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Abstract

Driven by applications in clinical medicine and
business, we address the problem of modeling tra-
jectories over multiple states. We build on well-
known methods from survival analysis and intro-
duce a family of sequence models based on local-
ized Bayesian Markov chains. We develop infer-
ence and prediction algorithms, and we apply the
model to real-world data, demonstrating favorable
empirical results. Our approach provides a practi-
cal and effective alternative to plain Markov chains
and to existing (finite) mixture models; It retains
the simplicity and computational benefits of the
former while matching or exceeding the predictive
performance of the latter.

1 INTRODUCTION

Understanding, modeling and predicting trajectories over
multiple states is of central importance in a wide range of
applications. For example, in a clinical setting, patients go
through several different stages from illness to recovery
[Putter et al., 2007]. In a business setting, customers’ re-
lationship with a company evolves over time. A customer
might start with a free service and later move on to a paid
subscription or stop using the service altogether [Pfeifer
and Carraway, 2000]. These processes can be viewed as
discrete-time or continuous-time sequences over a discrete
state space.

In the simplest case, there are only two states and a single
transition: Every sequence starts in the first state and ends
in the second state. For example, we might be interested
in modeling the time a patient takes from admission to a
hospital (state 1) to release (state 2). This is the setting of
survival analysis, the branch of statistics that studies time-
to-event data [Wang et al., 2019]. In this paper, we address
a more general setting, where the number of states can be

larger than two and the set of admissible transitions can be
arbitrary [Cook and Lawless, 2018]. We focus on developing
models that accurately capture both the sequence of states
and the timing of the transitions. In applications, we use
these models to make probabilistic predictions about the
future of a sequence given its past.

Markov chains [Norris, 1998] are a popular class of models
used to analyze multistate sequences. They come in discrete-
time and continuous-time variants, are well-understood theo-
retically and easy-to-use in practice. One of their strengths is
that most problems of interest (learning, prediction, etc.) are
tractable, either in closed form or through simple recursive
algorithms. However, Markov chains rely on a strong as-
sumption, memorylessness, which informally states that fu-
ture transitions are independent of the past given the present.
In practice, this assumption is often too restrictive and can
lead to poor predictions. For example, Markov chains are
unable to capture the Lindy effect [Goldman, 1964], which
contends that the longer a process is in a given state, the
longer it is expected to remain in that state, and which has
been empirically verified in a number of real-world applica-
tions [Mandelbrot, 1982, Taleb, 2012].

A common approach to address the limitations of Markov
chains is to consider mixtures thereof [Frydman, 1984,
Poulsen, 1990, Cadez et al., 2003, Girolami and Kabán,
2003, Frydman, 2005, Gupta et al., 2016]. In short, finite
mixture models assume that each sequence follows one of
L ≥ 2 distinct Markov chains. Inference requires explic-
itly learning the parameters of the L Markov chains and
mixture weights associated with each sequence, typically
using the EM algorithm [Dempster et al., 1977]. This ap-
proach provides increased modeling flexibility but does so
the expense of tractability and simplicity. As we show in
Section 5.2, running the EM algorithm to convergence re-
quires two orders of magnitude more resources than fitting
a single Markov chain. The likelihood function is prone to
having poor local maxima, thus necessitating multiple runs
with different seeds [Cadez et al., 2003]. These difficulties
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are compounded by the fact that L is usually not known a
priori and needs to be chosen and validated empirically.

1.1 OUR CONTRIBUTION

In this work, we seek to combine the rich dynamics
enabled by mixture models with the convenience and
computationally-friendly nature of plain Markov chains. To
this end, we develop models of discrete-time and continuous-
time sequences based on localized Bayesian Markov chains,
following the general construction of Wang and Blei [2018].
Informally, we consider that each sequence follows a la-
tent Markov chain whose matrix of transition rates (in the
continuous-time case) or transition probabilities (in the
discrete-time case) is sampled from an auxiliary mixing
distribution with infinite support (Section 3). We refer to
these models as infinite mixtures of Markov chains. The re-
sulting compound process is more expressive than a Markov
chain and can capture a wider range of patterns. Further-
more, by choosing the mixing distribution appropriately, the
likelihood of a trajectory has a simple closed-form expres-
sion, and inference becomes significantly easier than for
finite mixtures. We are also able to derive computationally-
efficient algorithms for the predictive state distribution (Sec-
tion 4). Our method can be understood as a generalization
of two well-known parametric models used in survival anal-
ysis, the beta-logistic and Lomax distributions [Heckman
and Willis, 1977, Lomax, 1954], to arbitrary transitions over
multiple states.

We evaluate our models empirically on four datasets cover-
ing physiological signals, clinical treatment outcomes and
customer relationships (Section 5). When, in addition to
the sequences themselves, feature vectors are available, our
models can be seamlessly combined with regression models.
We find that, in each of these datasets, the Markov assump-
tion is too restrictive, and information about a sequence’s
past helps predicting its future. Our models’ predictions
outperforms finite mixtures and RNNs, suggesting that the
inductive biases of our models are well-suited to these do-
mains. All in all, we believe that our method will be a
valuable addition to the practitioner’s toolbox.

A Note on Terminology. We call our models infinite mix-
tures of Markov chains to emphasize the fact that the (para-
metric) mixture distribution has infinite support. Our models
are distinctly different from nonparametric models such as
the infinite Gaussian mixture model [Rasmussen, 1999], the
infinite HMM [Beal et al., 2001], and the model of Reubold
et al. [2017], which use a Dirichlet process to implicitly
capture a variable number of mixture components or latent
states.

2 RELATED WORK

Sequential data is ubiquitous, and unsurprisingly the litera-
ture on models and methods for dealing with such data is
vast. Our work addresses applications where the number
of states N is finite and typically small with respect to the
size of the data, and where accurately modeling the timing
of transitions is of particular interest. Correspondingly, we
focus our review on the most relevant subset of the literature.

Survival Analysis. This field provides the statistical
framework for analyzing time-to-event data, i.e., data re-
lated to a single transition from one state to another [Klein
and Moeschberger, 2003]. Wang et al. [2019] give a recent
survey of the field that highlights the connections to ma-
chine learning. A popular non-parametric approach to sum-
marizing time-to-event data is given by the Kaplan-Meier
estimator [Kaplan and Meier, 1958]. Alternatively, one can
postulate a parametric survival distribution and infer the pa-
rameters from observed data. The discrete-time beta-logistic
model [Heckman and Willis, 1977] and the continuous-time
Lomax model [Lomax, 1954] are instances of this approach.
The models we develop in this work can be seen as a gen-
eralization of these two distributions to multiple states and
arbitrary sequences. The beta-logistic model was recently
revisited by Hubbard et al. [2021], who report favorable
results when used in conjunction with powerful function
approximators.

Multistate Models. Some methods developed for survival
analysis have been extended to handle transitions between
N > 2 states [Aalen et al., 2008, Putter et al., 2007, Cook
and Lawless, 2018]. For example, the Aalen-Johansen es-
timator generalizes the Kaplan-Meier estimator to trajec-
tories over multiple states [Aalen and Johansen, 1978].
Most methods discussed in the literature are based on a
Markov chain model, i.e., they assume that future transi-
tions only depend on the current state. Extensions include
time-inhomogeneous or semi-Markov variants, where tran-
sition rates can also depend on the absolute time or on the
time since the last transition occurred. Fully non-Markovian
estimators have recently been proposed [Titman, 2015, Put-
ter and Spitoni, 2018], but they are challenging to use in
practice, especially in the small-data regime. Our models
are not Markovian—future transitions can depend on the
entire history of the process—yet they remain parsimonious,
necessitating only twice the number of parameters required
to describe a (homogeneous) Markov chain.

Mixtures of Markov Chains. The idea of combining mul-
tiple Markov chains into a mixture model in order to capture
heterogeneity across or within sequences dates back to the
1950s [Blumen et al., 1955]. Frydman [1984, 2005] studies
a two-component mover-stayer model and its extension to
L ≥ 2 components, with applications to social and finan-



cial processes. Poulsen [1990] and Cadez et al. [2003] use
a Markov chain mixture model to cluster customers and
users of a website, respectively. Maximum-likelihood infer-
ence relies on the EM algorithm [Dempster et al., 1977].
More recently, Gupta et al. [2016] propose an alternative
spectral inference algorithm with favorable theoretical prop-
erties. Girolami and Kabán [2003] present a different type
of Markov chain mixture model where components can be
interleaved within a sequence. In contrast to existing work,
our approach learns a continuous mixture distribution in-
stead of L discrete components. We compare our models
against finite mixture models in Section 5.

Bayesian Inference for Markov Chains. Our models
make use of mixture distributions that are conjugate for the
likelihood functions of Markov chains. Some of these rela-
tionships are well-known and have been used for Bayesian
inference of Markov chain parameters, such as in MacKay
and Bauman Peto [1995] and in Barber [2012, Chapter 23].
In that case, the main goal is to account for the epistemic
uncertainty over a single set of parameters due to finite
data. Our work is closer in spirit to Wang and Blei [2018],
who consider a general framework to transform a classical
Bayesian model into a localized one. In our case, a differ-
ent set of parameters is associated to each sequence, and
the Bayesian prior captures heterogeneity across sequences.
To the best of our knowledge, our work is the first to take
advantage of conjugate distributions to learn a mixture of
Markov chains.

Modeling Customer Relationships. Our work is also
related to and influenced by literature on modeling cus-
tomer retention [Fader and Hardie, 2009]. Schmittlein et al.
[1987] estimate time-to-churn by means of a (latent) Lomax
survival model. Fader and Hardie [2007] consider a discrete-
time variant and use a beta-logistic model. Beyond retention,
Pfeifer and Carraway [2000], Paauwe et al. [2007], Schwartz
et al. [2011] propose multistate models of customer relation-
ships based on Markov chains. We apply our models to a
customer relationship dataset in Section 5.

3 STATISTICAL MODELS

In this section, we introduce our sequence models. We begin
with a few preliminaries introducing terminology and nota-
tion in Section 3.1. Then, we present the discrete-time vari-
ant of our method in Section 3.2. We sketch the continuous-
time variant in Section 3.3 and link our work to parametric
survival models in Section 3.4.

3.1 PRELIMINARIES

We consider sequences on N states denoted by the consecu-
tive integers [N ] = {1, . . . , N}. In discrete time, we define
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Figure 1: Graph of admissible transitions for the EBMT and
CUSTOMERS datasets, analyzed in Section 5.

a sequence of length T as a tuple s = (s1, . . . , sT ), where
st ∈ [N ] for all t. In continuous time, we define a sequence
over an interval of length T as a function s : [0, T ]→ [N ],
such that s(t) indicates the state at time t. In practice, we
can represent this function in a compact way by using a
discrete sequence of states and the time of each transi-
tion. We collect M independent sequences into a dataset
D = {sm : m ∈ [M ]}. We allow the length of the sequence
(or the length of the interval over which it is defined) Tm to
be different for different m. In some cases, we associate to
each sequence sm a feature vector xm ∈ RD that captures
additional information about the sequence.

The process generating the sequences is described by a
directed graph G = ([N ], E), where the edge set E ⊆
[N ]× [N ] represents the set of admissible transitions. Ex-
amples are provided in Figure 1. A state i ∈ [N ] that has no
outgoing edges (self-loop excepted) is called absorbing. A
sequence can—but does not need to—end in an absorbing
state. A sequence that does not end in an absorbing state
is called right-censored [Aalen et al., 2008]. Throughout
Section 3, in order to simplify the notation, we assume that
all transitions are admissible. However, our developments
generalize to arbitrary transition graphs seamlessly, and the
applications we study in Section 5 typically only involve a
subset of all possible transitions.

Finally, we recall a few well-known functions and dis-
tributions. The gamma function is defined as Γ(x) =∫∞
0
ux−1e−udu for x > 0. The beta function is defined

as B(α, β) = Γ(α)Γ(β)/Γ(α + β). The gamma distribu-
tion has support on R>0 and density

Gamma(x | α, β) =
βα

Γ(α)
xα−1e−βx,

where α, β ∈ R>0 are shape and rate parameters, respec-
tively. The generalized Dirichlet distribution has support on
the set of N -dimensional probability vectors and density

GDir(x | α,β) =

N−1∏
i=1

xαi−1
i (1− x1 − · · · − xi)γi

B(αi, βi)
,

where γi = βi − αi+1 − βi+1 for i = 1, . . . , N − 2 and
γN−1 = βN−1−1, andα,β ∈ RN−1

>0 are parameter vectors.



It extends the Dirichlet distribution by enabling some depen-
dence between the dimensions, and is a conjugate prior to
the multinomial distribution [Connor and Mosimann, 1969,
Wong, 1998].

3.2 DISCRETE-TIME MODEL

We now introduce the discrete-time variant of our model.
It builds on homogeneous discrete-time Markov chains
(DTMCs), a class of models for sequences that satisfies

P[st+1 = j | st = i, st−1, . . . , s1] = θij .

That is, the probability of transitioning from st to st+1 does
not depend on the past s1, . . . , st−1 (Markov property) nor
on the time t (homogeneity). A DTMC is parametrized by
the N2 transition probabilities between each pair of states,
arranged in the transition matrix Θ = [θij ]. Since each
row of Θ sums to one, there are in fact only N(N − 1)
free parameters. Given a sequence s, let kij = |{t : st =
i, st+1 = j}| count the number of transitions from state i to
state j. The matrixK = [kij ] is a sufficient statistic for Θ,
and the likelihood is given by

p(s | Θ) =
∏
i,j

θ
kij
ij . (1)

Given a dataset of sequences, we can find the maximum-
likelihood estimate of Θ by solving a convex optimization
problem. The simplicity of DTMCs is appealing, but the
Markov property is seldom verified in practice and thus
DTMCs can lead to poor predictions.

To overcome this limitation, we proceed as follows. Instead
of assuming that all sequences follow the same DTMC, we
posit that each sequence follows a different DTMC, and we
treat the transition matrix Θ as a latent variable. Further-
more, we posit that, for a given sequence, Θ is sampled from
a product of independent generalized Dirichlet distributions,

p(Θ | A,B) =
∏
i

GDir(θi | αi,βi),

where A = [αi] and B = [βi]. In other words, each row
of Θ is sampled from a distinct GDir distribution inde-
pendently of the other rows. We are no longer interested
in learning Θ directly, but instead we seek to learn the
parameters of the mixture distribution. Informally, we ex-
pect the resulting compound model to be more expressive,
since it captures a distribution over infinitely many different
DTMCs, as opposed to a single one. Our specific choice of
mixture distribution is conjugate for the DTMC likelihood
(1). Thus, we can write the compound likelihood (obtained
by marginalizing out Θ) in closed form as

p(s | A,B) =

∫
p(s | Θ)p(Θ | A,B)dΘ

=

N∏
i=1

N−1∏
j=1

B(αij + kij , βij +
∑N
`=j+1 ki`)

B(αij , βij)
.

(2)

Given a dataset of independent sequences D, we can es-
timate the parameters A,B by minimizing the negative
log-likelihood (NLL)

`(A,B) = −
∑
sm∈D

log p(sm | A,B). (3)

The NLL is not concave inA andB, but it has at most one
stationary point [Levin and Reeds, 1977], and in practice the
maximizer can be found efficiently1. Note that the number
of free parameters in our model (i.e., in A,B) is exactly
twice that of a Markov chain (i.e., in Θ).

Bayesian Update. Assume that we observe the first C <
T steps of a sequence (s1, . . . , sT ). What is the likelihood
of the second part of the sequence s′ = (sC , . . . , sT ) given
the first part s = (s1, . . . , sC)? We can use the conjugacy
properties of the mixture distribution to derive

p(s′ | s,A,B) = p(s′ | Ã, B̃),

where Ã = A + U and B̃ = B + V for U ,V ∈
NN×(N−1) such that uij = kij and vij =

∑
`>j ki`, and

kij counts the number of times the transition (i, j) is ob-
served in the subsequence s [Connor and Mosimann, 1969].
This property highlights that the compound process is not
Markovian: The probability of future transitions depends on
the entire past of the sequence.

Combination with Regression Models. If, in addition
to the sequences themselves, we are given feature vectors
describing each sequence, we can reparametrize the model
by using functionsA(·) andB(·) that map feature vectors
to positive-valued parameter matrices. This lets us combine
our sequence model with any machine-learning regression
model. For example, we obtain a log-linear model by setting
A(x) = [αij(x)] with αij(x) = expw>ijx, and likewise
for B(x). Alternatively, we could use regression trees or
deep neural networks, similarly to Hubbard et al. [2021].
Instead of optimizing (3) over matricesA andB, we would
then optimize over the parameters of the matrix-valued func-
tionsA(·) andB(·).

3.3 CONTINUOUS-TIME MODEL

The continuous-time version of our model builds on ho-
mogeneous continuous-time Markov chains (CTMC). A
CTMC is parametrized by the N ×N infinitesimal gener-
ator matrix Λ = [λij ], where, for every i 6= j, λij > 0 is
the instantaneous rate of transition from state i to state j,
and λii = −

∑
j 6=i λij . Given a sequence s, let K = [kij ]

such that kij counts the number of transitions from state i

1Most machine-learning frameworks include logB(α, β) as a
differentiable primitive. In TensorFlow for example, it is available
under tf.math.lbeta.



to state j, and let τ = [τi] such that τi =
∫ T
0

1{s(t)=i}dt
is the total time spent in state i. Then the pair (K, τ ) is a
sufficient statistic for Λ, and the likelihood is given by

p(s | Λ) =
∏
i

eλiiτi
∏
j 6=i

λ
kij
ij . (4)

Similarly to the discrete-time case, we posit that each se-
quence follows a different CTMC and treat Λ as a latent
variable. We assume that each λij is sampled from a distinct,
independent gamma distribution:

p(Λ | A,B) =
∏
i6=j

Gamma(λij | αij , βij).

As in the discrete-time case, the mixture model is described
by 2N(N − 1) free parameters, twice that of a CTMC. The
product of Gamma mixture distribution conjugates with the
likelihood (4), and the compound likelihood is available in
closed form as

p(s | A,B) =

∫
p(s | Λ)p(Λ | A,B)

=
∏
i 6=j

[
Γ(αij + kij)

(βij + τi)αij+kij
·
β
αij

ij

Γ(αij)

]
.

(5)

In general, the points we made for the discrete-time model
in Section 3.2 extend to the continuous-time model con-
sistently. The maximum-likelihood estimate can be found
efficiently, the sequence model can be combined with func-
tion approximators, and the properties of the compound
process are similar in both discrete and continuous-time.

3.4 CONNECTION TO SURVIVAL MODELS

We consider the case where N = 2, all sequences start in
state 1 and state 2 is absorbing. This is the classic setting
studied in the survival analysis literature. In the discrete-
time case, we can rewrite (2) as

p(s | α, β) =
B(α+ k11, β + k12)

B(α, β)
,

where α, β > 0, k11 is the number of steps the sequence
has remained in state 1 and k12 is a binary variable indi-
cating whether state 2 has been reached (i.e., whether the
observation is uncensored or right-censored). This is ex-
actly equivalent to the beta-logistic model of Heckman and
Willis [1977], also known as the (shifted) beta-geometric
distribution.

In the continuous-time case, we can rewrite (5) as

p(s | α, β) =

(
α

β

)k12 ( β

β + τi

)α
,

where, similarly, k12 can be thought of as a censoring indica-
tor variable. This recovers the Lomax distribution [Lomax,
1954], a special case of Pareto Type-II distribution.

The connection to these survival distribution helps explain
the inductive biases of our model. Both the beta-logistic and
the Lomax distributions are heavy-tailed, and they can thus
capture the Lindy effect [Goldman, 1964]: The longer the
process stays in state 1, the longer it is expected to stay in
state 1. This is in contrast to DTMCs and CTMCs, which,
in the setting of survival analysis, correspond to geometric
and exponential survival distributions, respectively—both
light-tailed, memoryless distributions.

4 PREDICTIVE STATE DISTRIBUTION

We now focus on the following problem: given a (trained)
discrete-time model, an initial state distribution π0 and a
time horizon T , predict the marginal state distribution after
T steps, π?T . This distribution is the multistate equivalent
of the survival distribution in survival analysis, and it is
of central importance in many applications. For example,
in a disease progression model, it can be used to predict
the number of patients that have recovered after a given
time, irrespective of the patients’ particular trajectories. In
the case of Markov chains there is an efficient algorithm
to compute the state distribution exactly, with running time
O(N2T ). Given a transition matrix Θ and starting from
π?0 = π0, we can use the identity π?t = π?>t−1Θ iteratively
T times to obtain π?T . The identity is a consequence of the
Markov property. To the best of our understanding there is
no similar iterative procedure applicable to our model in the
general case.

A special case of practical importance is when the directed
graph of admissible transitions has no cycles of length
greater than one (in other words, the graph is acyclic except
for self-loops). In this case, we can derive a simple iterative
procedure with running time quadratic in T .

Proposition 1. Let (A,B) be any generalized Dirichlet
mixture of Markov chains on a graph G = ([N ], E), and
let π0 be an initial state distribution. If G has no cycle of
length greater than one, then π?T can be computed exactly
in time O(T 2N2).

We provide an explicit algorithm as well as complete proofs
of the results presented in this section in Appendix B. By
way of example, the transition graph underpinning the EBMT
dataset, depicted in Figure 1, satisfies the condition of the
proposition.

In the general case where arbitrary cycles are allowed, it
is still possible to compute π?T exactly with running time
polynomial in T , but the algorithm is impractical for all
but the simplest cases (see Appendix B). However, the spe-
cific structure of our mixture model suggests an effective
sampling-based approach. The key observation is that, con-
ditioned on a transition matrix Θ sampled from the mixture
distribution, we can compute the predictive state probability



Algorithm 1 Predictive state distribution.

Require: A,B, horiz. T , init. dist. π0, # samples L
1: for ` = 1, . . . , L do
2: Θ← sample from

∏
i GDir(θi | αi,βi)

3: π`,0 ← π0

4: for t = 1, . . . , T do
5: π`,t ← π>`,t−1Θ

6: return π̂T = 1
L

∑
` π`,T

after T steps exactly by using the efficient recursive algo-
rithm for Markov chains. Therefore, we propose to estimate
the state distribution by averaging samples obtained as fol-
lows. First, sample Θ from the mixture distribution, and
then compute the exact state distribution conditional on Θ.
We formalize this procedure in Algorithm 1.

A natural question to ask is: How many samples are neces-
sary to achieve a desired level of accuracy? We answer this
question with a proposition that provides an upper bound
on the sample complexity.

Proposition 2. For anyA,B, horizon T , and initial distri-
bution π0, let π̂T be the output of Algorithm 1. Then, for
any ε, δ > 0, we have P[‖π̂T −π?T ‖ < ε] > 1− δ, as long
as L > 11

ε2 log N+1
δ .

A useful viewpoint is to think of our sampling scheme as ap-
proximating an infinite mixture model with a finite mixture
of L components. In contrast to learning a finite mixture
model, where large values of L can lead to overfitting, in-
creasing L in Algorithm 1 can only increase the accuracy of
the resulting estimate. In Appendix B, we run experiments
comparing Algorithm 1 to a naive scheme that directly sam-
ples trajectories, instead of sampling Θ and averaging over
all possible sequences as we do. We find that our algorithm
is significantly more efficient.

Continuous-Time Model. We can adapt the same idea
to the continuous-time setting as follows. The exact state
distribution of a CTMC at time T is given by π?T = π>0 e

TΛ,
where the matrix exponential eX can be well-approximated
by a simple iterative procedure. We adapt lines 3–5 of Algo-
rithm 1 accordingly.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our models
empirically on four real-world datasets. First, we investigate
model fit (Section 5.1) and running time (Section 5.2) on
all four datasets. Then, we focus on two applications and
evaluate our models on state prediction tasks (Section 5.3).

Datasets. The datasets we study contain sequences de-
scribing sleep patterns (SLEEP [Kneib and Hennerfeind,

2008]), two types of clinical treatments and outcomes
(VENTICU [Grundmann et al., 2005], EBMT [Fiocco et al.,
2008]), and customers’ relationship with the Spotify audio
streaming service (CUSTOMERS). The first three datasets
contain continuous-time sequences, whereas the last dataset
contains discrete-time sequences. The number of states N
ranges between 2 and 6, and, for all but the last dataset,
the set of admissible transitions E is a strict subset of all
possible transitions. The transition graphs of EBMT and CUS-
TOMERS are illustrated in Figure 1. A more comprehensive
description of each dataset is given in Appendix C.

Experimental Procedure. Taking the discrete-time case
as example, we proceed as follows. We train our models by
estimating the parameter matricesA,B of the generalized
Dirichlet mixture distributions. We do so by minimizing the
negative (marginal) log-likelihood (3) on a training set. At
test time, we make use of the parameters estimated during
training to make predictions about each sequence in an
independent test set.

Competing Approaches. We compare our infinite mix-
ture models against a) plain Markov chains (denoted by
CTMC or DTMC), b) finite mixture models trained using
EM, and c) variants of RNNLM [Mikolov et al., 2010]. For
finite mixtures, we choose the number of components L
by cross-validation. For the RNN baseline, we note that
our goal is not to find the optimal architecture but rather
to anchor our results against a well-known representative
of this class of models. While discrete-time RNNs are well
established, continuous-time variants are still under active
research [see discussion in Rubanova et al., 2019]. For our
purposes, we extend the RNNLM to continuous-time se-
quences as follows. At each step, in addition to transition
probabilities, we output a transition rate that is a (learned)
function of the RNN’s hidden state.

Features. The EBMT and CUSTOMERS datasets contain,
in addition to the sequences themselves, feature vectors
that describe characteristics of patients and customers, re-
spectively. In this case, we can combine sequence models
with a regression model. We do so by replacing the fixed
parameters of a sequence model (e.g., the Markov chain
transition matrix Θ or the GDir parameters A,B) with a
learned function of the sequence features. For simplicity, we
only consider Markov chains, finite mixtures, and our infi-
nite mixtures in combination with an independent log-linear
regression model for each parameter (see Section 3.2).

Reproducibility. A software library implementing the
models and computational notebooks enabling the repro-
duction of the results presented in this section are provided
online.2 All but one dataset (CUSTOMERS) is publicly avail-

2See: https://github.com/spotify-research/
mixmarkov

https://github.com/spotify-research/mixmarkov
https://github.com/spotify-research/mixmarkov
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Figure 2: Negative log-likelihood of test sequences under various models on six datasets (lower is better). The three left-most
datasets contain continuous-time sequences, the right-most dataset contains discrete-time sequences.

able online. Links to the datasets and additional details on
the experimental procedure are provided in Appendix C.

5.1 MODEL FIT

We start by reporting the average negative log-likelihood of
various models on held-out sequences using 10-fold cross-
validation. The NLL provides a consistent and meaning-
ful goodness-of-fit measure for all datasets, irrespective of
the application domain. It evaluates the models’ ability to
jointly predict the identity of the next state and the time until
the transition occurs; a lower value corresponds to a better
model.

We present results in Figure 2. Our models, highlighted in
dark blue, outperform competing approaches on all datasets.
Plain Markov chains perform poorly, suggesting that, in all
the datasets that we consider, the entire past of a sequence is
useful to predict its future (we will revisit this observation
in Section 5.3). At the other end of the expressivity spec-
trum, our results also suggest that RNNs underperform other
methods in particular when the dataset is small (SLEEP), or
when sequences are short but the timing of transitions is
critical (VENTICU, EBMT). Well-tuned finite mixture models
perform well, and in some cases they are close to matching
the performance of our infinite mixture models (VENTICU).

5.1.1 Visualizing Model Fit on CUSTOMERS

The CUSTOMERS dataset represents the trajectories of
144 510 users of the Spotify audio streaming service3 over
N = 3 states. Users can use the free version of the service
(state 1), subscribe and get unrestricted access to all features
(state 2), or stop using the service (state 3). A transition can
occur between any pair of states (see Figure 1, right). Each
sequence starts when the user registers to the service and
ends after T = 20 steps.

In Figure 3, we visualize the fit of a DTMC and a infinite
mixture model. We represent the empirical fraction of pay-

3See: https://spotify.com.

Time

St
ate

oc
cu
pa
nc
y

DTMC
Inf. mix.

Figure 3: Empirical distribution of users over states (blue,
orange and green bars) and predicted distributions, as a
function of time.

ing, free and inactive users over time by using blue, orange
and green bars, respectively. We indicate the predictive state
distribution obtained from the mixture model by using solid
lines. Similarly, we use dotted lines to indicate the predictive
state distribution obtained from the DTMC. We observe that
the mixture model matches the empirical distribution sig-
nificantly better than the DTMC.4 Notice how the number
of active users (free and paid) decreases steeply after one
time step, but then flattens out rapidly. This is a concrete
example of the Lindy effect.

5.2 RUNNING TIME

Comparing the computational footprint of different models
is challenging, as implementation choices can significantly
impact results. However, given that Markov chains, finite
mixtures and infinite mixtures share many building blocks,
we believe that comparing the relative running time of in-
ference in these three models provides insights that will
generalize to implementations beyond ours. We use the run-
ning time of plain Markov chains as a baseline for each
dataset. For finite mixtures of L components, assuming that

4The finite mixture model is not represented in Figure 3, but
its fit is also excellent, and almost indistinguishable from that of
the infinite mixture model.

https://spotify.com
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Figure 4: Median and interquartile range for the running
time of finite and infinite mixture models, normalized by
the running time of a single Markov chain. The median
normalized running time is 5.09 and 139.28, respectively.

EM converges in I iterations, parameter inference is domi-
nated by L · I calls to a Markov chain inference subroutine.
For infinite mixture models, inference is similar to a Markov
chain in that it consists of solving a single, well-behaved
optimization problem that can be outsourced to off-the-shelf
software.

Figure 4 compares the running time of the two types of
mixtures models, normalized by the running time of plain
Markov chains and aggregated over all the datasets. We
observe that training infinite mixture models takes approx-
imately 27× less time than training finite mixture models.
Combined with the predictive edge observed in Figure 2, we
believe that this makes our models a compelling alternative
to finite mixtures.

5.3 PREDICTIVE TASKS

Next, we focus on the EBMT and CUSTOMERS datasets and
consider two concrete state predictions tasks.

5.3.1 Outcomes in Bone Marrow Transplantations

The EBMT dataset describes patients undergoing bone mar-
row transplantation, a standard treatment for acute leukemia.
The dataset contains trajectories tracking clinical outcomes
from the moment the transplantation occurs and spanning up
to 18 years. At any time, patients are in one of N = 6 states
describing the occurrence of adverse events, remission, full
recovery, relapse and death. Most patients only go through
two or three state transitions. In addition to the trajectory
itself, patients are also described by a feature vector encod-
ing demographic and treatment information. The transition
graph is depicted in Figure 1 (left), and more details on the
data can be found in Fiocco et al. [2008].

We restrict our attention to patients followed over at least 5
years and consider the following task. Given the trajectory
of the patient up to day 60, predict the patient’s state on
day 1800. Being able to accurately estimate the probability
of various future outcomes in a personalized way, by using
features and recent history, could help identify and follow
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Figure 5: Predictive performance on two state prediction
tasks. Predictions are made without and with information
about sequences’ past (in light and dark green, respectively).

at-risk patients. We train three different models5 in combi-
nation with log-linear regression models and compute the
predictive state distribution after T = 1800 days on held-out
sequences. For each model, the predictive state distribution
is computed in two different ways: by using the state on day
60 only, and by using the entire trajectory up to day 60.

We evaluate the prediction by measuring the log-loss given
the prediction and the true observed state at the end of the
five-year horizon, and we present the results in Figure 5
(left). We observe that using information about the past
results in better predictions for models that can take advan-
tage of it, again demonstrating that the Markov assumption
is too restrictive. In addition, we observe that the infinite
mixture model provides the most accurate predictive state
distribution.

5.3.2 Modeling Customer Relationships

We set up a similar task on the CUSTOMERS dataset. Given
the first 3 time steps of the sequence, we seek to predict
the state at step T = 20. This task is a multistate extension
of the popular problem of estimating customer retention
[Fader and Hardie, 2007, Hubbard et al., 2021]. Prior work
on modeling complex customer relationships has relied on
Markov chains [Pfeifer and Carraway, 2000, Schwartz et al.,
2011].

Similarly to the clinical application, we train different se-
quence models in combination with log-linear regression
models, and we compute the predictive state distribution
πT on held-out sequences. For each model, we make two
predictions: the first one only takes the last observed state
s3 into account, whereas the second takes the entire past
(s1, s2, s3) into account. The results are presented in Fig-
ure 5 (right). Our findings mirror those obtained on the
EBMT datasets. Making use of a sequence’s past, even if
it only consists of three steps, significantly improves the

5We also experimented with an RNN, but sampling continuous-
time trajectories proved difficult and led to poor results.



prediction for all models, and our infinite mixture models
outperform competing methods on this task.

6 CONCLUSION

We have introduced a new family of models for discrete-time
and continuous-time sequences based on infinite mixtures
of Markov chains. The models build on principled statistical
foundations and extend well-known parametric survival dis-
tributions. Our approach retains most of the statistical and
computational advantages of plain Markov chains, while
enabling predictions whose accuracy matches or exceeds
those of finite mixture models.

Our work so far has mostly focused on the prediction prob-
lem. In the future, we would like to investigate how our
model could help understanding the mechanisms driving the
sequences. For example, we would like to address questions
such as: What is the impact of a given feature on the pre-
dicted state distribution? We have preliminary ideas relating
our model combined with log-linear regression functions to
a Cox proportional-hazards model [Klein and Moeschberger,
2003], and we hope to explore this further.
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