependencies as Interrelation

Our key insight is to extract the word interrelation
using the dependency tree. Li et al. (2017); Zhang
et al. (2019); Bugliarello and Okazaki (2020) show
the syntactic dependency tree helps to the autore-
gressive neural machine translation.

Extracting Syntactic Interrelation. Given the
syntactic dependency tree t = (¢, - ,t,) of sen-
tence y = (y1,- - ,Yn), We extract the interrela-
tion M € {0,1}"*" as follows:

1 ifti:jortj:i
M;j=<1 ifi=j , 5
0 otherwise

where ¢; = j denotes y; is the head-word of y; (y;
modified y;) and M;; denotes the interrelation type
between y; and y;. We intuitively assume that each
token should be interrelated to itself. Fig. 3 shows
the dependency tree of the sentence “I have a cat.”
and its converted interrelation matrix.

Predicting Syntactic Interrelation. To acquire
the target-side interrelation matrix during inference,
we train a non-strict Biaffine-Parser (Dozat and
Manning, 2017) as our interrelation predictor':

pr(Mlz) = p,(t|z) = [ [ p,(tilz),  (6)
=1

where we employs a stacked non-autoregressive
decoder block (NA-Dec) and a biaffine neural net-
work (BiaffineNet) to parameterize the ~.

IThe architecture is shown in Appendix
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Figure 3: The interrelation block.

Given the source representation E and the de-
coder inputs D, we first compute the score s €
R™ ™ ag:

s = BiaffineNet(NA-Dec(|D; E])). (7)

Then, we compute the probability p. (t;|x) with
softmax operation:

Py (ti = jlz) = Znexp (535) )

j/=1CXP (si50) ‘
During inference, we can obtain the head index of
each decoder input d; by argmax(s) operation:
ti = argmax p, (t; = jla). 9)
JE[L, ]
Notice that we do not use the MST algorithm (Prim,
1957) due to its run-time cost.

Adaptive Training for Predictor. We experi-
mentally find that directly learning to predict the
dependency tree without any target tokens is some-
what tricky. Therefore, we adaptively expose some
target tokens as inputs for training predictor.

Inspired by Qian et al. (2021), we determine the
number Ny, of exposed tokens y by the interrela-
tion prediction quality:

Nobs = fratio - diSt(t*, t)

t" = arg max(s),

(10)
1D

where dist(+) is the distance function, fiao is the
sampling ratio®. Then, we randomly sample Nops
target tokens as y and position-wise replace the
original decoder inputs D with y.

Finally, we compute the interrelation prediction
loss as:

Einter = - Zlogp’y(ti|wvg) ’ ]1[3/1 ¢ @L (12)

(2
where 1[-] is the indicator function.

Suggested by Qian et al. (2021), we use hamming dis-
tance (Hamming, 1950) and linear decrease the ratio from 0.5
to 0.3 in training steps.

3.3 Decoding with Target-side Interrelation

To incorporate target-side interrelation information
for modeling py(y;|x, M), we introduce a specific
interrelation block as the first layer of the decoder
(Fig. 3).

Inspired by Transformer (Vaswani et al., 2017)
or its variant (Shaw et al., 2018) that employs po-
sitional encoding as extra inputs to self-attention,
we inject the interrelation M into the self-attention
sublayer. Given inputs (r1,-- - ,7,) and their inter-
relation matrix M € {0,1}"*", we compute the
self-attention sublayer outputs (hy,--- , hy,) as:

hi = Z Qij (’I“jWV + repr(M)%)
j=1

a;j = softmax(w;;) (13)

rWO(r,Wk + repr(M)iIJ{)T
Wij = )
dmodel

where W<, WX and WV are the parameters,
repr(M)Y;, repr(M)f € R%ed are the trainable
representations of interrelation M;;. The rest lay-
ers of interrelation block keep the same as the orig-
inal Transformer (Vaswani et al., 2017) decoder
block, i.e., followed by an encoder-decoder atten-

tion sublayer and a feed-forward sublayer.
After the interrelation block, the remaining N —
1 decoder blocks stay the same with the relative-

position-based Transformer (Shaw et al., 2018).

3.4 Learning

Given the dependency tree t = {t1,to, -+ ,ty}
and the target sentence y = {y1,y2, " ,Yn}, We
first extract interrelation M from t according to
Eqn. (5), then compute the translation loss with:

Enat = _ZInge(yi‘va)' (14)

)

The length predictor is trained by:
Lien = —log py(AL|x),
where AL = CLIP(n — m).

5)

Overall Training Objective. Combining the in-
terrelation prediction loss, translation loss, and
length prediction loss, the full-fledged training loss
is:

Loverall = Lnat + Alinger + a£16n7 (16)

where A and « are the hyperparameters used to
adjust the importance of each training loss. We
follow the previous works and set « to 0.1.



4 [Experiments

4.1 Experimental Setup

Dataset. We conduct the experiments on three
machine translation datasets: WMT14 English-
German task (WMT14 EN-DE, 4.5M sentence
pairs), WMT16 English-Romanian task (WMT16
EN-RO, 610K sentence pairs), and IWSLT16
German-English task IWSLT16 DE-EN, 196K
sentence pairs). The datasets are obtained from
previous open-source work, such as fairseq?’
for WMT14 EN-DE, and Lee et al. (2018) for
WMT16 EN-RO and IWSLT16 DE-EN*. Follow-
ing previous practices (Vaswani et al., 2017; Lee
et al., 2018), all of the datasets are tokenized with
Moses? and segmented into subword units using
BPE encodings (Sennrich et al., 2016). We share
the subword embeddings of the source language
and target language in each dataset.

The dependency tree of datasets is obtained by
the St anza toolkitS. Since our method works with
the sub-word units, we adapt the words’ depen-
dency tree to the sub-word level by an intuitive
transformation: the first sub-word unit of a word
inherits the head of the word, the head of the re-
maining units is the first sub-word unit.

Model Settings. In the case of WMT tasks, we
follow the base setting (dmodel = 512, dhidden =
2048, Pdropout = 0.3, Nhead = 8, dhead = 64, and
Niayer = 6) of Vaswani et al. (2017). We use a
smaller model setting (dmoder = 256, dhidden =
512, Pdropout = 0.3, Nhead = 4, dhead = 64, and
Njayer = D) for INSLT16.

The parameter is trained with Adam (Kingma
and Ba, 2015) optimizer and set 5 = (0.9,0.99).
We use the invert square root learning rate sched-
ule (Vaswani et al., 2017) for WMT tasks and the
linear annealing schedule (Lee et al., 2018) from
3.0 x 1074 t0 1.0 x 107 for the IWSLT task. The
hyperparameters A in Eqn. (16) to adjust the im-
portance of the interrelation prediction loss are set
to 3.0 and 2.0 for WMT and IWSLT tasks, respec-
tively.

*https://github.com/pytorch/fairseq/
tree/main/examples/translation
*https://github.com/nyu-dl/
dl4mt-nonauto
Shttps://github.com/moses—smt/
mosesdecoder
*https://stanfordnlp.github.io/stanza/
depparse.html. Unlabeled attach scores (%): 86.22 for
English, 85.39 for German, and 90.66 for Romanian.

WMT14 WMT16
Model EN-DE DE-EN EN-RO Speedup
CMLM 10.88 / / /
SynST 20.74  25.50 / 49 x
Flowseq 20.85 2540  29.86 1.1 x
AXE 2040 2490  30.47 /
CNAT 2130 2573 / 10.4 x
Transformer T 27.25 31.53 33.97 1.0 x
NAT f 11.60 1615  21.40 153 x
GLAT f 1671  24.78 / 15.3 x
inter-NAT T 21,79 27.02  30.79 15.1 x

Table 1: Performance of the controlled experiments on
the test set of WMT tasks. { indicates the results that
come from our implementation.

Baselines. Except for the vanilla NAT, we also
include several representative NAT as baselines:

* Non-iterative NAT: ENAT (Guo et al., 2019),
NAT-REG (Wang et al., 2019b), imitation-
NAT (Wei et al., 2019), NAT-DCRF (Sun
et al.,, 2019), AXE (Ghazvininejad et al.,
2020a), and GLAT (Qian et al., 2021).

 Latent variable-based NAT: NAT-FT (Gu et al.,
2018), LT (Kaiser et al., 2018), Flowseq (Ma
et al., 2019), SynST (Akoury et al., 2019), and
CNAT (Bao et al., 2021).

* Iterative NAT: CMLM (Ghazvininejad et al.,
2019).

Metrics. We compare our model with baselines
in terms of translation quality and decoding ef-
ficiency. As for translation quality, we evaluate
the tokenized and cased BLEU score (Papineni
et al., 2002) with fairseg-score’. As for de-
coding efficiency, we first measure the decoding la-
tency sentence-by-sentence, then report the relative
speedups by comparing it with an autoregressive
Transformer model. We obtain the performance
of baselines directly using reported in the previ-
ous works if available or reproducing them on our
datasets using the open-source implementation. We
highlight the best NAT result in each table.

4.2 Main Results

First, we validate our proposed method under a
strict experimental condition, in which all of the
NAT models are trained on the raw dataset. The
results are listed in Tab. 1.

We can see that inter-NAT achieves significant
improvements (more than 10 BLEU in most tasks)

"https://github.com/pytorch/fairseq/
blob/main/fairseq _cli/score.py
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WMT14 WMT16

WMT14 WMT16

Model EN-DE DE-EN EN-RO Speedup Model Ne EN.DE DE-EN EN-RQ Speedup
NAT-FT 17.69 2147 2729 15.6 x NAT-FT 100 19.17 2320 29.79 24 x
LT 19.80 / / 3.9 x LT 10 21.00 / / /
Flowseq 2372 28.39 29.73 1.1 x Flowseq 30 25.31 30.68  32.20 /
CNAT 2556  29.36 / 10.4 x CNAT 9 2660 3075 / 5.6 x
ENAT 20.65 23.03  30.08 25.3 x ENAT 9 2428 2610 3451 12.4 x
NAT-REG 20.65 2477 / 27.6 x NAT-REG 9 2461 2890 / 15.1 x
imitate-NAT 2244 2567 2861 18.6 x imitate-NAT 7 24.15 2728 31.45 9.7 x
NAT-DCRF 23.44 2722 / 10.4 x NAT-DCRF 19 26.80 30.04 / 6.1 x
GLAT 2521  29.84  31.19 153 x GLAT 7 2655 31.02 3287 7.9 x
Transformer T 27.25 31.53 33.97 1.0 x Transformer T - 2725 31.53 33.97 1.0 x
inter-NAT T 26.00 30.29  32.10 15.1 x inter-NATT 7 27.03 3146 33.75 9.2 x

Table 2: Performance on the test set of WMT tasks
trained with knowledge distillation.

over the vanilla NAT, indicating that target-side in-
terrelation modeling can significantly improve the
capacity to overcome multi-modality issues. Fur-
thermore, our infer-NAT achieves the best results
in this setting, demonstrating that decomposing the
syntactic dependency information is more helpful
to non-autoregressive decoding than chunks (Ak-
oury et al., 2019), latent variables (Ma et al., 2019;
Baoetal., 2021), and monotonic alignment assump-
tion (Ghazvininejad et al., 2020a).

With Distillation. The sequence-level knowl-
edge distillation (Kim and Rush, 2016) can directly
filter the multi-modality phenomenon that exists in
datasets, which becomes common practice in non-
autoregressive machine translation tasks (Gu et al.,
2018). Therefore, we train a Transformer model
and take it as the teacher to distill the training data.

As shown in Tab. 2, all of NAT models improve
the performance with a large margin by employing
a Transformer as the distilled teacher. Moreover,
we can see that inter-NAT outperforms all the NAT
models in all tasks, indicating the benefits of inter-
relation modeling.

With Reranking. To further improve translation
quality, we also introduce the length parallel de-
coding (Wei et al., 2019) for inter-NAT. During
inference, inter-NAT first simultaneously generates
N, candidates with different lengths, then selects
the best output via re-scoring using the teacher.

We can see from Tab. 3 that inter-NAT achieves
the best translation quality by equipping with the
length parallel reranking, narrowing the perfor-
mance gap between the non-autoregressive decod-
ing and autoregressive decoding.

Table 3: Performance on the test set of WMT tasks.
The results come from length parallel reranking with
NAT models trained with knowledge distillation. N,
denotes the number of re-ranked candidates.
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Figure 4: BLEU and decoding speed-up of NAT mod-
els on WMT 14 EN-DE test set. Each point represents
the decoding method run with its corresponding setting
in Tab. 2, Tab. 3, or iterative refinements. Notice that
we only include the results evaluated with 1080TI-GPU
for fair comparisons.

Efficiency. Fig. 4 displays the trend of decod-
ing speed-up and BLEU with different models.
As seen, inter-NAT is located on the top-right
of the baselines. It is shown that inter-NAT
achieves higher BLEU if we fixed the Speed-
Up and faster Speed-Up if we fixed the BLEU,
indicating that inter-NAT outperforms baselines.
Although CMLM (Ghazvininejad et al., 2019)
achieves competitive BLEU scores, they sacrificed
the speed advantages. In contrast, inter-NAT has a
better trade-off that achieves a competitive perfor-
mance while maintaining remarkable speed advan-
tages.

4.3 Analysis

Incorporating the interrelation helps for the
multi-modality problem. The multi-modality



Data Distance’ Token-C'  Sentence-C
Raw data 0.21 2.71 3.36
Transformer 0.21 2.06 2.61
NAT 0.41 2.22 2.89
inter-NAT 0.25 1.62 2.18

Table 4: Complexity C' (T more complex) and average
euclidean distance of outputs from different settings.

oy . ‘L

Methods Repetition Ratio* (%)
EN-DE DE-EN

Transformer 0.06 0.01
NAT 25.02 21.67
NAT w/ distillation 6.26 5.87
inter-NAT 2.85 0.82
inter-NAT w/ distillation 0.43 0.47

Table 5: Token repetition ratio (%) of outputs from dif-
ferent methods on WMT 14 test set.

phenomenon is unavoidable in machine transla-
tion tasks, which is a challenging problem for non-
autoregressive decoding. To validate that target-
side interrelation is beneficial to overcome the
multi-modality problem, we follow Zhou et al.
(2020) and synthesize a one-to-many translation
dataset to analyze this issue.

Dataset: We construct the dataset by extracting
the sentences aligned in English-German, English-
French, and English-Spanish corpus® and process-
ing the dataset following common practices, in-
cluding tokenization with Moses, segmentation
with BPE units (Sennrich et al., 2016), and parsing
with Stanza, etc. In such a case, each source
sentence has three different languages reference
in the dataset, representing three modes. During
inference, we do not supply the language signal.

Results: As illustrated in Fig. 1, a vanilla NAT
model can hardly coordinate the mode (language)
signal itself and always hybrid the different modes
in outputs. By introducing the target-side interre-
lation information, inter-NAT well organizes the
non-autoregressive decoding, resulting in a more
consistent mode in its outputs.

To analyze the multi-modality problem quantita-
tively, we compute the average Euclidean distance
between the point to its nearest vertex for each
model. Besides, we follow Zhou et al. (2020) and
utilize corpus complexity C' as evaluated metrics.
As shown in Tab. 4, our inter-NAT heavily reduces
the complexity of the dataset, which is consistent

$https://www.statmt .org/europarl/

Methods extracted M  predicted M
BLEUT  BLEU" inter F1'
NAT 18.01
inter-NAT
w/ dependency 42.61 29.88  60.35
w/ adjacent 22.65 / /
w/ co-occurrence 56.21 23.45 20.17

Table 6: Performance on IWSLT16 DE-EN valid set
with different interrelations.

with our qualitative analysis.

inter-NAT overcomes repeat-translation prob-
lem. Tab. 5 analyzes the repetition ratio of trans-
lation on the test set of WMT14 tasks. Suffering
from the multi-modality problem, vanilla NAT has
the highest repetition ratio of the outputs. Incorpo-
rating the interrelation information or training with
the knowledge distillation can reduce the repetition
ratio. We can also find that combining target-side
interrelation modeling and distillation are “com-
patible” and enable the NAT model to achieve the
lowest repetition rate. The above observation is
also consistent with the qualitative analysis and
quantitative analysis on multi-modality problems.

Syntactic dependency well balances the predic-
tion accuracy and translation quality. To an-
alyze which kind of interrelation is better for
non-autoregressive decoding, we further compare
the syntactic dependency and two intuitive rela-
tions (word-adjacent and word co-occurrence re-
lation, we include more details in Appendix A).
We can see from Tab. 6 that NAT models always
benefit from the introduced interrelation and im-
prove the translation quality, whatever the inter-
relation is. There is also a trade-off in the table:
even though the NAT models that incorporate the
extracted word co-occurrence information achieve
the highest BLEU score, their predicted perfor-
mance (BLEU and infer F1) is relatively low; the
word-adjacent relation obtains the highest inter F1
score, it is of little help to the NAT model. In com-
parison, the syntactic dependency well balances
the prediction accuracy and translation quality.

Module Ablation. As shown in Tab. 7, our in-
ter-NAT can benefit from both the training and
integrating the target-side interrelation.
* inter-NAT well regularizes the encoder. Ex-
tracting the target-side interrelation as the
training supervision, the NAT can regularize
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Methods BLEU"
NAT 18.01
+ Eintcr 23.01 (+500)

+ Liner + Interrelation Block  29.88 (+11.87)

Table 7: Performance on IWSLT16 DE-EN valid set.

Pretrained Encoder Finetuning Decoder

NAT inter-NAT
NAT 18.69 23.94
inter-NAT 22.49 (+3.80) 29.76 (+5.68)

Table 8: The BLEU score on IWSLT16 DE-EN valid
set of different decoders training with a fixed encoder
from the pretrained model (NAT or inter-NAT).

the encoder output by the multi-task learning
and improve the performance by 5.0 BLEU
(23.01 vs. 18.01). The results listed in Tab. 8
further validate this observation.

* By integrating the target-side interrelation
with the introduced interrelation block, the
inter-NAT achieves over 6.50 BLEU points
improvement.

We further apply inter-NAT to the syntax-aware
machine translation task and validate the effective-
ness of the interrelation block. The details are in
Appendix B.

More Analysis. We also provide more details
about interrelation and several translation examples
in Appendix.

5 Related Work

5.1 Non-autoregressive Machine Translation

Gu et al. (2018) propose the non-autoregressive
Transformer (NAT) in machine translation task, re-
markably improving the decoding efficiency at the
cost of translation quality. Then, a series of im-
provements has been proposed.

A line of works propose to learn from Trans-
former to regularize the attention matrix (Li et al.,
2019) and hidden states (Wei et al., 2019) of NAT
models. Some works carefully design training
objectives to overcome the multi-modality prob-
lem, such as latent alignment for cross-entropy (Li-
bovicky and Helcl, 2018; Saharia et al., 2020), bag-
of-words objectives (Shao et al., 2020) or energy-
based objectives (Tu et al., 2020). Our works im-
pose a dependency tree as the regularized objective,
also improving performance.

Another series of studies propose to enhance de-
pendencies modeling to tackle the multi-modality
issues. Such as multiple iterative refinements(Lee
et al., 2018; Ghazvininejad et al., 2019; Guo et al.,
2020) or masked language models (Qian et al.,
2021). In comparison, our method utilizes the
syntactic dependency tree to define clear word
inter-dependencies for non-autoregressive transla-
tion and shows its help in experiments.

Some works propose to decomposing the target-
side information by the latent variables (Ma et al.,
2019; Ran et al., 2019; Bao et al., 2021). Unlike
them, we introduce the target-side dependency tree
as the decomposed goal, which is well-define and
easy to learn.

5.2 Syntax-Aware Machine Translation

Our work is also related to syntax-aware transla-
tion. Sennrich and Haddow (2016) study that inte-
grating the syntax representation into word embed-
ding for machine translation. Wang et al. (2019a);
Bugliarello and Okazaki (2020); Chen et al. (2017)
propose incorporating the syntax tree information
into the encoder to model the sentence’s latent
structure. Unlike these researches, we incorporate
the dependency information into the NAT models
and works on the target side decoding.

Most close to our work is SynST (Akoury et al.,
2019), which autoregressively predicts the syn-
tactic chunk sequence and integrates it in non-
autoregressive translation. In contrast, our model
predicts the dependency interrelation following a
non-autoregressive fashion, improving translation
quality and decoding efficiency.

6 Conclusion

In this paper, we propose inter-NAT, which models
the target-side syntactic dependency interrelation
for non-autoregressive decoding. Specifically, in-
ter-NAT extracts the target-side interrelation from
the dependency tree (ground-truth dependency tree
during training or predicted dependency graph dur-
ing inference) then injects it into the self-attentive
sublayer in the decoder. Experiments results show
that inter-NAT benefits from the clear syntactic re-
lations between words presented in the syntactic
dependency tree, achieving a better NAT model.
We also consider exploring more effective interre-
lation for NAT models in our future work.
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A Interrelation Details

Interrelation architecture. Fig. 1 shows the
module details of our interrelation predictor.
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Figure 1: The module details of interrelation predictor.

Adjacent Interrelation. As shown in Fig. 2, we
intuitively take the adjacent relation as an interrela-
tion among the target outputs.
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Figure 2: The adjacent interrelation matrix.

Co-occurrence Interrelation. We also propose
to extract the interrelation from the co-occurrence
information. It represents the frequency of token
pairs that appeared together in a sentence, which
may help model the target sentence. We compute
the co-occurrence matrix on the training dataset and
decide the interrelated relation with a controlled
ratio. In our experiments, we set it to 0.1. Notice
that the co-occurrence relation is not symmetrical,
as we choose its most frequent token in the sentence
for each token. The example is shown in Fig. 3.

Interrelation-related Metrics. To further ana-
lyze the interrelation’s influence, we compute each
model’s interrelation metric. Specifically, extract-
ing the interrelation reference from the target, we
compute the recall ratio of the models’ output.

We can see from Tab. 1 that the interrelation
recall is high related to the models’ performance.

Interrelation Recall (%)

Methods Adjacent Co-occurrence Dependency LEU
AT 43.29 28.25 38.36 27.25
NAT 24.03 19.15 20.88 11.60
inter-NAT  37.40 25.11 32.65 21.78
Table 1: Interrelation recall of different models on

WMT14 EN-DE test set.

Methods BLEU

NAT 18.01
w/CTC  29.87

inter-NAT 29.88
w/CTC  31.02

Table 2: Performance on IWSLT16 DE-EN valid set..

With the interrelation recall improving, the model
achieves a better BLEU score.

Compatibility with CTC. We integrate the CTC
loss into inter-NAT to verify the compatible, and
the result is shown in 2. With the help of CTC loss,
inter-NAT achieves over 1 BLEU points improve-
ment.

B Syntax-Controllable Translation

Since our model explicitly incorporates the syntax-
based interrelation into non-autoregressive decod-
ing, we can apply it to a syntax-guided trans-
lation task (Tab. 3). Inspired by previous text
transfer studies (Chen et al., 2019), we utilize a
multi-reference translation dataset to avoid the mis-
match between source semantics and target syntax!.
While decoding, we feed the source inputs and its
target-side interrelation extracted from the syntax
reference (denote as Refyep) to the decoder and gen-
erates the outputs. We compute the BLEU score by
comparing the outputs to its syntax references.

Dataset. We apply the inter-NAT to the syn-
tax guided translation tasks on the LDC Chinese-
English? (denote as LDC ZH-EN, 1.3M sentence
pairs) and NIST ZH-EN dataset (MTO03 as dev the
set, MTOS5 as the test set). Each sentence in the
NIST test set has multiple references. We can eval-
uate the model’s controllable translation by given
different references as the syntax providers. We
use NLPTRICTCLAS? and Moses tokenizer for

'NIST MTO5 is a test set with multiple references for each
sentence to evaluate the LDC Chinese-English translation task.

2LDC2002E18, LDC2003E14, LDC004T08, and

LDC2005T06
*http://ictclas.nlpir.org/


http://ictclas.nlpir.org/
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Figure 3: The co-occurrence interrelation matrix. We extract the interrelation according to the co-occurrence
number of token pairs in datasets.

Chinese and English tokenization, respectively.

Results. We see in Tab. 3 that the highest BLEU
scores are all located in the diagonal of table,
which indicates that inter-NAT can generate syn-
tactically controllable translation results. We also

provide few examples of syntax-guided translation
in Tab. 5.



BLEU | BLEUwto BLEUrs: BLEUpa: BLEUgets
Refdep

Ref-0 33.37 23.04 22.01 23.40
Ref-1 22.04 35.98 23.60 23.27
Ref-2 21.64 24.80 34.90 22.68
Ref-3 22.95 24.00 22.60 34.66

Table 3: Performance of syntax-controllable translation on the NIST MTOS5 test set.

Source

Gutach: Noch mehr Sicherheit fiir Fulgénger

Reference | Gutach: Increased safety for pedestrians

NAT

Gutach: More More safety for pedestrians

inter-NAT | Gutach : More Security for pedestrians

Source

Jazz und Klassik gehoren gerade am Jazzstandort Stuttgart zusammen.

Reference | Jazz and classical music belong together at the jazz location of Stuttgart.

NAT

Jazz and classical cs are right together at the Stuttgart of Stuttgart.

inter-NAT | Jazz and classical music belong together at the jazz location of Stuttgart.

Source

Das wire in Amerika als Medizinstudent im zweiten Jahr niemals moglich.

Reference | That’s not something you’d ever get to do in America as a second-year medical student.

NAT

This would never be America America America America a a student in the second year.

inter-NAT | That would never be possible in America as a medical student in the second year.

Table 4: Examples for our infer-NAT model trained on the WMT14 DE-EN raw dataset.

Source | MR AR Ao BT B0 A 58 5oLk F

Referencel | the altai republic is located in a mountainous region on the southern fringes of siberia.
Outputl the altay republic is situated in a mountain area on the cre, close of siberia.
Reference2 | the altai republic is located in the mountainous region on the southern border of siberia.
Output2 the altay republic is situated in the multi-anshan area on the fringe of siberia.
Reference3 | altai republic is located in the mountainous region on the fringes of siberia.

Output3 altay republic is situated in the multianshan fringe of kilometers west of siberia.
Reference4 | the altai republic is located in a mountainous region on the fringes of siberia.
Output4 the altay republic is situated in the multi-anshan region at crelines of siberia.

Source LR ZEEARBE =T = F AT EAT.

Referencel | there are more than 33,000 polling stations in ukraine.

Outputl there were more than 33,000 opening votes in ukraine.

Reference2 | there are more than 33,000 polls throughout ukraine.

Output2 there were more than 33,000 tickets in ukraine.

Reference3 | there were over 33,000 polling precincts in ukraine.

Output3 there were over 33,000 opening tickets in ukraine.

Reference4 | there are over 33,000 polling stations throughout ukraine.

Output4 there were over 33,000 opening tickets in ukraine.

Table 5: Examples of syntax-guided translation. We show all words in lower case.



