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Abstract

Charts play a critical role in conveying numeri-
cal data insights through structured visual rep-
resentations. However, semantic visual under-
standing and numerical reasoning requirements
hinder the accurate description of charts, inter-
preting a challenging task in chart summariza-
tion. Despite recent advancements in visual
language models (VLMs), approaches lack ro-
bust mechanisms for verifying statistical fact
correctness and are computationally heavy. To
address this gap, this paper explores the poten-
tial of using zero-shot learning to motivate the
lightweight VLMs to perform computational
reasoning via Python programs as intermediate
outputs to derive summary statistics valid for
chart understanding. Specifically, we introduce
a novel chart-to-dictionary auxiliary task, of-
fering a more flexible representation compared
to traditional chart-to-table methods, making
it particularly well-suited for integration with
the Program-of-Thought (PoT) strategy. Ex-
perimental results demonstrate that our method
performs on par with existing chart summariza-
tion methods across machine translation and
text generation metrics. We release the code at
the GitHub link.

1 Introduction

With the rising demand for visualizing quantita-
tive data, the growing adoption of digital media
has played a role in the rapid growth of data visu-
alization, which has led to the task of automatic
chart understanding, information extraction, and
summarization, critical areas of research (Huang
et al., 2024; Zhang et al., 2024; Choi et al., 2025).
Recent advancements in Visual Language Models
(VLMs) have shown promise in this area (Masry
etal., 2023; Han et al., 2023; Ko et al., 2024; Masry
et al., 2024; Meng et al., 2024; Zhang et al., 2024;
Liu et al., 2024); however, existing methods still
struggle with achieving high-quality summaries, es-
pecially for L2/L.3 content - which is identified as
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Summary

Eurostat, the European statistical agency, announced today that the European
Union’s annual inflation rate in April was 1.4%, down from a rate of 2.7% in
April 2012. Nonetheless, across eight EU nations surveyed by the Pew Rese-
arch Center in March 2013...

Dictionary

": [{"date": "Apr-09", "value": 1}, {"date": "Jul-09", "value": -2},
..., "EU": [{"date": "Apr-09", "value": 1}, {"date": "Jul-09", "value": =t}, ...,
{"date": "Jan-13", "value": +4}, {"date": "Apr-13", "value": +5}]}

Statistics

{" " {"minimum_value": =2, "maximum_value": +6, "total_sum":
132, ... "EU": {"minimum_value": =2, "maximum_value": 46, "total_sum":
132, "number_of entries": 17, "average_value": 776...} }

Generated Summary

Both the Euro Area and EU experienced an increase from April 2009 through
January 2013, f trhrighestpotnts f p2=
643 for both regions...there was a gradual decline until May or June that year
before stabilizing between approximately 1.5%-2%...

Figure 1: Example of a chart in Pew with its data repre-
sentations in Python dictionary and statistics. [falic is
the L2/L.3 content in the chart summarization. Strikeeut
indicates hallucination errors and error-inducing tokens.

statistics and relations (e.g., min, max) / perceptual
and cognitive phenomena (e.g., trends) (Lundgard
and Satyanarayan, 2022; Kantharaj et al., 2022;
Tang et al., 2023), as shown in Figure 1. The chal-
lenge is around the highly inconsistent matching
between the generated summary and the chart’s
actual data content yields factual inconsistencies
and hallucinations. This is either due to failing to
parse the text in the chart or to demarcate the nu-
merical value of the visualized data. Additionally,
with semantic parsing of the chart elements, VLMs
struggle at performing complex reasoning about
chart patterns and incorporating statistical reason-
ing with chart elements (Liu et al., 2024). Despite
general challenges, although current VLM-based
chart understanding methods have shown a cer-
tain level of performance, they still face two main
challenges: (1) Existing implementations are fine-



tuned or pre-trained specifically on chart-related
instruction data. While this alignment between the
vision encoder and language decoder enhances gen-
eralization performance, such training processes
introduce significant computational overhead, mak-
ing them resource-intensive and challenging under
computational constraints; (2) These tasks continue
to remain a challenge in understanding the struc-
tural interplay between the different elements of a
chart. Effective visual language understanding in
particular requires two key processes: first, compre-
hensive semantic layout understanding of the chart,
and second, robust statistical reasoning to accu-
rately capture and analyze the underlying data (Liu
et al., 2023b). In light of these challenges, we in-
vestigate zero-shot and training-free approaches for
VLMs in chart summarization, exploring whether
supplementary textual data in multi-modal chart
summarization enhances or hinders overall per-
formance to what extent. Program-of-Thoughts
(PoT) (Chen et al., 2023) is a zero-shot prompting
method, which was originally proposed to disen-
tangle computation from reasoning to augment a
model’s numerical capability. PoT has shown effec-
tiveness in enhancing the ability of language mod-
els compared to the general multimodal-purpose
prompting Multimodal Chain of Thought (MCoT)
(Wang et al., 2025) in complex numerical reason-
ing tasks. Given this statistical reasoning capability,
this work investigates the effectiveness of the PoT
guiding VLMs to perform numerical computations
and logical reasoning via LLM Python programs
as intermediate steps in the chart summarization
process. VLMs will be used to generate summaries
in zero-shot settings with the PoT approach for the
chart summarization task. Specifically, we aim to
answer the following research questions centering
on chart summarization: RQ1. How can visualized
numerical data, such as charts, be represented us-
ing Program-of-Thoughts prompting ? RQ2. Does
offloading statistical computations from a VLM im-
prove its performance for concluding the L2/L3
content? and RQ3. How do Program-of-Thoughts
prompting improvements affect different chart types,
in terms of area, line, bar, pie, and scatter charts?

This work integrates the PoT methodology on
data representation for chart summarization with
VLMs, serving as the chart data representation in
chart understanding to aid in the summarization
task. We also demonstrate that PoT offers a com-
petitive performance relative to existing prompting
methodologies in the context of lightweight VLMs.

2 Literature Review

2.1 Chart Understanding

Template-Based Early approaches to automatic
chart understanding, particularly the sub-task of
chart summarization, often relied on planning-
based architecture and template-based generation
methods (Mittal et al., 1998; Fasciano and La-
palme, 2000; Green et al., 2004; Reiter, 2007; Fer-
res et al., 2007, 2013). Recent template-based re-
search has focused on utilizing statistics (e.g., min,
max, trends) from chart numerical data for present-
ing the facts (Demir et al., 2012; Cui et al., 2019;
Srinivasan et al., 2019; Wang et al., 2020), forming
the statistics analysis into textual summarization
output. Some research utilized the off-the-shelf
OCR (Optical Character Recognition) tools or de-
tectors to represent chart data into textual tables and
other representations, relying on pipeline methods
(Singh et al., 2019; Sidorov et al., 2020; Methani
et al., 2020; Hu et al., 2021; Fu et al., 2022; Kan-
tharaj et al., 2022; Liu et al., 2023a). More recently,
ResNet (He et al., 2016) encoder and LSTM de-
coder were used to process the chart and create the
caption (Chen et al., 2020a). However, compared
to data-driven models, template-based approaches
struggle with complex visual patterns and numeri-
cal reasoning, with high costs in producing generics
and matching variations in vocabulary choices.
Pretrained With the progression of deep learn-
ing techniques, which subsequently improved gen-
eral computer vision using neural networks and
Transformer (Vaswani et al., 2017), recent work
began to adopt encoder-decoder architectures to
improve chart understanding (Wang et al., 2025),
including Transformer (Singh and Shekhar, 2020;
Obeid and Hoque, 2020; Kantharaj et al., 2022; Lee
et al., 2023), LSTM (Spreafico and Carenini, 2020),
CNN+LSTM (Hsu et al., 2021), and VLMs (Liu
et al., 2023b), which are pre-trained on both visual
and text data, often with specialized text and im-
age encoders, and have shown significant promise
in tasks requiring joint understanding of multiple
modalities. However, challenges remain in ground-
ing the factual and logical coherence in generated
summaries, particularly when dealing with com-
plex charts requiring numerical reasoning.
Fine-Tuned Aside from pre-training the model,
fine-tuning the pre-training model (Tang et al.,
2023) and instruction fine-tuning (Ouyang et al.,
2022) have also become widely adopted as an al-
ternative to improve the performance of LLMs and



VLMs (Masry et al., 2023; Han et al., 2023; Ko
et al., 2024; Masry et al., 2024; Meng et al., 2024;
Zhang et al., 2024; Liu et al., 2024). Instruction
tuning is used to generalize the language capability
of the model, reducing repetitions and hallucina-
tions generated in summarization than pre-training
approaches (Meng et al., 2024). However, these
methods typically rely on the data tables of charts,
failing to capture the nuance of the visual artifacts
present in charts. Furthermore, their heavy parame-
ter sizes present notable challenges for deployment
in computationally constrained environments.

2.2 Chart Representations

Representing the chart in structured data, the chart-
to-table (Meng et al., 2024) task represents it in the
tabular format, but often comes at the cost of losing
finer details in the chart. Performing similarly to
data tables, scene graphs are easily formatted for
web-based charts (Tang et al., 2023). Code format
is considered, and existing methodologies define
two typical chart-to-code approaches: (1) Chart
Derendering (Liu et al., 2023b; Lee et al., 2023);
and (2) Program of Thoughts (Chen et al., 2023;
Zhang et al., 2024). However, codes mainly aim to
run for the chart recreation or question answering
tasks on narrowly defined questions, rather than
representing the whole chart. This paper proposes
an auxiliary task of chart-to-table, which is chart-
to-dictionary in Python code format, which uses
VLM’s chart understanding capability to represent
the chart as a Python dictionary.

2.3 Prompting

Inspired by the success of Chain-of-Thought (CoT)
prompting (Wei et al., 2022) for improving rea-
soning capabilities, researchers are extending simi-
lar mechanisms to VLMs for chart understanding,
seeking to mirror the human cognitive process of
visual analysis. This is achieved through MCoT
(Wang et al., 2025; Liu et al., 2024) reasoning,
which extends the rationale from texts to visual
modalities (Choi et al., 2025). To contrast with
MCoT, PoT (Chen et al., 2023; Zhang et al., 2024)
prompting intermediate reasoning steps are articu-
lated as executable programs, while executing the
program to generate reasoning and statistical com-
putation about the chart data. The success of PoT in
chart question answering (QA) has motivated our
exploration of chart summarization, which focuses
on generating more structurally complex and exten-
sive sentences, rather than just concise answers.

In this work, our pipeline method builds upon
these advancements by focusing on PoT prompting
in zero-shot chart summarization. By extending
the PoT concept to the visual domain of charts, it
could decrease hallucinations that language models
typically have when outputting calculations, as it
provides more explicit and verifiable numeric rea-
soning processes for VLMs (Zhang et al., 2024),
potentially leading to more accurate and factually
grounded summaries by delegating complex cal-
culations to a code interpreter. This work differ-
entiates itself from existing works by specifically
investigating the benefits and limitations of generat-
ing executable code as intermediate reasoning steps
for chart summarization with lightweight VLLMs.

3 Method

This paper proposes using PoT to augment a
VLM’s capability for statistical reasoning on chart
data generation, as one of the key elements for vi-
sual language reasoning (Liu et al., 2023b). Explor-
ing the model’s capacity for zero-shot setting for
reasoning, this paper adapts a similar methodology
described in PoT, as the work (Chen et al., 2023)
stated that the program’s line-by-line structure acts
as a proxy for the numerical reasoning steps of the
model. Similar to the previous work, the usage of
‘# tokens in the generated tokens was restricted to
avoid the pitfalls of only generating the reasoning
chain as comments instead of executable code. Our
prompts are illustrated in Appendix C.

3.1 Chart Representation as a
VLM-Generated Python Dictionary

In order for the chart to interface with the code, the
chart needs to be represented in a manner that can
interact with the Python interpreter. As shown in
Figure 2, Python dictionaries can represent the code
in a more free-form structure, allowing for ground-
ing the values compared to the data table. However,
lightweight VLMs can struggle to create executable
Python code, which consists of wrong syntax, in-
complete messages, and even meaningless code-
agnostic terminologies when facing the complex
code generation request, adding noise. Given that,
aside from reflecting understanding from charts,
the code needs to be valid and executable. In Ap-
pendix E, we list more details of the failure case
analysis. To handle failure cases in dictionary gen-
eration, we mainly used InternVL-2.5-4B (Chen
et al., 2024) to do this task in a zero-shot setting,



Measuring News Interest

Percent following each
story "very closely "

‘Which one story did you
Follow most closel"?

{"Economy": {"Very closely": 42, "Most closely": 24}, "Volcanic ash":

Economy (42 24
Volcanic ash 23 20
Rig explosion |21 12
Fin. regulaion (27 9

Vatican scandal |14 6

2010 elections |20 5

{"Very closely": 23, "Most closely": 20}, "Rig explosion": {"Very
closely": 21, "Most closely": 12}, "Fin. regulation": {"Very closely": 27,
"Most closely": 9}, "Vatican scandal": {"Very closely": 14, "Most
closely": 6}, "2010 elections": {"Very closely": 20, "Most closely": 5} }

Figure 2: Representing chart (left) as a Python dictionary (right). Python dictionary representation is more flexible
compared to a markdown table and usable by the LLM-generated program.

and if the generated Python dictionary is not ex-
ecutable, it is converted with ChatGPT (GPT-4o0-
mini) (OpenAl, 2024) instead.

3.2 Statistical Analysis with PoT prompting

Since the chart is represented as a Python dictio-
nary, it can be more free-form in containing data
and being passed to a Python program. Code is
passed to an LLM to generate a program to do
statistical analysis as an intermediate result to pro-
vide more context for chart summarization. Com-
pared to QA as a task, statistical analysis with
PoT demonstrates numerical reasoning since it
demonstrates how the models understand which
data points or statistics are necessary to create sum-
mary statistics. This paper uses Qwen-2.5-Coder-
14B (Hui et al., 2024) for the complex statistics
code generation conversion, with a case study and
pipeline presented in Figure 3. The LLM is in-
structed to generate a Python program using the
Python dictionary in the prompt to generate sum-
mary statistics relevant to the chart dictionary. This
adapts PoT for the chart summarization task as the
generated program provides more context to be
used for text generation while providing accurate
calculations. Code generated by the LLM is con-
strained to use only the functions from Python’s
built-in library. To validate and execute the gener-
ated Python program by the PoT strategy, we used
the built-in exec function in Python for automatic
code validation.

3.3 Program Execution and Statistics
Retrieval

The generated Python program for statistics calcu-
lation is executed using a Python interpreter. This
step ensures the accuracy of the statistical results,
mitigating potential errors that LLMs might make
when generating tokens through direct calculations.
The program returns a Python statistics dictionary
that contains key-value pairs of the summary statis-

Pew VisText

Type

Simp. Comp. All  Simp. Comp. All
Area 13 7 20 157 81 238
Bar 840 128 968 304 127 431
Line 312 37 349 135 78 213
Pie 41 0 41 0 0 0
Scatter 0 15 15 0 0 0
Total 1,206 187 1,393 596 286 882

Table 1: Distribution of chart types by Simple and
Complex complexities of the Pew and VisText datasets.

tics and the calculated values. At the end, the statis-
tical results in our pipeline are input with the chart
into a VLM to assist the chart summarization task.

4 Experiment

We present our experimental setup in Appendix A.
The overview of our datasets, evaluation metrics,
baseline methods, and benchmark and backbone
models is provided in the following subsections.

4.1 Baselines and Evaluation

Evaluation. We evaluated PoT prompting for chart
summarization on both the test sets of the Pew
(Kantharaj et al., 2022) and VisText (Tang et al.,
2023), following the previous evaluation works
(Masry et al., 2023; Meng et al., 2024) for evaluat-
ing the PoT on varying degrees of complex charts
to show its generalizability. The VisText is built
upon Statista (Kantharaj et al., 2022) with richly
labelled L.2/L.3 captions. Chart type distributions of
datasets are summarized in Table 1, which across a
variety of simple and complex charts. More details
on the dataset statistics and topic distribution infor-
mation are presented in the Appendix B.1. To eval-
uate the effectiveness of the methods, we employ
BLEU (Post, 2018) and CIDEr (Vedantam et al.,
2015) as the evaluation metric following previous
works (Kantharaj et al., 2022; Liu et al., 2023b;
Masry et al., 2023; Meng et al., 2024). Addition-
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Output Summary

LLM

{"Aug '92": {"No, do not overturn": 60,
"Yes, overturn Roe v Wade": 34}, ...
"Aug '19": {"No, do not overturn": 70,
"Yes, overturn Roe v Wade": 28} }

LLM
Coder Model

{"Aug '92": {"No, do not overturn": 60,
"Yes, overturn Roe v Wade": 34}, ...
"Aug '19": {"No, do not overturn": 70,
"Yes, overturn Roe v Wade": 28} }

[_Por_]

{"Total Responses": 474..., "Percentage
No Overturn": 68.35..., "Percentage Yes
Overturn": 31.64..., "Average Responses
Per Question": 94.8}

get_summary_statistics(chart_dict):
summary_dict = {}

summary_dict

Coder Model The new survey by Pew Res-

earch Center, conducted July
22-August 4 among 4,175 a-
dults, also finds little support
for overturning Roe v. Wade...

Zero-shot
Prompting

{"Total Responses": 474..., "Percentage

No Overturn": 68.35..., "Percentage Yes
Overturn": 31.64..., "Average Responses
Per Question": 94.8}

Program Execution

Figure 3: Process of implementing the Program of Thought (PoT) given a chart. It can be seen as a process of
enhancing statistical reasoning to extract summary statistics, typically total counts, minimum, and maximum values
from the chart, along with labels that contain the numerical values.

ally, we use F1 scores of ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2020) for evaluation.
ROUGE is a prevailing benchmark in text sum-
marization research, whereas BERTScore offers a
complementary perspective by quantifying seman-
tic similarity between system outputs and reference
texts. We provide more details of evaluation met-
rics in the Appendix B.3.

Baselines. We compare two other types of prompt-
ing strategies as baselines: (1) Directly prompting
(Direct) the model to summarize the chart, given
that this approach is also what is done by fine-
tuned end-to-end models (Huang et al., 2024; Liu
et al., 2024); (2) Multimodal CoT (MCoT), which
adheres to the framework in (Wang et al., 2025),
prompting to return an outline of all key informa-
tion and trends derived from the chart.

4.2 Benchmarks and Backbones

Chart-To-Text Models. To assess the effective-
ness of our PoT prompting approach against exist-
ing models and methods in the chart-to-text domain,
we choose: (1) Pretrained Chart-To-Text: OCR-
Field-Infuse (Chen et al., 2020b; Kantharaj et al.,
2022), Monkey (Li et al., 2024); (2) Prefix-tuning
Chart-To-Text: image-scene-graph-PT (Tang et al.,
2023), image-data-table-PT (Tang et al., 2023); (3)
Commonly used VLMs: Blip2-flant5xI (Li et al.,
2023), Qwen-VL (Bai et al., 2023).

VLM Models. To understand the effects of PoT on
the different VLM backbones, we compare the per-
formance of Deepseek-VL2-tiny (Wu et al., 2024),
InternVL-2.5-4B (Chen et al., 2024), LLaVa-v1.6-
mistral-7B-hf (Liu et al., 2023c), and Qwen2.5-VL-
3B-Instruct (Qwen Team, 2025) on the representa-
tive datasets of Pew and VisText. All experiments
were done with the zero-shot setting models.

Method Pew VisText
BLEU CIDEr BLEU CIDEr

OCR-Field-Infuse 0.2 0.3 0.3 -
Monkey 0.4 1.7 - -
Qwen-VL-9.6B 0.5 2.6 - -
Blip2-flant5x1-4B 0.2 0.8 - -
image-scene-graph-PT - - 0.3 -
image-data-table-PT - - 0.3 -

Qwen2.5-VL-3B+PoT 31 0.1 1.7 0.1

Table 2: We compare our PoT-adopted zero-shot VLM
(Qwen2.5-VL-3B+PoT) with different chart summariza-
tion methods on Pew and VisText test datasets. We
referenced the results from Chart-To-Text (Kantharaj
et al., 2022), VisText (Tang et al., 2023), and ChartAs-
sistant (Meng et al., 2024).

S Evaluations of Our PoT Approach
Against Existing Benchmarks

Table 2 shows the BLEU and CIDEtr scores for each
model on the Pew and VisText datasets. We refer-
enced evaluation results from Chart-To-Text (Kan-
tharaj et al., 2022), VisText (Tang et al., 2023), and
ChartAssistant (Meng et al., 2024). As shown in
the table, we observed that our PoT prompting ap-
proach overperforms baseline Chart-To-Text meth-
ods in the BLEU evaluation scores, but underper-
forms in the CIDEr evaluation scores. This may be
due to CIDEr places more emphasis on important
and rare words, as it calculates TF-IDF weighted
n-gram similarity. While BLEU also focuses only
on surface-level word matching and ignores seman-
tic consistency, we subsequently evaluate our PoT
prompting approach on BERTScore and ROUGE-
L evaluation metrics, as they can better consider
and evaluate semantic information. More details of
experimental results and additional ablation studies
are in the Appendix B.4.



VLM
&

VisText

Prompting Area Bar Line Pie Scatter All Area Bar Line All
BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr
deepseek-vI2-tiny
ZeroShot-Direct 1.9682 0.0427 2.6653 0.0608 1.7169 0.0471 4.5805 0.1391 0.7646 0.0412 24676 0.0591 1.8347 0.0920 1.5262 0.0731 2.0429 0.0851 1.7346 0.0824
ZeroShot-MCoT 1.6352  0.0526 1.8918 0.0403 1.2924 0.0360 3.1608 0.0671 1.0925 0.0657 1.7658 0.0399 0.9308 0.0410 0.7613 0.0353 1.1508 0.0388 0.9001 0.0380
ZeroShot-PoT 0.1254 0.0018 0.2767 0.0127 0.2736 0.0173 0.2496 0.0190 0.2219 0.0005 0.2746 0.0135 0.8102 0.0710 0.3489 0.0523 0.5821 0.0685 0.5603 0.0615
internVL-2.5
ZeroShot-Direct 3.6507 0.0426 3.5832 0.0318 2.7521 0.0296 4.6431 0.1025 2.6224 0.0001 3.4041 0.0328 1.1306 0.0125 0.9387 0.0088 1.3401 0.0212 1.0808 0.0130
ZeroShot-MCoT ~ 2.3817  0.0257 2.0626 0.0106 1.4369 0.0061 1.9856 0.0053 1.5318 0.0003 19113 0.0094 0.8414 0.0022 0.8978 0.0005 1.0359 0.0030 0.9175 0.0015
ZeroShot-PoT 2.8535 0.0713 19995 0.0664 19136 0.0404 2.0840 0.0907 1.3768 0.0819 1.9896 0.0603 1.1281 0.0246 0.9299 0.0172 1.6892 0.0274 1.1736 0.0212
llava-NeXT
ZeroShot-Direct 4.8807 0.1561 5.7756 0.1069 4.6735 0.1133 7.8216 0.2135 4.3993 0.0074 5.5350 0.1107 2.6597 0.0272 2.5564 0.0334 3.4469 0.0612 2.7918 0.0384
ZeroShot-MCoT 6.1606 0.0329 59175 0.0928 4.6181 0.0644 57460 0.1498 3.9118 0.0808 5.6347 0.0869 2.5957 0.0478 22776 0.0243 3.5833 0.0499 2.6622 0.0365
ZeroShot-PoT 3.1421 0.1069 4.1897 0.1027 3.5534 0.0925 2.7975 0.0895 3.3424 0.1210 3.9888 0.0996 23603 0.0321 22635 0.0457 2.9584 0.0580 2.4604 0.0448
qwen2.5-VL-3B
ZeroShot-Direct 1.9350  0.0523 3.6251 0.1002 2.5562 0.0643 5.9420 0.1384 2.0714 0.0272 3.3929 0.0905 2.6399 0.1481 2.1772 0.0979 3.1147 0.1519 24984 0.1254
ZeroShot-MCoT 1.4980 0.0735 2.6168 0.0814 1.8583 0.0602 3.7722 02156 1.5976 0.0431 24388 0.0794 1.5847 0.0837 1.3648 0.0791 1.9742 0.0707 1.5783 0.0782
ZeroShot-PoT 3.3383  0.0409 3.3091 0.0734 2.3678 0.0597 3.8250 0.1662 1.0761 0.0203 3.0906 0.0712 1.6593 0.0780 1.4806 0.0801 2.0928 0.0890 1.6639 0.0826

Table 3: Evaluation results of VLMs on different prompting methods on Pew and VisText datasets evaluated on

BLEU and CIDEr scores.

6 Evaluations of Our PoT Approach
Against Existing Baselines

We evaluate baseline prompting strategies and our
PoT prompting strategy and report results of our ex-
periment in Table 3. Across the evaluated models,
the impact of the PoT prompting strategy varied
significantly with models and chart types. We ob-
served instances where the PoT led to substantial
improvements in performance, while in other cases,
its impact was less pronounced or even negative
compared to the Direct and MCoT approaches.

PoT Effectiveness Against Chart Types We no-
tice that the results from different charts are varied,
and we suppose this may be due to the unique-
ness of each chart structure, texts included in the
chart, chart data size, and data complexity. For
example, in the case of the Qwen2.5-VL model,
the evaluation score increases from 1.935 to 3.338,
demonstrating the effectiveness of the PoT strat-
egy in enhancing information collection from area
charts, which are with limited data information.

PoT Effectiveness Against VLMs Regarding influ-
ences by VLMs, for the Deepseek-vI2-tiny model,
the application of the PoT resulted in considerably
lower scores across all reported metrics compared
to both the ZeroShot-Direct and ZeroShot-MCoT
methods. This suggests that for this particular
model architecture, the PoT strategy in its current
implementation might not be beneficial or could
even hinder performance on the evaluated tasks.
This reveals that the PoT strategy may introduce
additional noise or mislead the emphasized infor-
mation, and may interfere with the model’s original
processing and understanding of the chart. In con-
trast, the InternVL-2.5 model demonstrated a more

nuanced response to the PoT prompting strategy.
While the Direct method often yielded the highest
scores, the PoT strategy achieved comparable or
even slightly better results on certain metrics com-
pared to the MCoT strategy in some cases. For
example, the PoT strategy achieved a BLEU score
of 2.854, which is lower than the Direct method
(3.651) but higher than the MCoT strategy (2.382)
of the area charts in the Pew dataset, even on con-
sidering all chart types, these trends hold. This indi-
cates that for InternVL-2.5, the PoT strategy can be
a viable alternative to the MCoT strategy in certain
scenarios, although the Direct prompting method
appears to be generally more effective based on
these results. Similarly, LLaVa-NeXT also had
a mixed response given the two datasets, where
no conclusive trends can be observed between the
different prompting methods. One interesting ob-
servation from this comparison is that while the
BLEU values of the PoT strategy are lower than the
other methods, on average, it outperforms the other
prompting techniques on CIDEr, indicating some
of its effectiveness in these cases. We suggest that
this may arise from the inherent design differences
in the VLMs with respect to chart understanding.
Specifically, Deepseek-v12 is equipped with a dedi-
cated vision encoder and a vision-language adapter,
originally designed to optimize performance on vi-
sual tasks such as chart interpretation. In contrast,
InternVL-2.5 is built upon a Vision Transformer
architecture integrated with a large language model,
placing more confidence on the fusion of textual
information. As a result, when we enlarge the tex-
tual data using the PoT strategy, the performance
outcomes of Deepseek-vl2 and InternVL-2.5 can



diverge, potentially yielding opposite trends. This
observation suggests that the PoT strategy does not
universally benefit all VLMs in chart summariza-
tion, but is particularly advantageous for those that
emphasize textual information.
PoT Compared with MCoT On the other hand,
Qwen-2.5VL-3B showed that the PoT strategy con-
sistently outperformed the MCoT strategy while
underperforming relative to the Direct prompting.
This suggests that for the Qwen2.5-VL-3B model,
the PoT strategy appears to be a more effective
CoT prompting strategy compared to the standard
MCoT approach across the evaluated tasks. This
may be due to the PoT strategy introducing more
new textual content into the chart summarization
process compared to the MCoT approach. While
the PoT generates additional statistical information,
MCoT primarily offers a high-level data outline and
trends. The PoT may introduce additional noise
and errors, particularly due to inaccuracies in chart
data interpretation by the InternVL-2.5 model.
While the PoT strategy demonstrated potential
for improving performance, particularly for the
InternVL-2.5 and Qwen2.5-VL-3B models in cer-
tain scenarios, it did not consistently outperform
the Direct prompting baseline across all models
and metrics. Further investigations are conducted
to identify the factors contributing to the varying
effectiveness of the PoT strategy and to estimate
the extent to which different information influences
the performance of this pipeline.

7 Evaluations of Our PoT Approach
Against VLM Backbones

To investigate the influence of different types of in-
formation within the PoT strategy pipeline, we con-
ducted a series of experiments focusing on the tex-
tual components that serve as supplementary inputs
to the VLM alongside the input chart. The experi-
mental settings are as follows: (1) Title: Use only
the title as input to the VLM, without applying the
PoT strategy; (2) Stats+Title: Use the PoT strategy
to generate a statistics dictionary, combined with
the title as input to the VLM; (3) Dict+Title: Use
the PoT-generated Python dictionary along with the
title as input to the VLM; (4) Dict+StatsT+Title:
Replace the PoT strategy with a predefined Python
program for generating the statistics dictionary, and
use the generated statistics dictionary together with
the Python dictionary and title as input to the VLM,;
(5) Dict+Stats+Title: Use the full set of inputs, in-

cluding the PoT-generated Python dictionary, the
PoT-generated statistics dictionary, and the title as
input to the VLM. The experimental results that
were evaluated on ROUGE-L and BERTScores are
illustrated in Table 4.

VLM Performance Influenced by Input Textual
Data While the evaluation results remain influ-
enced by the underlying VLM performance, we
observed that in over half of the cases, the com-
bination of the title and Python dictionary outper-
formed using the title alone. We attribute this to
the fact that directly extracted data, despite po-
tential noise, can retain more factual information
than purely generated text, potentially steering the
model toward more accurate outputs. However, this
also highlights the power of using the PoT strat-
egy, as it guides the model to emphasize more on
the inaccuracies and noise in the poorly extracted
data, while weakening the chart analysis, which
negatively harms the overall performance of the
model pipeline. In addition, we observed that the
PoT-generated statistics dictionaries consistently
outperformed the predefined program-generated
statistics dictionaries in most cases. This indicates
the effectiveness of the PoT strategy, which is bet-
ter than directly using Python programs to enhance
the overall pipeline performance in the chart sum-
marization.

8 Discussion

With empirical results, how a candidate task to rep-
resent charts structurally can be an effective auxil-
iary to the existing chart-to-table task can be sort
of answered. While the evaluation of chart-to-table
might be more objective in its evaluation, there
might be merit to exploring the chart-to-dictionary
task for chart understanding. Not only this allows
the integration of the chart in a PoT context, but
this allows for a more robust representation of the
chart, given the increasing complexities of charts in
the wild. This work acknowledges that there is an
overlap between chart redrawing and this task, but
the chart redrawing tends to focus more on the re-
construction of the chart with executable matplotlib
code rather than capturing the semantic nuances of
the chart elements explored in this work.

The experimentation showed that the summariza-
tion task also varied greatly depending on the type
of chart the model was captioning. Most models
performed well on relatively simpler bar and pie
charts, while struggling with more complex charts,



VisText

VLM

Textuf:l Data Area Bar Line Pie Scatter All Area Bar Line All

R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS
deepseek-vI2-tiny
Title 13.57 84.78 13.57 8549 12.26 84.83 16.98 86.96 11.99 84.22 1333 8534 14.65 86.87 1444 8569 15.68 86.89 14.79 86.30
Statis+Title 822 8251 8.81 83.73 856 8344 921 83.87 8.64 8337 874 83.64 990 85.01 8.73 8423 9.60 84.51 9.26 84.51
Dict+Title 9.51 8333 6.15 8204 6.78 8249 11.80 84.68 7.96 8344 555 8227 537 8413 3.85 8326 534 8423 423 8373
Dict+StatisT+Title 8.18 8247 887 83.23 895 83.04 1079 8406 672 81.08 892 83.17 1044 8515 9.89 84.04 10.71 84.97 1023 84.56
Dict+Statis+Title 9.16 82.84 10.19 8433 950 83.94 10.79 84.12 838 8290 10.00 84.19 10.88 8528 937 8422 1191 8529 1038 84.77
internVL-2.5
Title 13.80 8433 1355 85.02 1259 8458 1574 8559 1334 8446 1338 8491 1050 85.17 9.58 8424 11.28 85.18 1022 84.71
Statis+Title 13.02 8491 1340 8562 13.15 8549 1297 85.62 1379 8584 1332 8558 12.63 8581 11.37 84.83 1290 8578 12.08 8532
Dict+Title 16.15 8554 15.69 86.02 14.80 85.62 1573 86.34 15.22 8587 9.09 8592 958 86.29 7.00 8514 9.69 8644 791 85.76
Dict+StatisT+Title 14.74 85.66 14.30 85.88 13.68 8555 15.04 86.00 13.14 8476 14.17 8579 13.96 86.23 1249 8519 1510 86.44 13.52 85.78
Dict+Statis+Title ~ 13.86 85.06 14.17 8595 13.67 85.58 1432 86.31 13.28 8523 14.04 8585 1343 8620 11.96 85.18 14.04 86.26 12.85 85.71
qwen2.5-VL-3B
Title 1491 85.86 16.22 86.66 14.74 8591 1838 87.56 14.88 86.12 1588 86.49 17.78 87.30 16.39 86.19 1898 87.31 1740 86.76
Statis+Title 13.64 8504 1448 8598 1339 8544 1757 87.14 1345 8542 1428 8586 14.19 86.63 13.68 85.68 1471 86.62 14.06 86.16
Dict+Title 1570 8576 15.61 86.00 1435 8550 19.53 87.51 15.22 8536 8.09 8591 9.38 86.75 6.55 85.71 9.86 86.81 7.46 86.25
Dict+StatisT+Title 13.25 8528 14.47 8598 13.03 8547 18.07 87.02 13.06 8500 14.19 8586 14.78 86.79 13.36 8543 1596 86.87 14.36 86.15
Dict+Statis+Title 1391 85.26 14.00 85.83 1273 85.36 17.16 86.95 1332 85.15 13.77 8573 14.15 86.74 13.24 8560 15.19 86.76 13.94 86.19

Table 4: Ablation study results for different models regarding data used from Pew and VisText datasets evaluated on

F1 scores of ROUGE-L and BERTScore scores.

such as multiple line or scatter plots. This indicates
that the generalizability of the summarization task
may involve some sort of normalization or some
way to bridge the gap between the varying levels of
complexity presented by the chart. This paper also
serves as an empirical springboard for researching
specifically on natural language generation for the
context of chart summarization, given that most im-
plementations of chart understanding are focused
more on question answering.

9 Conclusion

In this work, we conducted a systematic evalua-
tion of the Program-of-Thought (PoT) prompting
strategy across currently used lightweight vision-
language models under the zero-shot settings on
the Pew and VisText benchmarks for the chart sum-
marization task. Our experiments reveal that the
efficacy of the PoT varies markedly with model
architectures and sizes, corresponding to types of
charts, including area, bar, line, pie, and scatter.
In this context, the PoT proved to be a competi-
tive alternative to the Direct and MCoT prompting
approaches. Beyond prompting strategies, we in-
troduced a novel chart-to-dictionary auxiliary task,
demonstrating its promise for capturing robust and
semantic nuances in chart understanding, which
is also conveniently applicable with the PoT. As
charts grow more complex along with the data they
represent, there is a need to establish a data struc-
ture to evaluate chart-parsing outside the table due
to data loss that occurs from the chart to the table.

In the future, we would like to employ com-
plex vision-language models to further explore the
impact of PoT strategies on zero-shot chart under-
standing, particularly in the context of chart sum-
marization. This includes examining how different
model architectures and sizes influence the over-
all chart-to-text pipeline when integrated with PoT
strategies. Additionally, we aim to develop more so-
phisticated PoT approaches capable of generating
longer and richer statistical information, thereby
enhancing the quality of chart summaries. Since
the PoT strategy in this work only extends outputs
from short, answer-like responses to relatively con-
cise statistical dictionaries. However, for the chart
summarization task, we believe the PoT strategy
contains untapped potential to capture factual nu-
meric data by its statistical reasoning capability.
Moreover, given the significant influence of the
PoT-generated information in model inference, we
will also further investigate whether the PoT can
contribute to mitigating hallucination errors in the
chart summarization process, improving the overall
factual accuracy of generated chart summaries.

Limitations

The diverse performance of the PoT strategy across
the evaluated models raises several important con-
siderations. The model architecture and size likely
play a significant role in determining the effective-
ness of different prompting strategies. The mod-
els used in this paper were of lightweight VLMs.
While effective in the presented lightweight mod-



els, the language decoder may have yielded too low
conclusive powers on the efficacy of the PoT and
CoT prompting methods relative to direct prompt-
ing. However, it is seen that the PoT strategy still
can offer comparable results to the other prompting
methodologies using lightweight VLMs in some
cases or for some chart types, which indicates that
on higher parameter models, it can be assumed
that in the worst case, these different prompting
techniques may offer similar results. The research
design, comparing three zero-shot prompting meth-
ods across four distinct vision-language models
and a set of tasks, provides a valuable initial explo-
ration of the PoT’s potential on chart summariza-
tion with VLMs. Further research can implement
few-shot reasoning with examples that can hypo-
thetically increase performance. Additionally, the
study focused its experimentation on lightweight
VLMs, which might have contributed to the poor
results in text generation. Expanding the scope of
the study to larger parameter models might lead
to more conclusive results. Regarding the evalu-
ation on the summarization task, BLEU, CIDEr,
ROUGE, and BERTScore, while attempting to ac-
count for fluency and similarity between the target
and generated text, also demonstrate that these are
not always the effective metrics when comparing
generated text as it mostly rely on n-gram over-
laps, which ignore factual correctness, semantic
similarity, and text informativeness of the captions.
There needs to be more automatic metrics focusing
on factual consistency, neglecting the exact syntax
matching to specifically account for this limitation.

Ethics Statement

To the best of the researchers’ knowledge, all
datasets used in this study were sourced from pub-
licly available benchmarks. The authors of the
benchmark dataset also have obtained the license
to distribute the dataset for non-malicious purposes
intent which this research has abided by.
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A Experiment Set-up

The experiments are conducted with loaded pre-
trained models from the vLLM API. As much as
possible, the default parameters were used, unless
suggested otherwise from official documentation.
The temperature is set to 0.2, and the repetition
penalty is set to 1.2 across all runs. All exper-
iments are carried out on our machine (CPU: In-
tel(R) Core(TM) 19-9920X CPU @ 3.50GHz, GPU:
2 NVIDIA RTX3090). Python code generation for
producing statistics by the Qwen2.5-Coder-14B-
Instruct model is the most computationally costly
task, which costs 10-12 hours on 1 GPU.

B More Evaluation Details

B.1 Dataset Analysis

We chose the Pew (Kantharaj et al., 2022) (GPL-3.0
license) and VisText (Tang et al., 2023) (GPL-3.0
license) large-domain English datasets to investi-
gate and evaluate our PoT strategy for generating
L2/L3 content in chart summarization, as they pro-
vide rich and suitable L.2/L.3 captions for this task.
The VisText is built upon the Statista (Kantharaj
et al., 2022) dataset, but with additionally detailed
labelled L2/L3 captions. Since the chart labelled in
the VisText can have multiple L2/L.3 captions, we
automatically selected the longest L2/L.3 captions
in the test set of the Vistext dataset as gold sum-
maries paired to charts for the chart summarization
task. The statistics of the Pew and VisText datasets
used in this paper are presented in Table 5. In addi-
tion, the distribution of topics covered in the Pew
and VisText datasets is illustrated in Figure 4.

Statistic VisText Pew

Simp. Comp. All  Simp. Comp. All
#Vocab. 3413 1,995 4360 3,529 8,342 9,342
Avg.Character 165 152 161 454 522 511
Avg.Token 34 31 33 91 106 104

Avg.Sentence 1.16 0.99 .11 2.86 333 3.26

Table 5: Statistics of datasets by Simple and Complex
complexities of the VisText and Pew test sets.

() VisText_test Dataset

(b) Pew_test Dataset

Figure 4: The distributions of topics of VisText and Pew
datasets.

B.2 Experiment Implementations

We mainly used Deepseek-VL2 (deepseek-VL2-
tiny) (Wu et al., 2024) for testing and our exper-
iments. Additionally, we also tested the follow-
ing models: InternVL (internVL-2.5-4B) (Chen
et al., 2024), LLaVa-NeXT (llava-v1.6-mistral-7b-
hf) (Liu et al., 2023c), and Qwen-2.5 (qwen2.5-
VL-3B-Instruct) for main and ablation experiments.
All experiments were done in Python 3.12 using the
vLLM (Kwon et al., 2023) library, with the models
being implemented at the zero-shot setting.

B.3 Evaluation Metric Descriptions

To quantitatively measure the performance of our
proposed method in chart summarization, we em-
ploy two popular automatic evaluation metrics
in chart understanding: BLEU (Bilingual Evalu-
ation Understudy) and CIDEr (Consensus-based
Image Description Evaluation), in addition to two
also well-known automatic evaluation metrics in
text summarization: ROUGE (Lin, 2004) and
BERTScore (Zhang et al., 2020).
BLEU (Post, 2018) This score calculates the n-
gram overlap between the ground-truth summary
and the generated summary. It indicates lexical sim-
ilarity between the generated and ground-truth text,
assessing how closely the generated text replicates
word sequences that occur in the reference.
CIDEr (Vedantam et al., 2015) This score mea-
sures the TFIDF weighted n-gram overlaps be-
tween reference and generated text. By weight-
ing n-grams according to their value in a reference
summary corpus, CIDEr seeks to more accurately
capture the informativeness and relevance of gen-
erated descriptions, especially in image and chart
captioning tasks.

BLEU and CIDEr are commonly used metrics
throughout natural language generation, image cap-
tioning, and chart summarization. Together, they
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™

capture a more nuanced quantitative measure of
model performance in terms of surface similarity
and content alignment with reference summaries.
While we note that reference-based measures like
BLEU and CIDEr do have some limitations, since
they can have loose correlation with human pref-
erence for aspects of semantic equivalence and
factuality, their popularity and ability to provide
an initial quantitative score make them effective
measures in chart summarization model evaluation.
Current research studies on chart summarization
have exhaustively employed these metrics as well.

B.4 Additional Ablation Studies

Table 6 and Table 7 present BLEU and CIDEr eval-
uation results, and ROUGE-1 and ROUGE-L evalu-
ation results, respectively, for various VLMs, tested
with different combinations of textual information
in our PoT chart summarization pipeline.

C Prompts
C.1 Chart-to-Dictionary Extraction

Similar to the chart-to-table task, this is done in a
zero-shot setting. We employ the core concept of
PoT to guide the VLM in generating a valid and
executable Python dictionary from the input chart.

user_prompt "<img_placeholder> Convert
the chart into a python dictionary
“chart_dict ™. Only consider the
chart's data when summarizing."”
assistant_ =" python\n chart_dict =

n

C.2 Dictionary-to-Statistics with Program of
Thoughts

The illustrated prompt content is the same used in
VLMs tested in this work, but formatted specifi-
cally with each VLM’s template.

system_prompt "You are a data analyst.

You are given a dictionary that

represents a chart called

chart_dict ™. \

need to implement the function

get_summary_statistics(chart_dict)"

that takes the dictionary as input

and returns a dictionary with the

relevant statistics that can be used

to summarize the chart. \

Avoid sorting dictionary objects
directly and USE ONLY PYTHON BUILT-
IN FUNCTIONS. Name the keys of the
dictionary to elaborate how it is a
descriptive statistic. When writing
Python, follow the PEP style guide.
\

Return ONLY the code of the function
that will run without any errors and
can work using “eval()™."

You

oo
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user = "Implement the function
get_summary_statistics™ that takes a
dictionary as input and returns a
dictionary with the relevant
statistics that can be used to
summarize the chart using only built
-in Python functions. Make sure to
label the keys of the ~summary_dict"®
to be descriptive The input
dictionary is defined as {chart_dict
Fo
assistant_ = """ “python\ndef
get_summary_statistics(chart_dict):\
n # Define output dictionary
summary_dict~ to store the summary
statistics\n”

D Case Study

A case study in Figure 7 demonstrates an end-to-
end chart-to-text method using the PoT. In this
specific instance, the chart-to-dictionary properly
captures the appropriate format of how to organize
the data, but fundamentally mislabels or misreads
the values of which values go to which parties.
However, it can be observed that in terms of ob-
serving the increasing trend in the time-series data,
the dictionary was able to somewhat capture this.
The generated PoT is agnostic of the actual values
of the functions and is able to correctly identify the
relevant keys needed to create summary statistics
of total, average, and min and max values. The gen-
erated caption captures the general ideas that the
chart was able to portray, specifically describing
the chart elements of date in the x-axis and anger
in the y-axis. While not as verbose as the original
text, the generated summary was able to capture
the key ideas and trends in the caption.

Failure numbers of dictionary generation by VLMs

. Pew
VisText
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Figure 5: Histogram comparing the numbers of failure
cases in the chart data dictionary generation by each
VLM on each dataset.




VLM Pew VisText
Textuﬁ‘l Data Area Bar Line Pie Scatter All Area Bar Line All
BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr
deepseek-vI2-tiny
Title 1.9682 0.0427 2.6653 0.0608 1.7169 0.0471 4.5805 0.1391 0.7646 0.0412 24676 0.0591 1.8347 0.0920 1.5262 0.0731 2.0429 0.0851 1.7346 0.0824
Statis+Title 0.1254 0.0018 0.2767 0.0127 0.2736 0.0173 0.2496 0.0190 0.2219 0.0005 0.2746 0.0135 0.8102 0.0710 0.3489 0.0523 0.5821 0.0685 0.5603 0.0615
Dict+Title 0.3425 0.0000 0.2343 0.0040 0.1940 0.0055 0.7802 0.0095 0.3621 0.0002 0.1707 0.0025 0.2472 0.0115 0.0853 0.0077 0.2067 0.0124 0.0855 0.0081
Dict+StatisT+Title  0.7589 0.0023 0.4311 0.0170 0.5564 0.0181 0.3408 0.0320 0.3350 0.0279 0.4914 0.0173 0.4408 0.0676 0.7812 0.0568 0.8565 0.0538 0.7502 0.0589
Dict+Statis+Title ~ 0.6960 0.0135 0.6807 0.0236 0.6517 0.0251 0.6614 0.0341 0.3309 0.0011 0.6875 0.0235 0.5583 0.0713 0.4584 0.0737 1.1808 0.0796 0.6914 0.0754
internVL-2.5
Title 3.6507 0.0426 3.5832 0.0318 2.7521 0.0296 4.6431 0.1025 2.6224 0.0001 3.4041 0.0328 1.1306 0.0125 0.9387 0.0088 1.3401 0.0212 1.0808 0.0130
Statis+Title 2.8535 0.0713 1.9995 0.0664 1.9136 0.0404 2.0840 0.0907 1.3768 0.0819 1.9896 0.0603 1.1281 0.0246 0.9299 0.0172 1.6892 0.0274 1.1736 0.0212
Dict+Title 3.7973 0.1391 3.1843 0.0650 2.2829 0.0612 2.7083 0.1088 1.6723 0.0569 0.7148 0.0052 0.2476 0.0057 0.0790 0.0023 0.4311 0.0110 0.2141 0.0047
Dict+StatisT+Title  4.1720 0.1772  3.1456 0.0633 24598 0.0770 2.7016 0.1286 3.2064 0.0431 3.0008 0.0689 1.7194 0.0555 1.2597 0.0205 2.3460 0.0506 1.5926 0.0371
Dict+Statis+Title ~ 3.6093  0.1211 3.1860 0.0697 2.5661 0.0615 29342 0.1188 1.8525 0.0960 3.0319 0.0695 1.4938 0.0326 1.0729 0.0102 1.9497 0.0237 13735 0.0192
qwen2.5-VL-3B
Title 1.9350 0.0523 3.6251 0.1002 2.5562 0.0643 59420 0.1384 2.0714 0.0272 3.3929 0.0905 2.6399 0.1481 2.1772 0.0979 3.1147 0.1519 2.4984 0.1254
Statis+Title 3.3383  0.0409 3.3091 0.0734 23678 0.0597 3.8250 0.1662 1.0761 0.0203 3.0906 0.0712 1.6593 0.0780 1.4806 0.0801 2.0928 0.0890 1.6639 0.0826
Dict+Title 2.6846 0.0953 3.1135 0.0693 2.2941 0.0652 3.6053 0.1937 1.5115 0.0629 0.6707 0.0060 0.3687 0.0168 0.0869 0.0090 0.4078 0.0136 0.1515 0.0097
Dict+StatisT+Title  2.4238 0.0222 3.2131 0.0640 2.2744 0.0693 3.4002 0.1018 2.6648 0.0662 2.9969 0.0652 1.7080 0.1080 1.4815 0.0688 2.3149 0.1042 1.6950 0.0883
Dict+Statis+Title ~ 2.6846 0.0953 3.1135 0.0693 2.2941 0.0652 3.6053 0.1937 1.5115 0.0629 2.8237 0.0711 0.3687 0.0168 0.0869 0.0090 0.4078 0.0136 1.5484 0.0678

Table 6: Ablation study results (BLEU / CIDEr) for different models regarding data used from Pew and VisText

datasets.
VLM Pew VisText

Textufl Data Area Bar Line Pie Scatter All Area Bar Line All

R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L
deepseek-vI2-tiny
Title 24.62 13.57 25.88 13.57 23.66 1226 29.17 1698 2403 1199 2540 1333 2237 14.65 21.72 1444 2356 1568 2233 1479
Statis+Title 13.45 822 13.62 881 1332 856 1403 921 1507 8.64 1356 874 1408 990 11.84 873 1373 9.60 1291 9.26
Dict+Title 1482 9.1 894 6.5 997 6.78 1671 11.80 13.05 796 805 555 735 537 498 385 731 534 556 423
Dict+StatisT+Title 1524  8.18 14.19 8.87 1534 895 1648 1079 10.64 672 1453 892 1546 1044 1444 989 16.12 1071 1511 10.23
Dict+Statis+Title 15.86 9.16 16.70 10.19 1632 950 16.81 10.79 1398 838 16.57 10.00 1648 10.88 13.75 9.37 17.14 1191 1529 10.38
internVL-2.5
Title 27.44 1380 28.86 13.55 26.81 1259 30.08 1574 27.82 1334 2837 1338 17.17 1050 16.19 958 1821 1128 1692 1022
Statis+Title 2441 13.02 25.13 13.40 2454 13.15 2233 1297 2620 13.79 2491 1332 20.59 12.63 1849 11.37 21.09 1290 19.68 12.08
Dict+Title 28.78 16.15 2852 15.69 2593 14.80 27.67 1573 27.57 1522 1553 9.09 1587 9.58 10.69 7.00 1553 9.69 1243 7091
Dict+StatisT+Title 26.86 14.74 28.18 1430 26.66 13.68 26.23 1504 28.19 13.14 27.73 14.17 2252 1396 20.53 1249 2343 1510 21.76 13.52
Dict+Statis+Title ~ 26.64 13.86 2852 14.17 2727 13.67 26.11 1432 2755 1328 28.11 1404 2224 1343 2030 11.96 2266 14.04 2138 12.85
qwen2.5-VL-3B
Title 24.83 1491 3029 1622 2770 14.74 32.16 1838 29.51 14.88 29.62 15.88 26.14 17.78 24.85 16.39 27.12 1898 2574 17.40
Statis+Title 2475 13.64 27.53 1448 2553 1339 2958 17.57 27.06 1345 27.06 1428 2211 1419 21.27 13.68 2270 1471 21.83 14.06
Dict+Title 26.12 15770 2749 1561 2549 1435 30.70 19.53 29.14 1522 1350 8.09 14.10 938 929 655 1500 9.86 1091 7.46
Dict+StatisT+Title 23.72 1325 27.44 1447 2524 13.03 29.28 18.07 25.69 13.06 26.89 14.19 22.10 14.78 20.74 1336 23.70 1596 21.82 14.36
Dict+Statis+Title 2556 1391 2658 14.00 24.62 1273 2836 17.16 2585 1332 26.13 13.77 2223 14.15 2046 1324 2320 1519 21.59 1394

Table 7: Ablation study results (ROUGE-1 / ROUGE-L) for different models regarding data used on Pew and

VisText datasets.

E Failure Case Analysis

E.1 Python Dictionary Generation

In order to keep the desired quality of the statis-
tics in this work, we decided to use InternVL-
2.5-4B (Chen et al., 2024) with ChatGPT-40-mini
(OpenAl, 2024) to generate the data dictionary.
Figure 5 shows comparisons of failure numbers
of the chart data dictionary generation by each
VLM, presenting InternVL has the best capabil-
ity on handling and generating more data dictio-
naries from the chart data. Since LLaVa is pri-
marily an LLM (LLaMa) with a vision adapter,
whereas Deepseek, InternVL, and Qwen are spe-
cialized vision-language models with strong visual
encoding, we test Deepseek, InternVL, and Qwen

on generating the dictionary for chart data on Pew
and Vistext datasets, respectively.

But we are aware that most failure cases are due
to the wrong structure or format of the Python code,
which cannot be recognized or pass the execution
tests, and are consequently categorized as failure
cases, rather than nonsense or empty outputs. In
future work, we will implement a module to refine
the Python code into their correct format, ensuring
the collection of all valuable data.

E.2 Python Code Generation

Figure 6 presents a comparison between the
failure-prone code generated by general-purpose
LLMs and the acceptable code produced by code-
specialized LLMs, where those models were specif-
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def get_summary_statistics(chart_dict):
summary_dict = {}

# Extract the title of the chart

def get_summary_statistics(chart_dict): summary_dict['chart_title'] = chart_dict.get('title’)

summaryDictsListedBy TypeOfChartAndColorPerCategorylnDictionaryFormat
ForAllCategoriesPresentininputDictionaryObjectAsKeyValuesPairsInAListWithThe
SameStructureAsOriginalDictionaryObjectButWithoutAnySortingOrDirectManipula
tionOfObjectsInDictionariesWithinltself ToEnsureThatOnlyBuiltinPythonFunctions... # Extract the y-axis label
summary_dict['y_axis_label'] = chart_dict.get('y-axis_label’)
return summary_dict

# Extract the x-axis label
summary_dict['x_axis_label'] = chart_dict.get('x-axis_label')

(a) Generated by Qwen2-VL-7B-Instruct

(b) Generated by Qwen2.5-Coder-14B

Figure 6: Comparison of failed generated Python code by the general-purpose LLM and the desired generated
Python code by the code-specialized LLM.

ically pre-trained and fine-tuned on programming
codes, such as Qwen-Coder. With this observation,
we chose to use Qwen-2.5-Coder-14B (Hui et al.,
2024), which is optimized for generating accurate
and efficient code outputs, to ensure the quality of
the generated code.
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After 2016 election, proportion of ‘angry’ reactions
when Democrats post national news more than
doubled

CE 10 posts

After Trump won the 2016 presidential election,
Democrats in Congress became increasingly likely to
share national news on Facebook. Between Jan. 2, 2015,
and Nov. 8, 2016 - the day of the presidential election —
just 8% of congressional Democrats’ Facebook posts
included links to national news stories. From Jan. 20

through July 20, 2017, however, that number doubled to
20 16%.The Center analyzed these reactions and found
that, in response to posts from congressional
Demaocrats, the proportion of reactions from the
Facebook audience that used the “angry” button more
than tripled after the election. From May 1 to Nov. 8,
2016, roughly 5% of reactions to national news links
posted by congressional Democrats were “angry”
reactions - yet between the election and July 20, 2017,
fully 18% of all reactions to Democratic lawmakers’

Democrats

Repablicans

Feb. 2016
Facebook adds
“angry” button
TRUMP'S

ELECTION DAY —+ +— INAUGURATION

May 15 Now 18 May 16 Mow ‘16 May 17 news links were “angry.” Reactions to Republican-shared
news links remained relatively stable. Between May 1
nla . 2 and Nov. 8, 2016, 9% of reactions to Republican posts
PEIN RESEARGHEEAIER. were “angry,” compared with 10% between Nov. 9, 2016
and July 20, 2017.
Chart Original Text

def get_summar
summary_dict {}
total_democrats = sum(entry['Democrats’] for entry in chart_dict.values())
total_republicans = sum{entry['Republicans'] for entry in chart_dict.values())
avg _democrats = total_democrats / len{chart_dict)
republicans = total_republicans / len(chart_dict)
max_democrats = max{entry[’'Democrats’'] for entry in chart_dict.values())

atistics{chart_dict):

{"Feb 2016": {"Democrats": 5, "Republicans": 3}, "Mov '15"
{"Democrats": 4, "Republicans": 7}, "May '16": {"Democrats": 8,

min_democrats

min{entry['Democrats for entry in chart_dict.value

"Repub s": 9}, "ELECTIOM DAY": {"Democrats": 10 wax_republican [ for entry in chack dict uabueat)
"Republicans”: 11}, "Nov '16": {"D 5": 10, "Republicans™ min_republican ‘] for entry in chart_dict.value
11}, "Trump's INAUGURATION": { "Republicans"” summary_dict['total_democrats'] = total_democrats
13}, "May '17": {"Democrats™ 15 cans": 16}} summary_dict['total_republicans'] = total_republicans

dict['average_democrats'] = avg_democrats
summary_dict['average republicans'] = avg republicans
summary_dict['max_democrats'] = max_democrats
‘min_democrats']

Dictionary Representation

min_democrats

*max_republicans’] = max_republicans
*min_republicans’]
return summary. dict

= min_republicans

PoT

After Trump won the 2016 presidential election,
Demaocrats in Congress became increasingly likely to
share national news on Facebook. Between Jan. 2, 2015,
and Nov. 8, 2016 - the day of the presidential election -
just 8% of congressional Democrats’ Facebook posts
included links to national news stories. From Jan. 20
through July 20, 2017, however, that number doubled to
16%.The Center analyzed these reactions and found
that, in response to posts from congressional
Democrats, the proport

After the 2016 election, there was
anincrease in angry reactions from
Facebook users when Democrats
shared stories about national news
compared to Republicans. This
trend peaked after Trump's
inauguration and then began to
decline slightly by May 2017
Democrats experienced more anger
than Republicans during this period
but saw their reaction levels rise
significantly following February
2016 when Facebook added its
‘angry' button feature for posts
linking to national news articles.

on of reactions from the
Facebook au hat used the “angry” button more
than tripled e election. From May 1 to Now. 8,
2016, roughly 5% of reactions to national news links
posted by congressional Democrats were “angry”
reactions - yet between the election and July 20, 2017,
fully 18% of all reactions to Democratic lawmakers’
news links were “angry.” Reactions to Republican-shared
news links remained relatively stable. Between May 1
and Nov. 8, 2016, 9% of reactions to Republican posts
were “angry,” compared with 10% between Nov. 9, 2016
and July 20, 2017.

h

Summary Created by PoT

using Qwen2.5-VL
Original Text

Figure 7: Case Study on the generated dictionary, PoT, and generated caption from the experiment trials.
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