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Abstract

Non-autoregressive Transformer (NAT) signif-001
icantly improves translation efficiency by par-002
allel decoding. However, the poor model-003
ing of word inter-dependencies in NAT mod-004
els prevents them from organizing consistent005
modes while learning the one-to-many multi-006
modality phenomenon. In this paper, we007
propose inter-NAT, which explicitly models008
the target-side word inter-dependencies for009
NAT models. We introduce the word inter-010
dependencies according to the syntactic depen-011
dency tree, which presents explicit modifica-012
tion relationships between the words. These013
dependencies could coordinate the translation014
of the target sentence and alleviate the multi-015
modality issue. Experiments results on the016
WMT14 and WMT16 tasks show that with017
only one-pass decoding inter-NAT achieves018
comparable or better performance than strong019
iterative NAT baselines while keeping a com-020
petitive efficiency.021

1 Introduction022

Non-autoregressive Transformer (NAT, Gu et al.,023

2018) introduces a new text generation paradigm,024

which generates the tokens of a sentence in paral-025

lel. It differs from the autoregressive models (Bah-026

danau et al., 2015; Gehring et al., 2017; Vaswani027

et al., 2017) in assuming that the target tokens in028

sentences are generated conditional independent of029

each other, supporting parallel decoding during in-030

ference. In practice, a vanilla NAT model (Gu et al.,031

2018) can achieve over 15 times speedup compared032

to an autoregressive Transformer (AT, Vaswani033

et al., 2017) in neural machine translation (NMT)034

tasks. However, existing NAT models (Libovický035

and Helcl, 2018; Ghazvininejad et al., 2020b; Sa-036

haria et al., 2020; Sun and Yang, 2020) still un-037

derperform the AT models in terms of the BLEU038

score (Papineni et al., 2002).039

A well-recognized problem of NAT is the multi-040

modality problem (Gu et al., 2018), i.e., a source041
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Figure 1: Posterior distribution of language IDs (ES,
DE, FR) for the outputs from different settings. Each
ID represents a mode of the datasets. The more modes
there are in the output, the more diverse the distribution
is. More details in § 4.3.

sentence can have many valid translations, which 042

usually leads to inconsistent translations when gen- 043

erated in parallel. We follow Zhou et al. (2020) 044

to visualize the mode distribution from different 045

models in Fig. 1. It is shown in Fig. 1b that the 046

sequential decoding of AT is able to organize a 047

stronger connection among the outputs and obtain 048

consistent modes. As seen, NAT’s points are scat- 049

tered broadly inside the simplex, indicating that it 050

tends to mix different modes in the outputs. 051

Therefore, a series of researches (Lee et al., 052

2018; Ghazvininejad et al., 2019; Qian et al., 2021) 053

are devoted to enhancing the dependencies mod- 054

eling to alleviate the multi-modality issue. These 055

methods build the dependencies on complex tar- 056

get tokens by partially exposing target tokens as 057

inputs (Qian et al., 2021) during training or employ- 058

ing iterative refinements (Lee et al., 2018) similar 059
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to autoregressive models. Although the introduced060

word dependencies modeling improves the model’s061

performance, we notice that these models heavily062

rely on an AT model as a teacher to filter complex063

modes of target tokens.064

Another series of researches (Kaiser et al., 2018;065

Ma et al., 2019; Ran et al., 2019; Shu et al., 2020;066

Lee et al., 2020; Bao et al., 2021) alleviate the067

multi-modality issue by introducing latent vari-068

ables. They aim to extract informative latent vari-069

ables from the target sentence and take it as a070

springboard to predict the sentence. These latent071

variables somewhat determine the target’s mode,072

which helps to reduce the modes. However, the073

interpretability of latent variables is also limited,074

while learning the latent variables usually involves075

a complex network (Ma et al., 2019) or deep trans-076

formations (Lee et al., 2020).077

In this paper, we propose inter-NAT, to in-078

troduce explicit word inter-dependencies. More079

specifically, we extract word inter-relationships080

(denoted as interrelation) from the syntactic de-081

pendency tree, which presents clear modification082

relationships between words and is shown helpful083

to machine translation tasks (Wang et al., 2019a;084

Bugliarello and Okazaki, 2020; Li et al., 2017). To085

our best knowledge, inter-NAT is the first work086

to define clear word inter-dependencies for non-087

autoregressive decoding.088

To acquire the interrelation during inference, we089

train a non-strict biaffine dependency parser (Dozat090

and Manning, 2017) as the interrelation predictor.091

As the interrelation is defined on the words, we fur-092

ther adopt the progressively learning strategy (Qian093

et al., 2021) by gradually exposing target words094

to train our interrelation predictor. To incorporate095

the extracted interrelations into non-autoregressive096

decoding, we reform a self-attention encoding sub-097

layer.098

Experiment results on several machine transla-099

tion benchmarks show that inter-NAT achieves the100

new state-of-the-art performances, especially in the101

condition that directly trains NAT models without102

AT teacher. It further achieves competitive quality103

while keeping a competitive decoding efficiency by104

the knowledge distillation (Kim and Rush, 2016)105

and reranking (Wei et al., 2019).106

2 Non-autoregressive Translation107

A neural machine translation (NMT) system formu-108

lates the translation task as a conditional probability109

model p(y|x), which defines the process of trans- 110

lating the source sentence x = (x1, x2, · · · , xm) 111

into the target sentence y = (y1, y2, · · · , yn). 112

Gu et al. (2018) propose Non-Autoregressive 113

Transformer (NAT), which factorizes the p(y|x) 114

by assuming conditional independence among the 115

output tokens: 116

pNAT(y|x) =
n∏
i=1

pθ(yi|x), (1) 117

where θ is the parameters for translation. 118

To support parallel decoding during inference, 119

NAT models usually parameterize θ with a high- 120

parallelism encoder and decoder implemented with 121

a multi-head attention mechanism (Vaswani et al., 122

2017; Shaw et al., 2018). Since no previous out- 123

puts as decoder inputs, NAT models introduce a 124

series of intuitive mechanisms to determine it, such 125

as copying (Gu et al., 2018; Wei et al., 2019; Bao 126

et al., 2021) or connectionist temporal classifica- 127

tion (CTC, Graves, 2012). The most common prac- 128

tice introduces a length predictor (Lee et al., 2018) 129

and Softcopy mechanism (Wei et al., 2019). 130

Length Predictor. Given the contextual repre- 131

sentation E = e1:m of x1:m encoded by the NAT 132

encoder, the length predictor models the target se- 133

quence length n as: 134

pφ(n|x) = pφ(∆L|x)

= MLP(mean-pooling(E)),

∆L = CLIP(n−m),

(2) 135

where MLP(·) is a multi-layer perceptron, CLIP(·) 136

is used to restrict the difference in −128 ∼ 127. 137

Softcopy Inputs. Given the target length n and 138

the source representation E, we can initialize the 139

decoder inputs D = d1:n with: 140

dj =

m∑
i

wij · ei,

wij =
exp [−(i− j · mn )2]∑m
i′ exp [−(i′ − j · mn )2]

.

(3) 141

Finally, the NAT decoder simultaneously generates 142

target sentence y with the computed D and E. 143

Though existing NAT models remarkably im- 144

prove inference efficiency, they largely sacrifice 145

translation quality. Zhou et al. (2020) study that 146

implicit dependencies modeling in NAT models are 147

not strong enough and makes them hardly learn the 148
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Figure 2: The overall architecture of inter-NAT model.

multi-modality phenomenon in datasets directly. It149

suffers from this issue and generates inferior out-150

puts mixing the multiple modes. In contrast, an151

AT model can fight this problem by sequential (left152

to right) modeling, which explicitly models word153

inter-dependencies by exposing the history output154

tokens. Inspired by this, we introduce target-side155

word inter-dependencies for NAT models.156

3 Approach157

In this section, we propose inter-NAT, a non-158

autoregressive Transformer with target-side word159

inter-dependencies modeling. More specifically,160

we introduce the word inter-dependencies (denoted161

as interrelation M ) according to syntactic depen-162

dency tree to factorize the probability p(y|x) as:163

164

p(y|x) = pγ(M |x)
n∏
i=1

pθ(yi|x,M), (4)165

where γ and θ are the model’s parameters, M is166

extracted from the syntactic dependency tree of167

the target y. It can alleviate the multi-modality168

problem in two aspects:169

(1) Each sentence corresponds to a unique syn-170

tactic dependency tree. Providing a target de-171

pendency tree essentially reduces one-to-many172

phenomenon in modeling the target sentence.173

(2) The syntactic dependency tree presents the174

clear modifier-head relations among the words,175

enhancing word inter-dependency modeling in176

non-autoregressive decoding.177

3.1 Model Overview 178

Before detailing our proposed method, we first 179

overview the inter-NAT. Fig. 2 shows the overall 180

architecture of inter-NAT, which works following 181

the NAT fashion: 182

(i) The encoder encodes source sentence x1:m 183

into the contextual representation E = e1:m. 184

(ii) Given the source representation E, length 185

predictor computes the target length n and 186

forms the decoder inputs D = d1:n (§2). 187

(iii) The target-side interrelation M is predicted 188

by the interrelation predictor or converted 189

from the syntactic dependency tree (§3.2). 190

(iv) Given the decoder input D and the target-side 191

interrelation M , the decoder simultaneously 192

generates all tokens with the help of an inter- 193

relation decoder block (§3.3). 194

3.2 Syntactic Dependencies as Interrelation 195

Our key insight is to extract the word interrelation 196

using the dependency tree. Li et al. (2017); Zhang 197

et al. (2019); Bugliarello and Okazaki (2020) show 198

the syntactic dependency tree helps to the autore- 199

gressive neural machine translation. 200

Extracting Syntactic Interrelation. Given the 201

syntactic dependency tree t = (t1, · · · , tn) of sen- 202

tence y = (y1, · · · , yn), we extract the interrela- 203

tion M ∈ {0, 1}n×n as follows: 204

Mij =


1 if ti = j or tj = i

1 if i = j

0 otherwise

, (5) 205

where ti = j denotes yj is the head-word of yi (yi 206

modified yj) and Mij denotes the interrelation type 207

between yi and yj . We intuitively assume that each 208

token should be interrelated to itself. Fig. 3 shows 209

the dependency tree of the sentence “I have a cat.” 210

and its converted interrelation matrix. 211

Predicting Syntactic Interrelation. To acquire 212

the target-side interrelation matrix during inference, 213

we train a non-strict Biaffine-Parser (Dozat and 214

Manning, 2017) as our interrelation predictor1: 215

pγ(M |x) = pγ(t|x) =

n∏
i=1

pγ(ti|x), (6) 216

where we employs a stacked non-autoregressive 217

decoder block (NA-Dec) and a biaffine neural net- 218

work (BiaffineNet) to parameterize the γ. 219

1The architecture is shown in Appendix
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Figure 3: The interrelation block.

Given the source representation E and the de-220

coder inputs D, we first compute the score s ∈221

Rn×n as:222

s = BiaffineNet(NA-Dec([D;E])). (7)223

Then, we compute the probability pγ(ti|x) with224

softmax operation:225

pγ(ti = j|x) =
exp (sij)∑n
j′=1 exp (sij′)

. (8)226

During inference, we can obtain the head index of227

each decoder input di by argmax(s) operation:228

t̂i = arg max
j∈[1,··· ,n]

pγ(ti = j|x). (9)229

Notice that we do not use the MST algorithm (Prim,230

1957) due to its run-time cost.231

Adaptive Training for Predictor. We experi-232

mentally find that directly learning to predict the233

dependency tree without any target tokens is some-234

what tricky. Therefore, we adaptively expose some235

target tokens as inputs for training predictor.236

Inspired by Qian et al. (2021), we determine the237

number Nobs of exposed tokens ỹ by the interrela-238

tion prediction quality:239

Nobs = fratio · dist(t∗, t) (10)240

t∗ = arg max(s), (11)241

where dist(·) is the distance function, fratio is the242

sampling ratio2. Then, we randomly sample Nobs243

target tokens as ỹ and position-wise replace the244

original decoder inputs D with ỹ.245

Finally, we compute the interrelation prediction246

loss as:247

Linter = −
n∑
i

log pγ(ti|x, ỹ) · 1[yi /∈ ỹ], (12)248

where 1[·] is the indicator function.249

2Suggested by Qian et al. (2021), we use hamming dis-
tance (Hamming, 1950) and linear decrease the ratio from 0.5
to 0.3 in training steps.

3.3 Decoding with Target-side Interrelation 250

To incorporate target-side interrelation information 251

for modeling pθ(yi|x,M), we introduce a specific 252

interrelation block as the first layer of the decoder 253

(Fig. 3). 254

Inspired by Transformer (Vaswani et al., 2017) 255

or its variant (Shaw et al., 2018) that employs po- 256

sitional encoding as extra inputs to self-attention, 257

we inject the interrelation M into the self-attention 258

sublayer. Given inputs (r1, · · · , rn) and their inter- 259

relation matrix M ∈ {0, 1}n×n, we compute the 260

self-attention sublayer outputs (h1, · · · , hn) as: 261

hi =
n∑
j=1

αij(rjW
V + repr(M)Vij)

αij = softmax(wij)

wij =
riW

Q(rjW
K + repr(M)Kij )T
√
dmodel

,

(13) 262

where WQ, WK , and W V are the parameters, 263

repr(M)Vij , repr(M)Kij ∈ Rdhead are the trainable 264

representations of interrelation Mij . The rest lay- 265

ers of interrelation block keep the same as the orig- 266

inal Transformer (Vaswani et al., 2017) decoder 267

block, i.e., followed by an encoder-decoder atten- 268

tion sublayer and a feed-forward sublayer. 269

After the interrelation block, the remaining N − 270

1 decoder blocks stay the same with the relative- 271

position-based Transformer (Shaw et al., 2018). 272

3.4 Learning 273

Given the dependency tree t = {t1, t2, · · · , tn} 274

and the target sentence y = {y1, y2, · · · , yn}, we 275

first extract interrelation M from t according to 276

Eqn. (5), then compute the translation loss with: 277

Lnat = −
n∑
i

log pθ(yi|x,M). (14) 278

The length predictor is trained by: 279

Llen = − log pφ(∆L|x), (15) 280

where ∆L = CLIP(n−m). 281

Overall Training Objective. Combining the in- 282

terrelation prediction loss, translation loss, and 283

length prediction loss, the full-fledged training loss 284

is: 285

Loverall = Lnat + λLinter + αLlen, (16) 286

where λ and α are the hyperparameters used to 287

adjust the importance of each training loss. We 288

follow the previous works and set α to 0.1. 289
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4 Experiments290

4.1 Experimental Setup291

Dataset. We conduct the experiments on three292

machine translation datasets: WMT14 English-293

German task (WMT14 EN-DE, 4.5M sentence294

pairs), WMT16 English-Romanian task (WMT16295

EN-RO, 610K sentence pairs), and IWSLT16296

German-English task (IWSLT16 DE-EN, 196K297

sentence pairs). The datasets are obtained from298

previous open-source work, such as fairseq3299

for WMT14 EN-DE, and Lee et al. (2018) for300

WMT16 EN-RO and IWSLT16 DE-EN4. Follow-301

ing previous practices (Vaswani et al., 2017; Lee302

et al., 2018), all of the datasets are tokenized with303

Moses5 and segmented into subword units using304

BPE encodings (Sennrich et al., 2016). We share305

the subword embeddings of the source language306

and target language in each dataset.307

The dependency tree of datasets is obtained by308

the Stanza toolkit6. Since our method works with309

the sub-word units, we adapt the words’ depen-310

dency tree to the sub-word level by an intuitive311

transformation: the first sub-word unit of a word312

inherits the head of the word, the head of the re-313

maining units is the first sub-word unit.314

Model Settings. In the case of WMT tasks, we315

follow the base setting (dmodel = 512, dhidden =316

2048, pdropout = 0.3, nhead = 8, dhead = 64, and317

nlayer = 6) of Vaswani et al. (2017). We use a318

smaller model setting (dmodel = 256, dhidden =319

512, pdropout = 0.3, nhead = 4, dhead = 64, and320

nlayer = 5) for IWSLT16.321

The parameter is trained with Adam (Kingma322

and Ba, 2015) optimizer and set β = (0.9, 0.99).323

We use the invert square root learning rate sched-324

ule (Vaswani et al., 2017) for WMT tasks and the325

linear annealing schedule (Lee et al., 2018) from326

3.0× 10−4 to 1.0× 10−5 for the IWSLT task. The327

hyperparameters λ in Eqn. (16) to adjust the im-328

portance of the interrelation prediction loss are set329

to 3.0 and 2.0 for WMT and IWSLT tasks, respec-330

tively.331

3https://github.com/pytorch/fairseq/
tree/main/examples/translation

4https://github.com/nyu-dl/
dl4mt-nonauto

5https://github.com/moses-smt/
mosesdecoder

6https://stanfordnlp.github.io/stanza/
depparse.html. Unlabeled attach scores (%): 86.22 for
English, 85.39 for German, and 90.66 for Romanian.

Model WMT14 WMT16 SpeedupEN-DE DE-EN EN-RO

CMLM 10.88 / / /
SynST 20.74 25.50 / 4.9 ×
Flowseq 20.85 25.40 29.86 1.1 ×
AXE 20.40 24.90 30.47 /
CNAT 21.30 25.73 / 10.4 ×

Transformer † 27.25 31.53 33.97 1.0 ×
NAT † 11.60 16.15 21.40 15.3 ×
GLAT † 16.71 24.78 / 15.3 ×
inter-NAT † 21.79 27.02 30.79 15.1 ×

Table 1: Performance of the controlled experiments on
the test set of WMT tasks. † indicates the results that
come from our implementation.

Baselines. Except for the vanilla NAT, we also 332

include several representative NAT as baselines: 333

• Non-iterative NAT: ENAT (Guo et al., 2019), 334

NAT-REG (Wang et al., 2019b), imitation- 335

NAT (Wei et al., 2019), NAT-DCRF (Sun 336

et al., 2019), AXE (Ghazvininejad et al., 337

2020a), and GLAT (Qian et al., 2021). 338

• Latent variable-based NAT: NAT-FT (Gu et al., 339

2018), LT (Kaiser et al., 2018), Flowseq (Ma 340

et al., 2019), SynST (Akoury et al., 2019), and 341

CNAT (Bao et al., 2021). 342

• Iterative NAT: CMLM (Ghazvininejad et al., 343

2019). 344

Metrics. We compare our model with baselines 345

in terms of translation quality and decoding ef- 346

ficiency. As for translation quality, we evaluate 347

the tokenized and cased BLEU score (Papineni 348

et al., 2002) with fairseq-score7. As for de- 349

coding efficiency, we first measure the decoding la- 350

tency sentence-by-sentence, then report the relative 351

speedups by comparing it with an autoregressive 352

Transformer model. We obtain the performance 353

of baselines directly using reported in the previ- 354

ous works if available or reproducing them on our 355

datasets using the open-source implementation. We 356

highlight the best NAT result in each table. 357

4.2 Main Results 358

First, we validate our proposed method under a 359

strict experimental condition, in which all of the 360

NAT models are trained on the raw dataset. The 361

results are listed in Tab. 1. 362

We can see that inter-NAT achieves significant 363

improvements (more than 10 BLEU in most tasks) 364

7https://github.com/pytorch/fairseq/
blob/main/fairseq_cli/score.py
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Model WMT14 WMT16 SpeedupEN-DE DE-EN EN-RO

NAT-FT 17.69 21.47 27.29 15.6 ×
LT 19.80 / / 3.9 ×
Flowseq 23.72 28.39 29.73 1.1 ×
CNAT 25.56 29.36 / 10.4 ×

ENAT 20.65 23.03 30.08 25.3 ×
NAT-REG 20.65 24.77 / 27.6 ×
imitate-NAT 22.44 25.67 28.61 18.6 ×
NAT-DCRF 23.44 27.22 / 10.4 ×
GLAT 25.21 29.84 31.19 15.3 ×

Transformer † 27.25 31.53 33.97 1.0 ×
inter-NAT † 26.00 30.29 32.10 15.1 ×

Table 2: Performance on the test set of WMT tasks
trained with knowledge distillation.

over the vanilla NAT, indicating that target-side in-365

terrelation modeling can significantly improve the366

capacity to overcome multi-modality issues. Fur-367

thermore, our inter-NAT achieves the best results368

in this setting, demonstrating that decomposing the369

syntactic dependency information is more helpful370

to non-autoregressive decoding than chunks (Ak-371

oury et al., 2019), latent variables (Ma et al., 2019;372

Bao et al., 2021), and monotonic alignment assump-373

tion (Ghazvininejad et al., 2020a).374

With Distillation. The sequence-level knowl-375

edge distillation (Kim and Rush, 2016) can directly376

filter the multi-modality phenomenon that exists in377

datasets, which becomes common practice in non-378

autoregressive machine translation tasks (Gu et al.,379

2018). Therefore, we train a Transformer model380

and take it as the teacher to distill the training data.381

As shown in Tab. 2 , all of NAT models improve382

the performance with a large margin by employing383

a Transformer as the distilled teacher. Moreover,384

we can see that inter-NAT outperforms all the NAT385

models in all tasks, indicating the benefits of inter-386

relation modeling.387

With Reranking. To further improve translation388

quality, we also introduce the length parallel de-389

coding (Wei et al., 2019) for inter-NAT. During390

inference, inter-NAT first simultaneously generates391

Nc candidates with different lengths, then selects392

the best output via re-scoring using the teacher.393

We can see from Tab. 3 that inter-NAT achieves394

the best translation quality by equipping with the395

length parallel reranking, narrowing the perfor-396

mance gap between the non-autoregressive decod-397

ing and autoregressive decoding.398

Model Nc
WMT14 WMT16 SpeedupEN-DE DE-EN EN-RO

NAT-FT 100 19.17 23.20 29.79 2.4 ×
LT 10 21.00 / / /
Flowseq 30 25.31 30.68 32.20 /
CNAT 9 26.60 30.75 / 5.6 ×

ENAT 9 24.28 26.10 34.51 12.4 ×
NAT-REG 9 24.61 28.90 / 15.1 ×
imitate-NAT 7 24.15 27.28 31.45 9.7 ×
NAT-DCRF 19 26.80 30.04 / 6.1 ×
GLAT 7 26.55 31.02 32.87 7.9 ×

Transformer † - 27.25 31.53 33.97 1.0 ×
inter-NAT † 7 27.03 31.46 33.75 9.2 ×

Table 3: Performance on the test set of WMT tasks.
The results come from length parallel reranking with
NAT models trained with knowledge distillation. Nc

denotes the number of re-ranked candidates.

Figure 4: BLEU and decoding speed-up of NAT mod-
els on WMT14 EN-DE test set. Each point represents
the decoding method run with its corresponding setting
in Tab. 2, Tab. 3, or iterative refinements. Notice that
we only include the results evaluated with 1080TI-GPU
for fair comparisons.

Efficiency. Fig. 4 displays the trend of decod- 399

ing speed-up and BLEU with different models. 400

As seen, inter-NAT is located on the top-right 401

of the baselines. It is shown that inter-NAT 402

achieves higher BLEU if we fixed the Speed- 403

Up and faster Speed-Up if we fixed the BLEU, 404

indicating that inter-NAT outperforms baselines. 405

Although CMLM (Ghazvininejad et al., 2019) 406

achieves competitive BLEU scores, they sacrificed 407

the speed advantages. In contrast, inter-NAT has a 408

better trade-off that achieves a competitive perfor- 409

mance while maintaining remarkable speed advan- 410

tages. 411

4.3 Analysis 412

Incorporating the interrelation helps for the 413

multi-modality problem. The multi-modality 414
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Data Distance↓ Token-C Sentence-C

Raw data 0.21 2.71 3.36
Transformer 0.21 2.06 2.61
NAT 0.41 2.22 2.89
inter-NAT 0.25 1.62 2.18

Table 4: Complexity C (↑ more complex) and average
euclidean distance of outputs from different settings.

Methods Repetition Ratio↓(%)

EN-DE DE-EN

Transformer 0.06 0.01

NAT 25.02 21.67
NAT w/ distillation 6.26 5.87
inter-NAT 2.85 0.82
inter-NAT w/ distillation 0.43 0.47

Table 5: Token repetition ratio (%) of outputs from dif-
ferent methods on WMT14 test set.

phenomenon is unavoidable in machine transla-415

tion tasks, which is a challenging problem for non-416

autoregressive decoding. To validate that target-417

side interrelation is beneficial to overcome the418

multi-modality problem, we follow Zhou et al.419

(2020) and synthesize a one-to-many translation420

dataset to analyze this issue.421

Dataset: We construct the dataset by extracting422

the sentences aligned in English-German, English-423

French, and English-Spanish corpus8 and process-424

ing the dataset following common practices, in-425

cluding tokenization with Moses, segmentation426

with BPE units (Sennrich et al., 2016), and parsing427

with Stanza, etc. In such a case, each source428

sentence has three different languages reference429

in the dataset, representing three modes. During430

inference, we do not supply the language signal.431

Results: As illustrated in Fig. 1, a vanilla NAT432

model can hardly coordinate the mode (language)433

signal itself and always hybrid the different modes434

in outputs. By introducing the target-side interre-435

lation information, inter-NAT well organizes the436

non-autoregressive decoding, resulting in a more437

consistent mode in its outputs.438

To analyze the multi-modality problem quantita-439

tively, we compute the average Euclidean distance440

between the point to its nearest vertex for each441

model. Besides, we follow Zhou et al. (2020) and442

utilize corpus complexity C as evaluated metrics.443

As shown in Tab. 4, our inter-NAT heavily reduces444

the complexity of the dataset, which is consistent445

8https://www.statmt.org/europarl/

Methods extracted M predicted M

BLEU↑ BLEU↑ inter F1↑

NAT 18.01
inter-NAT

w/ dependency 42.61 29.88 60.35
w/ adjacent 22.65 / /
w/ co-occurrence 56.21 23.45 20.17

Table 6: Performance on IWSLT16 DE-EN valid set
with different interrelations.

with our qualitative analysis. 446

inter-NAT overcomes repeat-translation prob- 447

lem. Tab. 5 analyzes the repetition ratio of trans- 448

lation on the test set of WMT14 tasks. Suffering 449

from the multi-modality problem, vanilla NAT has 450

the highest repetition ratio of the outputs. Incorpo- 451

rating the interrelation information or training with 452

the knowledge distillation can reduce the repetition 453

ratio. We can also find that combining target-side 454

interrelation modeling and distillation are “com- 455

patible” and enable the NAT model to achieve the 456

lowest repetition rate. The above observation is 457

also consistent with the qualitative analysis and 458

quantitative analysis on multi-modality problems. 459

Syntactic dependency well balances the predic- 460

tion accuracy and translation quality. To an- 461

alyze which kind of interrelation is better for 462

non-autoregressive decoding, we further compare 463

the syntactic dependency and two intuitive rela- 464

tions (word-adjacent and word co-occurrence re- 465

lation, we include more details in Appendix A). 466

We can see from Tab. 6 that NAT models always 467

benefit from the introduced interrelation and im- 468

prove the translation quality, whatever the inter- 469

relation is. There is also a trade-off in the table: 470

even though the NAT models that incorporate the 471

extracted word co-occurrence information achieve 472

the highest BLEU score, their predicted perfor- 473

mance (BLEU and inter F1) is relatively low; the 474

word-adjacent relation obtains the highest inter F1 475

score, it is of little help to the NAT model. In com- 476

parison, the syntactic dependency well balances 477

the prediction accuracy and translation quality. 478

Module Ablation. As shown in Tab. 7, our in- 479

ter-NAT can benefit from both the training and 480

integrating the target-side interrelation. 481

• inter-NAT well regularizes the encoder. Ex- 482

tracting the target-side interrelation as the 483

training supervision, the NAT can regularize 484

7
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Methods BLEU↑

NAT 18.01
+ Linter 23.01 (+5.00)
+ Linter + Interrelation Block 29.88 (+11.87)

Table 7: Performance on IWSLT16 DE-EN valid set.

Pretrained Encoder Finetuning Decoder

NAT inter-NAT

NAT 18.69 23.94
inter-NAT 22.49 (+3.80) 29.76 (+5.68)

Table 8: The BLEU score on IWSLT16 DE-EN valid
set of different decoders training with a fixed encoder
from the pretrained model (NAT or inter-NAT).

the encoder output by the multi-task learning485

and improve the performance by 5.0 BLEU486

(23.01 vs. 18.01). The results listed in Tab. 8487

further validate this observation.488

• By integrating the target-side interrelation489

with the introduced interrelation block, the490

inter-NAT achieves over 6.50 BLEU points491

improvement.492

We further apply inter-NAT to the syntax-aware493

machine translation task and validate the effective-494

ness of the interrelation block. The details are in495

Appendix B.496

More Analysis. We also provide more details497

about interrelation and several translation examples498

in Appendix.499

5 Related Work500

5.1 Non-autoregressive Machine Translation501

Gu et al. (2018) propose the non-autoregressive502

Transformer (NAT) in machine translation task, re-503

markably improving the decoding efficiency at the504

cost of translation quality. Then, a series of im-505

provements has been proposed.506

A line of works propose to learn from Trans-507

former to regularize the attention matrix (Li et al.,508

2019) and hidden states (Wei et al., 2019) of NAT509

models. Some works carefully design training510

objectives to overcome the multi-modality prob-511

lem, such as latent alignment for cross-entropy (Li-512

bovický and Helcl, 2018; Saharia et al., 2020), bag-513

of-words objectives (Shao et al., 2020) or energy-514

based objectives (Tu et al., 2020). Our works im-515

pose a dependency tree as the regularized objective,516

also improving performance.517

Another series of studies propose to enhance de- 518

pendencies modeling to tackle the multi-modality 519

issues. Such as multiple iterative refinements(Lee 520

et al., 2018; Ghazvininejad et al., 2019; Guo et al., 521

2020) or masked language models (Qian et al., 522

2021). In comparison, our method utilizes the 523

syntactic dependency tree to define clear word 524

inter-dependencies for non-autoregressive transla- 525

tion and shows its help in experiments. 526

Some works propose to decomposing the target- 527

side information by the latent variables (Ma et al., 528

2019; Ran et al., 2019; Bao et al., 2021). Unlike 529

them, we introduce the target-side dependency tree 530

as the decomposed goal, which is well-define and 531

easy to learn. 532

5.2 Syntax-Aware Machine Translation 533

Our work is also related to syntax-aware transla- 534

tion. Sennrich and Haddow (2016) study that inte- 535

grating the syntax representation into word embed- 536

ding for machine translation. Wang et al. (2019a); 537

Bugliarello and Okazaki (2020); Chen et al. (2017) 538

propose incorporating the syntax tree information 539

into the encoder to model the sentence’s latent 540

structure. Unlike these researches, we incorporate 541

the dependency information into the NAT models 542

and works on the target side decoding. 543

Most close to our work is SynST (Akoury et al., 544

2019), which autoregressively predicts the syn- 545

tactic chunk sequence and integrates it in non- 546

autoregressive translation. In contrast, our model 547

predicts the dependency interrelation following a 548

non-autoregressive fashion, improving translation 549

quality and decoding efficiency. 550

6 Conclusion 551

In this paper, we propose inter-NAT, which models 552

the target-side syntactic dependency interrelation 553

for non-autoregressive decoding. Specifically, in- 554

ter-NAT extracts the target-side interrelation from 555

the dependency tree (ground-truth dependency tree 556

during training or predicted dependency graph dur- 557

ing inference) then injects it into the self-attentive 558

sublayer in the decoder. Experiments results show 559

that inter-NAT benefits from the clear syntactic re- 560

lations between words presented in the syntactic 561

dependency tree, achieving a better NAT model. 562

We also consider exploring more effective interre- 563

lation for NAT models in our future work. 564
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A Interrelation Details872

Interrelation architecture. Fig. 1 shows the873

module details of our interrelation predictor.

haveI a cat .
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Figure 1: The module details of interrelation predictor.

874

Adjacent Interrelation. As shown in Fig. 2, we875

intuitively take the adjacent relation as an interrela-876

tion among the target outputs.
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Figure 2: The adjacent interrelation matrix.

877

Co-occurrence Interrelation. We also propose878

to extract the interrelation from the co-occurrence879

information. It represents the frequency of token880

pairs that appeared together in a sentence, which881

may help model the target sentence. We compute882

the co-occurrence matrix on the training dataset and883

decide the interrelated relation with a controlled884

ratio. In our experiments, we set it to 0.1. Notice885

that the co-occurrence relation is not symmetrical,886

as we choose its most frequent token in the sentence887

for each token. The example is shown in Fig. 3.888

Interrelation-related Metrics. To further ana-889

lyze the interrelation’s influence, we compute each890

model’s interrelation metric. Specifically, extract-891

ing the interrelation reference from the target, we892

compute the recall ratio of the models’ output.893

We can see from Tab. 1 that the interrelation894

recall is high related to the models’ performance.895

Methods Interrelation Recall (%) BLEUAdjacent Co-occurrence Dependency

AT 43.29 28.25 38.36 27.25
NAT 24.03 19.15 20.88 11.60
inter-NAT 37.40 25.11 32.65 21.78

Table 1: Interrelation recall of different models on
WMT14 EN-DE test set.

Methods BLEU

NAT 18.01
w/ CTC 29.87

inter-NAT 29.88
w/ CTC 31.02

Table 2: Performance on IWSLT16 DE-EN valid set..

With the interrelation recall improving, the model 896

achieves a better BLEU score. 897

Compatibility with CTC. We integrate the CTC 898

loss into inter-NAT to verify the compatible, and 899

the result is shown in 2. With the help of CTC loss, 900

inter-NAT achieves over 1 BLEU points improve- 901

ment. 902

B Syntax-Controllable Translation 903

Since our model explicitly incorporates the syntax- 904

based interrelation into non-autoregressive decod- 905

ing, we can apply it to a syntax-guided trans- 906

lation task (Tab. 3). Inspired by previous text 907

transfer studies (Chen et al., 2019), we utilize a 908

multi-reference translation dataset to avoid the mis- 909

match between source semantics and target syntax1. 910

While decoding, we feed the source inputs and its 911

target-side interrelation extracted from the syntax 912

reference (denote as Refdep) to the decoder and gen- 913

erates the outputs. We compute the BLEU score by 914

comparing the outputs to its syntax references. 915

Dataset. We apply the inter-NAT to the syn- 916

tax guided translation tasks on the LDC Chinese- 917

English2 (denote as LDC ZH-EN, 1.3M sentence 918

pairs) and NIST ZH-EN dataset (MT03 as dev the 919

set, MT05 as the test set). Each sentence in the 920

NIST test set has multiple references. We can eval- 921

uate the model’s controllable translation by given 922

different references as the syntax providers. We 923

use NLPIRICTCLAS3 and Moses tokenizer for 924

1NIST MT05 is a test set with multiple references for each
sentence to evaluate the LDC Chinese-English translation task.

2LDC2002E18, LDC2003E14, LDC004T08, and
LDC2005T06

3http://ictclas.nlpir.org/

1

http://ictclas.nlpir.org/
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Figure 3: The co-occurrence interrelation matrix. We extract the interrelation according to the co-occurrence
number of token pairs in datasets.

Chinese and English tokenization, respectively.925

Results. We see in Tab. 3 that the highest BLEU926

scores are all located in the diagonal of table,927

which indicates that inter-NAT can generate syn-928

tactically controllable translation results. We also929

provide few examples of syntax-guided translation930

in Tab. 5.931

2



Refdep

BLEU BLEURef-0 BLEURef-1 BLEURef-2 BLEURef-3

Ref-0 33.37 23.04 22.01 23.40
Ref-1 22.04 35.98 23.60 23.27
Ref-2 21.64 24.80 34.90 22.68
Ref-3 22.95 24.00 22.60 34.66

Table 3: Performance of syntax-controllable translation on the NIST MT05 test set.

Source Gutach: Noch mehr Sicherheit für Fußgänger
Reference Gutach: Increased safety for pedestrians
NAT Gutach: More More safety for pedestrians
inter-NAT Gutach : More Security for pedestrians

Source Jazz und Klassik gehören gerade am Jazzstandort Stuttgart zusammen.
Reference Jazz and classical music belong together at the jazz location of Stuttgart.
NAT Jazz and classical cs are right together at the Stuttgart of Stuttgart.
inter-NAT Jazz and classical music belong together at the jazz location of Stuttgart.

Source Das wäre in Amerika als Medizinstudent im zweiten Jahr niemals möglich.
Reference That’s not something you’d ever get to do in America as a second-year medical student.
NAT This would never be America America America America a a student in the second year.
inter-NAT That would never be possible in America as a medical student in the second year.

Table 4: Examples for our inter-NAT model trained on the WMT14 DE-EN raw dataset.

Source 阿尔泰共和国位于西伯利亚边缘的多山地带。

Reference1 the altai republic is located in a mountainous region on the southern fringes of siberia.
Output1 the altay republic is situated in a mountain area on the cre, close of siberia.

Reference2 the altai republic is located in the mountainous region on the southern border of siberia.
Output2 the altay republic is situated in the multi-anshan area on the fringe of siberia.

Reference3 altai republic is located in the mountainous region on the fringes of siberia.
Output3 altay republic is situated in the multianshan fringe of kilometers west of siberia.

Reference4 the altai republic is located in a mountainous region on the fringes of siberia.
Output4 the altay republic is situated in the multi-anshan region at crelines of siberia.

Source 乌克兰全国有超过三万三千个投开票所。

Reference1 there are more than 33,000 polling stations in ukraine.
Output1 there were more than 33,000 opening votes in ukraine.

Reference2 there are more than 33,000 polls throughout ukraine.
Output2 there were more than 33,000 tickets in ukraine.

Reference3 there were over 33,000 polling precincts in ukraine.
Output3 there were over 33,000 opening tickets in ukraine.

Reference4 there are over 33,000 polling stations throughout ukraine.
Output4 there were over 33,000 opening tickets in ukraine.

Table 5: Examples of syntax-guided translation. We show all words in lower case.
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