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Abstract

Sparsity of formal knowledge and roughness001
of non-ontological construction methods make002
sparsity problem particularly prominent in003
Open Knowledge Graphs (OpenKGs). Sparse004
links make few-shot entities unable to learn005
potential features. We hypothesize that nega-006
tive samples could help sparse links highlight007
discriminative features. However, existing con-008
trastive learning in Graphs model binary ob-009
jects, none has studied contrastive learning to010
model ternary pattern in any KGs. In this pa-011
per, we propose a Ternary Contrastive Learn-012
ing (TernaryCL) to alleviate the sparsity of013
OpenKGs. TernaryCL designs (1) Contrastive014
Entity and (2) Contrastive Relation to mine015
ternary discriminative features by both nega-016
tive entities and relations. (3) Contrastive Self017
constructs a self positive sample to give zero-018
shot and few-shot entities chances to learn dis-019
criminative features. (4) Contrastive Fusion020
aggregates graph features by extending the pat-021
tern from 1-to-1 to 1-to-N. Extensive experi-022
ments on benchmarks show the superiority of023
TernaryCL over state-of-the-art models.024

1 Introduction025

Knowledge Graphs (KGs) structure objective facts026

in the form of (“head entity”, “relation”, “tail en-027

tity”) triples. KGs can be of diverse types, such as028

CuratedKGs (Li et al., 2021) whose construction029

relies on specification of ontology schema, Com-030

monsenseKGs (Malaviya et al., 2020) whose enti-031

ties are free-form text, and OpenKGs (Chandrahas032

and Talukdar, 2021) which take noun phrases as033

entities and relation phrases as relations. Represen-034

tation learning (Bordes et al., 2013; Dettmers et al.,035

2018) of KGs aims to learn implicit embeddings of036

entities and relations, and has become an indispens-037

able step in the application of KGs to downstream038

tasks (Gupta et al., 2019; Broscheit et al., 2020).039

Because of sparsity of formal grammatical knowl-040

edge, a common challenge in representation learn-041

ing of KGs is the sparsity problem, where a large 042

portion of entities have few- or zero-shot links. 043

Our work in this paper concerns OpenKGs, 044

which are extracted from text corpora with OpenIE 045

tools (Fader et al., 2011; Gashteovski et al., 2019), 046

and generally they do not rely on specification of 047

ontology schema. Roughness of non-ontological 048

construction methods makes sparsity problem par- 049

ticularly prominent in OpenKGs. According to 050

our statistics of standard OpenKGs, the degree of 051

55% entities in ReVerb20K and 89% entities in 052

ReVerb45K is less than 3. Due to fewer training 053

chances caused by sparse links, few-shot and zero- 054

shot entities are not well trained, resulting in poor 055

generalization performance. Although existing rep- 056

resentation learning models have achieved promis- 057

ing performance (Dettmers et al., 2018; Gupta et al., 058

2019; Chandrahas and Talukdar, 2021), they do not 059

effectively tackle the sparsity problem. This mo- 060

tivates us to develop a more effective method to 061

alleviate the sparsity of OpenKGs. 062

Being popular in self-supervised representation 063

learning, contrastive learning aims to learn discrim- 064

inative features by introducing negative samples in 065

contrast with positive samples (He et al., 2020; 066

Gao et al., 2021; Zhu et al., 2021). These negative 067

samples can enrich the understanding of positive 068

samples in the form of a negative feedback. We hy- 069

pothesize that negative samples could help existing 070

sparse links to learn discriminative features. 071

In any KG, links imply ternary propagation pat- 072

terns, where entities propagate to multi-neighbor- 073

entities through multi-relations. However, tradi- 074

tional contrastive learning in Graphs (Velickovic 075

et al., 2019) only models binary objects. To the 076

best of our knowledge, none has studied contrastive 077

learning to study ternary patterns in KGs. 078

In this work, we propose a Ternary Contrastive 079

Learning (TernaryCL) framework to alleviate the 080

sparsity of OpenKGs. We explore four key ideas: 081

(1) Contrastive Entity to learn discriminative fea- 082
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(a) A Sub-OpenKG(b) Contrastive Entity

(d) Contrastive Self, where b.d shows its contrastive entities, c.d shows its contrastive relations.
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Figure 1: The overall framework of our proposed TernaryCL model for alleviating sparsity of OpenKGs. (a) A given subgraph
of an OpenKG. (b) Contrastive Entity generates negative entities (yellow) and contrasts them with a positive entity (blue). (c)
Contrastive Relation generates negative relations (yellow) and contrasts them with a positive relation (blue). (d) Contrastive Self
constructs a positive sample by adding a self relation (blue) to the entity (blue), generates negative entities (yellow) in (b.d) and
negative relations (yellow) in (c.d), and contrasts them with the self positive sample.

tures of different entities under the same (head083

entity, relation)-pair, which alleviates sparsity084

by considering negative entities (Fig. 1b). (2)085

Contrastive Relation to learn discriminative fea-086

tures of different relations under the same (head087

entity, tail entity)-pair, which alleviates the spar-088

sity by considering negative relations (Fig. 1c). (3)089

Contrastive Self to construct a positive sample by090

adding a self relation, then generate negative enti-091

ties and relations to contrast with the self positive092

sample, which gives zero-shot and few-shot enti-093

ties one or more chances to learn discriminative094

representations (Fig. 1d). (4) Contrastive Fusion095

to extend the ternary propagation pattern from the096

above 1-to-1 to 1-to-N: a head entity propagates097

to multiple tail entities through multiple relations.098

To gain insights into TernaryCL, we analyze the099

gradients it receives from the above components.100

TernaryCL can learn effective embeddings from101

the KG itself without relying on pretrained lan-102

guage models or side information. This low depen-103

dency makes it easy to apply to downstream tasks.104

Extensive evaluation of overall performance, spar-105

sity granularity, few- and zero-shot types and vi-106

sualizations show that TernaryCL can significantly107

outperform state-of-the-art baselines.108

In summary, our key contributions are:109

• To the best of our knowledge, this is the first110

work to introduce contrastive learning for repre-111

sentation learning over knowledge graphs.112

• We propose a ternary contrastive learning model113

to learn representations from complex propaga-114

tion patterns of OpenKGs. It subtly generates115

negative samples from the perspective of entities116

and relations, and uses contrastive learning to117

incorporate structural information. It does not 118

rely on external resources making it easy to scale 119

and to apply to downstream tasks. 120

• We present Contrastive Self to generate self pos- 121

itive samples, which solves the problem of learn- 122

ing for zero-shot entities. This gives zero-shot 123

or few-shot entities one or more chances to learn 124

discriminative representations. 125

• We perform extensive experiments to show the 126

superiority of our method over state-of-the-art 127

baselines. We release our code at ACLARRFeb. 128

2 Related Work 129

2.1 Open Knowledge Graphs (OpenKGs) 130

OpenKGs represent factual knowledge in struc- 131

tured forms, especifically, as triples of head- 132

relation-tail or (h, r, t). They are extracted with 133

OpenIE tools (Fader et al., 2011; Gashteovski et al., 134

2019), and generally do not rely on specification 135

of ontology. Although OpenKGs have the advan- 136

tage that they can be easily bootstrapped to new 137

domains, because of sparsity of formal grammat- 138

ical knowledge and roughness of non-ontological 139

construction, many relevant facts are often missing 140

from such OpenKGs, This makes them difficult 141

to be used effectively in downstream knowledge 142

related tasks (Chandrahas and Talukdar, 2021). 143

Representation learning of KGs devotes to learn- 144

ing informative features of entities and relations, 145

which can be used for other tasks such as pre- 146

dicting missing relations. General representation 147

learning models over focus on inducing structural 148

features with linear (Bordes et al., 2013), bilinear 149

(Wang et al., 2014; Lin et al., 2015), complex (Yang 150
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et al., 2015; Trouillon et al., 2016) or convolutional151

(Dettmers et al., 2018; Nguyen et al., 2018) opera-152

tions, while OpenKG-specific models enhance the153

embeddings with side information (Gupta et al.,154

2019) and pretrained language models (Chandra-155

has and Talukdar, 2021). However, these methods156

are still limited in alleviating the sparsity issue. We157

propose a contrastive learning method that is more158

effective and does not rely on external resources.159

2.2 Contrastive Learning160

Contrastive learning aims to learn effective repre-161

sentation by pulling semantically close neighbors162

together and pushing apart non-neighbors (Hadsell163

et al., 2006; Gao et al., 2021), which has achieved164

great success in vision (He et al., 2020), text (Gao165

et al., 2021) and graph (Zhu et al., 2021). A number166

of graph representation learning methods attempt to167

leverage a contrastive learning loss at node (Velick-168

ovic et al., 2019), graph (Sun et al., 2020) and169

multi-view levels (Hassani and Ahmadi, 2020; Zhu170

et al., 2021). However, traditional contrastive learn-171

ing in graphs (Velickovic et al., 2019) only model172

binary objects. In contrast, we propose contrastive173

learning to study ternary patterns in KGs.174

3 Preliminaries175

• Let G = (E , R) be an OpenKG and (h, r, t) be176

a triple in G, where h, t ∈ E represent head and tail177

entities, and r ∈ R represents the relation between178

them. Entities and relations are non-empty word179

sequences; wh = {wh,i}
|wh|
i=1 and wr = {wr,i}|wr|

i=1180

respectively represent word sequences of entity h181

and relation r. Representations of entities and rela-182

tions are denoted as E ∈ R|E|×D and R ∈ R|R|×D183

respectively, with D being embedding dimension.184

We will use h ∈ E and r ∈R to denote the embed-185

dings of entity h and relation r, respectively.186

• Link prediction of OpenKGs is the task of pre-187

dicting answer entities for two questions: (1) pre-188

dicting the tail Qt = (h, r, ?) and (2) predicting the189

head Qh = (?, r, t). For each such question, the190

possible true answer entities can be one or more,191

because there could be multiple entities with the192

same meaning but different surface textual forms193

in an OpenKG (Broscheit et al., 2020). For exam-194

ple, for question Qt = (“NBC-TV”, “has office in”,195

?), we expect all answers from the set of entities196

{“New York”, “NYC”, “New York City”}.197

• A zero-shot entity (relation) is an entity (rela-198

tion) without links in the KG. A few-shot entity199

(relation) is an entity (relation) with few links in 200

the KG, e.g. an one-shot entity has only one link. 201

A zero-shot (few-shot) triple is a triple that contain 202

at least one zero-shot (few-shot) entity or relation. 203

4 Proposed TernaryCL Model 204

The overall framework of TernaryCL for alleviat- 205

ing sparsity of OpenKGs is shown in Fig. 1. In the 206

following subsections, we first introduce a simple 207

Ternary Similarity function to compute a similar- 208

ity score for each (h, r, t) triple by considering 209

both textual and structural information (§4.1). We 210

present Contrastive Entity in §4.2 to learn embed- 211

dings of different entities with the same (h, r)-pair, 212

followed by Contrastive Relation in §4.3 to learn 213

embeddings of different relations with the same 214

(h, t)-pair. We describe Contrastive Self in §4.4 215

that constructs a positive sample (h, self, h+) and 216

contrasts it with negative samples to give zero- and 217

few-shot entities chances to learn discriminative 218

features. Contrastive Fusion in §4.5 extends propa- 219

gation patterns from the above 1-1 to 1-N. Finally, 220

the training procedure is described in §4.6. 221

4.1 Ternary Similarity 222

For a triple (h, r, t) ∈ G, word sequence of head 223

entity h is wh = {wh,i}
|wh|
i=1 , of relation r is wr = 224

{wr,i}|wr|
i=1 , and of tail entity t is wt = {wt,i}|wt|

i=1 . 225

We encode each of these sequences with a text 226

encoder (Enc) such as BiGRU (Cho et al., 2014) 227

and BERT (Devlin et al., 2019). 228

iw = Enc(wi) for wi ∈ {wh, wr, wt} (1) 229

This encoding yields the textual embeddings of h, 230

r and t as hw, rw, and tw, respectively.1 231

Then, we focus on exploiting potential connec- 232

tions between entities and relations. We use a two- 233

dimensional convolutional network (Dettmers et al., 234

2018) to learn potential connections between a head 235

entity h and a relation r as follows: 236

φ(h, r) = ρ
(
Linear(ρ(Conv2dω([ĥ; r̂])))

)
(2) 237

where ρ represents a ReLU activation, and ĥ and 238

r̂ denote a reshaping of [h + hw] and rw respec- 239

tively, with h ∈ E.2 Specifically, the reshaping 240

operation converts a vector v ∈ RD from one- 241

dimension to two-dimensions v ∈ RD1×D2 , where 242

1For BiGRU, we take the concatenation of last states in
the forward and backward directions as the sequence represen-
tation. For BERT, we take the [CLS] representation.

2For relations, adding r ∈ R with the textual embedding
rw worsen the performance.
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D = D1 ∗ D2, and [ĥ; r̂] ∈ R(D1∗2)×D2 repre-243

sents the concatenation of the reshaped embeddings244

of ĥ and r̂. The Conv2dω symbol denotes a two-245

dimensional convolutional layer with filters ω. This246

layer returns a feature map tensor C ∈ RC1×C2×C3 ,247

where C1 is the number of feature maps of dimen-248

sions C2 × C3. C is then reshaped into RC1∗C2∗C3 ,249

and projected to RD with a Linear layer. Through250

the convolution module, potential embeddings of251

entity h and relation r are jointly encapsulated.252

Finally, we compute a similarity score for each253

triple (h, r, t) with a dot product similarity function:254

255
β(h, r, t) = φ(h, r) · t (3)256

where t ∈ E. When predicting the head h based257

on pair (r, t), we reverse the relation by adding a258

special symbol, and obtain a new triple (t, rrev, h).259

The similarity score for (t, rrev, h) is computed in a260

similar fashion as above following Eq. (2)-Eq. (3).261

4.2 Contrastive Entity262

Contrastive Entity (Fig. 1b) alleviates sparsity of263

OpenKGs from the perspective of nagative entities,264

and induces discriminative features of different en-265

tities with the same (h, r)-pair . The contrastive266

score for a triplet pe = (h, r, t+) is:267

S(h, r, t+) = − log
e(β(h,r,t

+)/τ)∑
n∈{pe,Ne} e

(β(n)/τ)
(4)268

where τ is a temperature hyperparameter, β(.)269

is the similarity score as in Eq. (3), and pe =270

(h, r, t+) is a true triple in the OpenKG. Ne =271

{(h, r, t−j )}
|Ne|
j=1 is a set of negative samples, where272

a negative entity t−j is selected strategically from273

an entity list defined by: E − E(h, r) with E(h, r)274

being the entity list of true answers (tail entities),275

that is, ti ∈ E(h, r) if the triple (h, r, ti) ∈ G.276

To analyse how this contrastive loss affects the277

learning, we perform gradient analysis. The gra-278

dient that the head entities get (−∂S(h,r,t+)
∂h ) is as279

follows (see Appendix for a derivation):280

φ′(h, r)

τA

([ ∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)]t+ −
∑

(h,r,t−j )∈Ne

[e(
φ(h,r)·t−

j
τ

)t−j ]
)

(5)

281

where A is a normalization constant. This is con-282

sistent with our assumption, where positive entity283

t+ gives positive feedback while negative entities284

t−j give negative feedback. The Gradient for a rela-285

tions r has a similar form as Eq. (5).286

Similarly, we can derive the gradients for the287

positive t+ and negative tail entities t−j as:288

−∂S(h, r, t+)

∂t+
=

φ(h, r)

τA

∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)
(6) 289

290
−∂S(h, r, t+)

∂t−j
= −φ(h, r)

τA
e(

φ(h,r)·t−
j

τ
) (7) 291

For a few-shot entity t, when it appears as a posi- 292

tive (Eq. (6)) or negative (Eq. (7)) sample headed 293

by entity h of high degree, it gets sufficient gradi- 294

ents to learn informative representations. Similarly, 295

through Eq. (7), the parameters of a zero-shot entity 296

get updated when it appears as a negative sample 297

with a (h, r)-pair. As discussed later in §4.4, with 298

Contrastive Self, zero-shot entities get updated with 299

their own contrastive losses. Overall, through the 300

negative samples, training of few-shot, zero-shot 301

and other entities (with many links) gets more bal- 302

anced, while with existing approaches, zero-shot 303

entities generally do not get trained as they are 304

disconnected from the rest of the OpenKG. 305

Negative sampling strategy For sampling nega- 306

tive entities, we calculate the degree of each entity 307

in the OpenKG, and normalize them into [0, 1] to 308

get a degree distribution, Pdeg. We design three neg- 309

ative sampling strategies based on Pdeg. (a) ManyP 310

gives higher chances to entities with many links by 311

sampling directly from Pdeg with the hope to trans- 312

fer sufficient knowledge to other entities. (b) FewP 313

gives higher chances to few- or zero-shot entities 314

by sampling from (1−Pdeg), so as to increase their 315

exposure to get more training updates. (c) Uniform 316

samples uniformly without considering the degree. 317

4.3 Contrastive Relation 318

Entities in a KG propagate information to neigh- 319

boring entities through one or more relations, so 320

the features of relations are as important as that of 321

entities. Contrastive Relation (Fig. 1c) alleviates 322

the sparsity from the perspective of negative rela- 323

tions, and captures potential features of different 324

relations with the same (h, t)-pair. The contrastive 325

score for a positive relation pr = (h, r+, t) is: 326

S(h, r+, t) = − log
e(β(h,r

+,t)/τ)∑
n∈{pr,Nr} e

(β(n)/τ)
(8) 327

where pr is a true triple in the OpenKG, and 328

Nr = {(h, r−j , t)}
|Nr|
j=1 is a set of negative sam- 329

ples, where negative relation r−j is sampled strate- 330

gically from a relation list R−R(h, t) with R(h, t) 331

being a relation list that satisfies the condition: 332

ri ∈ R(h, t) if the triple (h, ri, t) ∈ G. The gradi- 333

ents have the same form as above (see Appendix). 334

In particular, the gradients that a tail entity gets is: 335
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−∂S(h, r+, t)

∂t
=

1

τB

([ ∑
(h,r−j ,t)∈Nr

e(
φ(h,r

−
j

)·t
τ

)]φ(h, r+)
−

∑
(h,r−j ,t)∈Nr

[e(
φ(h,r

−
j

)·t
τ

)φ(h, r−j )]
) (9)336

Different from Eq. (6), tail entities (t = t+) get337

contrastive gradients, because the signals from the338

positive (r+) and negative (r−j ) samples are in op-339

posite direction in Eq. (9). We follow the same340

ManyP, FewP and Uniform sampling strategies as341

in §4.2 for sampling a negative relation.342

4.4 Contrastive Self343

As described in §4.2 and §4.3, parameters of a344

few-shot entity get updated with contrastive gradi-345

ents when it acts as a head (Eq. (5)) or tail en-346

tity (Eq. (9)). Parameters of a zero-shot entity347

are also updated when it appears as a negative348

entity (Eq. (7)), but not from the perspective of349

contrastive. This means zero-shot entities have no350

chance to learn discriminative representations, be-351

cause they have no links with the rest of OpenKG.352

In view of this, we propose to construct a pos-353

itive sample ps = (h, self, h+) by adding a Self354

relation (Fig. 1d), where h and h+ are the same355

entity but with different embeddings: the embed-356

ding of h is [h+ hw] and the embedding of h+ is357

h ∈ E. For such a positive sample, negative sam-358

ples Ne = {(h, self, h−j )}
|Ne|
j=1 are generated with359

negative entities by selecting h−j strategically from360

an entity list E − h (Fig. 1b.d). Similarly, negative361

relation samples Nr = {(h, self−j , h
+)}|Nr|

j=1 are362

generated with negative relations by selecting self−j363

strategically from a relation list R−self (Fig. 1c.d).364

The contrastive scores for ps = (h, self, h+) can365

then be computed with Eq. (4) and Eq. (8).366

Through the Self positive sample, parameters of367

zero-shot entities can have the chances to be up-368

dated from the contrastive perspective (Eqs. (5)369

and (9)), where h+, r+ give positive feedback370

while h−j , r
−
j give negative feedback.371

4.5 Contrastive Fusion372

The contrastive learning of the above modules has373

the form of 1-to-1, where a head entity propagates374

information to a tail entity through a relation, i.e.,375

it involves only one positive sample. However,376

a head entity can connect to multiple tail entities377

through multiple relations. To model this multi-378

propagation pattern, we extend the 1-to-1 to 1-to-N,379

where multiple positive samples are considered.380

There are two types of 1-to-N pattern: pe = 381

{(h, r, t+j )}
|pe|
j=1 where a head entity h connects to 382

multiple tail entities through a relation r, and pr = 383

{(h, r+j , t)}
|pr|
j=1 where a head entity h connects to a 384

tail entity t through multiple relations. We generate 385

negative samples Ne = {(h, r, t−j )}
|Ne|
j=1 for pe as in 386

§4.2, and negative samples Nr = {(h, r−j , t)}
|Nr|
j=1 387

for pr as in §4.3. Let pf = {pe, pr} and Nf = 388

{Ne,Nr}. With this, we design two types of con- 389

trastive scores to learn 1-to-N features. 390

Sf
a (pf ) = − log

∑
n+∈pf

e(β(n
+)/τ)∑

n−∈{pf ,Nf} e
(β(n−)/τ)

(10) 391

392
Sf
b (pf ) = −

∑
n+∈pf

log
e(β(n

+)/τ)∑
n−∈{n+,Nf} e

(β(n−)/τ)
(11) 393

In Eq. (10), all positive samples are trained together 394

and normalized to a unified space, while in Eq. (11), 395

different positive samples are trained separately 396

and the independent similarity score of all posi- 397

tives are accumulated. From the perspective of 398

negative samples, negative entity Ne and relation 399

Nr samples are merged to train with the positive 400

samples, which is different from Eq. (4) and Eq. (8) 401

which only have one type of negatives. 402

4.6 Training Procedure 403

We train TernaryCL in Pretrain and Finetune stages, 404

where Pretrain stage aims to learn discriminative 405

representations with Eq. (10) or Eq. (11), and Fine- 406

tune stage aims to optimize parameters for a target 407

task. Note that TernaryCL is a general framework 408

that can be applied to diverse KG types, such as 409

OpenKGs, CuratedKGs and TemporalKGs, and to 410

diverse applications, such as link prediction, re- 411

lation prediction, node classification, relation ex- 412

traction and other ternary tasks. In addition, the 413

principle of Contrastive Self can be applied to dy- 414

namic tasks, e.g., when a new entity gets added to a 415

KG, it can transfer embeddings of existing entities 416

to the new entity. Since our focus in this work is 417

the sparsity of OpenKGs, we design experiments 418

with link prediction task in OpenKGs. 419

For a test triple (hi, ri, ti), the jointly encapsu- 420

lated representation φ(hi, ri) of entity hi and rela- 421

tion ri is matched with the embeddings of all the 422

entities in E to predict Ŷi ∈ [0, 1]|E| as: 423

Ŷi = sigmoid(φ(hi, ri) ·E⊤) (12) 424

We use a binary cross-entropy loss defined as: 425

− 1

|E|

|E|∑
j=1

(Yi,j log Ŷi,j + (1− Yi,j) log(1− Ŷi,j)) (13) 426
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Dataset Ent Rel Clust Valid Test
Train Few-Shot Zero-Shot

100% 80% 60% 40% 20% Ent Rel Ent Rel

ReVerb20K 11.1 11.1 10.8 1.6 2.4 15.5 12.4 9.3 6.2 3.1 2.8 / 1.0 2.5 / 0.8 8.1 / 1.1 8.5 / 1.0
ReVerb45K 27.0 21.6 18.6 3.6 5.4 36.0 28.8 21.6 14.4 7.2 7.7 / 1.8 5.1 / 1.5 18.8 / 2.5 16.4 / 1.8

Table 1: Dataset statistics. Ent, Rel, Clust show the number of entities, relations, entity clusters. Valid, Test, Train show the
number of triples in valid, test, train sets, respectively. In Train, x% represents different sparsity levels. In Few- and Zero-Shot,
left of / respresents the number of entities or relations, and right of / represents the number of related triples in its Test set.

where Yi,j = 1 if tj ∈ E(hi, ri) otherwise Yi,j = 0427

with E(h, r) being the set of all true tail entities for428

a pair (h, r). As mentioned earlier, when predicting429

the head hi based on a pair (ri, ti), we reverse the430

relation to obtain a reversed triple (t, rrev, h), then431

train it with Eqs. (12) and (13).432

5 Experiments433

5.1 Datasets and Experiment Setup434

We use ReVerb20K and ReVerb45K OpenKG435

benchmarks (Vashishth et al., 2018), which are436

constructed through ReVerb (Fader et al., 2011).437

Table 1 presents the statistics about datasets. Re-438

Verb45K with 27.0K entities and 21.6K relations439

is larger and sparser than ReVerb20K with 11.1K440

entities and 11.1K relations. Entity clusters, gold441

canonicalization clusters, are extracted through the442

Freebase entity linking tools (Gupta et al., 2019).443

Entities in an entity cluster have the same meaning.444

Usually, entity clusters are only used for evaluation.445

To evaluate the sparsity problem, we design two446

sets of experiments: the first is about different spar-447

sity levels and the second is about few-shot and448

zero-shot samples. For the first, we construct train449

sets at different sparsity granularity {100%, 80%,450

60%, 40%, 20%} by respectively removing {0%,451

20%, 40%, 60%, 80%} of the links from original452

train set. In this setup, we use the same original453

data for validation and testing.454

For the second, we evaluate on few- or zero-shot455

samples separately, where few-shot refers to three-456

, two- and one-shot. Few- or zero-shot entities457

(relations) are extracted as per the definition in458

§3, e.g., a three-shot entity has three links in the459

test KG. For the test set of a few-shot (zero-shot)460

entity (relation), its related triples are extracted461

from original test set. For training here, we use462

the 20% train set, because it is sparse enough to463

contain more few-shot (zero-shot) samples.464

5.2 Evaluation Metrics and Baselines465

For a single test triple, we use Mention Ranking466

(MR) (Gupta et al., 2019) as a metric, which is the467

minimum ranking position of the answer entities. 468

For all test triples, we use three most widely used 469

ways to integrate the individual MR scores: (a) 470

H@N: proportion of MR scores not higher than N , 471

(b) AR: average all MR scores, and (c) ARR: com- 472

pute the reciprocal of each MR score, and average 473

all reciprocals. A model with better performance 474

should have higher H@N , ARR and lower AR.3 475

To show the effectiveness of our approach, we 476

compare TernaryCL against several strong base- 477

lines which fall in three groups: 478

• General: applies latest models for general KGs 479

to OpenKGs. It includes TransE (Bordes et al., 480

2013), DistMult (Yang et al., 2015), ComplEx 481

(Trouillon et al., 2016), ConvE (Dettmers et al., 482

2018), ConvTransE (Shang et al., 2019). 483

• OpenKG: comprises the baselines designed 484

specifically for OpenKGs. It includes CaRe- 485

TransE and CaReConvE (Gupta et al., 2019). 486

• OpenKG+LM: uses pretrained language mod- 487

els (LM) to improve the performance of the 488

above OpenKG models. It includes OKGIT+Bert 489

and OKGIT+Roberta (Chandrahas and Talukdar, 490

2021). To our knowledge, OKGIT is the state-of- 491

the-art for OpenKGs. 492

For our model TernaryCL, default fusion strategy 493

is Sf
b (pf ), negative sampling strategy is Uniform, 494

and text encoder is BiGRU. Due to space limitation, 495

we provide details of the models, hyperparameters 496

and settings in the Appendix. 497

5.3 Results 498

Full-data evaluation. We present the full-data 499

results in Table 2, for which we use the origi- 500

nal train set (100%). We notice that TernaryCL 501

achieves substantial improvements in comparison 502

to the baselines. For ReVerb20K, it outperforms all 503

the baselines by a good margin across the metrics – 504

3In previous work, ARR and AR are called MRR, and
MR respectively, where M stands for Mean. However, since
Mention Ranking is abbreviated as MR, to prevent confusion,
we use Average in the names in stead of Mean.
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Type Model
ReVerb20K ReVerb45K

AR ↓ ARR H@1 H@10 H@50 H@100 AR ↓ ARR H@1 H@10 H@50 H@100

TransE 1497 13.3 2.2 29.6 43.0 49.2 2222 15.8 9.3 25.9 37.1 43.2
DistMult 4569 1.9 1.3 2.7 5.2 7.1 5782 8.5 7.7 9.7 12.0 13.6

General ComlEx 4376 2.0 1.4 3.0 5.6 7.7 5173 8.9 7.5 11.3 16.0 18.9
ConvE 1085 25.5 19.9 35.8 50.1 57.2 2483 22.1 16.6 32.4 43.3 47.9
ConvTransE 1080 26.1 20.5 35.9 50.0 57.1 2490 23.4 17.9 33.8 44.4 48.8

OpenKG
CaReTransE 950 30.3 23.2 42.8 58.4 64.6 2414 19.5 7.8 37.5 47.5 51.4
CaReConvE 801 31.6 25.6 42.9 56.7 63.4 1589 29.7 23.4 41.3 53.6 58.7

OpenKG OKGIT+Bert 524 35.1 27.5 49.5 65.9 72.7 735 33.7 26.7 47.1 59.8 65.2
+LM OKGIT+Rob 594 35.8 28.4 49.2 65.4 72.1 849 33.4 26.5 46.4 58.8 63.9

Our TernaryCL 421 38.1 29.9 53.3 68.5 75.2 744 33.2 25.6 48.1 61.9 67.7

Table 2: Link prediction results on ReVerb20K and ReVerb45K in the standard full data (100%) setup. Best scores are made
bold. Columns with ↓ denote lower is better, otherwise higher is better.

ARR increases by 2.3 point and H@1,10,50,100 in-505

crease by 1.5, 3.8, 2.6, 2.5 points respectively. For506

ReVerb45K, its performance is better than General507

and OpenKG baselines with sizeable improvements508

in all metrics, notably 3.5 point in ARR and 2.2,509

6.8, 8.3, 9.0 points in H@1,10,50,100. It also out-510

performs OpenKG+LM baselines in all metrics for511

ReVerb20K and most metrics for ReVerb45K.512

Overall, TernaryCL with a simple structure can513

achieve better performance through innovative514

training methods at lower costs than OpenKG+LM515

baselines that use a relatively complex structure516

and large pretrained LMs which can be mem-517

ory/compute intensive. This can make TernaryCL518

a favorable choice against the baselines.519

Targeted evaluation with sparsity. We now520

evaluate whether TernaryCL can alleviate the spar-521

sity problem from the perspective of different spar-522

sity levels. Fig. 2 reports the results on the (orig-523

inal) test set for different train sets with varying524

sparsity level. We observe that TernaryCL achieves525

the best scores at all sparsity levels on both datasets.526

Taking ReVerb20K as an example, it gives im-527

provements of 2.9, 4.8, 2.1 and 3.9 points over528

OKGIT+Bert at 80%, 60%, 40%, 20%, respec-529

tively. Note that OKGIT+Bert enhances learning530

with large-scale pretrained LMs, which possess a531

lot of commonsense and factual knowledge within532

its huge parameter space by training on very large533

data. In contrast, TernaryCL does not use any side534

information or pretrained LMs, but gives signifi-535

cant performance gains over OKGIT+Bert, even536

when the sparsity level is high (e.g., 20%).537

Targeted evaluation for few- and zero-shot. We538

now analyze whether TernaryCL can alleviate spar-539

sity on test sets with few- or zero-shot entities (or540

relations). Table 3 shows the results on ReVerb20K.541
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Figure 2: Link prediction results for different sparsity levels.

Type Metric
CaRe CaRe OKGIT Ternary

TransE ConvE +Bert CL

Ent
AR 1215 2196 285 443
ARR 10.6 24.4 29.4 32.6

Few H@1 1.2 19.6 22.2 25.3

Shot
Rel

AR 2022 2663 1696 826
ARR 10.7 20.6 26.2 28.6
H@1 1.7 16.2 19.3 21.3

Ent
AR 3286 3304 3465 1461
ARR 7.3 14.2 20.1 20.9

Zero H@1 0.0 11.1 15.1 15.4

Shot
Rel

AR 2071 2557 1775 887
ARR 10.4 22.3 27.4 30.1
H@1 2.2 18.1 20.7 23.4

Table 3: Results of few- and zero-shot entities (Ent) / relations
(Rel) on ReVerb20K. Models were trained on the 20% setup.

CaReTransE performs poorly in all metrics, es- 542

pecially, H@1 score is 0.0 for zero-shot entities. 543

CaReConvE performs better than CaReTransE on 544

ARR and H@1, but weaker on AR. OKGIT+Bert 545

achieves better results than CaReTransE and CaRe- 546

ConvE, which shows that pretrained knowledge 547

introduced by Bert could be helpful to few- and 548

zero-shot entities and relations. TernaryCL, with- 549

out using any pretrained LM or side information, 550

outperforms all baselines by a good margin. We 551

provide more results in the Appendix. 552

Visualization To qualitatively demonstrate that 553

TernaryCL can make entities with the same mean- 554

ing closer in the vector space, we show t-SNE 555

visualization (Van der Maaten and Hinton, 2008) 556

in Fig. 3. For this, we use the original train set 557
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ReVerb20K 

 

    
           (a) OKGIT+Bert                    (b) TernaryCL 
 
 
 
ReVerb45K 
 

    
        (a) OKGIT+Bert                    (b) TernaryCLxv 

Figure 3: Visualization on ReVerb20K, where same numbers
represent entities with the same meaning in an entity cluster.
Visualization on ReVerb20K is shown in the Appendix.

Model AR ↓ ARR H@1 H@10 H@50 H@100
Sa(pe) 486 36.1 28.4 50.9 65.6 71.7
Sa(pr) 481 36.5 28.4 52.3 66.4 72.8
Sb(pe) 440 36.3 28.1 51.7 66.6 72.6
Sb(pr) 482 36.3 28.0 52.3 66.9 73.5
Sf
a (pf ) 459 37.1 28.6 53.3 68.0 73.9

Sf
b (pf ) 421 38.1 29.9 53.3 68.5 75.2
ManyP 423 37.2 28.8 53.3 68.1 74.2
FewP 437 37.9 29.5 53.7 68.1 74.9

Table 4: Results for different fusion and negative sampling
strategies on ReVerb20K. Default Uniform.

(100%) and compare with the state-of-the-art base-558

line OKGIT+Bert. For the visualization, we se-559

lected 10 entity clusters, where each cluster has560

more than three entities. We observe that embed-561

dings of entities with the same meaning (same num-562

ber) are closer in TernaryCL than in OKGIT+Bert.563

These qualitative results are consistent with the564

above quantitative results, which further verify the565

effectiveness of TernaryCL.566

5.4 Ablation Study and Analysis567

Fusion strategy. The ablation results for the fu-568

sion strategies (§4.5) are shown in Table 4, where569

Sa(pe), Sa(pr), Sb(pe), Sb(pr) use only one type570

of 1-to-N, as denoted by the subscript of p, and571

Sf
a (pf ) and Sf

b (pf ) are our two fusion variants.572

Sf
a (pf ) which fuses both 1-to-N types, outper-573

forms its counterparts Sa(pe) and Sa(pr). We see574

the same phenomenon with Sf
b (pf ), which outper-575

forms Sb(pe) and Sb(pr). This proves that both 1-576

to-N types carry different semantic features, and in-577

tegration of them can achieve better results. When578

we compare our two variants, Sf
b (pf ) show bet-579

ter performance than Sf
a (pf ). S

f
b (pf ) contrasts a580

positive sample with both negative entities and rela-581

tions, which is able to highlight the discriminative582

features of this positive sample.583

Negative sampling strategy. Table 4 shows the584

results for Sf
b (pf ) with ManyP, FewP sampling585

methods (§4.2) in addition to the default (Uniform)586

( 0 0 , 0 0 ) ( 0 0 , 1 0 ) ( 1 0 , 0 0 ) ( 1 0 , 1 0 ) ( 1 0 , 5 0 ) ( 5 0 , 1 0 ) ( 5 0 , 2 0 ) ( 5 0 , 5 0 ) ( 5 0 , 1 0 , - s )
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2 8

2 9

3 0

Sco
re H

@1
 %
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 R e V e r b 4 5 K

Figure 4: Results of the number collocations of negative
entities and negative relations.

sampling method. We observe that Uniform strat- 587

egy, which gives each entity (relation) the same 588

selection probability, is able to better balance the 589

training times of entities and relations. 590

Number of negative entities and relations Fus- 591

ing negative entities and relations in strategy 592

Sf
b (pf ) has been proved effective above. Our as- 593

sumption is that the number of negative entities 594

and relations could also affect the performance of 595

TernaryCL. So, we design several collocations of 596

negative entities (left) and negative relations (right): 597

(00, 00), (00, 10), (10, 00), (10, 10), (10, 50), (50, 598

10), (50, 20), and (50, 50). We also include (50,10,- 599

s) which removes the Contrastive Self module. 600

The results in Fig. 4 reveal several findings: First, 601

TernaryCL achieves best results at (50,10) on both 602

datasets. Second, negative entities are more im- 603

portant than negative relations in improving perfor- 604

mance. For example, performance of (10, 00) is 605

better than that of (00, 10), and performance of (50, 606

10) is also better than that of (10, 50). Third, the 607

role of negative relations can be more stimulated 608

with the help of negative entities. For example 609

on ReVerb45K, performance of (00, 10) is worse 610

than that of (00, 00), while performance of (10, 611

10) is a little better than that of (10, 00). Finally, 612

Contrastive Self plays a great role in improving per- 613

formance. Compared with (50,10), performance of 614

(50,10,-s) decreases prominently when removing 615

Contrastive Self, especially on sparser ReVerb45K. 616

6 Conclusion 617

In this work, we have provided empirical insights 618

about the sparsity of OpenKGs, and proposed 619

TernaryCL to alleviate the sparsity with contrastive 620

entity, relation and self. Through extensive experi- 621

ments and comprehensive analysis on benchmarks, 622

we show that TernaryCL outperforms state-of-the- 623

art baselines by a good margin. 624
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7 Appendix795

7.1 Gradient Update796

Gradients of Contrastive Entity Take the797

Eq. (4) as an example, we give the detailed rea-798

soning steps of gradient about h, r, t+, t−.799

−∂S(h,r,t+)
∂h

= ∂
∂h(log

e(β(h,r,t
+)/τ)∑

n∈{pe,Ne} e(β(n)/τ) )

= ∂
∂h(

β(h,r,t+)
τ − log

∑
n∈{pe,Ne} e

(
β(n)
τ

))

= ∂
∂h(

β(h,r,t+)
τ − log(e(

β(h,r,t+)
τ

)

+
∑

(h,r,t−j )∈Ne
e(

β(h,r,t−
j

)

τ
)))

= ∂
∂h(

φ(h,r)·t+
τ − log(e(

φ(h,r)·t+
τ

)

+
∑

(h,r,t−j )∈Ne
e(

φ(h,r)·t−
j

τ
)))

= φ′(h,r)
τ t+−

e(
φ(h,r)·t+

τ ) φ′(h,r)
τ

t++
∑

(h,r,t−
j

)∈Ne

e(
φ(h,r)·t−

j
τ ) φ′(h,r)

τ
t−j

e(
φ(h,r)·t+

τ )+
∑

(h,r,t−
j

)∈Ne

e(
φ(h,r)·t−

j
τ )

= φ′(h,r)
τ (

∑
(h,r,t−

j
)∈Ne

e(
φ(h,r)·t−

j
τ )

e(
φ(h,r)·t+

τ )+
∑

(h,r,t−
j

)∈Ne

e(
φ(h,r)·t−

j
τ )

t+

−

∑
(h,r,t−

j
)∈Ne

e(
φ(h,r)·t−

j
τ )t−j

e(
φ(h,r)·t+

τ )+
∑

(h,r,t−
j

)∈Ne

e(
φ(h,r)·t−

j
τ )

)

= φ′(h,r)
τA (

∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)t+

−
∑

(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)t−j )

(14)800

A = e(
φ(h,r)·t+

τ
) +

∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

) (15)801

Parameters of entity h can be updated from con-802

trastive with the gradient in Eq. (20):803

hl+1 = hl − η(∂S(h,r,t
+)

∂h )

= hl + φ′(h,r)η
τA

∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)t+

−φ′(h,r)η
τA

∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)t−j

(16)804

∂S(h,r,t+)
∂r = ∂S(h,r,t+)

∂h 805

−∂S(h,r,t+)
∂t+

= ∂
∂t+

(φ(h,r)·t
+

τ − log(e(
φ(h,r)·t+

τ
)

+
∑

(h,r,t−j )∈Ne
e(

φ(h,r)·t−
j

τ
)))

= φ(h,r)
τ −

e(
φ(h,r)·t+

τ ) φ(h,r)
τ

e(
φ(h,r)·t+

τ )+
∑

(h,r,t−
j

)∈Ne

e(
φ(h,r)·t−

j
τ )

= φ(h,r)
τA

∑
(h,r,t−j )∈Ne

e(
φ(h,r)·t−

j
τ

)

(17) 806

−∂S(h,r,t+)

∂t−j

= ∂
∂t−j

(φ(h,r)·t
+

τ − log(e(
φ(h,r)·t−

j
τ

)

+
∑

(h,r,t−j )∈{peNe−(h,r,t−j )} e
(
φ(h,r)·t−

j
τ

)))

=
−e(

φ(h,r)·t−
j

τ ) φ(h,r)
τ

e(
φ(h,r)·t−

j
τ )+

∑
(h,r,t−

j
)∈{peNe−(h,r,t−

j
)}

e(
φ(h,r)·t−

j
τ )

= −φ(h,r)
τA e(

φ(h,r)·t−
j

τ
)

(18) 807

Gradients of Contrastive Relation Take the 808

Eq. (8) as an example, we give the detailed rea- 809

soning steps of gradient about h, t, r+ and r−. 810

−∂S(h,r+,t)
∂h

= ∂
∂h(

φ(h,r+)·t
τ − log(e(

φ(h,r+)·t
τ

)

+
∑

(h,r−j ,t)∈Nr
e(

φ(h,r−
j

)·t
τ

)))

= φ′(h,r+)t
τ −

e(
φ(h,r+)·t

τ ) φ′(h,r+)t
τ

+
∑

(h,r−
j

,t)∈Nr

e(
φ(h,r−

j
)·t

τ )
φ′(h,r−

j
)t

τ

e(
φ(h,r+)·t

τ )+
∑

(h,r−
j

,t)∈Ne

e(
φ(h,r−

j
)·t

τ )

= φ′(h,r+)t
τB

∑
(h,r−j ,t)∈Nr

e(
φ(h,r−

j
)·t

τ
)−

1
B

∑
(h,r−j ,t)∈Nr

e(
φ(h,r−

j
)·t

τ
) φ

′(h,r−j )t

τ

(19) 811
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−∂S(h,r+,t)
∂t

= ∂
∂t(

φ(h,r+)·t
τ − log(e(

φ(h,r+)·t
τ

)

+
∑

(h,r−j ,t)∈Nr
e(

φ(h,r−
j

)·t
τ

)))

= φ(h,r+)
τ −

e(
φ(h,r+)·t

τ ) φ(h,r+)
τ

+
∑

(h,r−
j

,t)∈Nr

e(
φ(h,r−

j
)·t

τ )
φ(h,r−

j
)

τ

e(
φ(h,r+)·t

τ )+
∑

(h,r−
j

,t)∈Nr

e(
φ(h,r−

j
)·t

τ )

= φ(h,r+)
τB

∑
(h,r−j ,t)∈Nr

e(
φ(h,r−

j
)·t

τ
)−

1
B

∑
(h,r−j ,t)∈Nr

e(
φ(h,r−

j
)·t

τ
) φ(h,r

−
j )

τ

(20)812

−∂S(h,r+,t)
∂r+

= ∂
∂r+

(log e(β(h,r
+,t)/τ)∑

n∈{pr,Nr} e
(β(n)/τ) )

= ∂
∂r+

(β(h,r
+,t)

τ − log
∑

n∈{pr,Nr} e
(
β(n)
τ

))

= ∂
∂r+

(β(h,r
+,t)

τ − log(e(
β(h,r+,t)

τ
)

+
∑

(h,r−j ,t)∈Nr
e(

β(h,r−
j

,t)

τ
)))

= ∂
∂r+

(φ(h,r
+)·t

τ − log(e(
φ(h,r+)·t

τ
)

+
∑

(h,r−j ,t)∈Nr
e(

φ(h,r−
j

)·t
τ

)))

= φ′(h,r+)t
τ −

e(
φ(h,r+)·t

τ ) φ′(h,r+)t
τ

e(
φ(h,r+)·t

τ )+
∑

(h,r−
j

,t)∈Nr

e(
φ(h,r−

j
)·t

τ )

= φ′(h,r+)t
τ (∑

(h,r−
j

,t)∈Nr

e(
φ(h,r−

j
)·t

τ )

e(
φ(h,r+)·t

τ )+
∑

(h,r−
j

,t)∈Nr

e(
φ(h,r−

j
)·t

τ )

)

= φ′(h,r+)t
τB

∑
(h,r−j ,t)∈Nr

e(
φ(h,r−

j
)·t

τ
)

(21)813

B = e(
φ(h,r+)·t

τ
) +

∑
(h,r−j ,t)∈Nr

e(
φ(h,r−

j
)·t

τ
) (22)814

−∂S(h,r+,t)

∂r−j

= ∂
∂r−j

(φ(h,r
+)·t

τ − log(e(
φ(h,r−

j
)·t

τ
)

+
∑

(h,r−j ,t)∈{prNr−(h,r−j ,t)} e
(
φ(h,r−

j
)·t

τ
)))

=
−e(

φ(h,r−
j

)·t
τ )

φ′(h,r−
j

)t

τ

e(
φ(h,r−

j
)·t

τ )+
∑

(h,r−
j

,t)∈{prNr−(h,r−
j

,t)} e(
φ(h,r−

j
)·t

τ )

= −φ′(h,r−j )t

τB e(
φ(h,r−

j
)·t

τ
)

(23) 815

7.2 Hyperparameter and Setting 816

For TernaryCL TernaryCL is implemented 817

based on the PyTorch library with a single GeForce 818

RTX 2080 GPU. The number of parameters 819

is 18.06M for ReVerb20K and 33.63M for Re- 820

Verb45K. We run the model several times and re- 821

port the maximum of results. For the training set- 822

tings, the optimizer is set to Adam, the embedding 823

size is set to 300. The entity and relation embed- 824

dings are initialized randomly, and the word vectors 825

are initialized with the GloVe embeddings. 826

We tune our model with the grid search to select 827

the optimal hyper-parameters based on the perfor- 828

mance on the validation dataset. The list of hy- 829

perparameters are from two aspects: (1) Hyperpa- 830

rameters for Pretrain stage: learning rate ∈ {1e-3, 831

1e-4, 5e-5, 1e-5}, temperature regulation value ∈ 832

{0.1, 0.05, 0.01}. (2) Hyperparameters for Fine- 833

tune stage: learning rate ∈ {1e-3, 1e-4, 8e-5, 5e-5, 834

1e-5}, batch size ∈ {32, 64, 128, 256, 512}. The 835

results of hyperparameters are shown in Fig. 5. For 836

Pretrain stage, the optimal value of learning rate is 837

5e-5 on both datasets, where too large a learning 838

rate, such as 1E-3, may skip the optimal results. 839

And the optimal value of temperature regulation 840

value is 0.05 on both datasets. For Finetune stage, 841

the optimal value of learning rate is 5e-5 on both 842

datasets, where too small a learning rate, such as 843

1E-5, brings worse performance than too large a 844

learning rate, such as 1E-3. The optimal value of 845

batch size is 128 on both datasets, where TernaryCL 846

is not very sensitive to batch size, but too large a 847

batch size could have a negative impact. 848

For Baselines The results of baselines are repro- 849

duced with open source implementations. Con- 850

cretely, TransE, DistMult and ComplEx are repro- 851
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Figure 5: Results of hyperparameters on ReVerb20K (upper) and ReVerb45K (Below).

Model AR ↓ ARR H@1 H@10 H@50 H@100
Bert-F 754 28.1 22.1 39.1 53.8 61.2
Bert-U 1315 23.7 18.7 33.2 45.9 51.8
BiGRU 421 38.1 29.9 53.3 68.5 75.2

Bert-F 1165 28.8 21.6 42.8 55.3 60.4
Bert-U 2131 18.0 12.5 28.9 41.3 46.6
BiGRU 744 33.2 25.6 48.1 61.9 67.7

Table 5: Results of Textual Technology on ReVerb20K
(upper) and ReVerb45K (below).

duced with public code in 4. ConvE is reproduced852

with public code in 5. The code for ConvTransE853

is implemented by us and public in our code. We854

use the grid search technique to select the opti-855

mal values of hyperparameters for above baselines.856

For OpenKG and OpenKG+Pretrained baselines,857

CaReTransE, CaReConvE are reproduced with the858

public code in 5, OKGIT+Bert and OKGIT+Rob859

are reproduced with the public code in 6. The opti-860

mal values of hyperparameters for this four base-861

lines are consistent with that in their paper.862

7.3 Textual Technology863

Results of textual technologies to encoder se-864

quences in §4.1: BiGRU and Bert, are shown in865

Table 4, where Bert-F fixes the parameters of Bert,866

Bert-U unfixes them. By observing the results, per-867

formance of model with Bert as encoder is weaker868

than that with BiGRU. Results of Bert with fixed869

parameters are better than results with unfixed pa-870

rameters. This shows that BiGRU is more capable871

of capturing sequential information in KGs. State-872

4https://github.com/uma-pi1/kge
5https://github.com/malllabiisc/CaRE
6https://github.com/Chandrahasd/OKGIT
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ReVerb45K 
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Figure 6: Visualization on ReVerb45K, where the same
numbers represent entities with the same meaning.

of-the-art baseline OKGIT also points out that pre- 873

trained language models can not predict the correct 874

entities on the top. It could be inadvisable to intro- 875

duce the pretrained language model into KGs due 876

to the difficulty of training and reproduction. The 877

intention of constructing a KG is to convert text 878

into structures for easy calculation, that is, KG it- 879

self is rich in world knowledge. So, our TernaryCL 880

pays attention to mining own structure features in 881

an effective way. 882
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Model AR ↓ ARR H@1 H@10 H@50 H@100
Sa(pe) 712 32.8 24.8 48.6 62.7 68.2
Sa(pr) 791 32.0 24.5 46.1 59.9 65.5
Sf
a (pf ) 712 33.1 25.3 48.5 62.3 68.0

Sb(pe) 806 33.0 25.1 48.0 62.2 67.6
Sb(pr) 752 31.5 23.5 46.9 60.5 66.0

ManyP 758 33.3 25.5 48.5 62.2 68.1
FewP 770 33.2 25.3 48.2 62.4 67.9

# 744 33.2 25.6 48.1 61.9 67.7

Table 6: Results of Fusion strategy and Negative Strat-
egy on ReVerb45K, where # represents Sf

b (pf ) and
Uniform.
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Type
Metric

ReVerb20K ReVerb45K

CaRe CaRe OKGIT Ternary CaRe CaRe OKGIT Ternary
TransE ConvE +Bert CL TransE ConvE +Bert CL

Ent

AR 1215 2196 285 443 2610 2739 644 988
ARR 10.6 24.4 29.4 32.6 12.6 19.2 23.5 23.5
H@1 1.2 19.6 22.2 25.3 6.7 15.5 18.2 16.8
H@10 25.6 33.1 43.1 46.8 21.4 26.2 33.7 35.8
H@50 41.4 44.9 61.1 65.0 30.9 33.8 48.1 50.1

Few H@100 47.5 50.9 68.4 72.2 35.6 38.2 55.0 56.8

Shot

Rel

AR 2022 2663 1696 826 3323 3379 2211 1503
ARR 10.7 20.6 26.2 28.6 13.6 14.8 20.0 21.0
H@1 1.7 16.2 19.3 21.3 7.8 10.9 14.5 14.6
H@10 26.4 29.3 38.8 43.3 23.0 22.8 31.0 33.2
H@50 41.9 38.8 53.8 56.8 33.9 30.5 45.3 47.4
H@100 48.6 43.4 60.0 62.0 38.9 35.7 51.4 54.2

Ent

AR 3286 3304 3465 1461 5776 5662 4952 2720
ARR 7.3 14.2 20.1 20.9 10.2 4.3 7.9 12.7
H@1 0.0 11.1 15.1 15.4 8.8 3.0 5.4 9.3
H@10 20.9 20.8 29.8 31.2 12.4 6.6 12.5 19.1
H@50 34.7 27.3 40.6 41.5 17.1 11.2 20.5 26.9

Zero H@100 39.5 30.2 44.5 45.1 19.8 13.6 25.3 31.7

Shot

Rel

AR 2071 2557 1775 887 3368 3429 2349 1571
ARR 10.4 22.3 27.4 30.1 11.8 12.5 18.6 18.6
H@1 2.2 18.1 20.7 23.4 6.4 8.8 13.2 12.5
H@10 24.8 30.4 40.8 42.6 20.3 19.2 29.2 30.6
H@50 40.7 39.2 54.0 56.1 31.4 28.4 42.4 43.5
H@100 47.0 43.0 59.9 61.4 35.9 32.9 49.2 50.4

Table 7: Results of few-shot and zero-shot entities (Ent) / relations (Rel) on ReVerb20K and ReVerb45K.
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