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ABSTRACT
Driving scene topology reasoning aims to understand the objects
present in the current road scene and model their topology rela-
tionships to provide guidance information for downstream tasks.
Previous approaches fail to adequately facilitate interactions among
traffic objects and neglect to incorporate scene information into
topology reasoning, thus limiting the comprehensive exploration of
potential correlations among objects and diminishing the practical
significance of the reasoning results. Besides, the lack of constraints
on lane direction may introduce erroneous guidance information
and lead to a decrease in topology prediction accuracy. In this paper,
we propose a novel topology reasoning framework, dubbed TSTGT,
to address these issues. Specifically, we design a divide-and-conquer
topology graph Transformer to respectively infer the lane-lane and
lane-traffic topology relationships, which can effectively aggregate
the local and global object information in the driving scene and
facilitate the topology relationship learning. Additionally, a traffic
scene-assisted reasoning module is devised and combined with the
topology graph Transformer to enhance the practical significance
of lane-traffic topology. In terms of lane detection, we develop a
point-wise matching strategy to infer lane centerlines with correct
directions, thereby improving the topology reasoning accuracy. Ex-
tensive experimental results on Openlane-V2 benchmark validate
the superiority of our TSTGT over state-of-the-art methods and
the effectiveness of our proposed modules.
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1 INTRODUCTION
Driving scene topology reasoning aims to detect lane and traffic
elements in multi-view images captured by onboard cameras, and to
construct the topology relationships between them. This emerging
task of scene understanding provides a more natural integration for
perception and planning tasks in autonomous driving, attracting
significant attention in the research community. The driving scene
topology reasoning task can provide information about drivable
areas and traffic signals, so as to offer clear navigation signals
for downstream tasks such as motion prediction and planning.
Compared to the lane detection task and the 3D object detection
task, driving scene topology reasoning is more challenging because
of the difficulty in understanding the topology relationships of
objects in complex scenes.

Recently, Wang et al. [44] proposed a dataset called Openlane-V2
that defines the objectives of the driving scene topology reason-
ing task. Specifically, given multi-view images, topology reasoning
aims to learn the vectorized road graph between centerlines and
traffic elements. It includes four sub-tasks, namely lane centerline
detection, traffic element detection, lane-lane topology reasoning
and lane-traffic topology reasoning. Some explorations are advanc-
ing the field. For instance, Li et al. [26] proposed the TopoNet,
which uses a GCN [23] to construct topology relationships between
heterogeneous features. Wu et al. [48] proposed the state-of-the-
art TopoMLP, where the concept of "first-detect-then-reason" is
introduced and a simple MLP is employed to build the topology
relationships of target objects.

Despite the impressive performance of some existing methods,
there are still some drawbacks that need to be addressed. First, an
important challenge in this task is how to construct the topology
relationships of lane-lane and lane-traffic, while previous meth-
ods are not perfect in this aspect. As shown in Fig.1 (a), TopoNet
[26] adopted a graph convolutional network (GCN) to construct
topology relationships. However, using a single graph model to
simultaneously build topology relationships between homogeneous
and heterogeneous features may lead to confusion of object infor-
mation. In addition, simultaneous detection and reasoning may
result in the loss of object information. Therefore, TopoMLP [48]
proposed the strategy of "first-detect-then-reason" and utilized two
separate sets of MLPs to predict the topology relationships between
different types of objects, as shown in Fig.1 (b). Nevertheless, from
a graph perspective, MLPs can only aggregate information between
pairs of nodes and cannot capture information from local and global
nodes. This makes it difficult to effectively acquire intrinsic con-
nections between objects. Second, solely relying on data without
considering the practical significance of objects to construct topol-
ogy relationships cannot effectively address complex driving scenes.
Effective constraints on topology reasoning results based on traf-
fic rules and the potential topology relationships provided by the
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Figure 1: Comparison of previous driving scene topology
reasoning method and our proposed TSTGT. (a) TopoNet, (b)
TopoMLP, (c) TSTGT

traffic scene are another indispensable strategy. Third, lanes are
inherently directional and the detected lane orientation can have a
significant impact on the results of lane-lane topology reasoning.
Previous methods, such as MapTR [30], employed hierarchical bi-
partite matching to constrain the orientation of HD Map objects.
In contrast, designing an approach to ensure the correct lane orien-
tation in the driving scene topology reasoning task remains to be
developed.

In this study, we propose TSTGT (Traffic Scene-AssistedTopology
Graph Transformer), an innovative driving scene topology reason-
ing network, to address the aforementioned issues, as illustrated in
Fig.1 (c). Inspired by GPS [40], we first utilize lane embeddings and
traffic element embeddings as graph node features inputs, and then
design a divide-and-conquer topology graph Transformer to reason
lane-lane topology and lane-traffic topology. In the topology graph
Transformer, the lane-lane part accepts lane features and processes
them as a directed graph, while the lane-traffic part is treated as
an undirected bipartite graph. After aggregating local information
through message-passing graph neural networks (MPNNs) and
global information via global attention layer in the two parts, the
model employs MLPs to gather features of adjacent nodes and edge
features to predict topology relationship categories. In this way,
the model can learn the underlying guiding relationships between
target objects, and thus obtain more accurate topology reasoning re-
sults. Moreover, we design a traffic scene-assisted reasoning module
and incorporate it after the topology graph Transformer, allowing
the model to constrain topology reasoning based on the practical
significance of traffic objects.

To ensure the correct lane orientation, we further develop a
point-wise matching strategy and integrate it into the lane detection
module. Concretely, the point-wise matching strategy constructs
ground truth for lane curve point sets with multiple equivalent
arrangements. Through lane instance-level matching and curve
point-wise matching constraints, the model decodes more accurate

lane instance embeddings, thereby improving its performance in
lane detection and lane-lane topology reasoning.

The experimental results on two subsets of the benchmark dataset
Openlane-V2 [44] demonstrate that TSTGT achieves state-of-the-
art performance in driving scene topology reasoning task. Ablation
studies are conducted to validate the effectiveness of our frame-
work. The main contributions of this work can be summarized as
follows:

• We propose an innovative topology reasoning framework,
TSTGT, which can accurately detect target objects in multi-
view images and derive precise topology relationships by
employing divide-and-conquer graph information aggre-
gation and imposing constraints on the orientation of lane
targets. TSTGT achieves state-of-the-art performance on
the benchmark Openlane-V2 dataset of this task.

• We devise a traffic scene-assisted topology graph Trans-
former to infer lane-lane topology and lane-traffic topology.
It could effectively aggregate both local and global informa-
tion of traffic objects and enhance the practical significance
of lane-traffic topology, thus predicting high-quality topol-
ogy relationships.

• We develop a point-wise matching strategy in the lane
detector to constrain the orientation of detected lane objects.
This encourages the detector to identify more accurate lane
objects from visual features and improves the performance
of lane-lane topology reasoning.

2 RELATEDWORK
Lane Topology Learning. Lane Topology Learning has received
abundant attention due to its pivotal role in autonomous driving.
Earlier works used aerial images to generate a road graphs [1, 12, 18]
or lane graphs [3, 17, 19, 52]. However, aerial images suffer from
problems such as untimely updates and roads obscured by obstacles
like trees, resulting in inaccurate results that do not match real-
world driving conditions. As a result, it is becoming increasingly
popular to use vehicle-mounted sensors to directly detect lane
topology. STSU [6] proposes a DETR-like [9] neural network to
detect centerlines and objects, and then derive them into a directed
graph by a successive MLP module. On this basis, Can et al. [7, 8]
introduce a minimal circle queries to provide additional supervision
of the relationship, improving the estimation results of the lane
graph. LaneGAP [29] designs a heuristic-based algorithm to learn
from a set of lanes and build a lane topology. CenterLineDet [49]
and TopoNet [26] use the road centerlines as vertices and design
the graph model to update the topology. TopoMLP [48] designs a
unified query-based framework for lane topology, which considers
lane-traffic topology and lane-lane topology at the same time.

HD Map Perception. HD Map Perception is designed to un-
derstand the layout of driving scenarios, such as lanes, pedestrian
crossings, and other traffic elements. In recent years, with the de-
velopment of 2D-to-BEV methods [36], studies have focused on
segmentation and vectorized methods. Chen et al. [11]; Zhou &
Krähenbühl [50]; Li et al. [27]; Liu et al. [33] generate a raster-
ized map by performing BEV semantic segmentation. HDMapNet
[25] uses heuristics and complex post-processing to group and
vectorize the segmented map. VectorMapNet [32] serves as the
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Figure 2: The overview of the proposed TSTGT method. It mainly consists of four parts: the image backbone and FPN, the lane
detector with point-wise matching, the traffic element detector, the divide-and-conquer topology graph Transformer with
the traffic scene-assisted reasoning module. The point-wise matching strategy matches the lane curve points with all possible
equivalent arrangements Γ𝑙𝑎𝑛𝑒 of lane points. The divide-and-conquer topology graph Transformer receive corresponding
instance embeddings and aggregate object information through corresponding MPNN (GINE, GatedGCN) layers and global
attention layers. Simultaneously, the traffic scene-assisted reasoning module is utilized to fully leverage scene information to
assist in topology modeling.

first end-to-end framework, which adopts a two-stage framework
and directly represents each map element as a sequence of points
then utilizes auto-regressive decoder to predict them. MapTR [30]
further explores a unified permutation-based modeling approach
for the sequence of points to eliminate the modeling ambiguity.
Since vectorization also enriches the direction information of the
lanelines, the vectorization-based method can easily adapt to the
perception of the centerline by alternate supervision. InstaGraM
[42] builds map elements as a graph by predicting the vertices first
and then using a GNN method to detect edges. TopoNet [26] lever-
age instance-level feature transmission with graph neural networks
to extract map prediction hints.

GraphNeural Network.GraphNeural Networks, such as graph
convolutional network (GCN) [23], GraphSAGE [15], GAT [43],
and Graph Transformer (GPS) [40], are widely adopted to aggre-
gate vertex features and extract information from graph data [41].
And they have contributed to remarkable achievements in various
fields, e.g. recommender systems and video semantic segmentation.
[10, 14, 37, 38]. Researchers in the autonomous driving community
are also trying to utilize it to process unstructured data. Weng et al.
[45, 46] introduce GNN to analyze the interaction between agent
features for 3D multi-target tracking. LaneGCN [28] extracts the
lane graph from the HD map. Others [13, 21, 22] model the rela-
tionship between moving agents and lanes as graphs to improve
the trajectory prediction performance. TopoNet [26] uses GCN for
driving scene understanding tasks, strengthens feature interaction,
and introduces knowledge graphs to fuse semantic information.

Our method introduces a divide-and-conquer topology graph Trans-
former, which enhances the model’s ability to explore potential
relationships between objects by alternately aggregating local fea-
tures and global features throughMPNN and global attention layers,
thereby leading to improved topology reasoning results.

3 METHOD
3.1 Overview
The overview of our proposed TSTGT is illustrated in Fig.2. It
mainly consists of four parts: the image backbone and FPN, the
lane detector with point-wise matching, the traffic element detector,
the divide-and-conquer topology graph Transformer with the traffic
scene-assisted reasoning module. During inference, given multi-
view images from camera sensors, the image backbone first extracts
the multi-view features 𝐹 ∈ 𝑅𝑉 ×𝐶×𝐻×𝑊 and collects the front-
view features 𝐹 0 ∈ 𝑅1×𝐶×𝐻×𝑊 among them, where 𝑉 , 𝐶 , 𝐻 and
𝑊 represent the view number, channel, height, and width of the
features respectively. Then the multi-view features are fed into the
lane detector and the front-view features are fed into the traffic
detector. For the divide-and-conquer topology Transformer, the
lane-lane part aggregates topology information in the lane instance
embeddings output from the lane detector. The lane-traffic part is
designed to understand the underlying control relationship between
lane instance embeddings derived from the lane detector and the
traffic element instance embeddings obtained from traffic detector.
It leverages a traffic scene-assisted reasoning module to gather

3
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pertinent scene data, aiding in the process of topology modeling.
Finally, task-specific prediction heads are utilized separately for
detecting precise target objects and reasoning accurate topology
relationships.

3.2 Feature Extraction
For the surrounding images from multi-camera, we adopt a shared
image backbone to extract the multi-level visual features of each
image independently. Then we feed these multi-level features into
the FPN to aggregate rich semantic information. Finally, the pyra-
mid features are upsampled to the same size and stacked together
as outputs.

3.3 Lane Detection
Lane Detector.We adopt a structure similar to PETR [31] as the
lane decoder, which encodes 3D coordinates thus transforming
multi-view features into 3D space, and incorporates 3D position
embedding in order to enhance the perception of the query ob-
ject in 3D space. Specifically, for the input multi-view features
𝐹 ∈ 𝑅𝑉 ×𝐶×𝐻×𝑊 , we first encode them using 3D position embed-
ding to generate visual perceptual features 𝐹 3𝑑 , which are input
as the key-value pairs into the Transformer. Then a set of learn-
able anchor points 𝑄𝐿 ∈ 𝑅𝑁𝐿×3 are randomly initialized, and after
applying position encoding to them, they are projected into the
feature space 𝑅𝑁𝐿×𝐶 by using a Linear layer in order to serve as the
query embeddings for the PETRTransformer [31]. The lane query
then interacts with the visual perceptual features 𝐹 3𝑑 to generate a
set of 𝑁𝐿 lane instance embeddings.

The previous approach used a set of Bézier curves to model
lane. For the lane instance embedding from PETRTransformer, it
chose to use two sets of MLPs to predict the lane categories and
Bézier control points respectively, and convert the control points
to lane points to make predictions about their position coordinates.
However, lane objects are inherently sequential in character, and
only using instance-level matching may make the direction of lane
appear head-to-tail reversed, thus reducing the accuracy of topology
prediction. Therefore, we design a point-wise matching strategy to
improve the accuracy of lane matching.

Point-Wise Matching. Bézier curve is aimed to represent para-
metric curves by using an ordered set of control points 𝑃0 through
𝑃𝑛 :

𝐵(𝑡) =
𝑛∑︁
𝑖=0

𝑃𝑖𝐵𝑖,𝑛 (𝑡), 𝑡 ∈ [0, 1], (1)

where 𝑛 represents the degree of the curve, and 𝐵𝑖,𝑛 (𝑡) is referred
to as the Bernstein basis polynomial of degree n, as follows:

𝐵𝑖,𝑛 (𝑡) =
(
𝑛

𝑖

)
(1 − 𝑡)𝑛−𝑖𝑡𝑖 , 𝑖 = 0, . . . , 𝑛. (2)

Predicting the control points of Bézier curves with anchors of the
Transformer can effectively abstract the curve features for bet-
ter matching results [39]. However, the ground truth provided by
instance-level matching consists of lane points with fixed arrange-
ments, imposing restrictions on the model to learn the correct direc-
tion of the lanes. Inspired by MapTR [30], we re-interpolated and
sampled the ground truth. For the given 𝑁 ground truth points, we
use 3D linear interpolation sampling to obtain 𝑁𝑝 curve lane points,

and the two equivalent alignments of lane points were employed
as the ground truth 𝐴𝑝 for point-wise matching. The equivalent
alignments of the lane points are as follows:

Γ𝑙𝑎𝑛𝑒 = {𝛾0, 𝛾1} =
{
𝛾0 (𝑖) = 𝑖%𝑁𝑝 ,

𝛾1 (𝑖) = (𝑁𝑝 − 1) − 𝑖%𝑁𝑝 .
(3)

The predicted lane instance sequences 𝑦 are assigned with ground
truth lane instance sequences 𝑦 to locate the best prediction se-
quence as the positive sample 𝑦𝑝𝑜𝑠 . After that, the lane control
points predictions are converted into 𝑁𝑝 curved lane points 𝑃𝑝𝑜𝑠 .
Then, we perform point-wise matching on each lane instance as-
signed a positive label to find the optimal point match𝛾 between the
predicted curved lane points 𝑃𝑝𝑜𝑠 (𝑖 ) and the ground truth point set
𝐴𝑝 (𝑖 ) . To constrain the matching results, the following point-wise
matching cost is utilized:

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛾 ∈Γ

𝑁𝑝−1∑︁
𝑗=0

𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 (𝑝 𝑗 , 𝑝𝛾 ( 𝑗 ) ), (4)

where 𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 (𝑝 𝑗 , 𝑝𝛾 ( 𝑗 ) ) represents the Manhattan distance
between the 𝑗-th point of the predicted lane curve points set 𝑃𝑝𝑜𝑠 (𝑖 )
and the ground truth points set 𝐴𝑝 (𝑖 ) with equivalent arrangement
𝛾 .

3.4 Traffic Elements Detection
Traffic elements are perceived from the front-view features, so this
task can be considered as a 2D object detection task. Here we adopt
the Deformable-DETR [51] as the traffic elements detector, which
employs a set of randomly initialized reference points embeddings
as the query𝑄𝑡 to interact with the front-view feature 𝐹0 to generate
a set of 𝑁𝑡 traffic element instance representations. Two MLPs are
employed to them to predict the category and the bounding box of
the traffic elements respectively.

3.5 Divide-and-Conquer Topology Graph
Transformer

A natural idea for topology reasoning tasks is to model them using
graph methods. Inspired by GPS [40], we design a divide-and con-
quer topology graph Transformer (DCTGT) to model lane-lane and
lane-traffic topology relationships respectively. The graph Trans-
former is stacked by several DCTGT layers, as shown in Fig.3.
Each of them consists of a message-passing graph neural network
(MPNN), a Transformer-like global attention layer and severalMLPs.
The MPNN, utilizing GINE [20] for the lane-lane part and Gat-
edGCN [2] for the lane-traffic part, is employed to aggregate local
neighborhood node information. Meanwhile, the global attention
layers consolidate global node features, which allows for informa-
tion propagation among all nodes in the graph ,thereby addressing
to the extent issues such as over-smoothing and over-squashing
of node information caused by the MPNN. Such the alternating
learning approach between local and global information facilitates
enhanced information perception capability for each node in the
graph. The DCTGT layer could be formulated as follows:

𝐹 𝑙+1
𝑛𝑜𝑑𝑒

= 𝑀𝐿𝑃𝑙 (𝑀𝑃𝑁𝑁 𝑙 (𝐹 𝑙
𝑛𝑜𝑑𝑒

, 𝐹 𝑙
𝑒𝑑𝑔𝑒

) +𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑡𝑡𝑛(𝐹 𝑙
𝑛𝑜𝑑𝑒

)),

𝐹 𝑙+1
𝑒𝑑𝑔𝑒

= 𝑀𝑃𝑁𝑁 𝑙 (𝐹 𝑙
𝑛𝑜𝑑𝑒

, 𝐹 𝑙
𝑒𝑑𝑔𝑒

),
(5)
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Figure 3: The architecture of the divide-and-conquer topol-
ogy graph Transformer layer.

where 𝐹 𝑙
𝑛𝑜𝑑𝑒

∈ 𝑅𝑁×𝐷 , 𝐹 𝑙
𝑒𝑑𝑔𝑒

∈ 𝑅𝑁×𝑁×𝐷 denote the 𝐷-dimensional
node and edge features, respectively;𝑀𝑃𝑁𝑁 and𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑡𝑡𝑛 refer
to a MPNN and a global attention mechanism at layer 𝑙 , each with
its set of learnable parameters.𝑀𝐿𝑃𝑙 stands for a 2-layer MLP block.
The edge adjacency matrix 𝑀𝑎𝑑 𝑗 ∈ 𝑅𝑁×𝑁 of the MPNN layer is
defaluted to all ones to ensure that nodes fully utilize information
exchange.

Lane-Lane Part. For the lane-lane topology reasoning, it can
be considered as a problem of predicting edges categories from
the known nodes features. We feed the lane instance embeddings
𝑄𝑙 ∈ 𝑅𝑁𝑙×𝐶 output from the lane detector into the lane-lane part of
DCTGT (LLTGT) as the input node features 𝐹𝑛𝑜𝑑𝑒 ∈ 𝑅𝑁𝑙×𝐷 , and the
initial edge sets are set to be the edge features 𝐹𝑒𝑑𝑔𝑒 ∈ 𝑅𝑁𝑙×𝑁𝑙×𝐷 ,
which are aggregated from the neighbouring nodes features. After
clustering the information from the 𝑁𝑙𝑙 DCTGT layers, we feed
the output node features 𝐹 ′

𝑛𝑜𝑑𝑒
∈ 𝑅𝑁𝑙×𝐷 into the LL topology head

composed of a 3-layer MLP to obtain predicted edge categories
𝐶𝑙𝑙 ∈ 𝑅𝑁𝑙×𝑁𝑙 , which serve as the prediction results for the lane-
lane topology relationship. The whole process can be represented
by the following equation:

𝐶𝑙𝑙 = 𝑀𝐿𝑃 (𝐿𝐿𝑇𝐺𝑇 (𝐹𝑛𝑜𝑑𝑒 , 𝐹𝑒𝑑𝑔𝑒 )) . (6)

Lane-Traffic Part. Due to the distinct semantic meanings rep-
resented by lane node features and traffic element node features,
lane-traffic topology reasoning should be viewed as a problem of
predicting edge categories in a bipartite graph based on known
node features. Specifically, we concatenate the lane instance em-
beddings𝑄𝑙 ∈ 𝑅𝑁𝑙×𝐶 and the traffic elements instance embeddings
𝑄𝑡 ∈ 𝑅𝑁𝑡×𝐶 and then feed them into the lane-traffic part of DCTGT
(LTTGT) as the node features 𝐹𝑛𝑜𝑑𝑒 ∈ 𝑅 (𝑁𝑙+𝑁𝑡 )×𝐷 . The edge sets
between lane instances and traffic element instances are initialized
as the edge features 𝐹𝑒𝑑𝑔𝑒 ∈ 𝑅𝑁𝑙×𝑁𝑡×𝐷 , which are aggregated from
adjacent node features. The edge adjacency matrix𝑀𝑎𝑑 𝑗 ∈ 𝑅𝑁𝑙×𝑁𝑡

are set to all-ones, allowing each lane-traffic element pair to have
the opportunity to learn each other’s information. Then, 𝐹𝑒𝑑𝑔𝑒 and

Lane points 
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Figure 4: The structure of the traffic scene-assisted reasoning
module.

𝑀𝑎𝑑 𝑗 are expanded to the shape of (𝑁𝑙 + 𝑁𝑡 ) × (𝑁𝑙 + 𝑁𝑡 ) to fit the
input of MPNN layer. Since the connection between lane nodes
and traffic element nodes can be viewed as an undirected graph,
meaning the topology relationship applies to both lane-traffic and
traffic-lane pairs, 𝐹𝑒𝑑𝑔𝑒 and𝑀𝑎𝑑 𝑗 are symmetrically initialized for
the lane-traffic element and traffic element-lane parts. Other parts
are set to all-zeros to ensure the correct bipartite graph interaction.
Due to the difference between lane instances and traffic element
instances, we set them as two sets of node instances to ensure that
they interact with global information in the global attention layers
separately. After interacting with the information from the 𝑁𝑙𝑡
LTTGT layers, we use the LT topology head consisting of two sets
of 3-layer MLP to aggregate 𝐹 ′

𝑛𝑜𝑑𝑒
and 𝐹 ′

𝑒𝑑𝑔𝑒
from the LTTGT, in

order to obtain the predicted edge categories 𝐶𝑙𝑡 ∈ 𝑅𝑁𝑙×𝑁𝑡 . The
whole process can be represented by the following equation:

𝐹 ′
𝑛𝑜𝑑𝑒

, 𝐹 ′
𝑒𝑑𝑔𝑒

= 𝐿𝑇𝑇𝐺𝑇 (𝐹𝑛𝑜𝑑𝑒 , 𝐹𝑒𝑑𝑔𝑒 )),

𝐶𝑙𝑡 = 𝑀𝐿𝑃 (𝐹 ′𝑒𝑑𝑔𝑒 , 𝑀𝐿𝑃 (𝐹
′
𝑛𝑜𝑑𝑒

)).
(7)

Traffic Scene-Assisted Reasoning Module. Just reasoning
the topology relationship based on data without incorporating the
practical meaning will make the accuracy of topological inference
decrease. In the previous method [48], only the lane-lane topology
relationship is optimised, which uses L1 loss to constrain the po-
sitional coordinates of lane instances with topology associations.
Nevertheless, the operation of optimising the lane-traffic topology
relationship in conjunction with practical implications is missing.
In this regard, we design a traffic scene-assisted reasoning module
according to the construction way of Openlane-V2 [44] dataset and
the traffic rules in the actual scenarios to overcome this difficulty,
as shown in Fig.4.

Specifically, excluding the semantically unobservable category
𝑢𝑛𝑘𝑛𝑜𝑤𝑛, the traffic elements in the Openlane-V2 dataset can be
classified into two groups, the traffic light class and the road sign
class [44]. Among them, the traffic light class generates topology
relationship for all lane instances within their control area, while
the road sign class only takes effect on the lane instances in the
corresponding direction within their control range. The judgement
method for the control range of traffic elements and the direction
of lane is outlined as follows.
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Traffic element control range: We first transfer the lane points
coordinates from the ego coordinate system to the front-view im-
age coordinate system, and then calculate the minimum Manhat-
tan distance between the centre coordinates of the traffic element
bounding box 𝐵𝑡 𝑓 and the set of the lane curves points 𝑃𝑙𝑎𝑛𝑒 . The
equations are as follows:

𝑀𝑑𝑖𝑠 =𝑚𝑖𝑛(𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 (𝐵𝑡 𝑓 , 𝑃𝑙𝑎𝑛𝑒 )) . (8)

If 𝑀𝑑𝑖𝑠 is in the 𝜎 of the width of the image coordinate system,
we consider that the lane instance is in the control range of the
traffic element instance. Then we obtain the control range result
𝐶𝑐𝑜𝑛 ∈ 𝑅𝑁𝑙×𝑁𝑡 .

Direction of lane: The lane direction can be determined by the
position coordinates of its start and end points. We obtain lane
start point 3D coordinates (𝑥0, 𝑦0, 𝑧0) and end point 3D coordinates
(𝑥𝑛, 𝑦𝑛, 𝑧𝑛) from the lane detection result. For the vehicle ego coor-
dinate system of Openlane-V2 dataset [44], the x-axis is positive
forwards, the y-axis is positive to the left, and the z-axis is positive
upwards. The lane direction is judged only in BEV, which means
that the effect of the z-axis can be ignored. We use the threshold 𝜏
to delineate lane direction 𝐷𝑙𝑎𝑛𝑒 as follows:

𝐾𝑙𝑎𝑛𝑒 =
𝑦𝑛 − 𝑦0
𝑥𝑛 − 𝑥0

,

𝐷𝑙𝑎𝑛𝑒 =


𝑙𝑒 𝑓 𝑡, 𝐾𝑙𝑎𝑛𝑒 > 𝜏,

𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡, ∥𝐾𝑙𝑎𝑛𝑒 ∥ ≤ 𝜏,
𝑟𝑖𝑔ℎ𝑡, 𝐾𝑙𝑎𝑛𝑒 < −𝜏 .

(9)

After obtaining the lane instance direction 𝐷𝑙𝑎𝑛𝑒 , we input traffic
element category 𝐶𝑡 𝑓 and lane direction 𝐷𝑙𝑎𝑛𝑒 into the traffic rule
matrix 𝑀𝑡𝑟 to obtain the traffic rule constraint topology result
𝐶𝑡𝑟𝑐 ∈ 𝑅𝑁𝑙×𝑁𝑡 . The detailed introduction of𝑀𝑡𝑟 is in the Appendix.
The traffic rule constraint topology result 𝐶𝑡𝑟𝑐 is multiplied by
the control range result 𝐶𝑐𝑜𝑛 ∈ 𝑅𝑁𝑙×𝑁𝑡 to obtain the reference
topology reasoning results for the traffic scene assistance 𝐶𝑟𝑒 𝑓 ∈
𝑅𝑁𝑙×𝑁𝑡 . We compute the Manhattan distance between𝐶𝑟𝑒 𝑓 and the
ground truth of the lane-traffic topology relationship 𝐺𝐿𝑇 to apply
constraint, and multiply 𝐶𝑟𝑒 𝑓 by 𝐶𝑙𝑡 to obtain the final lane-traffic
topology reasoning result 𝐶𝑙𝑡 𝑓 ∈ 𝑅𝑁𝑙×𝑁𝑡 .

3.6 Training Loss
Our model combines detection matching and topology reasoning
matching for training, with the overall loss consisting of four com-
ponents, 𝑖 .𝑒 . lane detection loss, traffic detection loss, lane-lane
topology reasoning loss and land-traffic topology reasoning loss:

L = L𝑑𝑒𝑡𝑙 + L𝑑𝑒𝑡𝑡 + L𝑡𝑜𝑝𝑙𝑙 + L𝑡𝑜𝑝𝑙𝑡 . (10)

Lane detection loss L𝑑𝑒𝑡𝑙 is decomposed into a classification
loss, a L1 loss and a point2point loss for lane point regression:

L𝑑𝑒𝑡𝑙 = 𝜆𝑐𝑙𝑠L𝑐𝑙𝑠 + 𝜆𝐿1L𝐿1 + 𝜆𝑝𝑡𝑠L𝑝𝑡𝑠 , (11)

where L𝑐𝑙𝑠 is a focal loss, and L𝑝𝑡𝑠 is a point2point loss of 𝑁𝑙 lane
instance and 𝑁𝑝 curve points for each lane instance with positive
class label (𝐶 ≠ ∅), akin to MapTR [30]:

L𝑝𝑡𝑠 =

𝑁𝑙−1∑︁
𝑖=0

1{𝐶𝑖≠∅}

𝑁𝑝−1∑︁
𝑗=0

𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 (𝑃𝑝𝑜𝑠 (𝑖 ), 𝑗 , 𝐴𝑝 (𝑖 ),𝛾𝑖 ( 𝑗 ) ) .

(12)

Traffic detection loss L𝑑𝑒𝑡𝑡 consists of a focal loss for classifi-
cation, a L1 loss and a GIoU loss for bounding box regression:

L𝑑𝑒𝑡𝑡 = 𝜆𝑐𝑙𝑠L𝑐𝑙𝑠 + 𝜆𝐿1L𝐿1 + 𝜆𝐺𝐼𝑜𝑈L𝐺𝐼𝑜𝑈 . (13)

Lane-lane topology reasoning loss L𝑡𝑜𝑝𝑙𝑙 consists of a focal
loss for binary classification, a L1 loss for constraining the coordi-
nates of the start and end nodes of lanes with topology relationships:

L𝑡𝑜𝑝𝑙𝑙 = 𝜆𝑐𝑙𝑠L𝑐𝑙𝑠 + 𝜆𝐿1L𝐿1 . (14)

Lane-traffic topology reasoning lossL𝑡𝑜𝑝𝑙𝑡 consists of a focal
loss for binary classification and a distance loss for traffic scene
assistance topology reasoning:

L𝑡𝑜𝑝𝑙𝑡 = 𝜆𝑐𝑙𝑠L𝑐𝑙𝑠 + 𝜆𝑑𝑖𝑠L𝑑𝑖𝑠 , (15)

where theL𝑡𝑜𝑝𝑙𝑡 is defined as the Manhattan distance computed be-
tween traffic scene assistance topology result 𝐶𝑟𝑒 𝑓 and the ground
truth of the lane-traffic topology relationship 𝐺𝐿𝑇 :

L𝑑𝑖𝑠 =

𝑁−1∑︁
𝑖=0

𝐷𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 (𝐶𝑟𝑒 𝑓 (𝑖 ) ,𝐺𝐿𝑇 (𝑖 ) ). (16)

4 EXPERIENCES
4.1 Datasets and Metrics
Datasets. The experiments are conducted on the OpenLane-V2
[44], a comprehensive dataset designed for perception and reason-
ing tasks in autonomous driving scenes. OpenLane-V2 consists of
two subsets, labeled as 𝑠𝑢𝑏𝑠𝑒𝑡_𝐴 and 𝑠𝑢𝑏𝑠𝑒𝑡_𝐵, which are derived
from Argoverse 2 [47] and nuScenes [4] datasets, respectively. Each
subset contains 1,000 scenes annotated at a rate of 2Hz. It is note-
worthy that 𝑠𝑢𝑏𝑠𝑒𝑡_𝐴 encompasses seven views, whereas 𝑠𝑢𝑏𝑠𝑒𝑡_𝐵
comprises six views.

Evaluation Metrics. The evaluation metrics of OpenLane-V2
dataset are divided into two parts: perception and reasoning. For
the perception metrics, the DET score represents the standard mean
average precision (mAP) used to evaluate the instance-level percep-
tion performance. In particular, DET𝑙 employs the Fréchet distance
to quantify similarity, averaging over match thresholds set at {1.0,
2.0, 3.0}, while DET𝑡 calculates similarity using Intersection over
Union (IoU) and averages across different traffic categories. Rea-
soning metrics also utilize an mAP metric known as the TOP score,
tailored specifically for graph data. To encapsulate the combined
impact of primary detection and topology reasoning, the OpenLane-
V2 Score (OLS) is employed as follows:

OLS =
1
4
[DET𝑙 + DET𝑡 + 𝑓 (TOP𝑙𝑙 ) + 𝑓 (TOP𝑙𝑡 )], (17)

where DET and TOP evaluate performance in perception and rea-
soning, respectively, while 𝑓 denotes the square root function.

4.2 Implementation Details
Model Settings. We employ different image backbones, including
ResNet-50 [16], VOV [24], and Swin-B [34] for training and infer-
ence and realize a fair comparison with TopoMLP [48]. For feature
extractor, each image undergoes resizing to a uniform resolution
of 1550×2048, followed by downsampling at a ratio of 0.5, and the
output channels number is set to 𝐶 = 256. For lane detection, refer-
encing TopoMLP [48], the specified region spans from -51.2m to
51.2m along the X-axis, from -25.6m to 25.6m along the Y-axis, and
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Table 1: Comparison with state-of-the-art methods on the
Openlane-V2 𝑠𝑢𝑏𝑠𝑒𝑡_𝐴 dataset.

Method Backbone Epoch DET𝑙 DET𝑡 TOP𝑙𝑙 TOP𝑙𝑡 OLS
STSU [6] ResNet-50 24 12.7 43.0 0.5 15.1 25.4
VectorMapNet [32] ResNet-50 24 11.1 41.7 0.4 5.9 20.8
MapTR [30] ResNet-50 24 17.7 43.5 1.1 10.4 26.0
TopoNet [26] ResNet-50 24 28.5 48.1 4.1 20.8 35.6
TopoMLP [48] ResNet-50 24 28.3 50.0 7.2 22.8 38.2
TSTGT ResNet-50 24 29.0 50.5 12.1 23.5 40.7
TopoMLP [48] ResNet-50 48 29.6 50.4 9.6 24.1 40.0
TSTGT ResNet-50 48 31.2 51.4 14.9 25.0 42.8

Table 2: Comparison with state-of-the-art methods on the
Openlane-V2 𝑠𝑢𝑏𝑠𝑒𝑡_𝐵 dataset.

Method Backbone Epoch DET𝑙 DET𝑡 TOP𝑙𝑙 TOP𝑙𝑡 OLS
STSU [6] ResNet-50 24 8.2 43.9 0.0 9.4 21.2
VectorMapNet [32] ResNet-50 24 3.5 49.1 0.0 1.4 16.3
MapTR [30] ResNet-50 24 15.2 54.0 0.5 6.1 25.2
TopoNet [26] ResNet-50 24 24.3 55.0 2.5 14.2 33.2
TopoMLP [48] ResNet-50 24 26.6 58.3 7.6 17.8 38.7
TSTGT ResNet-50 24 27.5 60.5 13.7 18.9 42.1

from -8m to 4m along the Z-axis. The lane query number is set to
𝑁𝑙 = 300, and the number of lane Bézier control points is configured
as 4. Throughout the instance-level matching process, lane control
points are transformed into 11 curve points for loss calculation.
The configuration of PETRTransformer is based on PETR [31]. For
traffic detection, all settings are identical to TopoMLP [48]. For
topology reasoning, The lane-lane part employs 3 DCTGT layers,
while the lane-traffic part employs 6. In the traffic scene-assisted
reasoning module, the control range threshold 𝜎 is set to 0.2, and
the lane direction threshold 𝜏 is set to 0.1.

Training Details. All experiments are conducted on 8 NVIDIA
A800 GPUs. Unless otherwise specified, the batch size of the model
is set to 8, and the number of training epochs is set to 24 for fair
comparison with TopoMLP [48]. The model is optimized using the
AdamW optimizer [35] with a weight decay of 0.01. The initial
learning rate of 4 × 10−5 for the image backbone, and 2 × 10−4
for the rest parts. Throughout the inference process, our model
provides a maximum of 300 lane outputs for evaluation purposes.
For lane detection loss 𝐿𝑑𝑒𝑡𝑙 , the weights for each component loss
are set as 𝜆𝑐𝑙𝑠 = 1.5, 𝜆𝐿1 = 0.02, 𝜆𝑝𝑡𝑠 = 5 × 𝑒−3. For traffic detection
loss 𝐿𝑑𝑒𝑡𝑡 , the weights allocated to each component of the loss are
as follow: 𝜆𝑐𝑙𝑠 = 1.0, 𝜆𝐿1 = 2.5, 𝜆𝐺𝐼𝑜𝑈 = 1.0. For the lane-lane
topology loss, the coefficient for the classification part is set as
𝜆𝑐𝑙𝑠 = 5, and for the L1 loss is set as 𝜆𝐿1 = 0.1. The coefficients for
the lane-traffic topology loss are set as 𝜆𝑐𝑙𝑠 = 5, 𝜆𝑑𝑖𝑠 = 0.075.

4.3 Comparison with State-of-the-Art Methods
Openlane-V2 set. We conduct a comprehensive comparison be-
tween our method, TSTGT, and several state-of-the-art approaches
including STSU [6], VectorMapNet [32], MapTR [30], TopoNet [26],

Table 3: Ablation study of different components of the pro-
posed TSTGT on Openlane-V2 𝑠𝑢𝑏𝑠𝑒𝑡_𝐴 dataset. PWM de-
notes point-wise matching strategy, and DCTGT denotes
divide-and-conquer topology graph Transformer.

Method PWM DCTGT DET𝑙 DET𝑡 TOP𝑙𝑙 TOP𝑙𝑡 OLS
Baseline 28.3 50.0 7.2 22.8 38.2
TSTGT ✓ 28.9 50.4 8.2 23.2 39.0
TSTGT ✓ 28.4 49.4 11.0 23.4 39.8
TSTGT ✓ ✓ 29.0 50.5 12.1 23.5 40.7

and TopoMLP [48]. The result of the comparison on 𝑠𝑢𝑏𝑠𝑒𝑡_𝐴 are
reported in Table 1. It can be observed that our approach, utilizing
the ResNet-50 [16] backbone, outperforms other methods with an
OLS score of 40.7. Notably, compared to TopoMLP, our method
exhibits markedly superior topology reasoning accuracy, with 29.0
compared to 28.3 on DET𝑙 and 50.5 compared to 50.0 on DET𝑡 .
Additionally, it achieves respectable detection accuracy, with 12.1
compared to 7.2 on TOP𝑙𝑙 and 23.5 compared to 22.8 on TOP𝑙𝑡 . The
experimental results of employing VOV and Swin-B as backbone
are provided in the Appendix.

In Table 2, the performance evaluation onOpenLane-V2 𝑠𝑢𝑏𝑠𝑒𝑡_𝐵
further reinforces our findings. Our innovative TSTGT outperforms
its counterparts across all metrics while employing the ResNet-50
backbone. Notably, it demonstrates a considerable advantage over
TopoMLP in terms of topology performance, with substantial differ-
ences evident: 27.5 compared to 26.6 on DET𝑙 , 60.5 compared to 58.3
on DET𝑡 , 13.7 compared to 7.6 on TOP𝑙𝑙 , and 18.9 compared to 17.8
on TOP𝑙𝑡 . Additionally, the integration of more potent backbones
leads to further performance enhancements. Overall, these results
validate the effectiveness of our proposed TSTGT for driving scene
topology reasoning task and demonstrate that our method achieves
state-of-the-art performance.

Fig.5 presents the visualization of TSTGT. The lane detection
results are displayed in multi-view images, while the lane-lane
topology reasoning results are shown in the BEV. The traffic de-
tection results and the lane-traffic topology reasoning results are
displayed in the front-view image. Despite the complexity of the
traffic scenes, TSTGT can still accurately perform detection and
topology reasoning.

4.4 Model analysis
In this part, we perform extensive ablation experiments to investi-
gate the influence of the core components of our TSTGT as well as
the impact of different model settings. All of the experiments are
conducted on the Openlane-V2 𝑠𝑢𝑏𝑠𝑒𝑡_𝐴 dataset.

Components Analysis. To explore the influence of the key
components of our model, we first build a baseline model similar
to TopoMLP [48], which is the TSTGT without point-wise match-
ing strategy and divide-and-conquer topology graph Transformer
(DCTGT). As shown in Table 3, the baseline model obtains an OLS
score of 38.2. When we add point-wise matching strategy on the
baseline model, the special TSTGT achieves an OLS score of 39.0,
which is 0.8 higher than the baseline. The improvement proves the
effectiveness of the point-wise matching strategy. When only the
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Figure 5: Visualization of TSTGT. In (c), traffic elements of different categories are represented by bounding boxes of different
colors, while lane-traffic topology relationships are indicated by red arrows.

Table 4: Model analysis of different settings in TSTGT.

Method Settings DET𝑙 DET𝑡 TOP𝑙𝑙 TOP𝑙𝑡 OLS
Curve Points Number
TSTGT 11 28.2 50.3 11.4 21.7 39.7
TSTGT 30 29.0 50.5 12.1 23.5 40.7
TSTGT 50 26.1 50.4 11.8 23.9 40.1
Edge Features Initialization of DCTGT
TSTGT Aggregated 29.0 50.5 12.1 23.5 40.7
TSTGT All-one 28.7 49.2 11.7 23.4 40.1
Interaction Mode of LTTGT
TSTGT Heterogeneous 29.0 50.5 12.1 23.5 40.7
TSTGT Homogeneous 25.2 51.2 11.6 22.9 39.6

DCTGT is imposed on the baseline, the OLS score of the special
TSTGT reaches to 39.8, which means the module brings a 1.6 gain
and validates the superiority of the module. Equipped with both
components, our TSTGT can achieve the best performance.

Point-Wise Matching. In this study, we explore the impact of
different settings in the point-wise matching strategy. A critical
setting involves the determination of the number of sampled points
along the lane curve when converting Bézier control points to lane
curve points. As shown in Table 4, there is a noticeable improvement
in lane detection performance and other task performances when
the number of sampled points increases from 11 to 30. However, it’s
worth noting that further increases do not enhance performance.
This is because an excessive number of sampled points increases
the burden on the model to match lane points while decreasing the
abstraction level of the Bézier curve representation for the lane.
Therefore, the number of sampled points along the lane curve is
set to 30 to strike a balance between model efficiency and optimal
performance.

Divide-and-Conquer Topology Graph Transformer. The
impact of different settings of divide-and-conquer topology graph
Transformer (DCTGT) on topology inference performance is also
worth noting. First is the initialization method for edge features
in the graph Transformer. We designed two initialization methods:

one, named "Aggregated", utilizes MLPs aggregation to aggregate
node features adjacent to the edge as the initial edge features, while
the other, named "All-one", adopts a similar approach to ARGNP [5],
utilizing all-ones features as the initial edge features. The former
setting is adopted in TSTGT and the later is a common paradigm.
The experimental results are reported in Table 4. It can be seen
that the TSTGT with the default setting performs better than the
one with the later setting, which means that the "Aggregated" strat-
egy enables better perception of node features, leading to superior
topology reasoning performance.

The second setting is the interaction mode of the lane-traffic part
of DCTGT (LTTGT). In our model, We perform global attention
operations respectively on the lane features and traffic element
features inputted into the LTTGT as heterogeneous features. An-
other approach involves treating them as homogeneous features
and applying global attention operations uniformly. The results
are presented in Table 4. It can be observed that employing the
heterogeneous strategy for global attention helps to avoid confusion
of information from different types of objects.

5 CONCLUSION
In this paper, we propose a novel framework for driving scene topol-
ogy reasoning, termed TSTGT, to address the issue of insufficient
utilization of object and scene information in the existing topology
modeling process. Our approach involves designing a divide-and-
conquer topology graph Transformer, which effectively aggregates
local and global information of traffic objects, consequently ob-
taining more accurate topology reasoning results. Moreover, we
devised a traffic scene-assisted reasoning module to enhance the
practical significance of lane-traffic topology. For lane detection, we
developed a point-wise matching strategy to ensure the accuracy of
lane directions, further improving the performance of topology rea-
soning and detection. Experimental results on Openlane-V2 dataset
validate the superiority of our TSTGT over state-of-the-art methods
and the effectiveness of our proposed modules. We aspire for this
work to inspire subsequent research endeavors.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Driving Scene Understanding with Traffic Scene-Assisted Topology Graph Transformer Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Wele Gedara Chaminda Bandara, Jeya Maria Jose Valanarasu, and Vishal M Patel.

2022. Spin road mapper: Extracting roads from aerial images via spatial and
interaction space graph reasoning for autonomous driving. In 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 343–350.

[2] Xavier Bresson and Thomas Laurent. 2017. Residual gated graph convnets. arXiv
preprint arXiv:1711.07553 (2017).

[3] Martin Büchner, Jannik Zürn, Ion-George Todoran, Abhinav Valada, andWolfram
Burgard. 2023. Learning and aggregating lane graphs for urban automated
driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 13415–13424.

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong,
Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. 2020.
nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 11621–11631.

[5] Shaofei Cai, Liang Li, Xinzhe Han, Jiebo Luo, Zheng-Jun Zha, and Qingming
Huang. 2022. Automatic relation-aware graph network proliferation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10863–10873.

[6] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. 2021.
Structured bird’s-eye-view traffic scene understanding from onboard images. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 15661–
15670.

[7] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. 2022.
Topology preserving local road network estimation from single onboard camera
image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 17263–17272.

[8] Yigit Baran Can, Alexander Liniger, Danda Pani Paudel, and Luc Van Gool. 2023.
Improving online lane graph extraction by object-lane clustering. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 8591–8601.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer vision. Springer, 213–229.

[10] Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alex
Hauptmann. 2021. A comprehensive survey of scene graphs: Generation and
application. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 1
(2021), 1–26.

[11] Shaoyu Chen, Tianheng Cheng, Xinggang Wang, Wenming Meng, Qian Zhang,
and Wenyu Liu. 2022. Efficient and robust 2d-to-bev representation learning via
geometry-guided kernel transformer. arXiv preprint arXiv:2206.04584 (2022).

[12] Hang Chu, Daiqing Li, David Acuna, Amlan Kar, Maria Shugrina, Xinkai Wei,
Ming-Yu Liu, Antonio Torralba, and Sanja Fidler. 2019. Neural turtle graphics
for modeling city road layouts. In Proceedings of the IEEE/CVF international
conference on computer vision. 4522–4530.

[13] Jianwu Fang, Chen Zhu, Pu Zhang, Hongkai Yu, and Jianru Xue. 2023. Heteroge-
neous trajectory forecasting via risk and scene graph learning. IEEE Transactions
on Intelligent Transportation Systems (2023).

[14] Zhiwei Guo and Heng Wang. 2020. A deep graph neural network-based mecha-
nism for social recommendations. IEEE Transactions on Industrial Informatics 17,
4 (2020), 2776–2783.

[15] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[17] Songtao He and Hari Balakrishnan. 2022. Lane-level street map extraction from
aerial imagery. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. 2080–2089.

[18] Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, Hari Bal-
akrishnan, Sanjay Chawla, Mohamed M Elshrif, Samuel Madden, and Moham-
mad Amin Sadeghi. 2020. Sat2graph: Road graph extraction through graph-tensor
encoding. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIV 16. Springer, 51–67.

[19] Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu Wu, Jack Fan, and
Raquel Urtasun. 2019. Dagmapper: Learning to map by discovering lane topology.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 2911–
2920.

[20] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[21] Xiaosong Jia, Li Chen, Penghao Wu, Jia Zeng, Junchi Yan, Hongyang Li, and Yu
Qiao. 2023. Towards capturing the temporal dynamics for trajectory prediction:
a coarse-to-fine approach. In Conference on Robot Learning. PMLR, 910–920.

[22] Xiaosong Jia, Penghao Wu, Li Chen, Yu Liu, Hongyang Li, and Junchi Yan.
2023. Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory
prediction via scene encoding. IEEE transactions on pattern analysis and machine
intelligence (2023).

[23] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[24] Youngwan Lee, Joong-won Hwang, Sangrok Lee, Yuseok Bae, and Jongyoul Park.
2019. An energy and GPU-computation efficient backbone network for real-time
object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops. 0–0.

[25] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. 2022. Hdmapnet: An online hd
map construction and evaluation framework. In 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 4628–4634.

[26] Tianyu Li, Li Chen, Xiangwei Geng, Huijie Wang, Yang Li, Zhenbo Liu, Shengyin
Jiang, Yuting Wang, Hang Xu, Chunjing Xu, et al. 2023. Topology reasoning for
driving scenes. arXiv preprint arXiv:2304.05277 (2023).

[27] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu
Qiao, and Jifeng Dai. 2022. Bevformer: Learning bird’s-eye-view representa-
tion from multi-camera images via spatiotemporal transformers. In European
conference on computer vision. Springer, 1–18.

[28] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel
Urtasun. 2020. Learning lane graph representations for motion forecasting. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16. Springer, 541–556.

[29] Bencheng Liao, Shaoyu Chen, Bo Jiang, Tianheng Cheng, Qian Zhang, Wenyu
Liu, Chang Huang, and Xinggang Wang. 2023. Lane graph as path: Continuity-
preserving path-wise modeling for online lane graph construction. arXiv preprint
arXiv:2303.08815 (2023).

[30] Bencheng Liao, Shaoyu Chen, Xinggang Wang, Tianheng Cheng, Qian Zhang,
Wenyu Liu, and Chang Huang. 2022. Maptr: Structured modeling and learning for
online vectorized hd map construction. arXiv preprint arXiv:2208.14437 (2022).

[31] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. 2022. Petr: Position
embedding transformation for multi-view 3d object detection. In European Con-
ference on Computer Vision. Springer, 531–548.

[32] Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun Wang, and Hang Zhao. 2023. Vec-
tormapnet: End-to-end vectorized hd map learning. In International Conference
on Machine Learning. PMLR, 22352–22369.

[33] Zhi Liu, Shaoyu Chen, Xiaojie Guo, Xinggang Wang, Tianheng Cheng, Hong-
mei Zhu, Qian Zhang, Wenyu Liu, and Yi Zhang. 2023. Vision-based uneven
bev representation learning with polar rasterization and surface estimation. In
Conference on Robot Learning. PMLR, 437–446.

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF international conference
on computer vision. 10012–10022.

[35] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In ICLR.

[36] Yuexin Ma, Tai Wang, Xuyang Bai, Huitong Yang, Yuenan Hou, Yaming Wang,
Yu Qiao, Ruigang Yang, Dinesh Manocha, and Xinge Zhu. 2022. Vision-centric
bev perception: A survey. arXiv preprint arXiv:2208.02797 (2022).

[37] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel.
2020. Social-stgcnn: A social spatio-temporal graph convolutional neural network
for human trajectory prediction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 14424–14432.

[38] P Pradhyumna, GP Shreya, et al. 2021. Graph neural network (GNN) in image and
video understanding using deep learning for computer vision applications. In 2021
Second International Conference on Electronics and Sustainable Communication
Systems (ICESC). IEEE, 1183–1189.

[39] Limeng Qiao, Wenjie Ding, Xi Qiu, and Chi Zhang. 2023. End-to-end vectorized
hd-map construction with piecewise bezier curve. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 13218–13228.

[40] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu,
Guy Wolf, and Dominique Beaini. 2022. Recipe for a general, powerful, scalable
graph transformer. Advances in Neural Information Processing Systems 35 (2022),
14501–14515.

[41] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The graph neural network model. IEEE transac-
tions on neural networks 20, 1 (2008), 61–80.

[42] Juyeb Shin, Francois Rameau, Hyeonjun Jeong, and Dongsuk Kum. 2023. In-
stagram: Instance-level graph modeling for vectorized hd map learning. arXiv
preprint arXiv:2301.04470 (2023).

[43] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017),
10–48550.

[44] Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao Sima, Zhenbo Liu, Bangjun
Wang, Peijin Jia, Yuting Wang, Shengyin Jiang, et al. 2024. Openlane-v2: A
topology reasoning benchmark for unified 3d hd mapping. Advances in Neural
Information Processing Systems 36 (2024).

[45] Xinshuo Weng, Yongxin Wang, Yunze Man, and Kris M Kitani. 2020. Gnn3dmot:
Graph neural network for 3d multi-object tracking with 2d-3d multi-feature
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 6499–6508.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[46] Xinshuo Weng, Ye Yuan, and Kris Kitani. 2021. PTP: Parallelized tracking and
prediction with graph neural networks and diversity sampling. IEEE Robotics
and Automation Letters 6, 3 (2021), 4640–4647.

[47] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh,
Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kae-
semodel Pontes, et al. 2023. Argoverse 2: Next generation datasets for self-driving
perception and forecasting. arXiv preprint arXiv:2301.00493 (2023).

[48] Dongming Wu, Jiahao Chang, Fan Jia, Yingfei Liu, Tiancai Wang, and Jianbing
Shen. 2023. TopoMLP: An Simple yet Strong Pipeline for Driving Topology
Reasoning. arXiv preprint arXiv:2310.06753 (2023).

[49] Zhenhua Xu, Yuxuan Liu, Yuxiang Sun, Ming Liu, and Lujia Wang. 2023. Cen-
terLineDet: CenterLine Graph Detection for Road Lanes with Vehicle-mounted

Sensors by Transformer for HD Map Generation. In 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 3553–3559.

[50] Brady Zhou and Philipp Krähenbühl. 2022. Cross-view transformers for real-time
map-view semantic segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 13760–13769.

[51] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. 2020.
Deformable detr: Deformable transformers for end-to-end object detection. arXiv
preprint arXiv:2010.04159 (2020).

[52] Jannik Zürn, Johan Vertens, and Wolfram Burgard. 2021. Lane graph estimation
for scene understanding in urban driving. IEEE Robotics and Automation Letters
6, 4 (2021), 8615–8622.

10


	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Overview
	3.2 Feature Extraction
	3.3 Lane Detection
	3.4 Traffic Elements Detection
	3.5 Divide-and-Conquer Topology Graph Transformer
	3.6 Training Loss

	4 Experiences
	4.1 Datasets and Metrics
	4.2 Implementation Details
	4.3 Comparison with State-of-the-Art Methods
	4.4 Model analysis

	5 Conclusion
	References

