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Query in Your Tongue: Reinforce Large Language Models with
Retrievers for Cross-lingual Search Generative Experience

Anonymous Author(s)∗

ABSTRACT

In the contemporary digital landscape, search engines play an in-
valuable role in information access, yet they often face challenges
in Cross-Lingual Information Retrieval (CLIR). Though attempts
are made to improve CLIR, current methods still leave users grap-
pling with issues such as misplaced named entities and lost cultural
context when querying in non-native languages. While some ad-
vances have been made using Neural Machine Translation models
and cross-lingual representation, these are not without limitations.
Enter the paradigm shift brought about by Large Language Mod-
els (Llms), which have transformed search engines from simple
retrievers to generators of contextually relevant information. This
paper introduces the Multilingual Information Model for Intelli-
gent Retrieval (Mimir). Built on the power of Llms, Mimir directly
responds in the language of the user’s query, reducing the need for
post-search translations. Our model’s architecture encompasses a
dual-module system: a retriever for searching multilingual docu-
ments and a responder for crafting answers in the user’s desired
language. Through a unique unified training framework, with the
retriever serving as a reward model supervising the responder, and
in turn, the responder producing synthetic data to refine the re-
triever’s proficiency, Mimir’s retriever and responder iteratively
enhance each other. Performance evaluations via CLEF and MKQA
benchmarks reveal Mimir’s superiority over existing models, effec-
tively addressing traditional CLIR challenges.
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1 INTRODUCTION

In an age characterized by the relentless pursuit of information,
the role of search engines in our daily lives cannot be overstated.
Search engines have become indispensable tools for accessing a
vast repository of knowledge, connecting individuals with an ever-
expanding digital universe. Yet, despite their ubiquity and utility, a
significant limitation persists within the current landscape of search
engines: their predominant focus on information retrieval within
the confines of a single language. While this approach proves effec-
tive for users conducting searches in their native tongue, it often
falls short in accommodating the diverse linguistic preferences and
globalized communication patterns of today’s internet users. It is
common for individuals to find themselves unable to locate desired
information when expressing their queries in their native language,
only to discover that altering their search language opens a door-
way to a wealth of relevant content. This conspicuous disparity
highlights a critical deficiency in the realm of contemporary search
engines—their inherent incapacity for Cross-Lingual Information
Retrieval (CLIR).

Given the conspicuous underperformance of contemporary search
engines in the realm of CLIR, researchers have made efforts to en-
hance the CLIR abilities with Neural Machine Translation (NMT)
models or cross-lingual representationmodels.While these research
endeavors have undoubtedly contributed to bolstering cross-lingual
transferability in information retrievers, the practical application
of CLIR remains severely constrained. A pivotal challenge arises
when users are presented with retrieved results in languages they
do not comprehend. To address this issue, existing methods have
incorporated a translation model in the post-retrieval phase, aiming
to translate the results into the user’s native language, thereby facili-
tating comprehension. However, CLIR still introduces the following
challenges: (1) Named Entity Recognition (NER) Issues: Proper
nouns, especially names of places or people, might not translate
directly or can get misrepresented. (2) Cultural Topic Context
Loss: Some terms or concepts are deeply rooted in cultural context,
and a straightforward translation can lose this context.

In recent years, the landscape of search engines has witnessed a
transformative evolution with the advent of Large LanguageModels
(Llms). These models have ushered in a paradigm shift, propelling
search engines beyond mere information retrieval into the realm
of Search Generative Experiences (SGE). Unlike traditional search
engines, which primarily return lists of matching documents, Llms
are capable of directly providing accurate and contextually rele-
vant answers to user queries. This advancement has significantly
improved the user experience, enabling more precise and efficient
access to information. In this research, we try to harness the capabil-
ities of the search generative experience to augment the practicality
and utility of CLIR and emphasize the importance of ensuring that
the language of the generated answer remains consistent with the
language used in the user’s query. By combining with Llms, we
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believe SGE can show the following advantages: (1) With exten-
sive training data, Llms have seen numerous named entities across
different contexts and languages and can recognize and correctly
handle entities. (2) The accommodation of the input context length
is large, which gives Llms a broader understanding of the topic and
cultural contexts.

In this paper, we introduce the Multilingual Information Model
for Intelligent Retrieval (Mimir). It enables the direct generation of
responses in the user’s query language, capturing and aligning with
their intent, thus eliminating the need for post-retrieval transla-
tion models. Our method consists of two main modules: a retriever,
which searches multilingual documents aligning with the user’s
query, and a responder, crafting responses matching the user’s lan-
guage based on the retrieved documents. To improve performance,
we devised an unsupervised unified training framework. In
responder fine-tuning, we use the retriever as a reward model,
enhancing the language model’s cross-lingual transferability. Con-
versely, for retriever refinement, we use synthetic data from the
responder, boosting its performance through augmented supervi-
sion signals. These training tasks are iterative, each improving the
other.

We designed experiments to assess the accuracy of our retriever
and how our Llm’s generated results match the user’s query, using
CLEF [6] and MKQA [32]. Results from these benchmarks show
Mimir surpasses state-of-the-art performance against strong base-
lines. Further tests on entity recognition and topic translation con-
sistency show Mimir’s advantage over traditional post-retrieval
translation methods.

2 RELATEDWORK

2.1 Cross-lingual Information Retrieval

One line of works has tried CLIR with the help of Translation
models [29, 31, 43, 53, 59]. They apply translation models to trans-
late the multilingual queries into English or translate the retrieval
document back to user’s language. Researches [8, 58, 60, 62] on
CLIR have been long researched through a long time, given the
perspective of XLM-R and m-BERT [23, 51] with different kinds of
improvement on Cross-lingual representations [13, 54–56]. Many
researches [18, 19, 21, 25, 26, 40] have tried to distill the knowledge
of information retrieval from monolingual model to a multilingual
architecture. Methods such as code-switching [12, 27, 49], query
generation [3, 40, 64] or sequential sentence relation [28, 30, 61]
are also applied in the context of CLIR. VMSST [1, 52] has tried
the disentanglement method, a variational generative model to sep-
arate semantic information. Another popular technique for CLIR
is contrastive learning [14, 20, 46, 52, 63], researchers [17, 60, 62]
have undertaken extensive efforts to enhance this crucial capabil-
ity. The pursuit of improved CLIR abilities has largely converged
on two primary technique routines. The first approach involves
the utilization of knowledge distillation [18, 19, 25, 40], a method
that commonly employs a monolingual retrieval teacher model to
impart its expertise to a multilingual student architecture. Concur-
rently, contrastive learning [14, 20, 46, 52] has gained widespread
adoption within the CLIR field due to its remarkable proficiency in
aligning sentence embeddings that share similar semantics. Some

[19] have designed cross-lingual soft prompts to improve cross-
lingual information retrieval. Now, CLIR has also been taken as a
tool to further improve the performance of other kinds of work,
such as fact-checking. [15].

2.2 Large Language Models for Search

The emergence of Llms, typified by ChatGPT 1, has revolution-
ized natural language processing due to their remarkable language
understanding, generation, generalization, and reasoning abilities.
Recent research has sought to leverage Llms to improve IR systems.
Given the rapid evolution of this research trajectory, the confluence
of LLMs and IR systems has emerged in different aspects, includ-
ing crucial aspects such as query rewriters [10, 33–35, 42, 45, 50],
retrievers [7, 47, 66], rerankers [4, 24, 39], and readers [22, 48]. In
this paper, we focus on leveraging Llms to alleviate CLIR problems.

3 METHODOLOGY

We introduce the Multilingual Information Model for Intelligent
Retrieval (Mimir). At the heart of Mimir are two pivotal models:
the Retriever (𝑅𝑡 ) and the Responder (𝑅𝑝 ), as illustrated in Figure
1. To enhance Mimir’s precision and robustness, unsupervised
query augmentation is employed during its training phase. When
provided with a document 𝐷𝑦 in language 𝑦, the Responder (𝑅𝑝 )
generates two sets: a positive query set 𝑄+, consisting of diverse
queries that align with the content of 𝐷𝑦 , and a negative query set
𝑄− , containing queries closely related, yet not answerable solely
using 𝐷𝑦 . Leveraging contrastive learning, the Retriever (𝑅𝑡 ) is
then fine-tuned using both query sets. In parallel, the Responder
(𝑅𝑝 ) undergoes refinement via a reward signal R<𝑄,𝐷𝑦> , sourced
from the Retriever (𝑅𝑡 ), and harnessing reinforcement learning
mechanisms. A comprehensive breakdown of thesemodules follows
in this section.

3.1 Synthetic Query Generation Using

Responder

The quality of the synthetic queries plays a central role in Mimir’s
training paradigm. Presented with the document 𝐷𝑦 , the Responder
(𝑅𝑝 ) generates two kinds of synthetic queries: positive queries,
which resonate with the document’s content, and negative queries,
which, while closely related (often touching upon the same topic or
entities) cannot be satisfactorily answered using only the document
in question. To direct the Responder’s query generation process, we
employ the following prompts:

• Positive: “Given the content of the document: [document].
Based on the content and essence of the provided document,
generate a user-like query in [target_language].”

• Negative: “Given the content of the document: [document].
Devise a query in [target_language] that, while related, can-
not be fully addressed by the provided document’s content.”

Substituting appropriate values for [target_language], the Re-
sponder creates 𝑁 + distinct positive queries and 𝑁 − related yet
unanswerable negative queries in different target languages. This
nuanced approach to multilingual query generation captures the

1https://chat.openai.com/
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Multilingual
Positive Query

Wann wurden die
Zwillingstürme zerstört?

（german）

世贸双子塔在哪个城市？

（chinese）
¿Cuál era el costo de

construcción del World
Trade Center original?

（spanish）

Multilingual
Negative Query

Prompt+Document

Given the content of the document: {Document}.
Devise a query in {Target Language} that, while related, and cannot
be fully addressed by the provided document's content.

Positive Prompt：
Given the content of the document: {Document}.
Based on the content and essence of the provided document,
generate a user-like query in {Target Language}.

Negative Prompt：

Positive Prompt：
{Document}

{Target Language}

{Target Language}
{Document}

Retriever
Responder

Relevance Score

Reinforcement Learning

Multilingual
Query

Initial

Responder

ツインタワーが建てられ
るまでどの位の時間がか

かりましたか
（japanese）

Tuned

Responder

 Document
The original World Trade Center was a large
complex of seven buildings ... It opened on April
4, 1973, and was destroyed during the
September 11 terrorist attacks in 2001 ...
contained 13,400,000 square feet of office space
and, was projected to accommodate an
estimated 130,000 people.

Doc

Contractive Learning

Figure 1: The overall training framework of Mimic, which is an iterative framework. In one iteration, the Retriever is trained
on the synthetic multilingual queries generated by the responder through contrastive learning. In reverse, the Responder is
trained under the reward signal scored by the Retriever.

diverse nature of real-world search inquiries and deepens the train-
ing experience. With this rich set of queries, the Retriever is primed
to navigate a variety of linguistic challenges, ensuring it delivers
peak performance in real-world search scenarios.

3.2 Retriever Training with Synthetic Queries

To ensure excellence in cross-lingual document retrieval, the Re-
triever (𝑅𝑡 ) undergoes intensive training with our crafted synthetic
query sets. This rigorous training process amplifies the Retriever’s
proficiency in discerning relevant documents across a myriad of
languages. Specifically, the Retriever learns to gravitate towards
positive queries when linked with a pertinent document and, con-
versely, distances itself from negative queries that are not in align-
ment with the document’s content. This behavior is captured using
a contrastive loss, designed such that embeddings of positive queries
are drawn nearer to their associated documents in the embedding
space, while the embeddings of negative queries are repelled. Math-
ematically, the contrastive loss L𝑅𝑡 can be expressed as:

L𝑅𝑡 =
∑
𝑞∈𝑄+ Rel

[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑞)

]∑
𝑞∈𝑄+ Rel

[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑞)

]
+∑

𝑘∈𝑄− Rel
[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑘)

]
Rel

[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑞)

]
= sigmoid

[
W ·

(
𝑅𝑡 (𝐷𝑦) | |𝑅𝑡 (𝑞)

)
+ b

]
(1)

Here, Rel
[
·, ·
]
represents the semantic relative score, for which

we employ a dense linear layer parameterized byW, b. 𝑅𝑡 (𝐷𝑦) re-
trieves the embedding representations of the document 𝐷𝑦 through
the Retriever. [| |] means the concatenation operation. Note that
𝑅𝑡 (𝐷𝑦) can be more than a single embedding, it can represent all
kinds of information we use to represent the document 𝐷𝑦 . We
take 𝐷𝑦 as the document representation for simplicity. Through
this training approach, the Retriever is finely calibrated to deliver
unparalleled performance in cross-lingual document retrieval tasks.

After the fine-tuning process of the Retriever, the semantic rele-
vance score between a document 𝐷𝑦 and a query 𝑞 is determined
with the score Rel

[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑞)

]
. To provide a consistent and

interpretable reinforcement signal for the Responder (𝑅𝑝 ), we re-
scale the relative score Rel

[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑞)

]
to lie within the interval

[−𝛿, 𝛿]. The reward score, R, is then calculated as:

R(𝑞, 𝐷𝑦) = 2𝛿 ×
Rel

[
𝑅𝑡 (𝐷𝑦), 𝑅𝑡 (𝑞)

]
−min_rel

max_rel −min_rel
− 𝛿 (2)

where max_rel and min_rel represent the maximum and minimum
relevance values of the document𝐷𝑦 , respectively. This transforma-
tion ensures that the reward score spans the spectrum of relevancy
between the query and document, assisting the Responder in craft-
ing superior queries by heeding the feedback encapsulated in the
reward.
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3.3 Reinforcing the Responder with

Cross-lingual Proximal Policy Optimization

Once the reward signals are derived from the Retriever, they be-
come instrumental in steering the training of the Responder (𝑅𝑝 ).
In particular, we employ reinforcement learning (RL) techniques to
optimize the query generation process of the Responder based on
these reward signals. Given a document 𝐷𝑦 , the Responder crafts a
query 𝑞, guided by the previously mentioned prompts, and subse-
quently evaluates its quality by consulting the reward signal. The
objective is to maximize the expected reward:

J(\ ) =

E𝑞∼𝜋\ ( · |𝐷𝑦 )
[
𝑟𝑡 (\ ) − _𝐾𝐿𝐷𝐾𝐿

(
𝜋𝑃𝑃𝑂 (𝑦 = 𝑞 |𝑥 = 𝐷𝑦 ) | |𝜋𝑏𝑎𝑠𝑒 (𝑦 = 𝑞 |𝑥 = 𝐷𝑦 )

) ]
(3)

where \ are the parameters of the Responder, 𝐷𝐾𝐿 represents the
KL-divergency, and 𝜋\ represents the policy of generating a query
when provided with a document. 𝑟𝑡 (\ ) is the ratio of the current
policy to the old policy. We introduce the Cross-lingual Proximal
Policy Optimization (X-PPO), a tailored adaptation of the traditional
PPO suited for multilingual contexts:

L𝑋−𝑃𝑃𝑂,𝑙 = E
[
min

(
𝑟𝑡 (\ )𝐴𝑡 , clip(𝑟𝑡 (\ ), 1 − 𝜖𝑙 , 1 + 𝜖𝑙 )𝐴𝑡

)]
(4)

where𝐴𝑡 denotes the advantage estimate, which is calculated based
on R(𝑞, 𝐷𝑦). Details about the PPO variables can be found in the
following papers [37, 41, 65]. To elucidate the components of this
approach:

Dynamic Clipping Range 𝜖𝑙 : Capturing the unique training
trajectories languages might exhibit:

𝜖𝑙 = 𝜖𝑏𝑎𝑠𝑒 + 𝛽 × Var(L𝑋−𝑃𝑃𝑂,𝑙 )

Var(L𝑋−𝑃𝑃𝑂,𝑙 ) =
1
𝑛

𝑛∑︁
𝑖=1

(L (𝑖 )
𝑋−𝑃𝑃𝑂,𝑙 − L𝑋−𝑃𝑃𝑂,𝑙 )2

(5)

where The 𝜖𝑏𝑎𝑠𝑒 represents a base clipping value, and 𝛽 serves as a
scaling factor to control the impact of the variance on the clipping
range. L (𝑖 )

𝑋−𝑃𝑃𝑂,𝑙 is the loss at the 𝑖-th epoch for language 𝑙 and
L𝑋−𝑃𝑃𝑂,𝑙 is the mean loss for the last 𝑛 epochs. The culmination
of these elements in X-PPO ensures a nuanced reinforcement learn-
ing regime. It uniquely positions Mimir to adeptly navigate the
multifaceted landscape of multilingual information retrieval.

3.4 Overall Procedure forMimir

To make the overall training procedure much easier to understand,
we summarize the training procedure of Mimir in Algorithm 1.

In the Mimir framework, the search process is straightforward.
When a user provides a query 𝑞, the Retriever scans our multilingual
document setD to find the most 𝐾 relevant documents. Once these
are identified, the Responder uses them, along with the user’s query,
to generate a clear answer with the following prompts:
"Given the user’s query, [User_Query], and the relevant document
information, [Document_Content], please formulate a clear and con-
cise answer in the same language as the user’s query that effectively
addresses the user’s question.".

When plugged into the model, the placeholders [User_Query]
and [Document_Content] would be replaced with the actual content

of the user’s query and the selected relevant document, respectively.
This approach improved through our training methods, ensures
accurate and context-aware responses.

Algorithm 1 Training Procedure forMimir
Require: Unsupervised Multilingual Document setD, Pre-trained

Responder (𝑅𝑝 ), Pre-trained Retriever (𝑅𝑡 )
Ensure: Fine-tuned Responder (𝑅𝑝 ), Fine-tuned Retriever (𝑅𝑡 )
1: Training:
2: while not converged do

3: Step 1: Synthetic Query Generation Using Responder
4: Construct 𝑄+ with Positive Prompt
5: Construct 𝑄− with Negative Prompt
6: Step 2: Retriever Training with Synthetic Queries
7: Fine-tune 𝑅𝑡 with Eq. 1
8: Calculate reward signal R(𝑞, 𝐷𝑦) with Eq. 2
9: Step 3: Fine-tuning the Responder with R(𝑞, 𝐷𝑦)
10: Fine-tune 𝑅𝑝 with Eq. 3
11: end while

12: return Responder (𝑅𝑝 ), Retriever (𝑅𝑡 )

4 EXPERIMENTAL SETUP

In our assessment of Mimir, we focus on two core tasks in the
cross-lingual domain: Cross-lingual Information Retrieval (CLIR)
and Multilingual Knowledge-Based Question Answering (MKBQA).
This dual evaluation is key to understanding the full capacity of
Mimir. With CLIR, we assess the Retriever’s skill in finding relevant
documents based on synthetic queries. The MKBQA task, in con-
trast, evaluates the Responder’s ability to provide precise answers
to user queries. Together, these tasks allow us to comprehensively
evaluate both retrieval and response capabilities of Mimir.

4.1 CLIR and MKBQA Settings

CLIR settings. Our primary objective in this setting is to tackle a
prevalent scenario arising from the abundance of online English
data: processing non-English queries against an English document
collection. To ensure a meticulous evaluation of cross-lingual re-
trieval performance inMimir, we utilize human translations of a
standard query set. This enables us to secure queries in diverse
languages. Nevertheless, despite this variation in query transla-
tions, the content and language of the retrieval corpus remain
consistent. For a balanced comparison with previous methods [18],
we’ve chosen four low-resource languages from distinct linguistic
families: Niger-Congo (Swahili), Afro-Asiatic (Somali), Austrone-
sian (Tagalog), and Indo-European (Marathi). We also incorporate
three medium to high-resource languages—Finnish, German, and
French—to provide a more comprehensive insight into Mimir’s
performance.

MKBQA settings. Our objective here is to evaluate how effec-
tively Mimir can generate cross-lingual answers, rather than re-
trieving documents from a collection. Traditional evaluation strate-
gies, reliant on exact match for retrieval models, are ill-suited for
this task which involves comparing the model’s output to a refer-
ence answer to gauge accuracy. While LLMs typically produce text
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paragraphs embedding answers, these might not always mirror pre-
cise answers. Often, they present a reformulation of the reference
answer. For results that mirror the exact match evaluations with
LLMs, we adopt the token overlap recall score for the initial 2000
tokens (R@2kt). In our assessment of Mimir, it is tested across 10
languages, including German, Spanish, French, Italian, Norwegian,
Portuguese, Thai, Turkish, Vietnamese, and Chinese, in line with
Sorokin et al. [44].

4.2 Dataset

Evaluation data. Our focus encompasses two distinct tasks: re-
trieval from English collections using multilingual queries and
generating accurate answers in multiple languages with English
collections. Accordingly, we formulate three test sets, varying in
collection size, relevance distribution, and language configurations.

• CLEF. The data derived from the Cross-Language Evalua-
tion Forum (CLEF) campaigns from 2000-2003, were specif-
ically tailored for bilingual ad-hoc retrieval tracks. We pre-
process this data following the methods of Huang et al.
[18]. Queries are constructed by concatenating the title and
description fields from the topic files. Overall, the dataset
contains 151 queries from the CLEF C001 – C200 topic,
omitting queries without relevant judgments. The English
document collection is sourced from the Los Angeles Times
corpus, which boasts 113k news articles. For Finnish, Ger-
man, and French, the queries are provided by the CLEF
campaign. For low-resource languages, Bonab et al. [5] sup-
plies Somali and Swahili translations of English queries.
Additionally, we enlist bilingual human experts from the
Gengo service to translate English queries into Tagalog and
Marathi.

• MKQA. The MKQA dataset [32] is an exhaustive bench-
mark tailored to evaluate open-domain question answering
(QA) within a multilingual context. Featuring over 10,000
examples, it provides questions in 26 unique languages,
ensuring each English question is complemented by 26
high-quality translations. For our evaluation of Mimir, we
select 20 out of the available 26 languages, aligning with
Sorokin et al. [44]. The dataset’s answers, sourced from
open-domain passages, can vary in form—from numbers
and dates to concise phrases. With its vast linguistic range,
the MKQA dataset serves as a crucial tool for assessing the
adaptability and precision of QA systems across different
languages.

Supervised warm-up data. To ensure the stable and consistent
performance of Mimir during the iterative process, we utilize mul-
tilingual triples from the MS MARCO dataset to warm up both the
Retriever and Responder modules. From this dataset, we randomly se-
lect a subset comprising 7million cross-lingual triples per language,
thereby constructing a multilingual training set. As our warm-up
strategy for the Retriever, we adhere to the fine-tuning methods
described in Huang et al. [19]. For the Responder, we employ cross-
lingual Question-Answer pairs extracted from MS MARCO triples
to perform supervised fine-tuning (SFT).

Unsupervised training data. The iterative fine-tuning frame-
work withinMimir operates in an unsupervised manner. For this

purpose, we source multilingual data from Wikipedia2. Notably,
our collection only requires English document data, sinceMimir
is designed to autonomously generate multilingual queries based
on the English content. For data extraction, we utilize WikiExtrac-
tor3 on the Wikipedia database backup dump4. Following the data
pre-processing, we randomly select 50 million English sentences to
facilitate the iterative training of Mimir.

4.3 Implementation Details

Mimir’s architecture is underpinned by two pivotal components:
the Retriever (𝑅𝑡 ), initialized using the multilingual pre-trained
LaBSE model, and the Responder (𝑅𝑝 ), based on the multilingual
instruction-tuned BLOOMZ-7B1 model. In the synthetic query gen-
eration phase, the Responder is tasked with generating queries in
20 different languages, as detailed in Section 4.1. During the re-
trieval training phase, our focus was on enhancing the Retriever’s
efficiency using both synthetic positive and negative query sets. We
maintained a consistent sampling of positive and negative queries
at 𝑁 + = 5 and 𝑁 − = 25, respectively, to strike a balance between
the queries and the document. During the contrastive learning fine-
tuning stage for the Retriever, we utilized a learning rate of 3×10−6,
processing in batches comprising 4 documents each, yielding an ef-
fective batch size of 120. For the Responder’s reinforcement learning
fine-tuning, we adhered to hyperparameters in line with the PPO
framework. For determining the dynamic clipping range, 𝛽 was set
at 0.95, and the base clipping range parameter was 𝜖base = 0.2. This
phase processed data in batches of 256, employed gradient accu-
mulation, and used a learning rate of 5 × 10−5. Convergence was
achieved in three epochs. All experiments were conducted using
PyTorch, supported by the Huggingface5 and DeepSpeed-Chat [57]
toolkits.

Evaluation. To gauge retrieval effectiveness, we draw from es-
tablished methodologies on the CLEF dataset [2, 11, 16, 18, 19],
reporting both the mean average precision (MAP) for the top 100
and the precision for the top 10 (P@10) ranked documents. Statis-
tical significance was ascertained using a two-tailed paired 𝑡-test
with a p-value threshold of 0.05. For assessing generation quality,
we followed the methodology from prior work [44] and presented
the recall scores for the initial 2000 tokens (R@2kt).

4.4 Compared Methods

We compareMimic with the methods in the following:
• SMT+BM25: This approach leverages the Statistical Ma-

chine Translation (SMT) method to translate queries. Using
the GIZA++ toolkit, a translation table is built for each
language pair. The top 10 translations from this table are se-
lected for each query term, which is then usedwith Galago’s
weighted #combine operator to generate a translated query.
BM25 is then employed to retrieve documents using the
translated queries.

• NMT+BM25: Utilizing the superiority of Neural Machine
Translation (NMT) models over SMT in translation quality,

2https://www.wikipedia.org/
3https://github.com/attardi/wikiextractor
4https://dumps.wikimedia.org/
5https://huggingface.co/
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Table 1: A comparison of model performance on CLEF benchmark. The highest value is marked with bold text. We have

fine-tuned LaBSE using the same supervised data and report the fine-tuned performance.

Retrieval Methods
Low Resource Languages Medium or High Resource Languages

Swahili Somali Tagalog Marathi Finnish German French

MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10 MAP P@10

SMT+BM25 0.2271 0.2139 0.1978 0.1832 0.1655 0.0951 0.1047 0.0965 0.3089 0.2810 0.3921 0.3419 0.4052 0.3754
NMT+BM25 0.2187 0.2088 0.1448 0.1356 0.3527 0.3202 0.1820 0.1781 0.3742 0.3603 0.4092 0.3595 0.4299 0.3862
Code-Switch 0.2420 0.2258 0.1845 0.1682 0.3542 0.2934 0.1573 0.1662 0.3831 0.3403 0.4553 0.3827 0.4589 0.3993
Translate-Test 0.2632 0.2537 0.2132 0.2098 0.3816 0.3355 0.2155 0.2246 0.4401 0.3889 0.4795 0.4091 0.4988 0.4234
OPTICAL 0.3129 0.2901 0.2477 0.2365 0.4188 0.3623 0.2414 0.2384 0.4228 0.3874 0.4832 0.4067 0.4764 0.4119

LaBSE 0.3185 0.2998 0.2581 0.2605 0.4207 0.3773 0.2762 0.2505 0.4405 0.4038 0.4874 0.4030 0.4896 0.4090
Mimic 0.3482 0.3269 0.3214 0.2956 0.4498 0.3815 0.3029 0.2841 0.4364 0.3991 0.4912 0.4053 0.4991 0.4307

this method first translates the query into English using an
NMT model. The translated query is then subjected to the
BM25 algorithm for document retrieval.

• Code-Switch: This method focuses on data augmentation
techniques that enhance training for cross-lingual tasks.
Qin et al. [38] introduced a code-switching framework that
turns monolingual training data into mixed-language data.
Taking this further, Bonab et al. [5] suggested a shuffling
algorithm to intersperse and mix the translated terms into
the query. The code-switch method is applied to queries
in the MS MARCO triples, which is then used to train the
ColBERT retrieval model.

• LaBSE: The Retriever inMimic draws its initialization from
LaBSE [9]. Once trained on the MS MARCO triples, this
Retriever can be directly run on the CLIR evaluation data
in a zero-shot setting.

• OPTICAL: The OPTICAL approach by Huang et al. [18]
treats the cross-lingual token alignment task as an optimal
transport problem. It learns by distilling knowledge from a
proficient monolingual retrieval model. Notably, it requires
bitext data for the distillation training phase.

• Translate-Test: Mirroring the NMT-BM25 method, this ap-
proach uses anNMTmodel to translate the evaluation query
into English. Once translated, an English-to-English query-
document matching is executed using a trained monolin-
gual neural retrieval model like ColBERT.

• BLOOMZ-7B1: Muennighoff et al. [36] offers the BLOOMZ,
a publicly accessible multitask model instruction fine-tuned
on the BLOOM basis, which is renowned as one of the
highly multilingual Llms, having training across 46 lan-
guages. The 7.1B model variant of BLOOMZ is used post-
warm-up on the MS MARCO dataset for experiments.

• GPT-3.5-TURBO: Among the most prominent Llms, GPT-
3.5-TURBO is proprietary, harnessing the power of instruc-
tion tuning, Reinforcement Learning with Human Feed-
back, and instruction fine-tuning. For the studies, GPT-3.5-
TURBO-0301 is accessed via its official Python API.

• Sentri: Sentri, as presented by Sorokin et al. [44], employs a
singular encoder for both query and passage retrieval from
a multilingual collection. Combined with a cross-lingual

generative reader, it sets new standards in retrieval. Re-
markably, it can be extended to over 20 languages using a
zero-shot approach.

5 EXPERIMENTAL RESULTS

The experimental phase of our study evaluated the retrieval per-
formance of Mimic compared to multiple baseline methodologies.
Here, we detail the comparative insights and distinct advantages of
Mimic.

5.1 Retrieval Performance Improvement in

Mimic

The comparative results between the baseline methods and Mimic
are documented in Table 1. An overarching observation is the domi-
nance of Mimic across all 7 tested languages. Themodel, on average,
outperforms the strongest of the previously established baselines
by an impressive 8.8%. Such robust results can be attributed to the
high-quality synthetic queries produced by the Responder. Unlike
traditional methods, Mimic empowers the Retriever with richer
supervisory signals across various languages. A pivotal component
contributing to this supremacy is the strategic design of negative
queries, which discernibly distinguish between answerable and
unanswerable questions within a given document. Such intricate
supervision is evidently beneficial for retrieval tasks, as corrobo-
rated by the improvements inMimic:

Mimic performs better on low resource languages. From
Table 1, we find that the overall improvements of Mimic over pre-
vious baselines is 2.8% on medium and high resource languages,
however, the performance gap further rises to 15.4% on low re-
source languages. Since the low-resource languages often lack a
great amount of labeled data to train a retrieval model, the syn-
thetic queries from Mimic can provide more supervision signals
than previous methods. From the results in Table 1, we believe the
synthetic queries are of great importance in improving the retrieval
performance on low-resource languages.

Cross-lingual encoder performs better than translation

models. Instead of building a CLIR dataset for model training, the
Translate-Test method translates the query to English using anNMT
model and then retrieves the document based on a monolingual
neural retrieval model. With the help of the NMTmodel at test time,
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Table 2: The performance of post-retrieval translation methods and large language models on MKQA dataset. We report the

R@2kt scores and the best performance is marked with bold font.

Models De Es Fr It Nl Pt Th Tr Vi Zh Avg.

Post-retrieval Translation Methods

CORA 44.6 45.3 44.8 44.2 47.3 40.8 45.0 34.8 33.9 33.5 41.4
BM25+MT 43.9 45.3 41.7 41.1 45.2 46.4 45.9 42.7 44.3 38.2 43.5
Bi-Encoder 50.5 48.0 48.9 41.2 48.4 48.6 46.1 45.0 48.1 46.8 47.2
Sentri 56.5 55.9 55.1 54.3 56.3 54.8 55.3 53.0 54.4 50.2 54.6

Large Language Models

BLOOMZ-7B1 49.3 46.9 46.7 48.8 50.1 37.0 38.8 39.5 37.9 52.1 44.7
GPT-3.5-TURBO 53.8 56.5 56.0 53.2 53.9 44.5 50.2 52.0 50.5 51.0 52.2
Mimic 57.5 57.9 54.6 54.8 59.2 56.3 55.4 55.8 56.8 53.0 55.6
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R
@
2k
t
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Figure 2: Analysis about the influence of cross-lingual proxi-

mal policy optimization in Mimic. We have set the hyparam-

eters to four different values and report the R@2kt score on

ten languages in MKQA. From the result, we set 𝛽 = 0.3 for
the best performance.

this pipeline approach can be the strongest baseline in our experi-
ment. From the results in Table 1, we observe that the performance
of Mimic on low resource languages is 29.2% percent better than
the Translate-Test method, while the Translate-Test method can
outperformMimic by 0.8% on medium and high resource languages.
This implies the Translate-Test method is severely influenced by
the performance of the NMT model. On low resource languages, it
is hard to find an NMT model of good quality, hence the poor per-
formance of NMTmodel drags down the performance of the overall
retrieval performance. As for medium and high-resource languages,
obtaining a high-quality NMT model is easy, and with accurate
English translation results, retrieving relevant documents is a lot
easier, even with traditional statistical methods that can achieve
comparable performance. Mimic can train the Retriever in an unsu-
pervised manner, hence, it achieves consistent improvements no
matter the scale of the datasets in different languages.

5.2 More accurate answer generation in Mimic

In Table 2, we have compared Mimic with previous post-hoc trans-
lation methods. These methods first retrieved the passages from
English Wikipedia, extracted the answer from the top-ranked pas-
sage, and translated it with a machine translation model. Compared

with post-hoc translation methods, we find that directly apply-
ing Llms on MKQA benchmark cannot match the performance
of previous post-hoc translation methods. Even after fine-tuning
on the MS MARCO triples, we still observe 9.9 performance gap
between BLOOMZ-7B1 and Sentri. The GPT-3.5-TURBO achieves
comparable performance when compared with post-hoc transla-
tion model, with the performance gap shrinking to 2.4. However,
afterMimic fine-tuning, the performance of Llms can exceed the
post-hoc translation methods by 1 score in accuracy. This further
reveals the effectiveness of the unsupervised fine-tuning paradigm
inMimir. Since both GPT-3.5-TURBO and Mimic have utilized re-
inforcement learning with human feedback during fine-tuning, this
may further prove that reinforcement learning is efficient and use-
ful at achieving cross-lingual consistency on Llms. For the detailed
analysis of why Llms can gain better performance than post-hoc
translation methods, we leave them in Section 5.5.

5.3 Ablation Study

We have reported the performance using only the warm-up model
in Table 1 and Table 2. Compared with the warm-up LaBSE model
in Table 1, we can find that after using unsupervised iteration
fine-tuning in Mimic, the overall performance increases by 5.9%
in MAP and 4.9% in P@10. The improvement mainly comes from
the low-resource languages. On low resource languages, we find
that Mimic gains about 11.7% in MAP and 8.4% in P@10. This
proves that Mimic can provide high-quality synthetic queries to
help better align the low-resource representations in the Retriever
space to the high-resource languages. And eventually improves the
cross-lingual performance of low-resource languages.

As for the Responder, the results are shown in Table 2. Com-
pared with warm-up BLOOMZ-7B1, we find thatMimic can further
improve the performance by 10.9 compared with only using MS
MARCO triples to fine-tune. This illustrates the effectiveness of
Mimic on both Retriever and Responder. What’s more, we conjecture
that great improvement may come from reinforcement learning.
During reinforcement learning, the Responder can learn from a
sequence-level feedback signal rather than a previous token-level
signal in auto-regressive decoding. This can help improve the qual-
ity and relevance of the output. We will dig deeper and explore
more in this area in future work.
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Table 3: Cases in real cross-lingual search scenarios. Baseline search methods can not accurately capture cross-lingual named

entities and fail to translate under the same topic due to the limitations of the context length. On the contrary, with the large

scale of training data, Mimir can alleviate such issues.

Case 1

Query: Nikujaga no tsukurikata
Baseline Translation: How to make meat and potatoes.
Mimic Translation: How to make Nikujaga.

Mistakes:

The user might get recipes for various meat and potato dishes, missing out on the specific
Japanese dish they were interested in.

Case 2

Query: Técnicas de edición genética más recientes.

Results in English:

CRISPR-Cas9 has revolutionized genetic editing. It allows for precise DNA modifications.
Using guide RNA, it targets specific DNA sequences and introduces the desired change.

Baseline Translation:

CRISPR-Cas9 ha revolucionado la edición genética. Permite modificaciones precisas de ADN.
Usando guía turística de ARN, se dirige a secuencias específicas de ADN e introduce el cambio deseado.

Mimic Translation:

CRISPR-Cas9 ha revolucionado la edición genética. Permite modificaciones precisas del ADN.
Utilizando ARN guía, se dirige a secuencias específicas de ADN e introduce el cambio deseado.

Mistakes:

"guía turística de ARN" translates to "tourist guide of RNA," a severe error.
The translation "guía turística" changes the entire context from a genetic editing scenario to a travel scenario.

5.4 Analysis of the Cross-lingual Proximal

Policy Optimization

To better adapt reinforcement learning in the context of cross-
lingual sentence learning, we propose cross-lingual proximal policy
optimization, which designs different clipping ranges for different
languages. To better exploit the impact of the X-PPO, we conduct
experiments on different values of the hyper-parameters 𝛽 in the
calculation of the dynamic clipping range. The results are shown
in Figure 2. 𝛽 determines how sensitive the variation of the loss
function can affect the clipping range for each language. Ideally,
if the variation in the loss of one language is large, this implies
the performance on this language is not fully convergence, hence
we tend to broaden the clipping range for this language to make
it faster convergence. We have tried different values of 𝛽 . When
𝛽 = 0, X-PPO will deteriorate to normal PPO, and we find that
the performance in different languages varies a lot. We believe
that during the pre-training, different languages consume different
amounts of data, hence the competence for different languages
varies and this cannot be resolved with a constant clipping range.
After increasing 𝛽 to 0.3, the performance for those edge languages
increases significantly. However, further increasing 𝛽 to 0.5 will
not lead to further improvement in the overall performance. This
indicates the model may focus on an edgy gradient direction, and
lead to general degradation on most languages. Empirically, we set
𝛽 to 0.3 to achieve the best performance in all languages.

5.5 Advantages of Mimic than previous

translation models

Since the previous translation models suffer from NER issues and
cultural context loss issues owing to the restriction of the context
length, we conduct some case studies to clearly show thatMimic

can help alleviate these issues. We list two cases in Table 3. For
case 1, The Japanese query searched for a special dish “Nikujaga”,
but baseline translation models mistranslated the words into “meat
and potatoes”, which led to recipes for various meat and potato
dishes, missing out on the specific Japanese dishes the user is inter-
ested in. WhileMimic correctly captures the entity meaning and
keeps the special words untranslated for searching. This indicates
that after the extensive training data, Mimic has seen numerous
entities across different contexts and languages. It can recognize
and correctly handle proper nouns, ensuring that they are not in-
appropriately translated or misrepresented. For case 2, the query
is in Spanish asking about the “Latest genetic editing techniques”.
After searching the corresponding documents, baseline translation
models incorrectly translate “guide RNA” to “guía turística de ARN”,
which even alters the topic of the document. Due to the training
on vast and diverse datasets,Mimic has a broader understanding
of cultural contexts and a longer accommodation of context length,
hence, it correctly translates the word to “ARN guía’. These two
cases prove thatMimic can alleviate the problem in baseline transla-
tion models. However, Mimir still shows limitations in some query
ambiguity and recent culture loss cases, we will focus on building
a comprehensive searching framework in future works.

6 CONCLUSION

The challenges of CLIR in today’s digital age are undeniable. With
Mimir, we introduce an innovative solution that leverages Llms
to address these challenges head-on. By seamlessly responding
in the user’s native language and employing a synergistic dual-
module architecture,Mimir has demonstrated its edge over existing
systems in our evaluations. As the digital landscape evolves,Mimir
represents a significant step towards a more inclusive and efficient
multilingual information retrieval.
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