Alleviating Sparsity of Open Knowledge Graphs
with Ternary Contrastive Learning

Anonymous ACL submission

Abstract

Sparsity of formal knowledge and roughness
of non-ontological construction methods make
sparsity problem particularly prominent in
Open Knowledge Graphs (OpenKGs). Sparse
links make few-shot entities unable to learn
potential features. We hypothesize that nega-
tive samples could help sparse links highlight
discriminative features. However, existing con-
trastive learning in Graphs model binary ob-
jects, none has studied contrastive learning to
model ternary pattern in any KGs. In this pa-
per, we propose a Ternary Contrastive Learn-
ing (TernaryCL) to alleviate the sparsity of
OpenKGs. TernaryCL designs (1) Contrastive
Entity and (2) Contrastive Relation to mine
ternary discriminative features by both nega-
tive entities and relations. (3) Contrastive Self
constructs a self positive sample to give zero-
shot and few-shot entities chances to learn dis-
criminative features. (4) Contrastive Fusion
aggregates graph features by extending the pat-
tern from 1-to-1 to 1-to-N. Extensive experi-
ments on benchmarks show the superiority of
TernaryCL over state-of-the-art models.

1 Introduction

Knowledge Graphs (KGs) structure objective facts
in the form of (“head entity”, “relation”, “tail en-
tity”) triples. KGs can be of diverse types, such as
CuratedKGs (Li et al., 2021) whose construction
relies on specification of ontology schema, Com-
monsenseKGs (Malaviya et al., 2020) whose enti-
ties are free-form text, and OpenKGs (Chandrahas
and Talukdar, 2021) which take noun phrases as
entities and relation phrases as relations. Represen-
tation learning (Bordes et al., 2013; Dettmers et al.,
2018) of KGs aims to learn implicit embeddings of
entities and relations, and has become an indispens-
able step in the application of KGs to downstream
tasks (Gupta et al., 2019; Broscheit et al., 2020).
Because of sparsity of formal grammatical knowl-
edge, a common challenge in representation learn-

ing of KGs is the sparsity problem, where a large
portion of entities have few- or zero-shot links.

Our work in this paper concerns OpenKGs,
which are extracted from text corpora with OpenlE
tools (Fader et al., 2011; Gashteovski et al., 2019),
and generally they do not rely on specification of
ontology schema. Roughness of non-ontological
construction methods makes sparsity problem par-
ticularly prominent in OpenKGs. According to
our statistics of standard OpenKGs, the degree of
55% entities in ReVerb20K and 89% entities in
ReVerb45K is less than 3. Due to fewer training
chances caused by sparse links, few-shot and zero-
shot entities are not well trained, resulting in poor
generalization performance. Although existing rep-
resentation learning models have achieved promis-
ing performance (Dettmers et al., 2018; Gupta et al.,
2019; Chandrahas and Talukdar, 2021), they do not
effectively tackle the sparsity problem. This mo-
tivates us to develop a more effective method to
alleviate the sparsity of OpenKGs.

Being popular in self-supervised representation
learning, contrastive learning aims to learn discrim-
inative features by introducing negative samples in
contrast with positive samples (He et al., 2020;
Gao et al., 2021; Zhu et al., 2021). These negative
samples can enrich the understanding of positive
samples in the form of a negative feedback. We hy-
pothesize that negative samples could help existing
sparse links to learn discriminative features.

In any KG, links imply ternary propagation pat-
terns, where entities propagate to multi-neighbor-
entities through multi-relations. However, tradi-
tional contrastive learning in Graphs (Velickovic
et al., 2019) only models binary objects. To the
best of our knowledge, none has studied contrastive
learning to study ternary patterns in KGs.

In this work, we propose a Ternary Contrastive
Learning (TernaryCL) framework to alleviate the
sparsity of OpenKGs. We explore four key ideas:
(1) Contrastive Entity to learn discriminative fea-

(b) Contrastive Entity

(a) A Sub-OpenKG

(c) Contrastive Relation

“\ (b.1) “\ ,‘\4 (c.1) <«— Positive
rd rd
4 @ =
N 2N 2N
- @ & Add Self 2
Q (b.d) ‘\\ (d) ‘*\ (c.d)
e P r’d
L ¢ o2 .
L / - / p— /
7 A\ P N P4 -

(d) Contrastive Self, where b.d shows its contrastive entities, c.d shows its contrastive relations.

Figure 1: The overall framework of our proposed TernaryCL model for alleviating sparsity of OpenKGs. (a) A given subgraph
of an OpenKG. (b) Contrastive Entity generates negative entities (yellow) and contrasts them with a positive entity (blue). (c)
Contrastive Relation generates negative relations (yellow) and contrasts them with a positive relation (blue). (d) Contrastive Self
constructs a positive sample by adding a self relation (blue) to the entity (blue), generates negative entities (yellow) in (b.d) and
negative relations (yellow) in (c.d), and contrasts them with the self positive sample.

tures of different entities under the same (head
entity, relation)-pair, which alleviates sparsity
by considering negative entities (Fig. 1b). (2)
Contrastive Relation to learn discriminative fea-
tures of different relations under the same (head
entity, tail entity)-pair, which alleviates the spar-
sity by considering negative relations (Fig. 1¢). (3)
Contrastive Self to construct a positive sample by
adding a self relation, then generate negative enti-
ties and relations to contrast with the self positive
sample, which gives zero-shot and few-shot enti-
ties one or more chances to learn discriminative
representations (Fig. 1d). (4) Contrastive Fusion
to extend the ternary propagation pattern from the
above 1-to-1 to 1-to-N: a head entity propagates
to multiple tail entities through multiple relations.
To gain insights into TernaryCL, we analyze the
gradients it receives from the above components.
TernaryCL can learn effective embeddings from
the KG itself without relying on pretrained lan-
guage models or side information. This low depen-
dency makes it easy to apply to downstream tasks.
Extensive evaluation of overall performance, spar-
sity granularity, few- and zero-shot types and vi-
sualizations show that TernaryCL can significantly
outperform state-of-the-art baselines.
In summary, our key contributions are:
* To the best of our knowledge, this is the first
work to introduce contrastive learning for repre-
sentation learning over knowledge graphs.

* We propose a ternary contrastive learning model
to learn representations from complex propaga-
tion patterns of OpenKGs. It subtly generates
negative samples from the perspective of entities
and relations, and uses contrastive learning to

incorporate structural information. It does not
rely on external resources making it easy to scale
and to apply to downstream tasks.

* We present Contrastive Self to generate self pos-
itive samples, which solves the problem of learn-
ing for zero-shot entities. This gives zero-shot
or few-shot entities one or more chances to learn
discriminative representations.

* We perform extensive experiments to show the
superiority of our method over state-of-the-art
baselines. We release our code at ACLARRFeb.

2 Related Work
2.1 Open Knowledge Graphs (OpenKGs)

OpenKGs represent factual knowledge in struc-
tured forms, especifically, as triples of head-
relation-tail or (h,r,t). They are extracted with
OpenlE tools (Fader et al., 2011; Gashteovski et al.,
2019), and generally do not rely on specification
of ontology. Although OpenKGs have the advan-
tage that they can be easily bootstrapped to new
domains, because of sparsity of formal grammat-
ical knowledge and roughness of non-ontological
construction, many relevant facts are often missing
from such OpenKGs, This makes them difficult
to be used effectively in downstream knowledge
related tasks (Chandrahas and Talukdar, 2021).
Representation learning of KGs devotes to learn-
ing informative features of entities and relations,
which can be used for other tasks such as pre-
dicting missing relations. General representation
learning models over focus on inducing structural
features with linear (Bordes et al., 2013), bilinear
(Wang et al., 2014; Lin et al., 2015), complex (Yang

ACL ARR Feb

et al., 2015; Trouillon et al., 2016) or convolutional
(Dettmers et al., 2018; Nguyen et al., 2018) opera-
tions, while OpenKG-specific models enhance the
embeddings with side information (Gupta et al.,
2019) and pretrained language models (Chandra-
has and Talukdar, 2021). However, these methods
are still limited in alleviating the sparsity issue. We
propose a contrastive learning method that is more
effective and does not rely on external resources.

2.2 Contrastive Learning

Contrastive learning aims to learn effective repre-
sentation by pulling semantically close neighbors
together and pushing apart non-neighbors (Hadsell
et al., 2006; Gao et al., 2021), which has achieved
great success in vision (He et al., 2020), text (Gao
etal., 2021) and graph (Zhu et al., 2021). A number
of graph representation learning methods attempt to
leverage a contrastive learning loss at node (Velick-
ovic et al., 2019), graph (Sun et al., 2020) and
multi-view levels (Hassani and Ahmadi, 2020; Zhu
et al., 2021). However, traditional contrastive learn-
ing in graphs (Velickovic et al., 2019) only model
binary objects. In contrast, we propose contrastive
learning to study ternary patterns in KGs.

3 Preliminaries

eLetG = (€, R) be an OpenKG and (h, r, t) be
a triple in G, where h,t € £ represent head and tail
entities, and r € R represents the relation between
them. Entities and relations are non-empty word
sequences; wy, = {whﬂ'}g’il and w, = {w”}ﬁql
respectively represent word sequences of entity h
and relation r. Representations of entities and rela-
tions are denoted as E € RI¥/*P and R € RIRIXP
respectively, with D being embedding dimension.
We will use h € E and r € R to denote the embed-
dings of entity h and relation r, respectively.

e Link prediction of OpenKGs is the task of pre-
dicting answer entities for two questions: (1) pre-
dicting the tail Q; = (h,r, 7) and (2) predicting the
head Q;, = (?,r,t). For each such question, the
possible true answer entities can be one or more,
because there could be multiple entities with the
same meaning but different surface textual forms
in an OpenKG (Broscheit et al., 2020). For exam-
ple, for question (); = (“NBC-TV”, “has office in”,
7), we expect all answers from the set of entities
{“New York”, “NYC”, “New York City”}.

e A zero-shot entity (relation) is an entity (rela-
tion) without links in the KG. A few-shot entity

(relation) is an entity (relation) with few links in
the KG, e.g. an one-shot entity has only one link.
A zero-shot (few-shot) triple is a triple that contain
at least one zero-shot (few-shot) entity or relation.

4 Proposed TernaryCL Model

The overall framework of TernaryCL for alleviat-
ing sparsity of OpenKGs is shown in Fig. 1. In the
following subsections, we first introduce a simple
Ternary Similarity function to compute a similar-
ity score for each (h,r,t) triple by considering
both textual and structural information (§4.1). We
present Contrastive Entity in §4.2 to learn embed-
dings of different entities with the same (h, r)-pair,
followed by Contrastive Relation in §4.3 to learn
embeddings of different relations with the same
(h,t)-pair. We describe Contrastive Self in §4.4
that constructs a positive sample (h, self, hT) and
contrasts it with negative samples to give zero- and
few-shot entities chances to learn discriminative
features. Contrastive Fusion in §4.5 extends propa-
gation patterns from the above 1-1 to 1-N. Finally,
the training procedure is described in §4.6.

4.1 Ternary Similarity
For a triple (h,r,t) € G, word sequence of head

|wn|

entity h is wy, = {wp;},_; , of relation 7 is w, =

{wm}';iq', and of tail entity ¢ is w; = {wtz}‘zﬂ
We encode each of these sequences with a text
encoder (Enc) such as BIGRU (Cho et al., 2014)

and BERT (Devlin et al., 2019).

iV = Enc(w;) for w; € {wp, w,wi} (1)

This encoding yields the textual embeddings of h,
randtas h%, r%, and tV, respectively.1

Then, we focus on exploiting potential connec-
tions between entities and relations. We use a two-
dimensional convolutional network (Dettmers et al.,
2018) to learn potential connections between a head
entity h and a relation r as follows:

o(h, 1) = p(Linear(p(Conv2d,, ([h;T))))) (2)

where p represents a ReLLU activation, and h and
T denote a reshaping of [h + h%] and r" respec-
tively, with h € E.2 Specifically, the reshaping
operation converts a vector v.€ R from one-
dimension to two-dimensions v € RP1*D2 where

'For BiGRU, we take the concatenation of last states in
the forward and backward directions as the sequence represen-
tation. For BERT, we take the [CLS] representation.

%For relations, adding r € R with the textual embedding
r* worsen the performance.

D = Dy % Dy, and [h;T] € R(P1*2xD2 repre.
sents the concatenation of the reshaped embeddings
of h and . The Conv2d,, symbol denotes a two-
dimensional convolutional layer with filters w. This
layer returns a feature map tensor C € RC1x¢2xCs
where (' is the number of feature maps of dimen-
sions C' x (3. C is then reshaped into RC1#C2+Cs
and projected to R” with a Linear layer. Through
the convolution module, potential embeddings of
entity h and relation r are jointly encapsulated.
Finally, we compute a similarity score for each
triple (h, 7, t) with a dot product similarity function:

ﬁ(h,’l‘, t) = @(h/r) -t (3)
where t € E. When predicting the head h based
on pair (r,t), we reverse the relation by adding a
special symbol, and obtain a new triple (¢, 7rey, h).
The similarity score for (¢, rrey, h) is computed in a
similar fashion as above following Eq. (2)-Eq. (3).

4.2 Contrastive Entity

Contrastive Entity (Fig. 1b) alleviates sparsity of
OpenKGs from the perspective of nagative entities,
and induces discriminative features of different en-
tities with the same (h,r)-pair . The contrastive
score for a triplet p, = (h,r,t1) is

(Bt ™) /)

S(h,r,t") = —log G @

2oneipe N}

where 7 is a temperature hyperparameter, (3(.)
is the similarity score as in Eq. (3), and p. =
(h,r,tT) is a true triple in the OpenKG. N,
{(h,rt;)}| Nel s a set of negative samples, where
a negatlve entity ¢ 7 is selected strategically from
an entity list defined by: £ — E(h, r) with E(h, r)
being the entity list of true answers (tail entities),
that is, t; € E(h, r) if the triple (h,r, t;) € G.

To analyse how this contrastive loss affects the
learning, we perform gradient analysis. The gra-
dient that the head entities get (— hirt)) is as
follows (see Appendix for a derivation):

>t D

)

v(h7>t

o (VRS

(h,r, ty YEN.

e(h, r) t

£t — Z[e(i

(h,’l‘,t;)ENe

where A is a normalization constant. This is con-
sistent with our assumption, where positive entity
t* gives positive feedback while negative entities
t; give negative feedback. The Gradient for a rela-
tions 7 has a similar form as Eq. (5).

Similarly, we can derive the gradients for the
positive tT and negative tail entities t; as:

@(h,r)t,

as(h,r,tt) o(h,7) j
- = > <7 e

ott TA
(h,r,tj_)e./\/e
_0S(hrt?) __plhr) (DN
(‘3tj_ TA

For a few-shot entity ¢, when it appears as a posi-
tive (Eq. (6)) or negative (Eq. (7)) sample headed
by entity h of high degree, it gets sufficient gradi-
ents to learn informative representations. Similarly,
through Eq. (7), the parameters of a zero-shot entity
get updated when it appears as a negative sample
with a (h, r)-pair. As discussed later in §4.4, with
Contrastive Self, zero-shot entities get updated with
their own contrastive losses. Overall, through the
negative samples, training of few-shot, zero-shot
and other entities (with many links) gets more bal-
anced, while with existing approaches, zero-shot
entities generally do not get trained as they are
disconnected from the rest of the OpenKG.

Negative sampling strategy For sampling nega-
tive entities, we calculate the degree of each entity
in the OpenKG, and normalize them into [0, 1] to
get a degree distribution, Pyeo. We design three neg-
ative sampling strategies based on Pyeg. (a) ManyP
gives higher chances to entities with many links by
sampling directly from Py, with the hope to trans-
fer sufficient knowledge to other entities. (b) FewP
gives higher chances to few- or zero-shot entities
by sampling from (1 — Py), so as to increase their
exposure to get more training updates. (¢) Uniform
samples uniformly without considering the degree.

4.3 Contrastive Relation

Entities in a KG propagate information to neigh-
boring entities through one or more relations, so
the features of relations are as important as that of
entities. Contrastive Relation (Fig. 1c) alleviates
the sparsity from the perspective of negative rela-
tions, and captures potential features of different
relations with the same (h, t)-pair. The contrastive
score for a positive relation p, = (h,r™",t) is:
e(Bhrt t)/7)

ZnE{pr,Nr} e(B(n)/7)

where p, is a true triple in the OpenKG, and
N = {(h, r;,t)}w’" is a set of negative sam-
ples, where negative relation 7 is sampled strate-
gically from a relation list R —R(h, t) with R(h, t)
being a relation list that satisfies the condition:
r; € R(h,t) if the triple (h,7;,t) € G. The gradi-
ents have the same form as above (see Appendix).
In particular, the gradients that a tail entity gets is:

S(h,r+,t) = —log (8)

85(h77ﬂ+7t) 1 wlh,ri)t
~e el = (LY T el)
(hyry) ENy
(hr)t 9
- > e o(h, 7)])
(hyry) EN

Different from Eq. (6), tail entities (t = tT) get
contrastive gradients, because the signals from the
positive (r™) and negative (rj_) samples are in op-
posite direction in Eq. (9). We follow the same
ManyP, FewP and Uniform sampling strategies as
in §4.2 for sampling a negative relation.

4.4 Contrastive Self

As described in §4.2 and §4.3, parameters of a
few-shot entity get updated with contrastive gradi-
ents when it acts as a head (Eq. (5)) or tail en-
tity (Eq. (9)). Parameters of a zero-shot entity
are also updated when it appears as a negative
entity (Eq. (7)), but not from the perspective of
contrastive. This means zero-shot entities have no
chance to learn discriminative representations, be-
cause they have no links with the rest of OpenKG.

In view of this, we propose to construct a pos-
itive sample ps; = (h,self,h™) by adding a Self
relation (Fig. 1d), where h and h™ are the same
entity but with different embeddings: the embed-
ding of is [h + hY] and the embedding of A is
h € E. For such a positive sample, negative sam-
ples N = {(h, self, h;)}ljj\:[e1
negative entities by selecting hj_ strategically from
an entity list £ — h (Fig. 1b.d). Similarly, negative
relation samples N, = {(h, self; lfr)}wl| are

generated with negative relations by selecting self;
strategically from a relation list R — self (Fig. 1c.d).
The contrastive scores for ps = (h, self, h*) can
then be computed with Eq. (4) and Eq. (8).

Through the Self positive sample, parameters of
zero-shot entities can have the chances to be up-
dated from the contrastive perspective (Egs. (5)
and (9)), where h',rt give positive feedback
while hj_, r; give negative feedback.

are generated with

4.5 Contrastive Fusion

The contrastive learning of the above modules has
the form of 1-to-1, where a head entity propagates
information to a tail entity through a relation, i.e.,
it involves only one positive sample. However,
a head entity can connect to multiple tail entities
through multiple relations. To model this multi-
propagation pattern, we extend the 1-to-1 to 1-to-N,
where multiple positive samples are considered.

There are two types of 1-to-N pattern: p. =

{(h,r, tj)}' 1 Where a head entity h connects to
multiple tail entltles through a relation r, and p, =

{(h, r;', t)}‘ 1 where a head entity h connects to a

tail entity ¢ through multiple relations. We generate
negative samples N = {(h,r,t;)}| Nel for p, as in

§4.2, and negative samples N, = {(h,; ,t)}LN1|

for p, as in §4.3. Let py = {pc,pr} and Ny =
{Ne, N;-}. With this, we design two types of con-
trastive scores to learn 1-to-N features.

—+
Zn+6p eB(nT)/T)
Sa(ps) = —log ’

10)

S ety vy P
B(nT)/7)
f (&
Sipr) =~ IOgZ e/ (I
n*Epf n=e{nt N}

In Eq. (10), all positive samples are trained together
and normalized to a unified space, while in Eq. (11),
different positive samples are trained separately
and the independent similarity score of all posi-
tives are accumulated. From the perspective of
negative samples, negative entity N\, and relation
N, samples are merged to train with the positive
samples, which is different from Eq. (4) and Eq. (8)
which only have one type of negatives.

4.6 Training Procedure

We train TernaryCL in Pretrain and Finetune stages,
where Pretrain stage aims to learn discriminative
representations with Eq. (10) or Eq. (11), and Fine-
tune stage aims to optimize parameters for a target
task. Note that TernaryCL is a general framework
that can be applied to diverse KG types, such as
OpenKGs, CuratedKGs and TemporalKGs, and to
diverse applications, such as link prediction, re-
lation prediction, node classification, relation ex-
traction and other ternary tasks. In addition, the
principle of Contrastive Self can be applied to dy-
namic tasks, e.g., when a new entity gets added to a
K@, it can transfer embeddings of existing entities
to the new entity. Since our focus in this work is
the sparsity of OpenKGs, we design experiments
with link prediction task in OpenKGs.

For a test triple (h;, r;,t;), the jointly encapsu-
lated representation ¢(h;, r;) of entity h; and rela-
tion 7; is matched with the embeddings of all the
entities in E to predict Vi € [0, 1]€] as:

Y; = sigmoid(p(hi,ri) - E") (12)

We use a binary cross-entropy loss defined as:

€]
ZYulongﬂr (1-Yi;)log(1—Yi;)) (13)

. Train Few-Shot Zero-Shot
Dataset Ent Rel Clust Valid Test
100% 80% 60% 40% 20% Ent Rel Ent Rel
ReVerb20K 11.1 11.1 10.8 1.6 24 155 124 93 62 31 28/1.0 25/08 8.1/1.1 85/1.0
ReVerb45K 27.0 21.6 18.6 36 54 360 288 216 144 72 177/18 51/15 188/25 164/1.8

Table 1: Dataset statistics. Ent, Rel, Clust show the number of entities, relations, entity clusters. Valid, Test, Train show the
number of triples in valid, test, train sets, respectively. In Train, % represents different sparsity levels. In Few- and Zero-Shot,

left of / respresents the number of entities or relations, and right of / represents the number of related triples in its Test set.

where Y; ; = 1ift; € £(h;, ;) otherwise Y; j = 0
with £(h, r) being the set of all true tail entities for
a pair (h,). As mentioned earlier, when predicting
the head h; based on a pair (r;, t;), we reverse the
relation to obtain a reversed triple (¢, rrey,), then
train it with Eqgs. (12) and (13).

S Experiments

5.1 Datasets and Experiment Setup

We use ReVerb20K and ReVerb45K OpenKG
benchmarks (Vashishth et al., 2018), which are
constructed through ReVerb (Fader et al., 2011).
Table 1 presents the statistics about datasets. Re-
Verb45K with 27.0K entities and 21.6K relations
is larger and sparser than ReVerb20K with 11.1K
entities and 11.1K relations. Entity clusters, gold
canonicalization clusters, are extracted through the
Freebase entity linking tools (Gupta et al., 2019).
Entities in an entity cluster have the same meaning.
Usually, entity clusters are only used for evaluation.

To evaluate the sparsity problem, we design two
sets of experiments: the first is about different spar-
sity levels and the second is about few-shot and
zero-shot samples. For the first, we construct train
sets at different sparsity granularity {100%, 80%,
60%, 40%, 20%} by respectively removing {0%,
20%, 40%, 60%, 80%} of the links from original
train set. In this setup, we use the same original
data for validation and testing.

For the second, we evaluate on few- or zero-shot
samples separately, where few-shot refers to three-
, two- and one-shot. Few- or zero-shot entities
(relations) are extracted as per the definition in
§3, e.g., a three-shot entity has three links in the
test KG. For the test set of a few-shot (zero-shot)
entity (relation), its related triples are extracted
from original test set. For training here, we use
the 20% train set, because it is sparse enough to
contain more few-shot (zero-shot) samples.

5.2 Evaluation Metrics and Baselines

For a single test triple, we use Mention Ranking
(MR) (Gupta et al., 2019) as a metric, which is the

minimum ranking position of the answer entities.
For all test triples, we use three most widely used
ways to integrate the individual MR scores: (a)
H@N: proportion of MR scores not higher than NV,
(b) AR: average all MR scores, and (c) ARR: com-
pute the reciprocal of each MR score, and average
all reciprocals. A model with better performance
should have higher HQN, ARR and lower AR.

To show the effectiveness of our approach, we
compare TernaryCL against several strong base-
lines which fall in three groups:

* General: applies latest models for general KGs
to OpenKGs. It includes TransE (Bordes et al.,
2013), DistMult (Yang et al., 2015), ComplEx
(Trouillon et al., 2016), ConvE (Dettmers et al.,
2018), ConvTransE (Shang et al., 2019).

* OpenKG: comprises the baselines designed
specifically for OpenKGs. It includes CaRe-
TransE and CaReConvE (Gupta et al., 2019).

* OpenKG+LM: uses pretrained language mod-
els (LM) to improve the performance of the
above OpenKG models. It includes OKGIT+Bert
and OKGIT+Roberta (Chandrahas and Talukdar,
2021). To our knowledge, OKGIT is the state-of-
the-art for OpenKGs.

For our model TernaryCL, default fusion strategy
is Sg (ps), negative sampling strategy is Uniform,
and text encoder is BIGRU. Due to space limitation,
we provide details of the models, hyperparameters
and settings in the Appendix.

5.3 Results

Full-data evaluation. We present the full-data
results in Table 2, for which we use the origi-
nal train set (100%). We notice that TernaryCL
achieves substantial improvements in comparison
to the baselines. For ReVerb20K, it outperforms all
the baselines by a good margin across the metrics —

*In previous work, ARR and AR are called M RR, and
M R respectively, where M stands for Mean. However, since
Mention Ranking is abbreviated as M R, to prevent confusion,
we use Average in the names in stead of Mean.

ReVerb20K ReVerb45K
Type Model - - - -
AR|] ARR HQ@l HQ@I0 HQ@Q50 HQ100 AR|] ARR HQ@l HQI0 HQ50 HQ100

TransE 1497 133 2.2 29.6 43.0 49.2 2222 15.8 9.3 25.9 37.1 43.2
DistMult 4569 1.9 1.3 2.7 52 7.1 5782 8.5 7.7 9.7 12.0 13.6
General ComlEx 4376 2.0 14 3.0 5.6 7.7 5173 8.9 7.5 11.3 16.0 18.9
ConvE 1085 255 199 35.8 50.1 57.2 2483 22.1 16.6 324 433 479
ConvTransE 1080 26.1 20.5 35.9 50.0 57.1 2490 234 179 33.8 444 48.8
OpenKG CaReTransE 950 30.3 232 42.8 58.4 64.6 2414 195 7.8 37.5 47.5 514
P CaReConvE 801 31.6 25.6 429 56.7 63.4 1589 29.7 234 41.3 53.6 58.7
OpenKG OKGIT+Bert 524 35.1 275 49.5 65.9 72.7 735 33.7 26.7 47.1 59.8 65.2
+LM OKGIT+Rob 594 358 284 49.2 65.4 72.1 849 334 265 46.4 58.8 63.9
Our TernaryCL 421 38.1 299 53.3 68.5 75.2 744 332 25.6 48.1 61.9 67.7

Table 2: Link prediction results on ReVerb20K and ReVerb45K in the standard full data (100%) setup. Best scores are made
bold. Columns with | denote lower is better, otherwise higher is better.

ARR increases by 2.3 point and H@1,10,50,100 in-
crease by 1.5, 3.8, 2.6, 2.5 points respectively. For
ReVerb45K, its performance is better than General
and OpenKG baselines with sizeable improvements
in all metrics, notably 3.5 point in ARR and 2.2,
6.8, 8.3, 9.0 points in H@1,10,50,100. It also out-
performs OpenKG+LM baselines in all metrics for
ReVerb20K and most metrics for ReVerb45K.

Overall, TernaryCL with a simple structure can
achieve better performance through innovative
training methods at lower costs than OpenKG+LM
baselines that use a relatively complex structure
and large pretrained LMs which can be mem-
ory/compute intensive. This can make TernaryCL
a favorable choice against the baselines.

Targeted evaluation with sparsity. We now
evaluate whether TernaryCL can alleviate the spar-
sity problem from the perspective of different spar-
sity levels. Fig. 2 reports the results on the (orig-
inal) test set for different train sets with varying
sparsity level. We observe that TernaryCL achieves
the best scores at all sparsity levels on both datasets.
Taking ReVerb20K as an example, it gives im-
provements of 2.9, 4.8, 2.1 and 3.9 points over
OKGIT+Bert at 80%, 60%, 40%, 20%, respec-
tively. Note that OKGIT+Bert enhances learning
with large-scale pretrained LMs, which possess a
lot of commonsense and factual knowledge within
its huge parameter space by training on very large
data. In contrast, TernaryCL does not use any side
information or pretrained LMs, but gives signifi-
cant performance gains over OKGIT+Bert, even
when the sparsity level is high (e.g., 20%).

Targeted evaluation for few- and zero-shot. We
now analyze whether TernaryCL can alleviate spar-
sity on test sets with few- or zero-shot entities (or
relations). Table 3 shows the results on ReVerb20K.

55 50

—

[~e—our okGeL 25
{—¥— OKGIT+Bert

|—=— CaReConvE
|—=+— CaReTransE|

Score H@10 %
S S (5]
s & 3

w
&
Score H@10 %
w
&

[~e—our okGecL
[—v— OKGIT+Bert
|-=— CaReConvE
|—4— CaReTransE|

w
S

N
o

100% 80% 60% 40% 20%
Sparsity / ReVerb45K

100% 80% 60% 40% 20%
Sparsity / ReVerb20K

Figure 2: Link prediction results for different sparsity levels.

Type Metric CaRe CaRe OKGIT Ternary
TransE ConvE +Bert CL
AR 1215 2196 285 443
Ent | ARR 10.6 24.4 29.4 32.6
Few HaQl 1.2 19.6 222 25.3
Shot AR 2022 2663 1696 826
Rel | ARR 10.7 20.6 26.2 28.6
H@Ql 1.7 16.2 19.3 21.3
AR 3286 3304 3465 1461
Ent | ARR 7.3 14.2 20.1 20.9
Zero HQl 0.0 11.1 15.1 154
Shot AR 2071 2557 1775 887
Rel | ARR 10.4 22.3 27.4 30.1
H@Ql 2.2 18.1 20.7 234

Table 3: Results of few- and zero-shot entities (Ent) / relations
(Rel) on ReVerb20K. Models were trained on the 20% setup.

CaReTransE performs poorly in all metrics, es-
pecially, H@1 score is 0.0 for zero-shot entities.
CaReConvE performs better than CaReTransE on
ARR and H@1, but weaker on AR. OKGIT+Bert
achieves better results than CaReTransE and CaRe-
ConvE, which shows that pretrained knowledge
introduced by Bert could be helpful to few- and
zero-shot entities and relations. TernaryCL, with-
out using any pretrained LM or side information,
outperforms all baselines by a good margin. We
provide more results in the Appendix.

Visualization To qualitatively demonstrate that
TernaryCL can make entities with the same mean-
ing closer in the vector space, we show t-SNE
visualization (Van der Maaten and Hinton, 2008)
in Fig. 3. For this, we use the original train set

g 6 z
%7 g
331 1!
a4
5 44
1
» %
0 / &
1 3 7,7
3 3 7
1
494 25
(a) OKGIT+Bert (b) TernaryCL

Figure 3: Visualization on ReVerb20K, where same numbers
represent entities with the same meaning in an entity cluster.
Visualization on ReVerb20K is shown in the Appendix.

Model AR| ARR HQ@l HQI0 H@50 HQI100

Sa(pe) 486 361 284 509 656 717
) 481 365 284 523 664 728
Sp(pe) 440 363 281 517 666 726
(pr) 482 363 280 523 669 735
Si(p;) 459 371 286 533 680 739
SHp;) 421 381 299 533 685 752

ManyP 423 372 288 533 68.1 74.2
FewP 437 379 295 53.7 68.1 74.9

Table 4: Results for different fusion and negative sampling
strategies on ReVerb20K. Default Uniform.

(100%) and compare with the state-of-the-art base-
line OKGIT+Bert. For the visualization, we se-
lected 10 entity clusters, where each cluster has
more than three entities. We observe that embed-
dings of entities with the same meaning (same num-
ber) are closer in TernaryCL than in OKGIT+Bert.
These qualitative results are consistent with the
above quantitative results, which further verify the
effectiveness of TernaryCL.

5.4 Ablation Study and Analysis

Fusion strategy. The ablation results for the fu-
sion strategies (§4.5) are shown in Table 4, where
Sa(pe)s Sa(pr), Sp(pe), Sp(pr) use only one type
of 1-to-N, as denoted by the subscript of p, and
st (pf) and Sl{ (py) are our two fusion variants.
st (py) which fuses both 1-to-N types, outper-
forms its counterparts S, (p.) and S, (p,). We see
the same phenomenon with Sg (py), which outper-
forms Sy (pe) and Sy(py). This proves that both 1-
to-N types carry different semantic features, and in-
tegration of them can achieve better results. When
we compare our two variants, Sl{ (pf) show bet-
ter performance than SJ (p 7). Sl{ (py) contrasts a
positive sample with both negative entities and rela-
tions, which is able to highlight the discriminative
features of this positive sample.

Negative sampling strategy. Table 4 shows the
results for Sl{ (py) with ManyP, FewP sampling
methods (§4.2) in addition to the default (Uniform)

—#— ReVerb20K
—@— ReVerb45K

Score H@1 %
nN
N

T
s

J 1]
(0000) (00.10) (10,00) (10.10) (10,50) (50.10) (50.20) (50,50) (50,10,

Figure 4: Results of the number collocations of negative
entities and negative relations.

sampling method. We observe that Uniform strat-
egy, which gives each entity (relation) the same
selection probability, is able to better balance the
training times of entities and relations.

Number of negative entities and relations Fus-
ing negative entities and relations in strategy
SZ{ (py) has been proved effective above. Our as-
sumption is that the number of negative entities
and relations could also affect the performance of
TernaryCL. So, we design several collocations of
negative entities (left) and negative relations (right):
(00, 00), (00, 10), (10, 00), (10, 10), (10, 50), (50,
10), (50, 20), and (50, 50). We also include (50,10,-
s) which removes the Contrastive Self module.
The results in Fig. 4 reveal several findings: First,
TernaryCL achieves best results at (50,10) on both
datasets. Second, negative entities are more im-
portant than negative relations in improving perfor-
mance. For example, performance of (10, 00) is
better than that of (00, 10), and performance of (50,
10) is also better than that of (10, 50). Third, the
role of negative relations can be more stimulated
with the help of negative entities. For example
on ReVerb45K, performance of (00, 10) is worse
than that of (00, 00), while performance of (10,
10) is a little better than that of (10, 00). Finally,
Contrastive Self plays a great role in improving per-
formance. Compared with (50,10), performance of
(50,10,-s) decreases prominently when removing
Contrastive Self, especially on sparser ReVerb45K.

6 Conclusion

In this work, we have provided empirical insights
about the sparsity of OpenKGs, and proposed
TernaryCL to alleviate the sparsity with contrastive
entity, relation and self. Through extensive experi-
ments and comprehensive analysis on benchmarks,
we show that TernaryCL outperforms state-of-the-
art baselines by a good margin.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 2787-2795.

Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, and
Rainer Gemulla. 2020. Can we predict new facts
with open knowledge graph embeddings? A bench-
mark for open link prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL, Online, July 5-10, 2020,
pages 2296-2308.

Chandrahas and Partha P. Talukdar. 2021. OKGIT: open
knowledge graph link prediction with implicit types.
In Findings of the Association for Computational
Linguistics: ACL/IJCNLP, Online Event, August 1-
6, pages 2546-2559. Association for Computational
Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1724-1734. ACL.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 1811-1818.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
EMNLP, 27-31 July 2011, John McIntyre Conference
Centre, Edinburgh, UK, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL, pages 1535-1545.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. CoRR, abs/2104.08821.

Kiril Gashteovski, Sebastian Wanner, Sven Hertling,
Samuel Broscheit, and Rainer Gemulla. 2019.
OPIEC: an open information extraction corpus. In
Ist Conference on Automated Knowledge Base Con-
struction, AKBC, Amherst, MA, USA, May 20-22,
2019.

Swapnil Gupta, Sreyash Kenkre, and Partha P. Talukdar.
2019. Care: Open knowledge graph embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP, Hong Kong, China,
November 3-7, 2019, pages 378-388.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR 2006), 17-22 June 2006, New York, NY, USA,
pages 1735-1742. IEEE Computer Society.

Kaveh Hassani and Amir Hosein Khas Ahmadi. 2020.
Contrastive multi-view representation learning on
graphs. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 4116-4126.
PMLR.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 9726-9735. Computer Vi-
sion Foundation / IEEE.

Qian Li, Daling Wang, Shi Feng, Cheng Niu, and Yifei
Zhang. 2021. Global graph attention embedding net-
work for relation prediction in knowledge graphs.
IEEE Transactions on Neural Networks and Learn-
ing Systems.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA, pages 2181-2187.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
2925-2933.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen,
and Dinh Q. Phung. 2018. A novel embedding model
for knowledge base completion based on convolu-
tional neural network. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT, New Orleans,

Louisiana, USA, June 1-6, 2018, Volume 2 (Short
Papers), pages 327-333.

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong
He, and Bowen Zhou. 2019. End-to-end structure-
aware convolutional networks for knowledge base
completion. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 3060—
3067.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and
Jian Tang. 2020. Infograph: Unsupervised and
semi-supervised graph-level representation learning
via mutual information maximization. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33nd International Conference on Ma-
chine Learning, ICML, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 2071-2080.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Shikhar Vashishth, Prince Jain, and Partha P. Talukdar.
2018. CESI: canonicalizing open knowledge bases
using embeddings and side information. In Proceed-
ings of the 2018 World Wide Web Conference on
World Wide Web, WWW, Lyon, France, April 23-27,
2018, pages 1317-1327.

Petar Velickovic, William Fedus, William L. Hamil-
ton, Pietro Li0, Yoshua Bengio, and R. Devon Hjelm.
2019. Deep graph infomax. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Tiventy-
Eighth AAAI Conference on Artificial Intelligence,
July 27-31, 2014, Québec City, Québec, Canada,
pages 1112-1119.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In
3rd International Conference on Learning Represen-
tations, ICLR, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. 2021. Graph contrastive learning
with adaptive augmentation. In WWW °21: The Web
Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 2069-2080. ACM / IW3C2.

10

7 Appendix 9S(hyrt*) _ 9S(h,ritt)

or oh
7.1 Gradient Update

Gradients of Contrastive Entity Take the 85 (h,r,t)
Eq. (4) as an example, we give the detailed rea- G n
. . + - o so(hy)tt (gp(h,r)-t)
soning steps of gradient about h, r, 7, t7. = 8?(7 —log(e! ™=
Lp(hm)tj_)
a5 (h,rtt) +Z(h,r,tj_)e/\/e e 7))
T on Bty — plhr)
) e B(h,r,t T T
- m(log S ety e(g(n)/T)) 6<M) o(hor) (17)
2 (Bhrtt) () et
ah(T - 10g ZHE{peﬁ\/—e} e) e<M>+ > e(%
. + B(h,r,t _
%(M _ log(e(¥) (hort)ENe
B(h,rt7) (hr) 7
Aty _ elb) AL
+ Z(h,r,tj_)ej\/e e) A Z N €
8 g&(h r)-t"’ (w(h",">.t+) (h77‘7tj)E e
— (P pog(el
(so(hw)‘tj_)
+ Z(h,r,tj‘)ej\fe e)
—)t _98(h,rtt)
i (hor)-t5 o5
h,r T plh,T)t, M)t
QBB Sun s ()) o o)t LRI
T - T = (522 _og(el T 7
(h,r,tj)ENe 8tj_ T
(h,r)-t; @(h,r)-t,
<<p(h,:)»t+> ((P - J) %
¢ oy e 2 (it e lpeNe—(hrt;)} ©
(h,'r,tj YENe] o(h 'r)-tij
p(hr) T : () e(hur)
rooeT T ety p(hr) b
_) Oty e + L > o
(M) (M) (h"’"tj_)E{Pe/\/’e*(’lﬂ“aij_)}
e T + Z € T @(h,r)t,
. J
(hrt])ENe _ _wplhr) e(f)
T
(h,r)-t,”
S as)
J
(h,r,t;)e./\/e
- oyt o) b) Gradients of Contrastive Relation Take the
elh,r)tT S I . .
R =) Eq. (8) as an example, we give the detailed rea-
(horty JENe soning steps of gradient about h, ¢, 7™ and 7.
, @(h,r)ty
=2 Y e
(h,r,tj_)e./\/'E
(hr)t) _9S(hrtot)
- 3 e(—+)t7) oh N
= i _ 0 plhat)t (B
(hyryt;)ENE = ﬁ(T - og(e T
(14) e (h,r;)‘t)
+ Z(h,'rj_ HeN, ¢ 7)
(o _ (hrt)t
ga(h,r)»t+ pln,m 'tj - T - B
A= 6(7‘F) Z 6(T) (15) (kp(hﬂgf),t) o (hr)t (v(hmj)'t) (p/(h,’r;)t
(h,rt;)EN: e D D
: (h,rj A)ENT
Parameters of entity A can be updated from con- olhat)t p(hr)t
trastive with the gradient in Eq. (20): T (;:) N el
h,r. ,t)ENe
J
+1 _ 1l 38 (h,rtt) .
h™" =h' —n(=5r—) _ (it RAPRAS
' (h) (h,r)ty ="7B > e T -
(h,T,tj_)G./\/’e (16) l (‘/’(hﬁ“j_)'t) ‘pl(hﬂn;)t
(h,r) Pt B © T
AU e(—=)tj_ (hyr; HEN:
(hrt;)EN, (19)

11

= 5 (*

+Z hr H)EN, € T)))
_w(hr+)

- T

(M)w(h r > e<%) J

(h ’Tji ,t)G./\/T

+
)y

(glhrt)
(& T

(20)

S (h,rt)
ort
e(Bhrt /1)
}e<ﬂow/r>)

)
W(log D
)
ort

o)
or+

n€{pr,Nr

B(hyrt t) B(n)
(==

— IOg Zne{p“NT} 6(T
(ﬁ(h,r+,t))
—log(e' ™~
(B(h,r;,t)
+ Z h ’l‘ ENT T

7

)

(ﬁ(h,?"+ ,t)

.
Og(e(w(th)t)

Ryl)t
e(hyriT)

+Z hr ENT (T
<hr+> _
T +
SR o ()

(90(’””)t

ort

h,r.)t
e(h,rs)

)+ > el ™

<<P(hm+)-t
e T

— ‘Pl(h7T+)t (

2n

(p(h,7'+)-t <p(h,rj_).t
B=e""7) (22)

(hyry £)ENT

12

_9S(h,rtit)

8rj_
(h,r;)t
_ 9 (plhat)t (=
- 8,,.]—(T log(e
(D
2y DetpNo— (T 0} € 7
@(h, & o) t b
B e f) ¥ (h;—J)t
(v(h T)t (v(hwj_)-t)
¢ +§:h1~ DelprNr—(hry 0y T
_ ()t (Lh FRAS
- B e T
(23)

7.2 Hyperparameter and Setting

For TernaryCL TernaryCL is implemented
based on the PyTorch library with a single GeForce
RTX 2080 GPU. The number of parameters
is 18.06M for ReVerb20K and 33.63M for Re-
Verb45K. We run the model several times and re-
port the maximum of results. For the training set-
tings, the optimizer is set to Adam, the embedding
size is set to 300. The entity and relation embed-
dings are initialized randomly, and the word vectors
are initialized with the GloVe embeddings.

We tune our model with the grid search to select
the optimal hyper-parameters based on the perfor-
mance on the validation dataset. The list of hy-
perparameters are from two aspects: (1) Hyperpa-
rameters for Pretrain stage: learning rate € {1e-3,
le-4, 5e-5, le-5}, temperature regulation value €
{0.1, 0.05, 0.01}. (2) Hyperparameters for Fine-
tune stage: learning rate € {le-3, le-4, 8e-5, Se-5,
le-5}, batch size € {32, 64, 128, 256, 512}. The
results of hyperparameters are shown in Fig. 5. For
Pretrain stage, the optimal value of learning rate is
Se-5 on both datasets, where too large a learning
rate, such as 1E-3, may skip the optimal results.
And the optimal value of temperature regulation
value is 0.05 on both datasets. For Finetune stage,
the optimal value of learning rate is 5e-5 on both
datasets, where too small a learning rate, such as
1E-5, brings worse performance than too large a
learning rate, such as 1E-3. The optimal value of
batch size is 128 on both datasets, where TernaryCL
is not very sensitive to batch size, but too large a
batch size could have a negative impact.

For Baselines The results of baselines are repro-
duced with open source implementations. Con-
cretely, TransE, DistMult and ComplEx are repro-

ReVerb20K | [ReVerb4sK|

Score H@1 %

304
254
20
154
10

518

Score H@1 %

24!

22
1E-3 1E-4 5E-5 1E-5
Pretrain Learning Rate

0.1 0.05

Temperature

0.01

18-
1E-3 1E-4 8E-5 5E-5 1E-5
Finetune Learning Rate

254
20
154
104

5,

O,
32 64 128 256 512
Batch Size

Figure 5: Results of hyperparameters on ReVerb20K (upper) and ReVerb45K (Below).

Model AR|] ARR HQl1 HQ@10 HQ@50 H@I00
Bert-F 754 281 221 39.1 53.8 61.2
Bert-U 1315 237 187 332 459 51.8
BiGRU 421 381 299 533 68.5 75.2
Bert-F 1165 288 21.6 428 553 60.4
Bert-U 2131 180 125 289 413 46.6
BiGRU 744 332 256 481 61.9 67.7

Table 5: Results of Textual Technology on ReVerb20K
(upper) and ReVerb45K (below).

duced with public code in *. ConvE is reproduced
with public code in . The code for ConvTransE
is implemented by us and public in our code. We
use the grid search technique to select the opti-
mal values of hyperparameters for above baselines.
For OpenKG and OpenKG+Pretrained baselines,
CaReTransE, CaReConvE are reproduced with the
public code in 3, OKGIT+Bert and OKGIT+Rob
are reproduced with the public code in ®. The opti-
mal values of hyperparameters for this four base-
lines are consistent with that in their paper.

7.3 Textual Technology

Results of textual technologies to encoder se-
quences in §4.1: BiGRU and Bert, are shown in
Table 4, where Bert-F fixes the parameters of Bert,
Bert-U unfixes them. By observing the results, per-
formance of model with Bert as encoder is weaker
than that with BiGRU. Results of Bert with fixed
parameters are better than results with unfixed pa-
rameters. This shows that BIGRU is more capable
of capturing sequential information in KGs. State-

*https://github.com/uma-pil/kge
>https://github.com/malllabiisc/CaRE
®https://github.com/Chandrahasd/OKGIT

13

55 #a 33%62 H
A B &
1 J Q()ﬁ 7 7}777 3%
1:& 0'? $ ag P8
T A "
£ @44 2% 5_—,5 5
(a) OKGIT+Bert (b) TernaryCL

Figure 6: Visualization on ReVerb45K, where the same
numbers represent entities with the same meaning.

of-the-art baseline OKGIT also points out that pre-
trained language models can not predict the correct
entities on the top. It could be inadvisable to intro-
duce the pretrained language model into KGs due
to the difficulty of training and reproduction. The
intention of constructing a KG is to convert text
into structures for easy calculation, that is, KG it-
self is rich in world knowledge. So, our TernaryCL
pays attention to mining own structure features in
an effective way.

Model AR|] ARR HQl HQ@10 HQ@50 HQI00

Su(pe) 712 328 248 486 627 682
Sa(p,) 791 320 245 461 599 655
Si(p;) 712 331 253 485 623 680
Sy(pe) 806 330 251 480 622 67.6
So(p,) 752 315 235 469 605 66.0

ManyP 758 333 255 485 62.2 68.1
FewP 770 332 253 482 62.4 67.9

744 332 25.6 48.1 61.9 67.7

Table 6: Results of Fusion strategy and Negative Strat-
egy on ReVerb45K, where # represents Sg (py) and
Uniform.

‘ ‘ ReVerb20K ReVerb45K

Metric CaRe CaRe OKGIT Ternary | CaRe CaRe OKGIT Ternary
TransE ConvE +Bert CL TransE ConvE +Bert CL

Type

AR 1215 2196 285 443 2610 2739 644 988
ARR 10.6 24.4 29.4 32.6 12.6 19.2 23.5 23.5
Ha1 1.2 19.6 222 253 6.7 15.5 18.2 16.8

Ent | maio 25.6 33.1 43.1 46.8 214 26.2 33.7 35.8
H@50 41.4 449 61.1 65.0 309 33.8 48.1 50.1

Few H@100 | 475 50.9 68.4 72.2 35.6 38.2 55.0 56.8
Shot AR 2022 2663 1696 826 3323 3379 2211 1503
ARR 10.7 20.6 26.2 28.6 13.6 14.8 20.0 21.0
Ha@l 1.7 16.2 19.3 21.3 7.8 10.9 14.5 14.6

Rel | Fato 26.4 29.3 38.8 43.3 23.0 22.8 31.0 33.2
H@50 419 38.8 53.8 56.8 339 30.5 453 474
H@100 | 48.6 43.4 60.0 62.0 389 35.7 514 54.2

AR 3286 3304 3465 1461 5776 5662 4952 2720
ARR 1.3 14.2 20.1 20.9 10.2 4.3 7.9 12.7
Hal 0.0 11.1 15.1 154 8.8 3.0 54 9.3

Ent | Faio 20.9 20.8 29.8 31.2 12.4 6.6 12.5 19.1
H@S50 34.7 27.3 40.6 41.5 17.1 11.2 20.5 26.9

Zero H@100 | 395 30.2 44.5 45.1 19.8 13.6 253 31.7
Shot AR 2071 2557 1775 887 3368 3429 2349 1571
ARR 10.4 22.3 27.4 30.1 11.8 12.5 18.6 18.6
Ha1 2.2 18.1 20.7 234 6.4 8.8 13.2 12.5

Rel | a0 24.8 304 40.8 42.6 20.3 19.2 29.2 30.6
H@50 40.7 39.2 54.0 56.1 314 284 42.4 43.5
H@100 | 47.0 43.0 59.9 61.4 359 329 49.2 50.4

Table 7: Results of few-shot and zero-shot entities (Ent) / relations (Rel) on ReVerb20K and ReVerb45K.

15

