
From Data to Insight: Exploring Program-of-Thoughts Prompting for
Chart Summarization

Anonymous ACL submission

Abstract001

Charts play a critical role in conveying numeri-002
cal data insights through structured visual rep-003
resentations. However, semantic visual under-004
standing and numerical reasoning requirements005
hinder the accurate description of charts, inter-006
preting a challenging task in chart summariza-007
tion. Despite recent advancements in visual008
language models (VLMs), approaches lack ro-009
bust mechanisms for verifying statistical fact010
correctness and are computationally heavy. To011
address this gap, this paper explores the poten-012
tial of using zero-shot learning to motivate the013
lightweight VLMs to perform computational014
reasoning via Python programs as intermediate015
outputs to derive summary statistics valid for016
chart understanding. Specifically, we introduce017
a novel chart-to-dictionary auxiliary task, of-018
fering a more flexible representation compared019
to traditional chart-to-table methods, making020
it particularly well-suited for integration with021
the Program-of-Thought (PoT) strategy. Ex-022
perimental results demonstrate that our method023
performs on par with existing chart summariza-024
tion methods across machine translation and025
text generation metrics. We release the code at026
the GitHub link.027

1 Introduction028

With the rising demand for visualizing quantita-029

tive data, the growing adoption of digital media030

has played a role in the rapid growth of data visu-031

alization, which has led to the task of automatic032

chart understanding, information extraction, and033

summarization, critical areas of research (Huang034

et al., 2024; Zhang et al., 2024; Choi et al., 2025).035

Recent advancements in Visual Language Models036

(VLMs) have shown promise in this area (Masry037

et al., 2023; Han et al., 2023; Ko et al., 2024; Masry038

et al., 2024; Meng et al., 2024; Zhang et al., 2024;039

Liu et al., 2024); however, existing methods still040

struggle with achieving high-quality summaries, es-041

pecially for L2/L3 content - which is identified as042

Figure 1: Example of a chart in Pew with its data repre-
sentations in Python dictionary and statistics. Italic is
the L2/L3 content in the chart summarization. Strikeout
indicates hallucination errors and error-inducing tokens.

statistics and relations (e.g., min, max) / perceptual 043

and cognitive phenomena (e.g., trends) (Lundgard 044

and Satyanarayan, 2022; Kantharaj et al., 2022; 045

Tang et al., 2023), as shown in Figure 1. The chal- 046

lenge is around the highly inconsistent matching 047

between the generated summary and the chart’s 048

actual data content yields factual inconsistencies 049

and hallucinations. This is either due to failing to 050

parse the text in the chart or to demarcate the nu- 051

merical value of the visualized data. Additionally, 052

with semantic parsing of the chart elements, VLMs 053

struggle at performing complex reasoning about 054

chart patterns and incorporating statistical reason- 055

ing with chart elements (Liu et al., 2024). Despite 056

general challenges, although current VLM-based 057

chart understanding methods have shown a cer- 058

tain level of performance, they still face two main 059

challenges: (1) Existing implementations are fine- 060

1



tuned or pre-trained specifically on chart-related061

instruction data. While this alignment between the062

vision encoder and language decoder enhances gen-063

eralization performance, such training processes064

introduce significant computational overhead, mak-065

ing them resource-intensive and challenging under066

computational constraints; (2) These tasks continue067

to remain a challenge in understanding the struc-068

tural interplay between the different elements of a069

chart. Effective visual language understanding in070

particular requires two key processes: first, compre-071

hensive semantic layout understanding of the chart,072

and second, robust statistical reasoning to accu-073

rately capture and analyze the underlying data (Liu074

et al., 2023b). In light of these challenges, we in-075

vestigate zero-shot and training-free approaches for076

VLMs in chart summarization, exploring whether077

supplementary textual data in multi-modal chart078

summarization enhances or hinders overall per-079

formance to what extent. Program-of-Thoughts080

(PoT) (Chen et al., 2023) is a zero-shot prompting081

method, which was originally proposed to disen-082

tangle computation from reasoning to augment a083

model’s numerical capability. PoT has shown effec-084

tiveness in enhancing the ability of language mod-085

els compared to the general multimodal-purpose086

prompting Multimodal Chain of Thought (MCoT)087

(Wang et al., 2025) in complex numerical reason-088

ing tasks. Given this statistical reasoning capability,089

this work investigates the effectiveness of the PoT090

guiding VLMs to perform numerical computations091

and logical reasoning via LLM Python programs092

as intermediate steps in the chart summarization093

process. VLMs will be used to generate summaries094

in zero-shot settings with the PoT approach for the095

chart summarization task. Specifically, we aim to096

answer the following research questions centering097

on chart summarization: RQ1. How can visualized098

numerical data, such as charts, be represented us-099

ing Program-of-Thoughts prompting? RQ2. Does100

offloading statistical computations from a VLM im-101

prove its performance for concluding the L2/L3102

content? and RQ3. How do Program-of-Thoughts103

prompting improvements affect different chart types,104

in terms of area, line, bar, pie, and scatter charts?105

This work integrates the PoT methodology on106

data representation for chart summarization with107

VLMs, serving as the chart data representation in108

chart understanding to aid in the summarization109

task. We also demonstrate that PoT offers a com-110

petitive performance relative to existing prompting111

methodologies in the context of lightweight VLMs.112

2 Literature Review 113

2.1 Chart Understanding 114

Template-Based Early approaches to automatic 115

chart understanding, particularly the sub-task of 116

chart summarization, often relied on planning- 117

based architecture and template-based generation 118

methods (Mittal et al., 1998; Fasciano and La- 119

palme, 2000; Green et al., 2004; Reiter, 2007; Fer- 120

res et al., 2007, 2013). Recent template-based re- 121

search has focused on utilizing statistics (e.g., min, 122

max, trends) from chart numerical data for present- 123

ing the facts (Demir et al., 2012; Cui et al., 2019; 124

Srinivasan et al., 2019; Wang et al., 2020), forming 125

the statistics analysis into textual summarization 126

output. Some research utilized the off-the-shelf 127

OCR (Optical Character Recognition) tools or de- 128

tectors to represent chart data into textual tables and 129

other representations, relying on pipeline methods 130

(Singh et al., 2019; Sidorov et al., 2020; Methani 131

et al., 2020; Hu et al., 2021; Fu et al., 2022; Kan- 132

tharaj et al., 2022; Liu et al., 2023a). More recently, 133

ResNet (He et al., 2016) encoder and LSTM de- 134

coder were used to process the chart and create the 135

caption (Chen et al., 2020a). However, compared 136

to data-driven models, template-based approaches 137

struggle with complex visual patterns and numeri- 138

cal reasoning, with high costs in producing generics 139

and matching variations in vocabulary choices. 140

Pretrained With the progression of deep learn- 141

ing techniques, which subsequently improved gen- 142

eral computer vision using neural networks and 143

Transformer (Vaswani et al., 2017), recent work 144

began to adopt encoder-decoder architectures to 145

improve chart understanding (Wang et al., 2025), 146

including Transformer (Singh and Shekhar, 2020; 147

Obeid and Hoque, 2020; Kantharaj et al., 2022; Lee 148

et al., 2023), LSTM (Spreafico and Carenini, 2020), 149

CNN+LSTM (Hsu et al., 2021), and VLMs (Liu 150

et al., 2023b), which are pre-trained on both visual 151

and text data, often with specialized text and im- 152

age encoders, and have shown significant promise 153

in tasks requiring joint understanding of multiple 154

modalities. However, challenges remain in ground- 155

ing the factual and logical coherence in generated 156

summaries, particularly when dealing with com- 157

plex charts requiring numerical reasoning. 158

Fine-Tuned Aside from pre-training the model, 159

fine-tuning the pre-training model (Tang et al., 160

2023) and instruction fine-tuning (Ouyang et al., 161

2022) have also become widely adopted as an al- 162

ternative to improve the performance of LLMs and 163

2



VLMs (Masry et al., 2023; Han et al., 2023; Ko164

et al., 2024; Masry et al., 2024; Meng et al., 2024;165

Zhang et al., 2024; Liu et al., 2024). Instruction166

tuning is used to generalize the language capability167

of the model, reducing repetitions and hallucina-168

tions generated in summarization than pre-training169

approaches (Meng et al., 2024). However, these170

methods typically rely on the data tables of charts,171

failing to capture the nuance of the visual artifacts172

present in charts. Furthermore, their heavy parame-173

ter sizes present notable challenges for deployment174

in computationally constrained environments.175

2.2 Chart Representations176

Representing the chart in structured data, the chart-177

to-table (Meng et al., 2024) task represents it in the178

tabular format, but often comes at the cost of losing179

finer details in the chart. Performing similarly to180

data tables, scene graphs are easily formatted for181

web-based charts (Tang et al., 2023). Code format182

is considered, and existing methodologies define183

two typical chart-to-code approaches: (1) Chart184

Derendering (Liu et al., 2023b; Lee et al., 2023);185

and (2) Program of Thoughts (Chen et al., 2023;186

Zhang et al., 2024). However, codes mainly aim to187

run for the chart recreation or question answering188

tasks on narrowly defined questions, rather than189

representing the whole chart. This paper proposes190

an auxiliary task of chart-to-table, which is chart-191

to-dictionary in Python code format, which uses192

VLM’s chart understanding capability to represent193

the chart as a Python dictionary.194

2.3 Prompting195

Inspired by the success of Chain-of-Thought (CoT)196

prompting (Wei et al., 2022) for improving rea-197

soning capabilities, researchers are extending simi-198

lar mechanisms to VLMs for chart understanding,199

seeking to mirror the human cognitive process of200

visual analysis. This is achieved through MCoT201

(Wang et al., 2025; Liu et al., 2024) reasoning,202

which extends the rationale from texts to visual203

modalities (Choi et al., 2025). To contrast with204

MCoT, PoT (Chen et al., 2023; Zhang et al., 2024)205

prompting intermediate reasoning steps are articu-206

lated as executable programs, while executing the207

program to generate reasoning and statistical com-208

putation about the chart data. The success of PoT in209

chart question answering (QA) has motivated our210

exploration of chart summarization, which focuses211

on generating more structurally complex and exten-212

sive sentences, rather than just concise answers.213

In this work, our pipeline method builds upon 214

these advancements by focusing on PoT prompting 215

in zero-shot chart summarization. By extending 216

the PoT concept to the visual domain of charts, it 217

could decrease hallucinations that language models 218

typically have when outputting calculations, as it 219

provides more explicit and verifiable numeric rea- 220

soning processes for VLMs (Zhang et al., 2024), 221

potentially leading to more accurate and factually 222

grounded summaries by delegating complex cal- 223

culations to a code interpreter. This work differ- 224

entiates itself from existing works by specifically 225

investigating the benefits and limitations of generat- 226

ing executable code as intermediate reasoning steps 227

for chart summarization with lightweight VLMs. 228

3 Method 229

This paper proposes using PoT to augment a 230

VLM’s capability for statistical reasoning on chart 231

data generation, as one of the key elements for vi- 232

sual language reasoning (Liu et al., 2023b). Explor- 233

ing the model’s capacity for zero-shot setting for 234

reasoning, this paper adapts a similar methodology 235

described in PoT, as the work (Chen et al., 2023) 236

stated that the program’s line-by-line structure acts 237

as a proxy for the numerical reasoning steps of the 238

model. Similar to the previous work, the usage of 239

‘#’ tokens in the generated tokens was restricted to 240

avoid the pitfalls of only generating the reasoning 241

chain as comments instead of executable code. Our 242

prompts are illustrated in Appendix C. 243

3.1 Chart Representation as a 244

VLM-Generated Python Dictionary 245

In order for the chart to interface with the code, the 246

chart needs to be represented in a manner that can 247

interact with the Python interpreter. As shown in 248

Figure 2, Python dictionaries can represent the code 249

in a more free-form structure, allowing for ground- 250

ing the values compared to the data table. However, 251

lightweight VLMs can struggle to create executable 252

Python code, which consists of wrong syntax, in- 253

complete messages, and even meaningless code- 254

agnostic terminologies when facing the complex 255

code generation request, adding noise. Given that, 256

aside from reflecting understanding from charts, 257

the code needs to be valid and executable. In Ap- 258

pendix E, we list more details of the failure case 259

analysis. To handle failure cases in dictionary gen- 260

eration, we mainly used InternVL-2.5-4B (Chen 261

et al., 2024) to do this task in a zero-shot setting, 262
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Figure 2: Representing chart (left) as a Python dictionary (right). Python dictionary representation is more flexible
compared to a markdown table and usable by the LLM-generated program.

and if the generated Python dictionary is not ex-263

ecutable, it is converted with ChatGPT (GPT-4o-264

mini) (OpenAI, 2024) instead.265

3.2 Statistical Analysis with PoT prompting266

Since the chart is represented as a Python dictio-267

nary, it can be more free-form in containing data268

and being passed to a Python program. Code is269

passed to an LLM to generate a program to do270

statistical analysis as an intermediate result to pro-271

vide more context for chart summarization. Com-272

pared to QA as a task, statistical analysis with273

PoT demonstrates numerical reasoning since it274

demonstrates how the models understand which275

data points or statistics are necessary to create sum-276

mary statistics. This paper uses Qwen-2.5-Coder-277

14B (Hui et al., 2024) for the complex statistics278

code generation conversion, with a case study and279

pipeline presented in Figure 3. The LLM is in-280

structed to generate a Python program using the281

Python dictionary in the prompt to generate sum-282

mary statistics relevant to the chart dictionary. This283

adapts PoT for the chart summarization task as the284

generated program provides more context to be285

used for text generation while providing accurate286

calculations. Code generated by the LLM is con-287

strained to use only the functions from Python’s288

built-in library. To validate and execute the gener-289

ated Python program by the PoT strategy, we used290

the built-in exec function in Python for automatic291

code validation.292

3.3 Program Execution and Statistics293

Retrieval294

The generated Python program for statistics calcu-295

lation is executed using a Python interpreter. This296

step ensures the accuracy of the statistical results,297

mitigating potential errors that LLMs might make298

when generating tokens through direct calculations.299

The program returns a Python statistics dictionary300

that contains key-value pairs of the summary statis-301

Type Pew VisText

Simp. Comp. All Simp. Comp. All
Area 13 7 20 157 81 238
Bar 840 128 968 304 127 431
Line 312 37 349 135 78 213
Pie 41 0 41 0 0 0
Scatter 0 15 15 0 0 0
Total 1,206 187 1,393 596 286 882

Table 1: Distribution of chart types by Simple and
Complex complexities of the Pew and VisText datasets.

tics and the calculated values. At the end, the statis- 302

tical results in our pipeline are input with the chart 303

into a VLM to assist the chart summarization task. 304

4 Experiment 305

We present our experimental setup in Appendix A. 306

The overview of our datasets, evaluation metrics, 307

baseline methods, and benchmark and backbone 308

models is provided in the following subsections. 309

4.1 Baselines and Evaluation 310

Evaluation. We evaluated PoT prompting for chart 311

summarization on both the test sets of the Pew 312

(Kantharaj et al., 2022) and VisText (Tang et al., 313

2023), following the previous evaluation works 314

(Masry et al., 2023; Meng et al., 2024) for evaluat- 315

ing the PoT on varying degrees of complex charts 316

to show its generalizability. The VisText is built 317

upon Statista (Kantharaj et al., 2022) with richly 318

labelled L2/L3 captions. Chart type distributions of 319

datasets are summarized in Table 1, which across a 320

variety of simple and complex charts. More details 321

on the dataset statistics and topic distribution infor- 322

mation are presented in the Appendix B.1. To eval- 323

uate the effectiveness of the methods, we employ 324

BLEU (Post, 2018) and CIDEr (Vedantam et al., 325

2015) as the evaluation metric following previous 326

works (Kantharaj et al., 2022; Liu et al., 2023b; 327

Masry et al., 2023; Meng et al., 2024). Addition- 328
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Figure 3: Process of implementing the Program of Thought (PoT) given a chart. It can be seen as a process of
enhancing statistical reasoning to extract summary statistics, typically total counts, minimum, and maximum values
from the chart, along with labels that contain the numerical values.

ally, we use F1 scores of ROUGE (Lin, 2004) and329

BERTScore (Zhang et al., 2020) for evaluation.330

ROUGE is a prevailing benchmark in text sum-331

marization research, whereas BERTScore offers a332

complementary perspective by quantifying seman-333

tic similarity between system outputs and reference334

texts. We provide more details of evaluation met-335

rics in the Appendix B.3.336

Baselines. We compare two other types of prompt-337

ing strategies as baselines: (1) Directly prompting338

(Direct) the model to summarize the chart, given339

that this approach is also what is done by fine-340

tuned end-to-end models (Huang et al., 2024; Liu341

et al., 2024); (2) Multimodal CoT (MCoT), which342

adheres to the framework in (Wang et al., 2025),343

prompting to return an outline of all key informa-344

tion and trends derived from the chart.345

4.2 Benchmarks and Backbones346

Chart-To-Text Models. To assess the effective-347

ness of our PoT prompting approach against exist-348

ing models and methods in the chart-to-text domain,349

we choose: (1) Pretrained Chart-To-Text: OCR-350

Field-Infuse (Chen et al., 2020b; Kantharaj et al.,351

2022), Monkey (Li et al., 2024); (2) Prefix-tuning352

Chart-To-Text: image-scene-graph-PT (Tang et al.,353

2023), image-data-table-PT (Tang et al., 2023); (3)354

Commonly used VLMs: Blip2-flant5xl (Li et al.,355

2023), Qwen-VL (Bai et al., 2023).356

VLM Models. To understand the effects of PoT on357

the different VLM backbones, we compare the per-358

formance of Deepseek-VL2-tiny (Wu et al., 2024),359

InternVL-2.5-4B (Chen et al., 2024), LLaVa-v1.6-360

mistral-7B-hf (Liu et al., 2023c), and Qwen2.5-VL-361

3B-Instruct (Qwen Team, 2025) on the representa-362

tive datasets of Pew and VisText. All experiments363

were done with the zero-shot setting models.364

Method
Pew VisText

BLEU CIDEr BLEU CIDEr

OCR-Field-Infuse 0.2 0.3 0.3 -
Monkey 0.4 1.7 - -
Qwen-VL-9.6B 0.5 2.6 - -
Blip2-flant5xl-4B 0.2 0.8 - -
image-scene-graph-PT - - 0.3 -
image-data-table-PT - - 0.3 -

Qwen2.5-VL-3B+PoT 3.1 0.1 1.7 0.1

Table 2: We compare our PoT-adopted zero-shot VLM
(Qwen2.5-VL-3B+PoT) with different chart summariza-
tion methods on Pew and VisText test datasets. We
referenced the results from Chart-To-Text (Kantharaj
et al., 2022), VisText (Tang et al., 2023), and ChartAs-
sistant (Meng et al., 2024).

5 Evaluations of Our PoT Approach 365

Against Existing Benchmarks 366

Table 2 shows the BLEU and CIDEr scores for each 367

model on the Pew and VisText datasets. We refer- 368

enced evaluation results from Chart-To-Text (Kan- 369

tharaj et al., 2022), VisText (Tang et al., 2023), and 370

ChartAssistant (Meng et al., 2024). As shown in 371

the table, we observed that our PoT prompting ap- 372

proach overperforms baseline Chart-To-Text meth- 373

ods in the BLEU evaluation scores, but underper- 374

forms in the CIDEr evaluation scores. This may be 375

due to CIDEr places more emphasis on important 376

and rare words, as it calculates TF-IDF weighted 377

n-gram similarity. While BLEU also focuses only 378

on surface-level word matching and ignores seman- 379

tic consistency, we subsequently evaluate our PoT 380

prompting approach on BERTScore and ROUGE- 381

L evaluation metrics, as they can better consider 382

and evaluate semantic information. More details of 383

experimental results and additional ablation studies 384

are in the Appendix B.4. 385
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VLM
&

Prompting

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr

deepseek-vl2-tiny
ZeroShot-Direct 1.9682 0.0427 2.6653 0.0608 1.7169 0.0471 4.5805 0.1391 0.7646 0.0412 2.4676 0.0591 1.8347 0.0920 1.5262 0.0731 2.0429 0.0851 1.7346 0.0824
ZeroShot-MCoT 1.6352 0.0526 1.8918 0.0403 1.2924 0.0360 3.1608 0.0671 1.0925 0.0657 1.7658 0.0399 0.9308 0.0410 0.7613 0.0353 1.1508 0.0388 0.9001 0.0380
ZeroShot-PoT 0.1254 0.0018 0.2767 0.0127 0.2736 0.0173 0.2496 0.0190 0.2219 0.0005 0.2746 0.0135 0.8102 0.0710 0.3489 0.0523 0.5821 0.0685 0.5603 0.0615

internVL-2.5
ZeroShot-Direct 3.6507 0.0426 3.5832 0.0318 2.7521 0.0296 4.6431 0.1025 2.6224 0.0001 3.4041 0.0328 1.1306 0.0125 0.9387 0.0088 1.3401 0.0212 1.0808 0.0130
ZeroShot-MCoT 2.3817 0.0257 2.0626 0.0106 1.4369 0.0061 1.9856 0.0053 1.5318 0.0003 1.9113 0.0094 0.8414 0.0022 0.8978 0.0005 1.0359 0.0030 0.9175 0.0015
ZeroShot-PoT 2.8535 0.0713 1.9995 0.0664 1.9136 0.0404 2.0840 0.0907 1.3768 0.0819 1.9896 0.0603 1.1281 0.0246 0.9299 0.0172 1.6892 0.0274 1.1736 0.0212

llava-NeXT
ZeroShot-Direct 4.8807 0.1561 5.7756 0.1069 4.6735 0.1133 7.8216 0.2135 4.3993 0.0074 5.5350 0.1107 2.6597 0.0272 2.5564 0.0334 3.4469 0.0612 2.7918 0.0384
ZeroShot-MCoT 6.1606 0.0329 5.9175 0.0928 4.6181 0.0644 5.7460 0.1498 3.9118 0.0808 5.6347 0.0869 2.5957 0.0478 2.2776 0.0243 3.5833 0.0499 2.6622 0.0365
ZeroShot-PoT 3.1421 0.1069 4.1897 0.1027 3.5534 0.0925 2.7975 0.0895 3.3424 0.1210 3.9888 0.0996 2.3603 0.0321 2.2635 0.0457 2.9584 0.0580 2.4604 0.0448

qwen2.5-VL-3B
ZeroShot-Direct 1.9350 0.0523 3.6251 0.1002 2.5562 0.0643 5.9420 0.1384 2.0714 0.0272 3.3929 0.0905 2.6399 0.1481 2.1772 0.0979 3.1147 0.1519 2.4984 0.1254
ZeroShot-MCoT 1.4980 0.0735 2.6168 0.0814 1.8583 0.0602 3.7722 0.2156 1.5976 0.0431 2.4388 0.0794 1.5847 0.0837 1.3648 0.0791 1.9742 0.0707 1.5783 0.0782
ZeroShot-PoT 3.3383 0.0409 3.3091 0.0734 2.3678 0.0597 3.8250 0.1662 1.0761 0.0203 3.0906 0.0712 1.6593 0.0780 1.4806 0.0801 2.0928 0.0890 1.6639 0.0826

Table 3: Evaluation results of VLMs on different prompting methods on Pew and VisText datasets evaluated on
BLEU and CIDEr scores.

6 Evaluations of Our PoT Approach386

Against Existing Baselines387

We evaluate baseline prompting strategies and our388

PoT prompting strategy and report results of our ex-389

periment in Table 3. Across the evaluated models,390

the impact of the PoT prompting strategy varied391

significantly with models and chart types. We ob-392

served instances where the PoT led to substantial393

improvements in performance, while in other cases,394

its impact was less pronounced or even negative395

compared to the Direct and MCoT approaches.396

PoT Effectiveness Against Chart Types We no-397

tice that the results from different charts are varied,398

and we suppose this may be due to the unique-399

ness of each chart structure, texts included in the400

chart, chart data size, and data complexity. For401

example, in the case of the Qwen2.5-VL model,402

the evaluation score increases from 1.935 to 3.338,403

demonstrating the effectiveness of the PoT strat-404

egy in enhancing information collection from area405

charts, which are with limited data information.406

PoT Effectiveness Against VLMs Regarding influ-407

ences by VLMs, for the Deepseek-vl2-tiny model,408

the application of the PoT resulted in considerably409

lower scores across all reported metrics compared410

to both the ZeroShot-Direct and ZeroShot-MCoT411

methods. This suggests that for this particular412

model architecture, the PoT strategy in its current413

implementation might not be beneficial or could414

even hinder performance on the evaluated tasks.415

This reveals that the PoT strategy may introduce416

additional noise or mislead the emphasized infor-417

mation, and may interfere with the model’s original418

processing and understanding of the chart. In con-419

trast, the InternVL-2.5 model demonstrated a more420

nuanced response to the PoT prompting strategy. 421

While the Direct method often yielded the highest 422

scores, the PoT strategy achieved comparable or 423

even slightly better results on certain metrics com- 424

pared to the MCoT strategy in some cases. For 425

example, the PoT strategy achieved a BLEU score 426

of 2.854, which is lower than the Direct method 427

(3.651) but higher than the MCoT strategy (2.382) 428

of the area charts in the Pew dataset, even on con- 429

sidering all chart types, these trends hold. This indi- 430

cates that for InternVL-2.5, the PoT strategy can be 431

a viable alternative to the MCoT strategy in certain 432

scenarios, although the Direct prompting method 433

appears to be generally more effective based on 434

these results. Similarly, LLaVa-NeXT also had 435

a mixed response given the two datasets, where 436

no conclusive trends can be observed between the 437

different prompting methods. One interesting ob- 438

servation from this comparison is that while the 439

BLEU values of the PoT strategy are lower than the 440

other methods, on average, it outperforms the other 441

prompting techniques on CIDEr, indicating some 442

of its effectiveness in these cases. We suggest that 443

this may arise from the inherent design differences 444

in the VLMs with respect to chart understanding. 445

Specifically, Deepseek-vl2 is equipped with a dedi- 446

cated vision encoder and a vision-language adapter, 447

originally designed to optimize performance on vi- 448

sual tasks such as chart interpretation. In contrast, 449

InternVL-2.5 is built upon a Vision Transformer 450

architecture integrated with a large language model, 451

placing more confidence on the fusion of textual 452

information. As a result, when we enlarge the tex- 453

tual data using the PoT strategy, the performance 454

outcomes of Deepseek-vl2 and InternVL-2.5 can 455
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diverge, potentially yielding opposite trends. This456

observation suggests that the PoT strategy does not457

universally benefit all VLMs in chart summariza-458

tion, but is particularly advantageous for those that459

emphasize textual information.460

PoT Compared with MCoT On the other hand,461

Qwen-2.5VL-3B showed that the PoT strategy con-462

sistently outperformed the MCoT strategy while463

underperforming relative to the Direct prompting.464

This suggests that for the Qwen2.5-VL-3B model,465

the PoT strategy appears to be a more effective466

CoT prompting strategy compared to the standard467

MCoT approach across the evaluated tasks. This468

may be due to the PoT strategy introducing more469

new textual content into the chart summarization470

process compared to the MCoT approach. While471

the PoT generates additional statistical information,472

MCoT primarily offers a high-level data outline and473

trends. The PoT may introduce additional noise474

and errors, particularly due to inaccuracies in chart475

data interpretation by the InternVL-2.5 model.476

While the PoT strategy demonstrated potential477

for improving performance, particularly for the478

InternVL-2.5 and Qwen2.5-VL-3B models in cer-479

tain scenarios, it did not consistently outperform480

the Direct prompting baseline across all models481

and metrics. Further investigations are conducted482

to identify the factors contributing to the varying483

effectiveness of the PoT strategy and to estimate484

the extent to which different information influences485

the performance of this pipeline.486

7 Evaluations of Our PoT Approach487

Against VLM Backbones488

To investigate the influence of different types of in-489

formation within the PoT strategy pipeline, we con-490

ducted a series of experiments focusing on the tex-491

tual components that serve as supplementary inputs492

to the VLM alongside the input chart. The experi-493

mental settings are as follows: (1) Title: Use only494

the title as input to the VLM, without applying the495

PoT strategy; (2) Stats+Title: Use the PoT strategy496

to generate a statistics dictionary, combined with497

the title as input to the VLM; (3) Dict+Title: Use498

the PoT-generated Python dictionary along with the499

title as input to the VLM; (4) Dict+StatsT+Title:500

Replace the PoT strategy with a predefined Python501

program for generating the statistics dictionary, and502

use the generated statistics dictionary together with503

the Python dictionary and title as input to the VLM;504

(5) Dict+Stats+Title: Use the full set of inputs, in-505

cluding the PoT-generated Python dictionary, the 506

PoT-generated statistics dictionary, and the title as 507

input to the VLM. The experimental results that 508

were evaluated on ROUGE-L and BERTScores are 509

illustrated in Table 4. 510

VLM Performance Influenced by Input Textual 511

Data While the evaluation results remain influ- 512

enced by the underlying VLM performance, we 513

observed that in over half of the cases, the com- 514

bination of the title and Python dictionary outper- 515

formed using the title alone. We attribute this to 516

the fact that directly extracted data, despite po- 517

tential noise, can retain more factual information 518

than purely generated text, potentially steering the 519

model toward more accurate outputs. However, this 520

also highlights the power of using the PoT strat- 521

egy, as it guides the model to emphasize more on 522

the inaccuracies and noise in the poorly extracted 523

data, while weakening the chart analysis, which 524

negatively harms the overall performance of the 525

model pipeline. In addition, we observed that the 526

PoT-generated statistics dictionaries consistently 527

outperformed the predefined program-generated 528

statistics dictionaries in most cases. This indicates 529

the effectiveness of the PoT strategy, which is bet- 530

ter than directly using Python programs to enhance 531

the overall pipeline performance in the chart sum- 532

marization. 533

8 Discussion 534

With empirical results, how a candidate task to rep- 535

resent charts structurally can be an effective auxil- 536

iary to the existing chart-to-table task can be sort 537

of answered. While the evaluation of chart-to-table 538

might be more objective in its evaluation, there 539

might be merit to exploring the chart-to-dictionary 540

task for chart understanding. Not only this allows 541

the integration of the chart in a PoT context, but 542

this allows for a more robust representation of the 543

chart, given the increasing complexities of charts in 544

the wild. This work acknowledges that there is an 545

overlap between chart redrawing and this task, but 546

the chart redrawing tends to focus more on the re- 547

construction of the chart with executable matplotlib 548

code rather than capturing the semantic nuances of 549

the chart elements explored in this work. 550

The experimentation showed that the summariza- 551

tion task also varied greatly depending on the type 552

of chart the model was captioning. Most models 553

performed well on relatively simpler bar and pie 554

charts, while struggling with more complex charts, 555
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VLM
&

Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS R-L BS

deepseek-vl2-tiny
Title 13.57 84.78 13.57 85.49 12.26 84.83 16.98 86.96 11.99 84.22 13.33 85.34 14.65 86.87 14.44 85.69 15.68 86.89 14.79 86.30
Statis+Title 8.22 82.51 8.81 83.73 8.56 83.44 9.21 83.87 8.64 83.37 8.74 83.64 9.90 85.01 8.73 84.23 9.60 84.51 9.26 84.51
Dict+Title 9.51 83.33 6.15 82.04 6.78 82.49 11.80 84.68 7.96 83.44 5.55 82.27 5.37 84.13 3.85 83.26 5.34 84.23 4.23 83.73
Dict+StatisT+Title 8.18 82.47 8.87 83.23 8.95 83.04 10.79 84.06 6.72 81.08 8.92 83.17 10.44 85.15 9.89 84.04 10.71 84.97 10.23 84.56
Dict+Statis+Title 9.16 82.84 10.19 84.33 9.50 83.94 10.79 84.12 8.38 82.90 10.00 84.19 10.88 85.28 9.37 84.22 11.91 85.29 10.38 84.77

internVL-2.5
Title 13.80 84.33 13.55 85.02 12.59 84.58 15.74 85.59 13.34 84.46 13.38 84.91 10.50 85.17 9.58 84.24 11.28 85.18 10.22 84.71
Statis+Title 13.02 84.91 13.40 85.62 13.15 85.49 12.97 85.62 13.79 85.84 13.32 85.58 12.63 85.81 11.37 84.83 12.90 85.78 12.08 85.32
Dict+Title 16.15 85.54 15.69 86.02 14.80 85.62 15.73 86.34 15.22 85.87 9.09 85.92 9.58 86.29 7.00 85.14 9.69 86.44 7.91 85.76
Dict+StatisT+Title 14.74 85.66 14.30 85.88 13.68 85.55 15.04 86.00 13.14 84.76 14.17 85.79 13.96 86.23 12.49 85.19 15.10 86.44 13.52 85.78
Dict+Statis+Title 13.86 85.06 14.17 85.95 13.67 85.58 14.32 86.31 13.28 85.23 14.04 85.85 13.43 86.20 11.96 85.18 14.04 86.26 12.85 85.71

qwen2.5-VL-3B
Title 14.91 85.86 16.22 86.66 14.74 85.91 18.38 87.56 14.88 86.12 15.88 86.49 17.78 87.30 16.39 86.19 18.98 87.31 17.40 86.76
Statis+Title 13.64 85.04 14.48 85.98 13.39 85.44 17.57 87.14 13.45 85.42 14.28 85.86 14.19 86.63 13.68 85.68 14.71 86.62 14.06 86.16
Dict+Title 15.70 85.76 15.61 86.00 14.35 85.50 19.53 87.51 15.22 85.36 8.09 85.91 9.38 86.75 6.55 85.71 9.86 86.81 7.46 86.25
Dict+StatisT+Title 13.25 85.28 14.47 85.98 13.03 85.47 18.07 87.02 13.06 85.00 14.19 85.86 14.78 86.79 13.36 85.43 15.96 86.87 14.36 86.15
Dict+Statis+Title 13.91 85.26 14.00 85.83 12.73 85.36 17.16 86.95 13.32 85.15 13.77 85.73 14.15 86.74 13.24 85.60 15.19 86.76 13.94 86.19

Table 4: Ablation study results for different models regarding data used from Pew and VisText datasets evaluated on
F1 scores of ROUGE-L and BERTScore scores.

such as multiple line or scatter plots. This indicates556

that the generalizability of the summarization task557

may involve some sort of normalization or some558

way to bridge the gap between the varying levels of559

complexity presented by the chart. This paper also560

serves as an empirical springboard for researching561

specifically on natural language generation for the562

context of chart summarization, given that most im-563

plementations of chart understanding are focused564

more on question answering.565

9 Conclusion566

In this work, we conducted a systematic evalua-567

tion of the Program-of-Thought (PoT) prompting568

strategy across currently used lightweight vision-569

language models under the zero-shot settings on570

the Pew and VisText benchmarks for the chart sum-571

marization task. Our experiments reveal that the572

efficacy of the PoT varies markedly with model573

architectures and sizes, corresponding to types of574

charts, including area, bar, line, pie, and scatter.575

In this context, the PoT proved to be a competi-576

tive alternative to the Direct and MCoT prompting577

approaches. Beyond prompting strategies, we in-578

troduced a novel chart-to-dictionary auxiliary task,579

demonstrating its promise for capturing robust and580

semantic nuances in chart understanding, which581

is also conveniently applicable with the PoT. As582

charts grow more complex along with the data they583

represent, there is a need to establish a data struc-584

ture to evaluate chart-parsing outside the table due585

to data loss that occurs from the chart to the table.586

In the future, we would like to employ com- 587

plex vision-language models to further explore the 588

impact of PoT strategies on zero-shot chart under- 589

standing, particularly in the context of chart sum- 590

marization. This includes examining how different 591

model architectures and sizes influence the over- 592

all chart-to-text pipeline when integrated with PoT 593

strategies. Additionally, we aim to develop more so- 594

phisticated PoT approaches capable of generating 595

longer and richer statistical information, thereby 596

enhancing the quality of chart summaries. Since 597

the PoT strategy in this work only extends outputs 598

from short, answer-like responses to relatively con- 599

cise statistical dictionaries. However, for the chart 600

summarization task, we believe the PoT strategy 601

contains untapped potential to capture factual nu- 602

meric data by its statistical reasoning capability. 603

Moreover, given the significant influence of the 604

PoT-generated information in model inference, we 605

will also further investigate whether the PoT can 606

contribute to mitigating hallucination errors in the 607

chart summarization process, improving the overall 608

factual accuracy of generated chart summaries. 609

Limitations 610

The diverse performance of the PoT strategy across 611

the evaluated models raises several important con- 612

siderations. The model architecture and size likely 613

play a significant role in determining the effective- 614

ness of different prompting strategies. The mod- 615

els used in this paper were of lightweight VLMs. 616

While effective in the presented lightweight mod- 617
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els, the language decoder may have yielded too low618

conclusive powers on the efficacy of the PoT and619

CoT prompting methods relative to direct prompt-620

ing. However, it is seen that the PoT strategy still621

can offer comparable results to the other prompting622

methodologies using lightweight VLMs in some623

cases or for some chart types, which indicates that624

on higher parameter models, it can be assumed625

that in the worst case, these different prompting626

techniques may offer similar results. The research627

design, comparing three zero-shot prompting meth-628

ods across four distinct vision-language models629

and a set of tasks, provides a valuable initial explo-630

ration of the PoT’s potential on chart summariza-631

tion with VLMs. Further research can implement632

few-shot reasoning with examples that can hypo-633

thetically increase performance. Additionally, the634

study focused its experimentation on lightweight635

VLMs, which might have contributed to the poor636

results in text generation. Expanding the scope of637

the study to larger parameter models might lead638

to more conclusive results. Regarding the evalu-639

ation on the summarization task, BLEU, CIDEr,640

ROUGE, and BERTScore, while attempting to ac-641

count for fluency and similarity between the target642

and generated text, also demonstrate that these are643

not always the effective metrics when comparing644

generated text as it mostly rely on n-gram over-645

laps, which ignore factual correctness, semantic646

similarity, and text informativeness of the captions.647

There needs to be more automatic metrics focusing648

on factual consistency, neglecting the exact syntax649

matching to specifically account for this limitation.650

Ethics Statement651

To the best of the researchers’ knowledge, all652

datasets used in this study were sourced from pub-653

licly available benchmarks. The authors of the654

benchmark dataset also have obtained the license655

to distribute the dataset for non-malicious purposes656

intent which this research has abided by.657
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A Experiment Set-up952

The experiments are conducted with loaded pre-953

trained models from the vLLM API. As much as954

possible, the default parameters were used, unless955

suggested otherwise from official documentation.956

The temperature is set to 0.2, and the repetition957

penalty is set to 1.2 across all runs. All exper-958

iments are carried out on our machine (CPU: In-959

tel(R) Core(TM) i9-9920X CPU @ 3.50GHz, GPU:960

2 NVIDIA RTX3090). Python code generation for961

producing statistics by the Qwen2.5-Coder-14B-962

Instruct model is the most computationally costly963

task, which costs 10-12 hours on 1 GPU.964

B More Evaluation Details965

B.1 Dataset Analysis966

We chose the Pew (Kantharaj et al., 2022) (GPL-3.0967

license) and VisText (Tang et al., 2023) (GPL-3.0968

license) large-domain English datasets to investi-969

gate and evaluate our PoT strategy for generating970

L2/L3 content in chart summarization, as they pro-971

vide rich and suitable L2/L3 captions for this task.972

The VisText is built upon the Statista (Kantharaj973

et al., 2022) dataset, but with additionally detailed974

labelled L2/L3 captions. Since the chart labelled in975

the VisText can have multiple L2/L3 captions, we976

automatically selected the longest L2/L3 captions977

in the test set of the Vistext dataset as gold sum-978

maries paired to charts for the chart summarization979

task. The statistics of the Pew and VisText datasets980

used in this paper are presented in Table 5. In addi-981

tion, the distribution of topics covered in the Pew982

and VisText datasets is illustrated in Figure 4.983

Statistic VisText Pew

Simp. Comp. All Simp. Comp. All
#Vocab. 3,413 1,995 4,360 3,529 8,342 9,342
Avg.Character 165 152 161 454 522 511
Avg.Token 34 31 33 91 106 104
Avg.Sentence 1.16 0.99 1.11 2.86 3.33 3.26

Table 5: Statistics of datasets by Simple and Complex
complexities of the VisText and Pew test sets.

Figure 4: The distributions of topics of VisText and Pew
datasets.

B.2 Experiment Implementations 984

We mainly used Deepseek-VL2 (deepseek-VL2- 985

tiny) (Wu et al., 2024) for testing and our exper- 986

iments. Additionally, we also tested the follow- 987

ing models: InternVL (internVL-2.5-4B) (Chen 988

et al., 2024), LLaVa-NeXT (llava-v1.6-mistral-7b- 989

hf) (Liu et al., 2023c), and Qwen-2.5 (qwen2.5- 990

VL-3B-Instruct) for main and ablation experiments. 991

All experiments were done in Python 3.12 using the 992

vLLM (Kwon et al., 2023) library, with the models 993

being implemented at the zero-shot setting. 994

B.3 Evaluation Metric Descriptions 995

To quantitatively measure the performance of our 996

proposed method in chart summarization, we em- 997

ploy two popular automatic evaluation metrics 998

in chart understanding: BLEU (Bilingual Evalu- 999

ation Understudy) and CIDEr (Consensus-based 1000

Image Description Evaluation), in addition to two 1001

also well-known automatic evaluation metrics in 1002

text summarization: ROUGE (Lin, 2004) and 1003

BERTScore (Zhang et al., 2020). 1004

BLEU (Post, 2018) This score calculates the n- 1005

gram overlap between the ground-truth summary 1006

and the generated summary. It indicates lexical sim- 1007

ilarity between the generated and ground-truth text, 1008

assessing how closely the generated text replicates 1009

word sequences that occur in the reference. 1010

CIDEr (Vedantam et al., 2015) This score mea- 1011

sures the TFIDF weighted n-gram overlaps be- 1012

tween reference and generated text. By weight- 1013

ing n-grams according to their value in a reference 1014

summary corpus, CIDEr seeks to more accurately 1015

capture the informativeness and relevance of gen- 1016

erated descriptions, especially in image and chart 1017

captioning tasks. 1018

BLEU and CIDEr are commonly used metrics 1019

throughout natural language generation, image cap- 1020

tioning, and chart summarization. Together, they 1021
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capture a more nuanced quantitative measure of1022

model performance in terms of surface similarity1023

and content alignment with reference summaries.1024

While we note that reference-based measures like1025

BLEU and CIDEr do have some limitations, since1026

they can have loose correlation with human pref-1027

erence for aspects of semantic equivalence and1028

factuality, their popularity and ability to provide1029

an initial quantitative score make them effective1030

measures in chart summarization model evaluation.1031

Current research studies on chart summarization1032

have exhaustively employed these metrics as well.1033

B.4 Additional Ablation Studies1034

Table 6 and Table 7 present BLEU and CIDEr eval-1035

uation results, and ROUGE-1 and ROUGE-L evalu-1036

ation results, respectively, for various VLMs, tested1037

with different combinations of textual information1038

in our PoT chart summarization pipeline.1039

C Prompts1040

C.1 Chart-to-Dictionary Extraction1041

Similar to the chart-to-table task, this is done in a1042

zero-shot setting. We employ the core concept of1043

PoT to guide the VLM in generating a valid and1044

executable Python dictionary from the input chart.1045
1046

1 user_prompt = "<img_placeholder > Convert1047
the chart into a python dictionary1048

`chart_dict `. Only consider the1049
chart 's data when summarizing."1050

2 assistant_ = "```python\n chart_dict ="10511052

C.2 Dictionary-to-Statistics with Program of1053

Thoughts1054

The illustrated prompt content is the same used in1055

VLMs tested in this work, but formatted specifi-1056

cally with each VLM’s template.1057
1058

1 system_prompt = "You are a data analyst.1059
You are given a dictionary that1060

represents a chart called `1061
chart_dict `. \1062

2 You need to implement the function `1063
get_summary_statistics(chart_dict)`1064
that takes the dictionary as input1065
and returns a dictionary with the1066
relevant statistics that can be used1067
to summarize the chart. \1068

3 Avoid sorting dictionary objects1069
directly and USE ONLY PYTHON BUILT -1070
IN FUNCTIONS. Name the keys of the1071
dictionary to elaborate how it is a1072
descriptive statistic. When writing1073
Python , follow the PEP style guide.1074
\1075

4 Return ONLY the code of the function1076
that will run without any errors and1077
can work using `eval()`."1078

5 1079
6 user = "Implement the function ` 1080

get_summary_statistics ` that takes a 1081
dictionary as input and returns a 1082

dictionary with the relevant 1083
statistics that can be used to 1084
summarize the chart using only built 1085
-in Python functions. Make sure to 1086
label the keys of the `summary_dict ` 1087
to be descriptive The input 1088

dictionary is defined as {chart_dict 1089
}." 1090

7 1091
8 assistant_ = "```python\ndef 1092

get_summary_statistics(chart_dict):\ 1093
n # Define output dictionary ` 1094
summary_dict ` to store the summary 1095
statistics\n" 10961097

D Case Study 1098

A case study in Figure 7 demonstrates an end-to- 1099

end chart-to-text method using the PoT. In this 1100

specific instance, the chart-to-dictionary properly 1101

captures the appropriate format of how to organize 1102

the data, but fundamentally mislabels or misreads 1103

the values of which values go to which parties. 1104

However, it can be observed that in terms of ob- 1105

serving the increasing trend in the time-series data, 1106

the dictionary was able to somewhat capture this. 1107

The generated PoT is agnostic of the actual values 1108

of the functions and is able to correctly identify the 1109

relevant keys needed to create summary statistics 1110

of total, average, and min and max values. The gen- 1111

erated caption captures the general ideas that the 1112

chart was able to portray, specifically describing 1113

the chart elements of date in the x-axis and anger 1114

in the y-axis. While not as verbose as the original 1115

text, the generated summary was able to capture 1116

the key ideas and trends in the caption. 1117

Figure 5: Histogram comparing the numbers of failure
cases in the chart data dictionary generation by each
VLM on each dataset.
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VLM
&

Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr BLEU CIDEr

deepseek-vl2-tiny
Title 1.9682 0.0427 2.6653 0.0608 1.7169 0.0471 4.5805 0.1391 0.7646 0.0412 2.4676 0.0591 1.8347 0.0920 1.5262 0.0731 2.0429 0.0851 1.7346 0.0824
Statis+Title 0.1254 0.0018 0.2767 0.0127 0.2736 0.0173 0.2496 0.0190 0.2219 0.0005 0.2746 0.0135 0.8102 0.0710 0.3489 0.0523 0.5821 0.0685 0.5603 0.0615
Dict+Title 0.3425 0.0000 0.2343 0.0040 0.1940 0.0055 0.7802 0.0095 0.3621 0.0002 0.1707 0.0025 0.2472 0.0115 0.0853 0.0077 0.2067 0.0124 0.0855 0.0081
Dict+StatisT+Title 0.7589 0.0023 0.4311 0.0170 0.5564 0.0181 0.3408 0.0320 0.3350 0.0279 0.4914 0.0173 0.4408 0.0676 0.7812 0.0568 0.8565 0.0538 0.7502 0.0589
Dict+Statis+Title 0.6960 0.0135 0.6807 0.0236 0.6517 0.0251 0.6614 0.0341 0.3309 0.0011 0.6875 0.0235 0.5583 0.0713 0.4584 0.0737 1.1808 0.0796 0.6914 0.0754

internVL-2.5
Title 3.6507 0.0426 3.5832 0.0318 2.7521 0.0296 4.6431 0.1025 2.6224 0.0001 3.4041 0.0328 1.1306 0.0125 0.9387 0.0088 1.3401 0.0212 1.0808 0.0130
Statis+Title 2.8535 0.0713 1.9995 0.0664 1.9136 0.0404 2.0840 0.0907 1.3768 0.0819 1.9896 0.0603 1.1281 0.0246 0.9299 0.0172 1.6892 0.0274 1.1736 0.0212
Dict+Title 3.7973 0.1391 3.1843 0.0650 2.2829 0.0612 2.7083 0.1088 1.6723 0.0569 0.7148 0.0052 0.2476 0.0057 0.0790 0.0023 0.4311 0.0110 0.2141 0.0047
Dict+StatisT+Title 4.1720 0.1772 3.1456 0.0633 2.4598 0.0770 2.7016 0.1286 3.2064 0.0431 3.0008 0.0689 1.7194 0.0555 1.2597 0.0205 2.3460 0.0506 1.5926 0.0371
Dict+Statis+Title 3.6093 0.1211 3.1860 0.0697 2.5661 0.0615 2.9342 0.1188 1.8525 0.0960 3.0319 0.0695 1.4938 0.0326 1.0729 0.0102 1.9497 0.0237 1.3735 0.0192

qwen2.5-VL-3B
Title 1.9350 0.0523 3.6251 0.1002 2.5562 0.0643 5.9420 0.1384 2.0714 0.0272 3.3929 0.0905 2.6399 0.1481 2.1772 0.0979 3.1147 0.1519 2.4984 0.1254
Statis+Title 3.3383 0.0409 3.3091 0.0734 2.3678 0.0597 3.8250 0.1662 1.0761 0.0203 3.0906 0.0712 1.6593 0.0780 1.4806 0.0801 2.0928 0.0890 1.6639 0.0826
Dict+Title 2.6846 0.0953 3.1135 0.0693 2.2941 0.0652 3.6053 0.1937 1.5115 0.0629 0.6707 0.0060 0.3687 0.0168 0.0869 0.0090 0.4078 0.0136 0.1515 0.0097
Dict+StatisT+Title 2.4238 0.0222 3.2131 0.0640 2.2744 0.0693 3.4002 0.1018 2.6648 0.0662 2.9969 0.0652 1.7080 0.1080 1.4815 0.0688 2.3149 0.1042 1.6950 0.0883
Dict+Statis+Title 2.6846 0.0953 3.1135 0.0693 2.2941 0.0652 3.6053 0.1937 1.5115 0.0629 2.8237 0.0711 0.3687 0.0168 0.0869 0.0090 0.4078 0.0136 1.5484 0.0678

Table 6: Ablation study results (BLEU / CIDEr) for different models regarding data used from Pew and VisText
datasets.

VLM
&

Textual Data

Pew VisText

Area Bar Line Pie Scatter All Area Bar Line All
R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L R-1 R-L

deepseek-vl2-tiny
Title 24.62 13.57 25.88 13.57 23.66 12.26 29.17 16.98 24.03 11.99 25.40 13.33 22.37 14.65 21.72 14.44 23.56 15.68 22.33 14.79
Statis+Title 13.45 8.22 13.62 8.81 13.32 8.56 14.03 9.21 15.07 8.64 13.56 8.74 14.08 9.90 11.84 8.73 13.73 9.60 12.91 9.26
Dict+Title 14.82 9.51 8.94 6.15 9.97 6.78 16.71 11.80 13.05 7.96 8.05 5.55 7.35 5.37 4.98 3.85 7.31 5.34 5.56 4.23
Dict+StatisT+Title 15.24 8.18 14.19 8.87 15.34 8.95 16.48 10.79 10.64 6.72 14.53 8.92 15.46 10.44 14.44 9.89 16.12 10.71 15.11 10.23
Dict+Statis+Title 15.86 9.16 16.70 10.19 16.32 9.50 16.81 10.79 13.98 8.38 16.57 10.00 16.48 10.88 13.75 9.37 17.14 11.91 15.29 10.38

internVL-2.5
Title 27.44 13.80 28.86 13.55 26.81 12.59 30.08 15.74 27.82 13.34 28.37 13.38 17.17 10.50 16.19 9.58 18.21 11.28 16.92 10.22
Statis+Title 24.41 13.02 25.13 13.40 24.54 13.15 22.33 12.97 26.20 13.79 24.91 13.32 20.59 12.63 18.49 11.37 21.09 12.90 19.68 12.08
Dict+Title 28.78 16.15 28.52 15.69 25.93 14.80 27.67 15.73 27.57 15.22 15.53 9.09 15.87 9.58 10.69 7.00 15.53 9.69 12.43 7.91
Dict+StatisT+Title 26.86 14.74 28.18 14.30 26.66 13.68 26.23 15.04 28.19 13.14 27.73 14.17 22.52 13.96 20.53 12.49 23.43 15.10 21.76 13.52
Dict+Statis+Title 26.64 13.86 28.52 14.17 27.27 13.67 26.11 14.32 27.55 13.28 28.11 14.04 22.24 13.43 20.30 11.96 22.66 14.04 21.38 12.85

qwen2.5-VL-3B
Title 24.83 14.91 30.29 16.22 27.70 14.74 32.16 18.38 29.51 14.88 29.62 15.88 26.14 17.78 24.85 16.39 27.12 18.98 25.74 17.40
Statis+Title 24.75 13.64 27.53 14.48 25.53 13.39 29.58 17.57 27.06 13.45 27.06 14.28 22.11 14.19 21.27 13.68 22.70 14.71 21.83 14.06
Dict+Title 26.12 15.70 27.49 15.61 25.49 14.35 30.70 19.53 29.14 15.22 13.50 8.09 14.10 9.38 9.29 6.55 15.00 9.86 10.91 7.46
Dict+StatisT+Title 23.72 13.25 27.44 14.47 25.24 13.03 29.28 18.07 25.69 13.06 26.89 14.19 22.10 14.78 20.74 13.36 23.70 15.96 21.82 14.36
Dict+Statis+Title 25.56 13.91 26.58 14.00 24.62 12.73 28.36 17.16 25.85 13.32 26.13 13.77 22.23 14.15 20.46 13.24 23.20 15.19 21.59 13.94

Table 7: Ablation study results (ROUGE-1 / ROUGE-L) for different models regarding data used on Pew and
VisText datasets.

E Failure Case Analysis1118

E.1 Python Dictionary Generation1119

In order to keep the desired quality of the statis-1120

tics in this work, we decided to use InternVL-1121

2.5-4B (Chen et al., 2024) with ChatGPT-4o-mini1122

(OpenAI, 2024) to generate the data dictionary.1123

Figure 5 shows comparisons of failure numbers1124

of the chart data dictionary generation by each1125

VLM, presenting InternVL has the best capabil-1126

ity on handling and generating more data dictio-1127

naries from the chart data. Since LLaVa is pri-1128

marily an LLM (LLaMa) with a vision adapter,1129

whereas Deepseek, InternVL, and Qwen are spe-1130

cialized vision-language models with strong visual1131

encoding, we test Deepseek, InternVL, and Qwen1132

on generating the dictionary for chart data on Pew 1133

and Vistext datasets, respectively. 1134

But we are aware that most failure cases are due 1135

to the wrong structure or format of the Python code, 1136

which cannot be recognized or pass the execution 1137

tests, and are consequently categorized as failure 1138

cases, rather than nonsense or empty outputs. In 1139

future work, we will implement a module to refine 1140

the Python code into their correct format, ensuring 1141

the collection of all valuable data. 1142

E.2 Python Code Generation 1143

Figure 6 presents a comparison between the 1144

failure-prone code generated by general-purpose 1145

LLMs and the acceptable code produced by code- 1146

specialized LLMs, where those models were specif- 1147

14



Figure 6: Comparison of failed generated Python code by the general-purpose LLM and the desired generated
Python code by the code-specialized LLM.

ically pre-trained and fine-tuned on programming1148

codes, such as Qwen-Coder. With this observation,1149

we chose to use Qwen-2.5-Coder-14B (Hui et al.,1150

2024), which is optimized for generating accurate1151

and efficient code outputs, to ensure the quality of1152

the generated code.1153
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Figure 7: Case Study on the generated dictionary, PoT, and generated caption from the experiment trials.
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