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Abstract

This manuscript considers the problem of learn-
ing a random Gaussian network function using a
fully connected network with frozen intermedi-
ate layers and trainable readout layer. This prob-
lem can be seen as a natural generalization of the
widely studied random features model to deeper
architectures. First, we prove Gaussian universal-
ity of the test error in a ridge regression setting
where the learner and target networks share the
same intermediate layers, and provide a sharp
asymptotic formula for it. Establishing this result
requires proving a deterministic equivalent for
traces of the deep random features sample covari-
ance matrices which can be of independent inter-
est. Second, we conjecture the asymptotic Gaus-
sian universality of the test error in the more gen-
eral setting of arbitrary convex losses and generic
learner/target architectures. We provide extensive
numerical evidence for this conjecture, which re-
quires the derivation of closed-form expressions
for the layer-wise post-activation population co-
variances. In light of our results, we investigate
the interplay between architecture design and im-
plicit regularization.

1. Introduction

Despite the incredible practical progress in the applications
of deep neural networks to almost all fields of knowledge,
our current theoretical understanding thereof is still to a
large extent incomplete. Recent progress on the theoretical
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front stemmed from the investigation of simplified settings,
which despite their limitations are often able to capture
some of the key properties of “real life” neural networks. A
notable example is the recent stream of works on random
features (RFs), originally introduced by (Rahimi & Recht,
2007) as a computationally efficient approximation tech-
nique for kernel methods, but more recently studied as a
surrogate model for two-layers neural networks in the lazy
regime (Chizat et al., 2019; Pennington & Worah, 2019;
Mei & Montanari, 2022; Gerace et al., 2020). RFs are a
particular instance of random neural networks, whose sta-
tistical properties have been investigated in a sizeable body
of works (Lee et al., 2018; De G. Matthews et al., 2018;
Fan & Wang, 2020; Zavatone-Veth & Pehlevan, 2021; Noci
et al., 2021). The problem of training the readout layer of
such networks has been addressed in the shallow (one hid-
den layer) case by (Mei & Montanari, 2022; Gerace et al.,
2020), who provide sharp asymptotic characterizations for
the test error. A similar study in the generic deep case is,
however, still missing. In this manuscript, we bridge this
gap by considering the problem of learning the last layer of
a deep, fully-connected random neural network, hereafter
referred to as the deep random features (ARF) model. More
precisely, our main contributions in this manuscript are:

* In Section 3, we state Theorem 3.6, which proves an
asymptotic deterministic equivalent for the traces of the
product of deterministic matrices with both conjugate ker-
nel and sample covariance matrix of the layer-wise post-
activations.

* As a consequence of Thm. 3.6, in Section 4 we derive
a sharp asymptotic formula for the test error of the dRF
model in the particular case where the target and learner
networks share the same intermediate layers, and when the
readout layer is trained with the squared loss. This result
establishes the Gaussian equivalence of the test error for
ridge regression in this setting.

* Finally, we conjecture (and provide strong numerical evi-
dence for) the Gaussian universality of the dRF model for
general convex losses, and generic target/learner network
architectures. More specifically, we provide exact asymp-
totic formulas for the test error that leverage recent progress
in high-dimensional statistics (Loureiro et al., 2022a) and a
closed-form formula for the population covariance of net-
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work activations appearing in (Cui et al., 2023). These for-
mulas show that in terms of second-order statistics, the dRF
is equivalent to a linear network with noisy layers. We dis-
cuss how this effective noise translates into a depth-induced
implicit regularization in Section 5.

A GitHub repository with the code employed in the present
work can be found here.

Related work

Random features were first introduced by (Rahimi & Recht,
2007). The asymptotic spectral density of the single-layer
conjugate kernel was characterized in (Liao & Couillet,
2018; Pennington & Worah, 2019; Benigni & Péché, 2021).
Sharp asymptotics for the test error of the RFs model ap-
peared in (Mei & Montanari, 2022; Mei et al., 2022) for
ridge regression, (Gerace et al., 2020; Dhifallah & Lu, 2020)
for general convex losses and (Liang & Sur, 2022; Bosch
et al., 2022) for other penalties. The implicit regularization
of RFs was discussed in (Jacot et al., 2020). The RFs model
has been studied in many different contexts as a proxy for
understanding overparametrisation, e.g. in uncertainty quan-
tification (Clarté et al., 2022), ensembling (Loureiro et al.,
2022b), bias-variance decomposition (D’ Ascoli et al., 2020;
Adlam & Pennington, 2020), the training dynamics (Bodin
& Macris, 2021; Bordelon & Pehlevan, 2022; Paquette et al.,
2022), but also to highlight the limitations of lazy train-
ing (Ghorbani et al., 2019; 2021; Yehudai & Shamir, 2019;
Refinetti et al., 2021);

Deep random networks were shown to converge to Gaus-
sian processes in (Lee et al., 2018; De G. Matthews et al.,
2018). They were also studied in the context of inference in
(Manoel et al., 2017; Gabrié et al., 2018), and as generative
priors to inverse problems in (Aubin et al., 2019; Hand et al.,
2018; Aubin et al., 2020). The distribution of outputs of
deep random nets was characterized in (Zavatone-Veth &
Pehlevan, 2021; Noci et al., 2021). Close to our work is
(Fan & Wang, 2020), which provide exact formulas for the
asymptotic spectral density and Stieltjes transform of the
NTK and conjugate kernel in the proportional limit. Our
formulas for the sample and population covariance are com-
plementary to theirs. The test error of deep networks has
been recently studied in (Li & Sompolinsky, 2021; Hanin &
Nica, 2019; Ariosto et al., 2022; Zavatone-Veth et al., 2022)
through the lens of Bayesian learning;

Gaussian universality of the test error for the RFs model
was shown in (Mei & Montanari, 2022), conjectured to
hold for general losses in (Gerace et al., 2020) and was
proven in (Goldt et al., 2021; Hu & Lu, 2022a). Gaussian
universality has also been shown to hold for other classes
of features, such as two-layer NTK (Montanari & Saeed,
2022). (Bordelon & Pehlevan, 2022; Jacot et al., 2020;
Cui et al., 2021; 2022) further heuristically showed that

Gaussian universality is also observed for a large class of
kernel features. (Loureiro et al., 2022a) provided numerical
evidence for Gaussian universality of more general feature
maps, including pre-trained deep features.

Deterministic equivalents of sample covariance matrices
have first been established in (Burda et al., 2004; Knowles
& Yin, 2017) for separable covariances, generalizing the
seminal work (Marcenko & Pastur, 1967) on the free con-
volution of spectra in an anisotropic sense. More recently
these results have been extended to non-separable covari-
ances, first in tracial (Bai & Zhou, 2008), and then also in
anisotropic sense (Louart & Couillet, 2018; Chouard, 2022).

Two weeks after the first version of this work appeared on
arXiv, we have learned about (Bosch et al., 2023) which
overlaps with parts of our work. The methods used in
(Bosch et al., 2023) are largely distinct from the methods in
the present work, however. While we essentially compute
resolvents of dRF explicitly by a recursion, (Bosch et al.,
2023) proves universality for the well-specified model via a
Lindeberg exchange scheme.

2. Setting and preliminaries

Let (x*,y*) € R x Y, u € [n] == {1,---,n}, denote
some training data, with x* ~ A (04, ) independently
and y* = f,(x*) a (potentially random) target function.
This work is concerned with characterising the learning
performance of generalised linear estimation:

. 9Tsﬁ(X))
= 1
y=o ( A ey
with deep random features (dRF):
p(x) = (propr—10--0p20¢p1)(x), (2
L

where the post-activations are given by:

@e(h) = 0oy <\/k1471W€ . h) , Lell). (3)

The weights {W, € RF¢xke=1}, /1 are assumed to be
independently drawn Gaussian matrices with i.i.d. entries
(We)ij ~ N(0,Ap) V1 < i < ke, 1 <j<keq. To
alleviate notation, sometimes it will be convenient to denote
kr = k. Only the readout weights § € RF in (1) are
trained according to the usual regularized empirical risk
minimization procedure:

R ) n A

b= argmin | S0y 0T o(x) + SI01F| 4
where £ : ) x R — R is a loss function, which we assume
convex, and A > 0 sets the regularization strength.
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To assess the training and test performances of the empirical
risk minimizer (4), we let g : ) x R — R be any perfor-
mance metric (e.g. the loss function itself or, in the case of
classification, the probability of misclassifying), and define
the test error:

€0(0) = E [g(y, 0T ()] )

Our main goal in this work is to provide a sharp char-
acterization of (5) in the proportional asymptotic regime
n,d, k¢ — oo at fixed O(1) ratios « := n/d and 7y, == *¢/d,
for all layer index ¢ € [L]. This requires a precise character-
ization of the sample and population covariances and the
Gram matrices of the post-activations.

2.1. Background on sample covariance matrices

Marchenko-Pastur and free probability: We briefly
introduce basic nomenclature on sample covariance ma-

trices. For a random vector z € R? with mean zero
Ez = 0 and covariance ¥ := Ezz' € R4, we call
the matrix ¥ := XX /n € R*? obtained from n in-

dependent copies x1,...,x, of x written in matrix form
as X := (x1,...,x,) the sample covariance matrix cor-
responding to the population covariance matrix X. The
Gram matrix ¥ := X T X /n € R™ ™ has the same non-
zero eigenvalues as the sample covariance matrix but un-
related eigenvectors. The systematic mathematical study
of sample covariance and Gram matrices has a long his-
tory dating back to (Wishart, 1928). While in the “classi-
cal” statistical limit n — oo with d being fixed the sample
covariance matrix converges to the population covariance
matrix > — X, in the proportional regime d ~ n > 1
the non-trivial asymptotic relationship between the spec-
tra of X and X has first been obtained in the seminal pa-
per (MarCenko & Pastur, 1967): the empirical spectral den-
sity u(¥) = d~! 2 respee(s) 0r of X is approximately
equal to the free multiplicative convolution of (X)) and a
Marchenko-Pastur distribution 4§, of aspect ratio ¢ = d/n,

n(E) ~ p(E) B gty ©)

Here the free multiplicative convolution p X pfp may be
defined as the unique distribution v whose Stieltjes trans-
formm = m, (z) := [(z — 2)~! dv(x) satisfies the scalar
self-consistent equation

z z
= —_— . 7
=m 1fcfczmm“ <lcczm> 7

The spectral asymptotics (6) originally were obtained in
the case of Gaussian X or, more generally, for separable
correlations X = /XY for some i.i.d. matrix Y € R4,
These results were later extended (Bai & Zhou, 2008) to
the general case under essentially optimal assumptions on
concentrations of quadratic forms 2" Az around their ex-
pectation Tr AY.

Deterministic equivalents: It has only been recognised
much later (Burda et al., 2004; Knowles & Yin, 2017) that
the relationship (6) between the asymptotic spectra of X
and X, ¥ actually extends to eigenvectors as well, and that
the resolvents G(z) := (X — 2) 71, G(z) := (X — z) "t are
asymptotically equal to deterministic equivalents
> —1

M(z) = ’w’ M(z2) == m(z)I,, ®)
also in an anisotropic rather than just a tracial sense, high-
lighting that despite the simple relationship between their
averaged traces

c—1

m(z) = mu)mpue,, (2), m(z) = + emi(z),

the sample covariance and Gram matrices carry rather differ-
ent non-spectral information. The anisoptric concentration
of resolvents (or in physics terminology, the self-averaging)
has again first been obtained in the Gaussian or separable
cases (Burda et al., 2004; Knowles & Yin, 2017). The ex-
tension to general sample covariance matrices was only
achieved much more recently (Louart & Couillet, 2018;
Chouard, 2022) under Lipschitz concentration assumptions.
In this work we specifically use the deterministic equiva-
lent for sample covariance matrices with general covariance
from (Chouard, 2022) and extend it to cover Gram matrices.

Application to the deep random features model: In this
work we apply the general theory of anisotropic determin-
istic equivalents to the deep random features model. As
discussed in Section 4, to prove error universality even for
the simple ridge regression case, it is not enough to only con-
sider the spectral convergence of the matrices, and a stronger
result is warranted. The application of non-linear activation
functions makes the model neither Gaussian nor separable,
hence our analysis relies on the deterministic equivalents
from (Chouard, 2022) and our extension to Gram matrices,
which appear naturally in the explicit error derivations.

2.2. Notation
We will adopt the following notation:

» For A € R™*" we denote (A) := 1/ntr A.

* For matrices A € R™*™ we denote the operator norm
(with respect to the #2-vector norm) by || A||, the max-norm
by [|All,ax = max;; |A;;|, and the Frobenius norm by
JAI2 = 3, [4q

* For any distribution p we denote the push-forward under
the map A — aA + bby a ® u & b in order to avoid confu-
sion with e.g. the convex combination aguy + (1 — a)pus of
measures {1, flo.

* We say that a sequence of random variables (X, ),, is
stochastically dominated by another sequence (Y,,),, if for
all small € > 0 and large D < oo it holds that P(X,, >
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nY,) < n~P for large enough n, and in this case write
X, <Y,.
3. Deterministic equivalents

Consider the sequence of variances defined by the recursion
(recall that Ay is the variance of the entries of W)

Top1 = Agyq ngN(O,n) [02(5)2] )
with initial condition r; := A1(Q) and coefficients
Z ].

A Bl E¢cono,r0) [§0e(€)]

2
KY = \/ng\f(o,m) [00(€)2] = e (7)™, (10)
3.1. Rigorous results on the multi-layer sample
covariance and Gram matrices

Our main result on the anisotropic deterministic equivalent
of dRFs follows from iterating the following proposition.
We consider a data matrix X, € R4*™ whose Gram matrix
concentrates as

’XOTXO

{ 1 H Xo
max \/ﬁ) \/E
for some positive constant ;. The Assumption (11) for
instance is satisfied if the columns x of X are independent
with mean Ex = 0 and covariance Exx ' = Qg € R4*4
(together with some mild assumptions on the fourth
moments), in which case r; = () is the normalised trace
of the covariance. We then consider X, := o (W; Xo/v/d)
assuming the entries of W; € RF¥*? are iid. N(0,1)
elements, and o satisfies E¢pr(0,1) 01(1/71§) = 0 in the
proportional n ~ d ~ k; regime. Upon changing o, there
is no loss in generality in assuming A; = 1 which we do
for notational convenience.

—nI <1 an

d

Proposition 3.1 (Deterministic equivalent for RF). For any
deterministic A and Lipschitz-continuous activation func-
tion o1, under the assumptions above, we have that, for any
zeC \ R+

(o s 5

and

‘<A(X1]€X1T —z)1> — ()| <

1

<AA*>1/2
O n

where 6 == dist(z,R;),

—~ 1
—zM(z) = (%(Z)Elin + I) ,
(12)

and

- n—Fk n

,LL(E“,,)&M;&/P{“I(Z)’ m(z) = e +k—1m(z).

m(z) :=m

Furthermore, Assumption (11) holds true with Xg,r1
replaced by Xi,rs, respectively, and we have that
dist(—1/m(z),Ry) > dist(z,R4).

Remark 3.2. Proposition relies on the recent work of
Chouard (Chouard, 2022) on deterministic equivalents of
sample-covariance matrices. The main novelty here is
twofold. First, we extend Chouard’s result on the sam-
ple covariance matrix X X; to the Gram matrix X; X;' .
Second, we replace the population covariance matrix:

XJw w' Xy
Yx, = Ey~ o L > o ( >
X N(0,1) ( Va Nz

+ (51)21 = Elin-

XX
~ (..1\220 0
(k1) d

Note that both extensions are crucial for our main result
on the test error since the latter naturally depends on the
Gram matrix X;X," and the iteration of Proposition 3.1
only becomes viable after linearisation.

Remark 3.3. The tracial version of Proposition 3.1 has ap-
peared multiple times in the literature, e.g. (Bai & Zhou,
2008). It implies that the spectrum fi; of X| X /k; is
approximately given by the free multiplicative convolution

~ XTXO n/k
in ()P 20 (k)20 ) B

T

= ({22 @5 ) B,
where “~” means that some metric between the two proba-
bility measures is small, e.g. the Kolmogorov-Smirnov dis-
tance. Since the relation between convergence of Stieltjes
transforms and and metric convergence of measures is fairly
standard (see e.g. Theorem 2.1 of (Bai, 1993)), we refrain
from elaborating on this technical point. In case ¢ < 1,
i.e. when p5;p has no atom at 0, it was shown in (Benaych-
Georges, 2010) that

13)

\/Ngﬂﬁuﬁaﬂc\/l‘/&/‘i@:

which allows to simplify (13). Here H, is the rectangular
free convolution which models the distribution of singu-
lar values of the addition of two free rectangular random
matrices, and the square-root is to be understood as the
push-forward of the square-root map. Applying (14) to (13)
yields

— [~ k
Vi~ (n%@ o &u&@,l) Bk, kl®

suggesting that the non-zero singular values of X; /v/k can
be modeled by the non-zero singular values of the Gaussian

(nB )R pgp (14)

e (15)
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equivalent model:

W' X+ "W (16)
for some suitably chosen constants ¢’, ¢’ and independent
Gaussian matrices W/, W".

Remark 3.4. The n~'/2-scaling of the error bounds
in Proposition 3.1 is weaker than the n~!-scaling of cus-
tomary local laws in random matrix theory. The source
of this unusually large error is the replacement of the true
population covariance matrix X x by its linearisation Xy,
in Equations (92) and (93). It seems that in order to obtain
an error of n~! the third Hermite coefficient of oy is re-
quired additionally. However, we decided not to pursue this
direction as a quadratic dependence of MonX g Xo would
prohibit iteration of the argument through multiple layers.

Remark 3.5. The assumption of odd or zero Gaussian mean
activation function is widespread in the literature (see, e.g.
A.6 in (Hu & Lu, 2022a), Eq. (2.4) in (Benigni & Péché,
2021), etc). We would like to note that for spectral conver-
gence this assumption could potentially be relaxed, since
the spectrum of the non-centered sample covariance matrix
can be approximated by that of its centered version using
rank inequalities, see (Bai, 2008). However, this is consid-
erably more challenging for strong anisotropic equivalents.
This condition is automatically satisfied for odd activation
functions, such as tanh. Otherwise, it would also hold in
practice for networks under batch normalization.

The last assertion of Proposition 3.1 allows to iterate over
an arbitrary (but finite) number of layers. Indeed, after one
layer we have

XX -1 - -1
( 211—20 %(—m@ﬁm&m—ZJ
. (XJXO _ ZO)*I
k(] ’

7

using the definitions from Theorem 3.6 for cq, zg below.
Here “~” should be understood in the sense of Theorem 3.6.

Theorem 3.6 (Deterministic equivalent for dRF). For any
deterministic A and Lipschitz-continious activation func-
tions o1, ..., 04 satisfying E¢. n0,1) Om(y/Tm€) = 0, un-
der the Assumption (11) above, we have that for any
Zp € C \ R+

XTXg _1 - <AA*>1/2
‘<A( ekg —Zg) >01~-Cgmo<A>‘<W
and that

XX/ -1 . (AA*)/?
(AT =) ) -] < g

where 6y := dist(z¢, R.), and we recursively define

X X,
st = (X ey,
in kg,l
= T (2) (8
my ‘= nze kjemﬂ(zfj;l)‘g/‘&/;[ Zy
1 o /ﬁﬁ 9
=i, e = con— ()
Cy Hl’
for £ > 1 and finally
o d—n d?
mo = "7 + ﬁmu(ﬁo)ﬁuﬁfﬁ (ﬁZQ) (19)

Proofs of Prop. 3.1 and Thm. 3.6 are given in App. A.
Remark 3.7. The same iteration argument and the tracial
version of Theorem 3.6 has appeared before in (Fan &
Wang, 2020). The main difference to our present work
is the anisotropic nature of our estimate which allows to test
both sample covariance, as well as Gram resolvent against
arbitrary deterministic matrices. As we will discuss in the
next section, this is crucial in order to provide closed-form
asymptotics for the test error of the dRF model.

3.2. Closed-form formula for the population covariance

In Proposition 3.1 and Theorem 3.6 we iteratively consid-
ered X ; X¢/ky as a sample-covariance matrix with popula-
tion covariance

X X X w T X,
EW £ é:EwO'g( (-1 )O’g(w ¢ 1>%Z£

¢ k[ /kg,1 /k‘g,1 lin

and from this obtained formulas for the deterministic equiv-
alents for both X,/ X, and X, X, . A more natural approach
would be to consider X, X, /n as a sample covariance ma-
trix with population covariance

XX
Q=Ey, 2550 (20)
n
noting that the matrix X, conditioned on W7,..., Wy has

independent columns. Theorem A.3 and Proposition A.4 ap-
ply also in this setting, but lacking a rigorous expression for
)y the resulting deterministic equivalent is less descriptive
than the one from Theorem 3.6. A heuristic closed-form for-
mula for the population covariance which is conjectured to
be exact was recently derived in (Cui et al., 2023). We now
discuss this result, and for the sake of completeness provide
a derivation in Appendix App. B. Consider the sequence of
matrices {Q" }, defined by the recursion

linpy/ T
lin £+1)2W€+1Qe Wz+1 +K(€+1)2
R e R Y ¢

or =k . 1)

I, .-

with QU1 == . Informally, Q" provides an asymptotic
approximation of €2, in the sense that the normalized
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distance |19} — llr/vd is of order O(1/vd). Besides,
the recursion (21) implies that Q" can be expressed as
a sum of products of Gaussian matrices (and transposes
thereof), and affords a straightforward way to derive an
analytical expression its asymptotic spectral distribution.
This derivation is presented in App. B.

It is an interesting question whether an approximate formula
for the population covariance matrix like the one in Equa-
tion (21) can be obtained indirectly via Theorem 3.6. There
is extensive literature on this inverse problem, i.e. how to
infer spectral properties of the population covariance spec-
trum from the sample covariance spectrum, e.g. (El Karoui,
2008) but we leave this avenue to future work.

3.3. Consistency of Theorem 3.6 and the approximate
population covariance

What we can note, however, is that Equation (21) is consis-
tent with Theorem 3.6. We demonstrate this in case of equal
dimensions n = d = k; = - -- = kg to avoid unnecessary
technicalities due to the zero eigenvalues. We define

T = M(X;Xé) = fig = M(XZTXJ) (22)

ke
and recall that Proposition 3.1 implies that
e~ ((51)° @ fig—1 © (k2)") R pigp. (23)

On the other hand (6) applied to the sample covariance
matrix X,X,' /n with population covariance 2, ~ QU»
implies that

fie = p(4™) B pap

W th W
u( e (Fdi)QIm) X pmp
! (24)
(f% @ p( th ) B e @ (£5)?) B e

(
((’f ) ® Jie—1 @ (k%) )IX/JMPa

demonstrating that both approaches lead to the same recur-
sion. Here in the third step we applied (6) to the sample

Qfin W, and in the fourth step used
the first approximation for ¢ replaced by ¢ — 1.

covariance matrix

4. Gaussian universality of the test error

In the second part of this work, we discuss how the results
on the asymptotic spectrum of the empirical and population
covariances of the features can be used to provide sharp
expressions for the test and training errors (5) when the
labels are generated by a deep random neural network:

fix") =o* <W\/§")> . (25)

The feature map ¢* denotes the composition ¢} . o ... 0 ©]

of the L* + 1 layers:
| X) |

and 6, € R* is the last layer weights. To allevi-
ate notations, we denote k* := k7. The weight matri-
ces {W} }¢err+) have i.i.d Gaussian entries sampled from
N(0,A}). Note that we do not require the sequence of
activations {o7 }, and widths {v = *i/d}, to match with
those of the learner dRF (2). We address in succession

* 1 *
pi(x) =07 (Wz

Vki_1

» The well-specified case where the target and learner net-
works share the same intermediate layers (i.e. same archi-
tecture, activations and weights) ¢ = ¢, ¢ € [L] with
L* = L, and the readout of the dRF is trained using ridge
regression. This is equivalent to the interesting setting of
ridge regression on a linear target, with features drawn from
a non-Gaussian distribution, resulting from the propagation
of Gaussian data through several non-linear layers.

* The general case where the target and learner possess
generically distinct architectures, activations and weights,
and a generic convex loss.

In both cases, we provide a sharp asymptotic characteriza-
tion of the test error. Furthermore, we establish the equality
of the latter with the test error of an equivalent learning
problem on Gaussian samples with matching population
covariance, thereby showing the Gaussian universality of
the test error. In the well-specified case, our results are rigor-
ous, and make use of the deterministic equivalent provided
by Theorem 3.6. In the fully generic case, we formulate
a conjecture, which we strongly support with finite-size
numerical experiments.

4.1. Well-specified case

We first establish the Gaussian universality of the test error
of dRFs in the matched setting o = ¢*, for a readout layer
trained using a square loss. This corresponds to ) = R,
U(y,9) = 1/(y — §)%. This case is particularly simple
since the empirical risk minimization problem (4) admits
the following closed form solution:

0 = VRN + kX X)) X1y (26)
where we recall the reader X; € R¥*" is the matrix ob-
tained by stacking the last layer features column-wise and
y € R™ is the vector of labels. For a given target function,
computing the test error boils down to a random matrix
theory problem depending on variations of the trace of deter-
ministic matrices times the resolvent of the features sample
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covariance matrices (c.f. App. C for a derivation):
e0(0) = A (20 (M + X, X)) +1)

— M\ — A)dy <QL (AMk + 1/’fXLXLT)_1>
27

Applying Theorem 3.6 yields the following corollary:

Corollary 4.1 (Ridge universality of matched target). Let
A > 0. In the asymptotic limit n, d, ky — oo with fixed O(1)
ratios o = n/d, vy = *¢/d and under the assumptions of
Theorem 3.6, the asymptotic test error of the ridge estimator
(26) on the target (25) with L = L* and ¢} = @, and
additive Gaussian noise with variance A > 0 is given by:

k—oo 4

eg(0) === €5 = A((Qr)mp(—X) + 1)
—AA = ANQL)Ohr(—A) (28)

where vy, can be recursively computed from (18) respec-
tively. In particular, this implies Gaussian universality of
the asymptotic mean-squared error in this model, since
(28) exactly agrees with the asymptotic test error of ridge
regression on Gaussian data x ~ N (04,Q1) derived in
(Dobriban & Wager, 2018).

A detailed derivation of (27) and Corollary 4.1 is given in
App. C, together with a discussion of possible extensions to
deterministic last-layer weights and general targets. Note
that, while it is not needed to establish the Gaussian equiva-
lence of ridge dRF regression in the well-specified case, the
trace of the population covariance (€1;,) can be explicitly
computed from the closed-form formula (21).

4.2. General case

Despite the major progress stemming from the application of
the random matrix theory toolbox to learning problems, the
application of the latter has been mostly limited to quadratic
problems where a closed-form expression of the estimators,
such as (26), are available. Proving universality results akin
to Corollary 4.1 beyond quadratic problems is a challenging
task, which has recently been the subject of intense investi-
gation. In the context of generalized linear estimation (4),
universality of the test error for the L = 1 random features
model under a generic convex loss function was heuristi-
cally studied in (Gerace et al., 2020), where the authors have
shown that the asymptotic formula for the test error obtained
under the Gaussian design assumption perfectly agreed with
finite-size simulations with the true features. This Gaus-
sian universality of the test error was later proven by (Hu &
Lu, 2022a) by combining a Lindeberg interpolation scheme
with a generalized central limit theorem. Our goal in the
following is to provide an analogous contribution as (Ger-
ace et al., 2020) to the case of multi-layer random features.
This result builds on a rigorous, closed-form formula for

® simulation
— theory

&

0.84 ® simulation
— theory

&

Figure 1. Learning curves €4 (), where o := ™/a, for ridge regres-
sion (o, = id, L(y,2) = (y — 2)%, and g(y,9) = (v — 9)?).
Red dots correspond to numerical simulations on the learning
model (2) (25), averaged over 20 runs, in dimension d = 500.
The solid line correspond to sharp asymptotic characterization
provided by conjecture 4.3, and detailed in App. D. (left) 2-layers
target (L* = 1, o] = sign, 77 = 1), (right) single-layer target
(L* = 0). Both are learned with a 2—hidden layers RF (2) with
o1,2(x) = tanh(2z) activation, widths v, = 8 and 72 = 1, and
regularization A = 0.001.

the asymptotic test error of misspecified generalized linear
estimation in the high-dimensional limit considered here,
which was derived in (Loureiro et al., 2022a).

We show that in the high-dimensional limit the asymptotic
test error for the model introduced in Section 2 is in the
Gaussian universality class. More precisely, the test error
of this model is asymptotically equivalent to the test error of
an equivalent Gaussian covariate model (GCM) consisting
of doing generalized linear estimation on a dataset D =
{v*, 9"} sepn) with labels g = f..(1/vVi=6, u*) and jointly
Gaussian covariates:

(u,v) NN( ;/IL:L (I)é;L ) (29)

where we recall ), is the variance of the model features
(20) and ® € R¥"** and ¥ € RF"**" are the covariances
between the model and target features and the target variance
respectively:

&, =E [w*(x)ga(x)—r] , VUi- = E [‘P*(X)S@*(X)T]
(30)

This result adds to a stream of recent universality results in
high-dimensional linear estimation (Loureiro et al., 2022a;
Montanari & Saeed, 2022; Gerace et al., 2022), and gener-
alizes the random features universality of (Mei et al., 2022;
Goldt et al., 2021; Hu & Lu, 2022a) to L > 1. It can be
summarized in the following conjecture:

Conjecture 4.2. In the high-dimensional limit n, d, k, —
oo at fixed O(1) ratios o = n/d and ~y, = k¢/a, the test
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Figure 2. Learning curves €4(«), where a := 7/a, for logistic
regression (0, = sign, {(y,z) = In(1+ e ¥*) and metric

9(y,9) = 1 — ©(yH)). Red dots correspond to numerical simula-
tions on the learning model (2) (25), averaged over 20 runs in di-
mension d = 1200. The solid line correspond to sharp asymptotic
characterization provided by conjecture 4.3, and detailed in App. D.
(left) single-layer target (L* = 0), (right) two-layer target (L* = 1,
o7 = erf, 77 = 1) (25) hidden sign layer. Both are learnt with
a depth L = 2 dRF (2) with activation o1 2(x) = tanh(2x),
widths v1 = 2 = 5/3, and regularization A = 0.05 (top) and
o1,2(z) = erf(z) and A = 0.1 (bottom).

error of the empirical risk minimizer (4) trained on D =
{(x*, ")} ue[n) With covariates x* ~ N (04, Q) and labels
from (25) is equal to the one of a Gaussian covariate model
(29) with matching second moments ¥, ®, ) as defined in
(20) and (30).

We go a step further and provide a sharp asymptotic expres-
sion for the test error. Construct recursively the sequence of
matrices

) 2 Wr \IllinW*T 2
T e B G
0

3D

with the initial condition Qi = Wt := Q. Further define

1 x0T * L 1T
: Kk1*W ki W
=1+ V k7 =1 V ke

The sequence {x7¢, k:*}5", is defined by (10) with o, A
In the special case L* = 0, which corresponds to a
single-index target function, the first product in @41,
should be replaced by I;. This particular target architecture
is also known, in the case L. = 1, as the hidden manifold
model (Goldt et al., 2020; Gerace et al., 2020) and affords
a stylized model for structured data. The present paper
generalizes these studies to arbitrary depths L. One is then

equipped to formulate the following, stronger, conjecture:

1.4

oOuhAWN
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Figure 3. Learning curves for ridge regression on a 1-hidden layer
target function (y§ = 2, of = sign) using a L—hidden layers
learner with widths v1 = ... = v = 4 and o1,
activation (left) or o1,...,.(z) = 1.1 x sign(z) X min(2,|z|)
clipped linear activation (right), for depths 1 < L < 6. The
regularization is A = 0.001. Solid lines represent theoretical
curves evaluated from the sharp characterization of conjecture 4.3,
while numerical simulations, averaged over 50 runs, are indicated
by dots. The linear peak can be observed at o := 7/a = 1,
while the non-linear peak occurs for « = v = 4 (D’Ascoli et al.,
2021b). Despite sharing the same architecture, the use of different
activations induces different implicit regularizations, leading to the
linear (resp. non-linear) peak being further suppressed as the depth
increases for the clipped linear activation (resp. tanh activation).

Conjecture 4.3. In the same limit as in Conjecture 4.2, the
test error of the empirical risk minimizer (4) trained on
D = {(x",y")} .c[n) With covariates x* ~ N'(04,€p) and
labels from (25) is equal to the one of a Gaussian covariate
model (29) with the matrices Wit Qlin lin (21 (32).

Conjecture 4.3 allows to give a fully analytical sharp asymp-
totic characterization of the test error, which we detail in
App. D. Importantly, observe that it also affords com-
pact closed-form formulae for the population covariances
Qr, @1+, V. In particular the spectrum of Wit Qlin
can be analytically computed and compares excellently with
empirical numerical simulations. We report those results in
detail in App. B. Figs. 1 and 2 present the resulting theo-
retical curve and contrasts them to numerical simulations in
dimensions d = 1000, revealing an excellent agreement.

S. Depth-induced implicit regularization

An informal yet extremely insightful takeaway from Conjec-
ture 4.3, and in particular the closed-form expressions (21),
is that the activations in a deep non-linear dRF (2) share the
same population statistics as the activations in a deep noisy
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linear network, with layers

-
W, x

Qi (x) = kY + K&, (33)

—1

where £ ~ N (0Og,, It,,) is a Gaussian noise term. It is im-
mediate to see that (33) lead to the same recursion as (21).
This observation, which was made in the concomitant work
(Cui et al., 2023), essentially allows to equivalently think of
the problem of learning using a dRF (2) as one of learning
with linear noisy network. Indeed, Conjecture 4.3 essen-
tially suggests that the asymptotic test error depends on the
second-order statistics of the last layer acrivations, shared
between the dRF and the equivalent linear network. Finally,
it is worthy to stress that, while the learner dRF is deter-
ministic conditional on the weights {W,}, the equivalent
linear network (33) is intrinsically stochastic in nature due
to the effective noise injection &, at each layer. Statistical
common sense dictates that this effective noise injection
has a regularizing effect, by introducing some randomness
in the learning, and helps mitigating overfitting. Since the
effective noise is a product of the propagation through a
non-linear layer, this suggest that adding random non linear
layers induces an implicit regularization. We explore this
intuition in this last section.

Observe first that the equivalent noisy linear network (33)

reduces to a simple shallow noisy linear model

Jin(x) =0 (19T (A - x+§L)) (34)

Vi

where the effective weight matrix A is

Ap = f[ (Iie We )
= 1
=1 V-1

and the effective noise £, is Gaussian with covariance CgL

L—1 -
L — £o\2 L N{W; L K{W[T L 2]’
Gk =3 (11 ) (11 SR )+

lo=1

The signal-plus-noise structure of the equivalent linear fea-
tures (34) has profound consequences on the level of the
learning curves of the model (2):

* When o = 1, there are as many training samples as the
dimension of the data d— dimensional submanifold Ay, x,
resulting in a standard interpolation peak. The noise part £,
induces an implicit regularization which helps mitigate the
overfitting.

* As a = 7y, the number of training samples matches the
dimension kj, of the noise, and the noise part is used to
interpolate the training samples, resulting in another peak.
This second peak is referred to as the non-linear peak by
(D’Ascoli et al., 2021b).

Therefore, there exists an interplay between the two peaks,
with higher noise &1, both helping to mitigate the linear peak,
and aggravating the non-linear peak. The depth of the net-
work plays a role in that it modulates the amplitudes of the
signal part and the noise part, depending on the activation
through the recursions (10).

We give two illustrations of the regularization effect of
depth in Fig. 3. Two activations are considered : o, =
tanh (for which the noise level, as measure by tr CgL de-
creases with depth), and a very weakly non-linear activation
op(x) = 1.1 x sign(z) x min(2, |z|), corresponding to a
linear function clipped between —2.2 and 2.2 (for which
tr CgL increases with depth). Note oy is the simplest activa-
tion function for which the increase of the noise level with
depth was observed. Since for o, the effective noise de-
creases with depth, the linear peak is aggravated for deeper
networks, while the non-linear peak is simultaneously sup-
pressed. Conversely, for oy, depth introduces more noise
and cause a higher non-linear peak, while the induced im-
plicit regularization mitigates the linear peak. Further dis-
cussion about the effect of architecture design on the gener-
alization ability of dRFs (2) is provided in App. E.

Conclusion

In this work we studied the problem of learning a deep ran-
dom network target function by training the readout layer
of a deep network, with frozen random hidden layers (deep
Random Features). We first prove an asymptotic determin-
istic equivalent for the conjugate kernel and sample covari-
ance of the activations in a deep Gaussian random networks.
This result is leveraged to establish a sharp asymptotic char-
acterization of the test error in the specific case where the
learner and teacher networks share the same intermediate
layers, and the readout is learned using a ridge loss. This
proves the Gaussian universality of the test error of ridge
regression on non-linear features corresponding to the last
layer activations. In the fully generic case, we conjecture a
sharp asymptotic formula for the test error, for fully general
target/learner architectures and convex loss. The formulas
suggest that the dRF behaves like a linear noisy network,
characterized by an implicit regularization. We explore the
consequences of this equivalence on the interplay between
the architecture of the dRF and its generalization ability.
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A. Anisotropic deterministic equivalent

A.1. Sample covariance matrices

Consider a random vector z € R? with Ez = 0and Ex2z " = ¥ and forn € N construct X = (21, ...,2,) € R¥" using
n independent copies 1, . . ., x,, of . We are interested in the sample covariance and Gram matrices
a xx’ 1 = xXTx Tai\n
S = - Zm eR™  and = - (&) € RWX" (35)
n n Jij=1
and their resolvents R R _ g
Gz)=(E—-2"teC™ and G(z):= (-2 "teC™ (36)
The expectations of the sample covariance and Gram matrices are
a - d
EX=% EX=—(3)],, (37)
n

where we introduced the averaged trace (A) := m~! Tr A for A € R™*™,

Note that while the two resolvents behave differently as matrices, their traces are related due to the fact that the non-zero
eigenvalues of Sand ¥ agree, whence

y - (38)

The classical result on normalised traces of sample covariance and Gram resolvents is the following variance estimate under
essentially optimal conditions.

Theorem A.1 (Tracial convergence of sample covariance matrices with general population (Bai & Zhou, 2008)). Assume
that |X|| < 1, d/n ~ 1 and that

2

z! Az 2T Az |? ! Az
E -E = —(Z4)| =o(l4l) (39)
d d
for all deterministic matrices A. Then it holds that
~ 2 o 2
B[(S -2 @) =), BE-2)") ()| =o1), a5 nd— oo, (40)

for all fixed z € C\ Ry, where mh = 1h(z) is the unique solution to the scalar equation
d d
1——+zm=—(Zm+1)""). (41)
n n

and J )
(z) = %ﬁl(z) += o (42)

—Zz

Here m is the solution to the Marchenko-Pastur equation (6) and the correspodning measure is the free multiplicative
convolution of the empirical spectral measure p(X) :=d =y, Spec(s) 0 of X and a Marchenko-Pastur distribution p§;p
of aspect ratio ¢ = d/n. Thus, by Stieltjes inversion the result of Theorem A.1 can be phrased as

X'x = d d/n —d xx’ a d/n
n(5=2) = uE) ~ Su(E) Bl + 00, u(Fo) = () ~ () B 3)
in a weak and global sense. Note that we have the limits
lim p(2) B pggp = b0, lim p(X) X pygp = p(E) (44)
c—00 c—0

which are precisely the expected behaviour since for large ¢ = d/n the rank n of XX T grows much smaller than d and

therefore the empirical measure u(i) is concentrated on the origin, while for small ¢ = d/n by the law of large numbers
XXT/n~BEXXT/n=%

14



Deterministic equivalent and error universality of deep random features learning

A.2. Anisotropic deterministic equivalents

The tracial result from Theorem A.1 only allows to control the eigenvalues of i % but not the eigenvectors. There
has been extensive work on non-tracial deterministic equivalents of X, %, either in the form of entrywise asymptotics
G;; =~ - - -, isotropic asymptotics 2T Gy = - - - for deterministic vectors z,y or functional tracial asymptotics (AG) ~ - - -
for deterministic matrices A. Any of these results contain non-trivial information on how G , G behave as matrices in the
asymptotic limit and can be used to infer information on eigenvectors.

For separable correlations an optimal local law in isotropic and tracial form has been obtained in (Knowles & Yin, 2017):
Theorem A.2 ((Knowles & Yin, 2017), Theorem 3.6). If X = X'/2X for some matrix X with independent identically

distributed entries' with mean 0 and variance 1, and the spectral density y(3) X uf/{; is regular?, then it holds that

1

£-2)71) = ()| + (B -2 - i) < 45
(E=2 =)+ [(E =2 = m)| < ——, (45)
in tracial sense, and for any deterministic vectors x,y
‘JJT [(i —2)7t = (=Zm(2)z — z)fl}y‘ + ‘IT(E —2)7ly — nv%(z)xTy‘ =< Nzl (46)
vnlmz
in isotropic sense.
Note that in particular, matrix G (z) asymptotically is equal to a resolvent
—~ - —1
M(z) = (—Em(z)z - z) 47)

of the population covariance ¥, while G asymptotically is a scalar multiple of the identity.

More recently a functional tracial local law (albeit with very much suboptimal dependence on the spectral parameter) for G
has been obtained in (Chouard, 2022):

Theorem A.3 ((Chouard, 2022), Proposition 2.4). If ||| < C and X satisfies, for some positive constants ¢, C, o
P(If(X) = Ef(X)| > t) < Ce™t/)" ¥ I-Lipschitz f - (RP™, ||| ) = (R,] - ]), (48)

we have that for all deterministic matrices A and |z| < 1 with high probability®.

a AA*)logn
AS = 2)7L — A(—i(2)23 — *‘<4L4447 49
where Th = (%) is the unique solution to the scalar equation
d d
1——+zm=——{(Zm+1)""). (50)
n n

Note that the functional tracial formulation with convergence rate 1/n and error in terms of the Frobenius norm of A
automatically includes an isotropic local law as a special case. Indeed, for A = 2y " it follows that

yT((i) —2)7t = (=X — z)fl)x =< ”\x/ﬁ”(%” , (51
where we denote here and in the future § = §(z) := dist(z, R, ). In this work we extend the functional tracial local law
from (Chouard, 2022) to the case of G and obtain the following result:

'with finite moments of all orders

2See Definition 2.7 in (Knowles & Yin, 2017)

3The statement in (Chouard, 2022) literally gives Im z rather than dist(z, R.) but the proof verbatim gives the stronger bound since
Im z is merely used as a lower bound on the smallest singular value of a matrix of the type AA™ — z
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Proposition A.4 (Functional local law for Gram matrices). Under the assumptions of Theorem A.3 we have that

<AA*>1/2

(A(Z = 2)7Y) —m(2)(A)] < v

(52)

Note that the bound in Proposition A.4 is weaker than the bound in Theorem A.3, and both results are very much weaker
than Theorem A.2 in the dependence on the spectral parameter. In light of related results it is natural to conjecture the
following:

Conjecture A.5. Assume that quadratic forms of = concentrate as

v Az (AA*)/?
—(ZA)| < ———— 53
7 -y < 40 3
for any deterministic matrix A, and that ||X|| < 1. Then we have the functional tracial estimates
R AA* 1/2
‘(zA(E —2)™h = (A(=m(2)E — I)fl‘ =< I

(A = 571) - )y < A4V

Note that the Lipschitz concentration required in Theorem A.3 is much stronger than the quadratic form concentration of
Conjecture A.5 because it implies that the column vectors = of X satisfy

t2
_ >4 < .

P(|f(x) = B f(x)| 2 ) < Cexp( Cva) (55)

for all A\-Lipschitz f: R? — R. Therefore by Hanson-Wright ((Adamczak, 2015), Thm. 2.4)

rT Az t{AAYZ | A g2
P(|——= —(z24)| > < Qe min{t1}/C 56
( ( >’ = vd + d ) <Ce (56)
and, since also || A| < v/d(AA*)Y/2, we have that with high probability

T Ax (AAY2 A (AA*)1/2
—(ZA)| <logd(—F——+ — ) Slogd———. 57
y <>‘og(\/g Hp) Slosd= 2 (57)

Let us now turn to the proof of Proposition A.4. We will need the following result of Lipschitzness of the resolvent function,
see e.g. (Chouard, 2022)

Lemma A.6. The map G : X — (XTX/n—2) s (3672|2|"/2n=1/2)-Lipschitz with respect to Frobenius norm.

Proof of Proposition A.4. Denote th = 1h(z). By the Schur complement formula we have

ps x] GOy 1 NN 1 1
= i Bk = _ O] =M 58
Gii (z—i—z - ) (z+zc<EG >) +O(\/ﬁ59) m+0(\/ﬁ§9>, (58)
using
Al 1 GOl GO 1 1
BC) = (26 + —(E— i )= —— (M + ) ) + O — 59
< )= >+n< 142Gz /n z< (A% +0)7) + (nég) (59)
and ) 1
r— eSS+ 1)) =2 — % + #«mzﬂ)ﬂ - % - %(1 - c+zm) -—= (60)
in the last step. Next, for off-diagonal elements we have, again by Schur-complement, that
e TG N 2 T GG g
5 ox om0t Gy Gi;Gji\z; Gy
Gij == ZG”‘GJ-J— T = ZGZ‘Z‘ <ij — =4 ) " . (61)

Jj
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Here from the first equality already a bound size n—'/2§—* follows. Thus, together with Equation (58) it follows that

~ x] Gid g 1
Goo= w2l j 0(7) 62
j=m’z + e (62)
and therefore by mean-zero assumption that E (Y}i ; = O(1/nd®). This together with Equation (58) implies that
- 1
EG — i IH =0(5)- 63
H m(z) F 59 ©3)
We write ~ ~ . ~
‘(AG) - m(z)<,4>‘ < ‘(AG} - E<AG>‘ + ‘E(AG) —(2)(4)]. (64)
Note that from Lemma A.6 and Cauchy-Schwarz inequality,
XTX 3 1/2 AA* 1/2
the map X' — <A ( — z)> is %—Lipschitz, (65)
therefore, , ,
- - |Z‘1 2<AA*>12
AG) — E(AG ‘ BILE 7 66
(AG) - B(AG)| < B—25 (66)
Also, from (63), we have
- 1 12l (AA)'/?
E(AG) — A‘<—AA* HEG— IH <2 67
(AG) —ii(2)(4)| < —=(44") )|, < (©7)
The statement of the Proposition follows from (64), (66) and (67). O]
A.3. Random feature model
We consider a one-layer random feature model, with a scalar function o (z) applied entrywise.
Wi X
o ( 1 0), X, € R W, e RF1Xd, (68)
Vd
We require the following assumptions.
Assumption A.7 (Gaussian weight). Entries of Wy are iid. A/(0, 1) elements.
Assumption A.8 (Orthogonal and bounded data). For a positive constant r, X satisfies
Xq Xo H
(69)
H max \/> op
Assumption A.9 (Nonlinearity). The scalar function oy is A,-Lipschitz and satisfies (o1) N(r1) = 0, where
() — [ sty exn( ) (10)
o2) 1= z)exp| —=—— | dz.
Assumption A.10 (Proportional regime). For some constants ¢y, co,
an <min{d, k1} <max{d,k1} < con, 0<c < ey < o0. (71)

For simplicity, we set the variance of the weight matrix to be equal to 1, although the results can be easily extended to
arbitrary variance A, by scaling the function oy .

Let w; denote the ith row of W;. We define

Xim o (H20) - <01(X%) -.-m(XT“N”“))T € Rbm )
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as a matrix with independent identically distributed rows and corresponding sample covariance matrix
= = g1 g1 .
vd Vd

We have (X1);; = 01(&;), for & := @ z; ~ N (O, HastQ/d), where z; is the jth column of Xj. In order to analyze

E

ki ki

(73)

functions of Gaussian variables, we use the following decomposition.

Lemma A.11 (Hermite decomposition). For any Lipschitz-continuous f and any o > 0 we have the o-Hermite expansion®,
k
o x
F@) =3 % Her(2) (79 nor) (74)
k>0
where
2. gk 2
— (—1) JL)L (-2) 75
Hep(z) := (-1) exp( 5 ) 3 P (75)

with Hey () being the standard Hermite polynomials Hey(z) = 1, Hey (z) = x, Heg(z) = 22 — 1, etc.
Note that the Hermite polynomials are pairwise orthogonal with respect to the Gaussian density. More precisely,
E Hey,(N1) He;(N2) = 6;,k! Cov(Ny, No)* (76)

for jointly Gaussian Ny, Ny with E N; = E Ny = 0 and E N7 = E N7 = 1. By applying (74) twice and using (76) we
obtain the Parseval identity
2k
(o) = 2 7 o) (77)
k>0

In the proof of the deterministic equivalent for the deep random features model, we rely on techniques developed in (Louart
& Couillet, 2018; Chouard, 2022) which use concentration of measure theory to analyze random matrices. This approach
works particularly well with common neural network architectures, where one can view transformations from layer to layer
as Lipschitz mappings. The following Lemma establishes Lipschitzness of required functions.

Lemma A.12. Let f(x) be a \-Lipschitz function. Let x,y,w € R%, W € R¥*? and X € R¥*™. The following maps are
Lipschitz, assuming f(x) is applied entrywise:

zTw WX
w— f (\/ﬁ) and W= f (\/8) , (78)

with Lipschitz constants )\Hx/\/gH and )\HX/\/E respectively. Furthermore, under the event Q := {|f(z"w/v/d)| <

LA f(yTo/Vd) S 1 2Tw Tw
)

is also Lipschitz with corresponding constant a« < \ (Hx/\/aH + Hy/\/aH)

}, the map

Proof. Lipschitz property of the first and second map follows directly from Cauchy-Schwarz inequality. For the third map,
since the product of Lipschitz functions is not necessarily Lipschitz, one needs to condition on the ’good” event ). For

simplicity, denote f(a,b) := f (aTb/ ﬂ) Under () we can write, for some vectors u, v € R,

‘f('r7w)f(va) - f(m,v)f(y,vﬂ
S \f(:c,w)f(y,w) - f(x,w)f(y,v)| + |f(x,w)f(y,v) - f(m,v)f(y,v)\
= | f (@, w)[|f (g, w) = F(y,0)] + | £y, 0)||f (2, w) = f(z,0)] (80)
S ([Jerva + orval) o ol
O

“Note that despite the appearance of the derivative smoothness is not required as by integration by parts the derivative can be transferred
to the smooth Gaussian weight.
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Recall the notations )
T2 = <01 >N(7'1)

1= (0N () 81)
Ky = \/<U%>N(7-1) —7r1(k})?

for the proof of Proposition 3.1. We state technical Lemmas.

Lemma A.13. For w ~ N(0, I), \,-Lipschitz function o(z) and Hx/\/(jH < 1, with high probability

.
a(x\/g)>’§1. (82)

Ao-Lipschitz, we have by Gaussian concentration theorem (see e.g. Theo-

Proof. Since the map w — o <””\;d1”> is Hx/\/&‘

rem 5.2.2 in (Vershynin, 2018)) that

. - e
P () —meo ()| 2) <o 7, (83)

Next, by Equation (90), for each i € [n],

E (IT“’> (o) o(1/vn) (84)
w T = (0 2 = n),
Vd N(ll=1*/d)
which implies that, with high probability,
)
o .
\/a ~
O
Lemma A.14. For w ~ N(0, 1), the random variable o I\;g’) o (w\/TEy) is subgaussian with high probability. Its
subgaussian norm is O (A ( x/\/aH + ’ y/\/gH))
Proof. Follows from Lemma A.13, Lemma A.12 and the Gaussian concentration theorem. O

Lemma A.15. For matrices A, B € R"*", we have

I |AB| < [[A]ll Bl

F’

2. Tr(AB) < ||Al| gl Bl

F’
3. At =Bt =A"YB - A)B~Y, if Aand B are invertible.

Lemma A.16. For any positive semi-definite matrix Y and for any z € C \ Ry, we have

(Y —2)7" < dist(z, Rp) (86)

Proof of Proposition 3.1. Define the population covariance matrix

Xgw w' X
Vd )o( Vd

Using Hermite series expansion (74) and (76), for fixed X, we can write an explicit form

Sy = Ewa( )GR”X", w ~ N(0, ). 87)

1 a XTXO Ga _
Ix = Y =D (F=2) D, (88)
a>0
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where we defined the diagonal matrix
DY = diag( (c@) ) (o)) 2 (89)
X - g Nl l?/d)s === N(llznll*/d) ) -
From Assumption A.8 and standard perturbation analysis it follows that
1 1
(OIN s )2/d) = (TIN @) + O(*) = O(*) (90)

and

/ / 1
()N (a2 /a) = (0 )N + O(%). o1

Therefore, we can conclude that, for off-diagonal i # j,

(D wtazra (o w120 (2] 25\
e s ey
a20 (92)

.
_ 9 T; Tj 1y 1
= (") X(m) 7 40 <n> = (Ziin);; + O (n>

and for diagonal entries we can write directly from (87),

[EAA 1
(Ex)i = @) e /a) = (Ve g~ T (0000 = 1100 )3y | +O N
) (93)
= (Z4n),, +O0 | —= ).
(Ziin)j; + (\/n>
Summing over all indices i, 7 we get that
[Xx = Ziinllp = O(1). (94)
Let us define m (3, z) as the solution to the following equation:
d— d
= - (T 1), (95)
nz zZn
and mx = m(Xx, z), Min = (S, ). Consider the sequence of approximations (in a functional tracial sense):
XI'x -1 -1 -1 -1
( 1}€ L. Z) ~ (—TTLX,ZEX — Z) ~ (—mhanX — Z) ~ (—mhanhn — Z) . (96)
1

The first approximation follows from Theorem A.3 applied to the matrix X = X . The matrix X is concentrated due
to Lemma A.12 and Gaussian concentration theorem.

The second approximation requires proving a stability property of the function m (3, z). In particular, we write

‘<A{(FnXZEX - z)_l — (ﬂﬁszx — Z)_l} >‘
(] (e )y~ (e —2) ]

my — mlin « -1
Sl (S

< 2|7 2|Mx — huin | (AAYL/2,

o7)
<AA*>1/2

—1
(mlian + I) H 1Zx] -
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Now, we analyze the difference between mx and 7hy,. According to (95), we can write

o . d o - . .
A= |mX — m]in| = W Tr [(mXEX —+ I) 1_ (mlinzhn + I) 1]
1

S 2in Tr [(xEx + 1)~ (MiinSiin — Mx Sx) (Mx Sin + 1) 7]
1 -~ _ o o o _
< WH(mXEX + D)7 pllain Ziin — mx Xx || || (Fuin S + 1) 71|
i (98)
é ||m11n211n - szX ||
|zlvn "
< L by b)) d M in 2 mx x|
> ‘Zh/ﬁ”mlm lin — mlln X”F | ‘?13/2 Hmlm X —mx XlF
|| 12l
= [Z1in — Xx [ +
|2lv/n T elvn
Since || X x|||z|'n~1/2 < 1, we obtain using (94) that |7.x — | < |2/~ n~1/2, and thus, for the second approximation,
-1 -1
’<A[(—mxzzx . z) - (—mlinzzx - z) D' < 53f<AA*>1/2 (99)
For the third approximation, we can write
-1 -1 1
‘<A{(_mlinsz - Z) - (_mlinzzlin - Z) }>‘ = —~—2B,
| 2|
where B := [(A(Sx +1/m)"" — A(Sia + 1/m) 71|
1 - 100
< —=(AAN2||(Ex + 1/m) 7 = (Sun + 1/m) 7|, (100)
f
*y1/2 1 (AA*)1/?
where in the last inequality we used (94).
Combining all the approximations together, we have proved that
XX N\ _ -1 (AA)?
Next, we will verify that Assumption A.8 holds true when we replace matrix X by X7 and 1 by ro. In particular, we want
to show that, with high probability,
XX 1
H L =0 () ) (102)
max \/ﬁ
Note that Equations (92, 93) show that
1
Yx —rol =0(—]. 103
1Ex =72l jpax = (\/ﬁ) (103)

We have that

k1 T, ~T k1 T ~ T
XlTX1> 1 (9& wg> (wl xj> 1 (x wl> (wl .Z‘)
=—) o= o =—VY Y, whereY, :=0> o z). (104)
( ko )y ke l; Vi N l; : : Nz Nz
Note that Y; are independent random variables and from Lemma A.14 it follows that the subgaussian norm of Y] is

O\

d||). Therefore, from Hoeffding inequality, we have that

P <|(X1;1X1)” (Zx)ij

21

 et?ky
275) < 2e AellX/vall (105)
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from which, applying union bound, we can deduce that

‘XlTXl_EX

k1

1
= o) (\/ﬁ) . (106)

Combining Equations (103) and (106) we get the required maximum norm bound. Next, with a standard e-net argument
(see, e.g. (Chouard, 2022), Proposition 3.4) we can show that

1

%HXl -EX|| <1 (107)

Since \/n||E X1 ||, < 1it follows that

E X1 ’I’Lk’l kl

—|EX <t/—= S 1. 108
H \/g = d || 1||max ~ d ~ ( )
Finally, the claim that dist(—1/m(z),R;) > dist(z,R) follows elementarily from the fixed point equation, see e.g.
Proposition 6.2 in (Chouard, 2022). O

Proof of Theorem 3.6. This follows directly from iteratively applying Proposition 3.1 until we reach

in the last layer, where “~” is to be understood in the sense of Proposition 3.1. Now, using that XX /n is a sample
covariance matrix with population covariance matrix {2, it follows that

X4 Xo -1 d/XJXo d ' dd d d—n
(7)) —a(5-0m) ~aGmema: (50) + ) (10
where we used Proposition A.4 once more in the final step. O

B. Closed-form formulae for population covariances
B.1. Multi-Layer linearization

In this Appendix, we provide a (heuristic) derivation of closed-form expressions for the population covariances:
QL =E [p(x)e(x) ], e =E " (x)ex)'], Ui =B (e (9] a1

This derivation has appeared in (Cui et al., 2023), and we include it here for the sake of completeness.

Reminder of the results Consider the dRF (2) and target (25), with data x ~ A(0,Qq). Qp is assumed to possess
extensive Frobenius norm and trace, i.e. there exists constant ¢, ¢’ so that asymptotically (noting kg = d)

1 1 1
c< gtng:g||QO||%<C/<oo, c<gtrQO<C'<oo. (112)

In terms of the limiting spectral density u, these assumptions imply that the first and second moments are finite and non
zero. Consider the sequence of variances defined by the recurrence

rith = AGLEYC™) [0 (2)?] (113)
with the initial condition
1
ri) = Ag*)g tr Qo (114)
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and the GET (Gerace et al., 2020; Goldt et al., 2020; 2021) coefficients

1 . , 2
R = ROl [2007(2)] R = \/ YO [0f(2)2] = rf? (k). (115)
14

Define the sequence of matrices

. Wg+1QlinWT
QleJrl = ? ]fg ot Kf‘z]’%ﬂ (116)
. * W; 1\IjlmW€ 1
\I/2+1 _ 1”% + KJ:DI;.CZH (117)
with initialization
an — \I,gn _ 907 (118)
and the matrix
in R Wrenew, W
TR HHMM R L (119)
re1 =1 I1 H VEkk:
r=0 s=

Then Qf, ~ QU2 W, . ~ Uy. and ®p«p ~ 1, A ~ B is understood as |14 — Bl|% /a = O(1/d).

Example for L = 2 We give for concreteness an example for L* = 1, L. = 2 (RF teacher, 2-layer DRN student). The
recursions (116)(119) for the student reads for L = 2

WoW, SW, W, Wy W,
0y = (xﬁ)%%ﬁ% + (k3)%(r1)? le 2 4 (1221, (120)

LG WESWET X
Uy = (A1) (5)) g (121)

1,2 1*W1 EW;W;

D90 = KKK 122
1,2 = K1K1Kg NG (122)
Equivalent Linear Net Note that the linearization means one can think of the ¢-th layer as a noisy linear layer,
, 1
oo(z)™ ~ n{TWZ cx+ KL (123)
-1

with & € R¥¢ an i.i.d Gaussian noise indepent layer from layer, and also independent between the teacher and student
provided the teacher and student weights are drawn independently. Similarly for the teacher:

1

* *£ * *l %

vi(x) ~ K] — Wi -2+ rE (124)
V kZ—l

This provides a simple way to rederive the relations (116) and (119).

B.2. Derivation sketch for ),

We first derive a relation between the covariance of the post-activations at two successive layers, and then iterate. Remark
that since the computation for W« is identical mutatis mutandis, we only address here Q.

Propagation through a single layer Consider the auxiliary single-layer problem

h(z) =0 <\}EW : x) (125)
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with z ~ AN(0,3). Suppose recursively that 3 statisfies the properties (112). The population covariance of the post-

activations h reads
wlSw w w7
1 d d
2(” U) w,LTij wJTij (U)
d

e d

Qij = (hi(z)hj(x))s = / = = o(u)o(v). (126)
w, Yw; w, Jw;
det 2 (wj%w_,» wj%w_,-)
d
Note that have -
by A
U,%:EH'EET, (127)

which by assumption is of order 1. Diagonalizing > = UAU " and noting that U "w is still Gaussian with independent
entries,

witw] 1K, oo 2A L, 2A |3 1
Vau [d]—dQ;)\in[(U w)i]—ﬁtrZ =0 _O(d) (128)

provided |I=[1%/a is finite. We used the fact that the variance of a 1—degree of freedom y? variable is 2. Plugging the
definition of r into the above yields, for i # j:

T
w. Bw
71+(ru2+rv2) ﬁ ld J v

o= [ oty
00
12 2 1 2
= (/ e\;; a(z)> + %w:fl]wj (/ 67227:7“ zo’(z)) +0 (;)

T
w, 2W;
2>< i ]'

= K2 ; (129)
on the diagonal (i = j), this becomes
1,2
Qi = / € 5(2)? = K2+ 2 (130)
11 \/% * 1
yielding
WEWT
Q:K§T+K§Ik (131)
with
1
k1 = —ENO [20(2)] k2 = ENO" [0(2)%] —r x &} (132)

r
This extends the GET (Gerace et al., 2020) generalization used in (D’ Ascoli et al., 2021a) to arbitrary input covariances.

Iterating layer to layer (115) and (116) follow by straightforward recursion from the single-layer results (132) and (131).
One just need to connect (113) to the single-layer variance r (127).

1
T4l = AZHE tr €y

1 W W,"
= Ag+1 (ke (/{/li)ztr |:€kille:| —+ (/-;;i)Q)
N (CIRTE (AN
= A EY O [o4(2)?] (133)
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We used
ko1
1 W W1 1 PRI Qs
—t = A; u'w, w,Uu
ke r{ ke_1 Z ( e W),
1 kl—l
— )\Z*lA
1
= Agi trQu_1 =1y (134)
ke 1

We used that W, U is also an i.i.d Gaussian matrix. Finally, one must check that the assumption on ¥ that |[=l1%/a, tr £/q =
O(1) carries over to 2. Because WX W T is positive semi definite it is straightforward that

b T
f\l W2 W + K207 > K2 > 0. (135)

The upper bound can be established using the triangle inequality and the submultiplicativity of the Frobenius norm, as

WEW WZW
*II I——— + R < || i—— % + K2
2 HWHFIIEII%
SEE TR R
< kK24 < oo (136)

We used that [|W]|%/ak = 1 almost surely asymptotically. Moving on to the trace,

1 LWEWT 2 2, Ki T
kTI'|:KZld +/€*Ik:| = Ry + mTI‘I:ZW W] (137)
Bounding
KT T KT - T 21 2
0< = Te[SWTW] = o ;wz Sw; = ki Tr{} < ic, (138)

where the last bound holds asymptotically almost surely.

B.3. Derivation sketch for @ .,

We now turn to the cross-covariance P« 1, between the post-activations of two random networks with independent weights.
Again, we first establish a preliminary result, addressing the statistics of two correlated Gaussians propagating through
non-linear layers with independently drawn weights.

Two Gaussians propagating through two layers Consider two jointly Gaussian variables v € R?, v € R*

v o
(u,v) NN( T O > (139)

each independently propagated through a non-linear layer

() = o, (\;CTW u) hv) = o (\}ng). (140)

The weights W, € R¥**?+ and W € R**9 have independently sampled Gaussian entries, with respective variance A, and
A. The i, j—th element of the cross-covariance ®" can be expressed as
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w T Swr  wl ! Sw, -t
d «4d d x
1 * *
-3\ T )
2( y) w! ' Sw; w; Sw; <y>
€

dyd d
DL = (17 (Why(0))u0 = / 0. (@) (y) (141)
wr T Sw} w? ' Sw;
dy d,d
det 27 T, wl S,
d,d d

As before, the random variables w; " Sw} /4, and w; Sw;/d concentrate around their mean value

A, A
r*EZtr\Il r 7

trQ (142)

Plugging these definitions into the above:

5 "’.’L‘z T 2 w*Tq)w.I
. o) ) ey v
(I)ij—/ - U*(I)U(y)
27 r*r—(’)(g)
1,2 1.2 1.2 1.2
e T * e 2r? 1 wi' dw; e 7 ? e 2r? 1
= —_— — 0 —
< ¢%m@“0</¢mf@0+mr¢@1< ¢%n”“0</ %ww@>+ Q)
*T @
S B e M (143)
dyd
yielding
W, ew T
ol — o EEW 144
N (144)
with
Lon(o.r) L enN ()
/ﬁ:;Ez ") [z0(2)] /flzT—IEZ ) 204 (2)) (145)
*

One Gaussian propagating through one layer We will need another result, addressing again two correlated Gaussians,
with only one propagating through a non-linear layer. Consider two jointly Gaussian variables u € R, v € R?

mm~N<5-$> (146)

with only v being propagated through a non linear layer

h(v) = o (\;EW'U) . (147)

The entries W € R**4 are independently sampled from a Gaussian distribution with variance A. The 4, j—th element of
the cross-covariance ® between h(v) and u can be expressed as

@Z:@mmwmmzfe — zo(y) (148)
.. Wi
det 27 < Vi E )
D;w, w; Yw;
VE z
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As before, the random variable w; Sw; /k concentrate around its mean value

a
k

r

tr Q) (149)

Plugging this definition into the above:

w

S w.
i — L~ (ra?+ 0% L =t
&

n e vir—o(d) war-o() "
;=

271'1/\1/“'7”* O (é) xo-(y)

e_ﬁzrzz /ezlrz2 )+ 1 Qw; /e_"“lin‘z2 2 /ez}erZ )] +o (1)
= —_— g g -
V21U, V2mr Uir Vk 270y V2mr d

<I>Z-wj

=R (150)
yielding
oW’
P = g —— (151)
VEk
with
1
k1= —ENO [26(2)]. (152)

r

Iterating To establish (32), we iterate (144) min(L, L, ) times, and followed by max(L, L,) — min(L, L, ) iterations of
the single layer relation (151), so as to finish propagating the data through the deeper (teacher (25) or student (2)) network.
B.4. Spectrum of the covariances

In this section, we derive the spectrum of the linearized covariance (21), which is a result of indenpendent interest.

Useful identities We remind first some useful facts. For W € R¥¢*ke-1 with i.i.d Gaussian entries and ¥ € RFe-1xke-1 5

deterministic matrix admitting a limiting spectral density yt,_1 as ky_; — 0o, we have, from the fact that X X " and X " X
share the same spectrum up to a zero eigenvalues,

) _ ke—1 y k¢ ® ) . +kz—kef1
’uké—lwsz kg k‘g_l uﬁzinWEi kl

) (153)

The spectrum of éE%WTWE% is given by
ke—1

pe B ey (154)

ke—1
where uM’}f is the Marcenko-Pastur distribution with aspect ratio k¢—1 /ke. In terms of Stieltjes transforms:

(ke 2 ke—1 ke—1 1
mﬁWZWT (Z) = ( ot > X mk%{Z%WTWE% o z |+ o —1 ; (155)
Using the Marcenko-Pastur map and using the shorthand v, = kizl , we reach that the Stieltjes transform for ﬁWZWT

is the solution of

_ [ (e =Dazm(z) = R (kS N
m(z) _/ zam(z) + yez dpe—i(z) = z z /xm(z)JrfygdW_l( ) (156)
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Spectrum )™ The spectral distribution 1, of Q4™ is then given by the recursion relation

k ko1

14

r_ ®/14Mkl:[; Ig,uffl
l—1

ke —ko—
g e ke

ke—1 o
kg

kg

L

we=(s4)’ @ o (k4)” (157)

with initial condition g = pq,. This translates to

_ _ Mot _7275 , 158
o (67 (o= ()P malz) ( (k4) W(Z)) o

Numerical scheme We now discuss a numerical scheme to solve (158). Note that each m,_; is only evaluated at

Ye
2 1=——"s5—— (159)
LT () mul2)

To solve this numerically we keep two arrays (mq, ...,mr,) and (zo, ...z1,), with my = my(z¢). For simplicity consider the
case where the input covariance is identity, meaning

1
1720

m()(Z()) = (160)

In the generic case, one simply needs to set m to be the Stieljes of the input population covariance. Then until convergence
we iterate

VO<i<l—1, oz ——tL (161)
(51)" mia

and keep
2L, = A+1in (162)

with 7 = 0T and ) the value at which we wish to evaluate the density j7,()\). Then we update
mi_1v? 2
vi—1- \/(% —1)>—4 (N;)} (z — (k1) )
2 (= - (60)%)

where we solved the update (158) directly, which is empirically yielding better convergence than directly iterating (158).

VISiSL, m; <

(163)

Fig. 4 shows the theoretical asymptotic distribution (157) for 3—layer RFs with sigmoid and sign activations, which is found
to display excellent agreement with numerical estimations of the population covariance estimated with 10° independent
samples. Fig. 5 shows the asymptotic distribution across L = 5 layers for a rectangular tanh network. In alignment to the
observations of (Fan & Wang, 2020) for the conjugate kernel in similar models, the support of the distribution increases with
depth, alongside an increase in the density of small eigenvalues. Note that the presence of small eigenvalues has been linked
in a variety of settings (Cui et al., 2021; Mei et al., 2022; Misiakiewicz, 2022; Hu & Lu, 2022b) to an effective additional
implicit /5 regularization when using (2) to perform regression. This intuition is further discussed in Section 5.

C. Error universality of ridge regression

In this Appendix we provide a detailed derivation of (27) and Corollary 4.1. First, we start by recapping the setting for this
Corollary. Here, we are interested in characterizing the asymptotic mean-squared test error:

AT < 2
Egen.(0) =E (y Y \‘/pé )> (164)
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Figure 4. Limiting spectral distributions for the post-activation covariance 22 (21) of a 2— hidden layers network (2), with architectures
~v1 = 6/5,v2 = 3/5 and activation o1 = 02 = tanh(2-) (top), and y1 = /10,2 = 6/5 and activation o1 = 02 = sign (bottom) (red)
Theoretical asymptotic spectral distribution obtained from solving the recursion (157) (see Appendix B for further details on the numerical
scheme) (blue) Empirical distribution, estimated from the sample covariance of 10° samples, in dimension d = 1000.
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Figure 5. Evolution of the asymptotic spectral distribution p of the post-activations h¢(x), for 1 < ¢ < L = 5, for a network with
architecture v; = ... = 75 = 1 and 01 = ...05 = tanh activation, and isotropic data {20 = I;. Propagation through non-linear layers
tends to extend the support of the distribution, and also increase the density of small eigenvalues.

where ¢ : R? — R are the L-layers random features defined in (2) and 6 € R* is the ridge estimator:

. 2
5 R 07 o(x+ A
) = argmin Z (y“—%) —|—§||9H§

1
= — (M +

where, following the notation in the main, we have defined the features matrix X; € R**™ by stacking together o (x*)
column-wise and the label vector y € R™. In particular, in Corollary 4.1 we focus in the case where the labels are generated,
up to additive Gaussian noise, by a L-layers random features target with the same architecture. Explicitly, this can be written
as:

1

—1
kXLXLT> Xy (165)

p_ 0le(x)

Vk

where 0, ~ N (0, I;;) and z* ~ N(0, A) independently. Note that, for the purposes of the discussion here we do not need
to assume the inputs x* € R are Gaussian, but only that the data matrix X, € R?*" satisfies the concentration condition
(11). In particular, this implies that the results in this Appendix hold for the test error (164) conditionally on the training
inputs Xj.

2 (166)
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From here, the computation is standard, and closely follows other works deriving closed-form asymptotics for ridge
regression under different assumptions, e.g. (Karoui et al., 2013; Dobriban & Wager, 2018; Wu & Xu, 2020; Hastie et al.,
2022). First, note we can rewrite:

0Iot) 0o
Vi Vi

ggen.(é) = EZ,G*,z,x ( +z

2 Eyp, [(é 070 — 9*)} (167)

where in (a) we used the independence of the test sample took the z average explicitly, and in (b) we have used the definition
(87). Focusing on:

6 — 0, =1/vF (M + X X)X (ONVEXL 0, +2) — 0,
= (ML + 16X, X 1) T (kX X] = I) 0+ YVE (A + 16X, X)) Xz (168)
© 5 (A + 1/kXLX{)‘1 0.+ 1/VE (A + 1/;CXLXLT)‘1 Xz (169)
where in (c) we have used the following version of the Woodbury identity:
AL+ kX, X]) T = I — Uk (A + 16X X]) T X X[ (170)
Inserting the above in (167):
Exen.(B) = /i By, [0 (Mic+ iX X]) ™' @ (M + 16X, X)) 7 0] +
YRR, [ZT X (ML + X XT) T (M + X X)) Xy z] +A
@ )2 (e + X X )™ (e + X X))+
rA <1/kXLXLT (M + X XT) 7 (M + l/kXLXLT)*1> rA 171)

where in (d) we took the expectations over the noise and target weights and used the definition (-) = 1/ktr(-) with the
cyclicity of the trace. We can put the expression above in a shape in which Theorem 3.6 apply by adding and subtracting
M to kX LXI:r the second trace term. This leads to the expression (27) quoted in the main text:

Egon.(6) = A <<QL (M, + 1/kXLXL)_1> + 1) FAA—A) <QL (M, + 1/kXLXL)_2>
= A (<QL (M + 1/kXLXL)*1> + 1) A — A)dy <QL (M + 1/kXLXL)*1> (172)

Note that the last expression requires applying Theorem 3.6 to the derivative of the resolvent. In general, this can be justified
by writing a squared resolvent G(z)? = (H — z)~2 of some non-negative matrix H > 0 in terms of a Cauchy-integral

G(2)*=G'(2) = 1 f{ %G(w) dw, (173)

27 — z)2
where + is any contour around z not crossing R ;. In this way some local law of the type |(A(G — M))| < edist(z, R} )~*
can be transferred to the derivative as
1 1

(A(G'(z) = M'(2)) = o f (o= AGw) ~ M) dw = 0« (o). (174)

by choosing 7 to be a small circle of radius dist(z,Ry)/2 around z, using that the deterministic equivalent is also
holomorphic away from R .
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Therefore, in the high-dimensional limit where n, k¢, d — oo at fixed ratios a = /d and , = k¢ /4, under the assumptions
of Theorem 3.6 for the input data X, € R?*™ (11) and the architecture of the deep random features and for A > 0° we can
apply Theorem 3.6 to write the asymptotic limit of the test error:

Jim Egen.(0) = Efen. (N A, ve, 55, K5) = A QL)L (=A) + 1) = M — A)(QL)daiag (—A) (175)
where m,(z) can be computed recursively from (18) for a given regularization strength A > 0, noise level A > 0, sample

complexity v > 0 and features architecture (v, 0¢)e[z]. On the other hand, it follows from the recursion (21) that the trace
of the last-layer covariance ({7, ) admits the compact expression

L—1 L N2 1 L
@) = > (1) T (1) Ap+ (kE)" + < (00) TT (+)" A (176)
=1 =041 =1

in terms only of the coefficients (10).

Note that (175) agrees exactly with the formula for the asymptotic test error of ridge regression on a equivalent Gaussian
dataset D = {(v*, y")} 1en):

= 6] vH

vk

which, to our best knowledge, was first derived in (Dobriban & Wager, 2018). This establishes the Gaussian universality of
the asymptotic test error for this model.

+ z#, vt NN(Ok,QL). (177

C.1. Possible extensions

We now discuss some possible extensions of the universality result above. They require, however, a more involved analysis,
which we leave for future work. Our goal here is simply to highlight other possible applications of our deterministic
equivalent in Thm. 3.6.

Deterministic last-layer weights: The first extension is to generalize the result above to deterministic last layer weights

0. Indeed, (Wei et al., 2022) shows that for ridge regression on a deterministic target y* = 1/v& 60, o(x*)°, the test error
can be asymptotically estimated from the generalized cross-validation (GCV) estimator, defined as:

GCV, = A <(>\Ik T QL)*1> Eovain. (0) (178)

where L =1mXrX Z is the sample covariance matrix of the features and E;,aip. (é) is the training error associated to the
ridge estimator:

~ 2
N 07 p(x+
gtrain.(e) = E Z <y“ - j(EX)> (179)
p=1

In particular, it is shown that:
Theorem C.1 (Thm. 8 of (Wei et al., 2022)). Assume that

XLTXL )*1 - T XLXLT -1 - -1 Tmm(z)
—== —z —m(z)| + |v {(7—1) —l—(Q m(z +1) }v < —, 180
(*e )~ (2) & (2) LRI as)
for all deterministic vectors v with v Qv < 1, where
- k‘L —nNn k‘L
m(z) = — )R (2). (181)

STechnically, we don’t need to assume the regularization is bounded away from here. It suffices to take it decaying slower than n~ /18

for Thm. 3.6 to apply.
SFor simplicity, we discuss the noiseless A = 0 case here. See Appendix B of (Wei et al., 2022) for a discussion of noisy targets
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Then for all X > 0 it holds that

; ) trQ\
GCVy — Egen.(B)| S n 20T, 0, 192 lop. - (tr St (182)
A An
Applying Theorem A.3 for fixed weights W7, ..., W, shows’ that assumption (180) is satisfied in the proportional regime
kr, ~ m, up to a worse z-dependence of the error dist(z, R, )~ rather than (Im7(z)/ Im 2)*/2, and only for bounded
vectors ||v]| < 1.

Instead, our result Theorem 3.6 proves a preliminary version of (180) with an explicit deterministic equivalent only depending
on the input population covariance €2 rather than the output population covariance €1, at the price of having an error which
is larger by a factor of y/n. It is an interesting question whether our error rates can be improved to imply Equation (180)
which is left for future work.

General case: As discussed in the introduction, in the general case we are interested in a target:

1

A
RO =T
where the L, multi-layer random features ¢, : RY — R+ are not necessarily the same as the L multi-layer random
features ¢ : R? — R¥. As discussed in the introduction, this contains as a special case the hidden-manifold model (HMM),
introduced in (Goldt et al., 2020) as a model for structured high-dimensional data where the labels depend only on the
coordinates of a lower-dimensional "latent space”. While in Section 4 we provide an exact but heuristic formula to compute
the error in this case (valid for arbitrary convex losses), the challenge in proving it with random matrix theory methods in
the case of ridge regression comes from the fact that this is a mismatched model. Indeed, naively writing the expression for
the test error in this case:

0] . (x"), 0, ~ N Ok, Iy,), (183)

lox) | 0Te)\
A x Px(X 28
Eoen.(0) =FEp, x | ——="+2—
g ( ) 0, ( \/E \/E >
— (U )+ E, [eTq>L Lé} +1E, [éTQLé] (184)
* k*k * * * If *

where we recall the reader of the definitions:

Wy =E [he(x)he(x) "], Dy =E [he(x)he (x) '] . (185)

Indeed, applying Thm. 3.6 to the expression above is not as straightforward as above. To see this, focus on the second term:
E, {91@L*Lé} —tr [@p, (M + kX X)X X ] (186)

where we defined the target feature matrix X7, € R¥+*" with columns given by o(x#) € R¥+. This would, naively, require
a more refined deterministic equivalent than Thm. 3.6 provides. Possible alternative approaches would be to rewrite the
misspecification as an effective additive noise (e.g. as in Appendix B of (Clarté et al., 2022)) and derive a local-law akin to
Assumption 180 with a control over the noise (see Appendix B of (Wei et al., 2022) for a discussion) or to use the linear
pencil method as in (Mei & Montanari, 2022). This provides an interesting avenue for future work.

D. Exact asymptotics for the general case

In this appendix, we detail the sharp asymptotic characterization for the test error of the dRF (2) on a deep random network
target (25), for regression (Fig. 1) and classification (Fig. 2).

The backbone of the derivation is the theorem of (Loureiro et al., 2022a), which fully characterizes the test error of the GCM
(29) in terms of the covariance matrices ¥y, , 2z, and @, 1. In the original work of (Loureiro et al., 2022a), these matrices
for the dRF model had to be estimated numerically through a Monte-Carlo algorithm. In the present work however, the
closed-form expressions afforded by (21), (31) and (32), which we remind in the next subsection, now afford a way to access
fully analytical formulas. We successively detail these characterizations for ridge regression and logistic regression readouts.

"Technically this requires some argument that with high probability the deep RF model with quenched weights satisfies Lipschitz
concentration with respect to Xo
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D.1. Reminder of second-order statistics of network activations

Before providing detailed asymptotic characterizations for the test error of ridge and logistic regression, we first provide a
reminder for the expressions of the linearized matrices \Ill“‘ QlLi“ and <I>1L”1 1, (21,31,30). Using conjecture 4.3, these matrices
can then be used in the formulas of (Loureiro et al., 2022a) to access fully analytical formulas for the test errors, in terms
only of the target network weights (25) and the coefficients (10). The following expressions follow from expliciting the
solution of the recursions (21,31,30)

.
W, RS KW Eoww, 2
Qlin _ I ) ( & > ( b ) ( £ ) (53)" I,
(lek@l ;ka01 E: it Ve Lllvm'l

(187)
. L, Z’*WT L, %% L,—1 * E’*WT T * W 9
glin — k1 Wy o) 4 K v ) (k)T
([ o () 5 e (L 52) o] 50 e

(188)

1
plin  — kI 1
o= (L) (195 "

In the special case where the teacher has depth L, = 0 (i.e. possesses an architecture with no hidden layer), the above
expression reduce to

win = 0 (190)

Lo eyyT
. W,
olin — Q. M%) (191)
o <e=1 Ve

The L, = 0, L = 1 case has been studied in the literature (Goldt et al., 2020; Gerace et al., 2020) as the Hidden Manifold
Model. The present work encompasses the analysis of its generalization to deep learners with L > 1 hidden layers.

D.2. Ridge regression

We consider the supervised learning problem of training the readout weights 6 of the dRF (2) on a dataset D = {a*, y"}zzl,
with 2z ~ N (04, Qo) independently. The labels are given by a deep random network

T Iz
o= palah) o, (192)
kr

*

where z# ~ N(0, A) is a Gaussian additive noise and the teacher feature map is
px(@) = 91, 00 pi(2). (193)
Note that compared to (25), we have adopted the notation 0, := Wy, € R¥z. for the sake of clarity. Defining

TR
=

*

(194)

We consider the problem training the last layer 8 of the learner dRF (2) with ridge regression, by minimizing the risk

i avgmin { 3™ (= 12D YL A
Hzargémn{z<y‘ _\/H) —l—§||0||2 . (195)

pn=1

Building on the theorem of (Loureiro et al., 2022a) and conjecture 4.3, the mean squared error achieved by this ERM
algorithm is given by

R 2
07 o(x
=EpE.n(04,9) <f*( ) — il )> =p+q—2m, (196)
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with g, m the solutions of the system of equations
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D.3. Logistic regression
We now turn to the classification setting, when the labels are given by a deep random network with sign readout

T M
y" = sign <9* Ps(T )) . (198)
kr

*

Note that this corresponds to o, +1 = sign. and the dRF readout weights 6 are trained with logistic regression, using the

ERM
N n —yk 0 p(at) by
f=argminq > In|1+e Vi |+ S[0]7 . (199)
0 = 2

By the same token, introducing following (Loureiro et al., 2022a) the auxiliary functions

Z(y,w, V) = % (1 +erf (\j’%))

and f(y,w, V) defined as the solution of

_ Y
f(y7w) V) - 1 + ey(Vf(y,wV)‘f‘w) ’

It follows from (Loureiro et al., 2022a) and Conjecture 4.3 that the associated test error reads

éTSD(f) 1 m
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where m, ¢ are the solutions of the system of equations
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E. Architecture-induced implicit regularization

A seminal pursuit in machine learning research is the theoretical understanding of the interplay between the network
architecture and it learning ability. While this is a challenging open question, the study of dRF (2), i.e. networks with
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Figure 6. Test error for a regression task on a L, = 1 two-layer target with sign activation and width 47 = 4. Solid lines represent the test
error of a dRF of depth m and widths y; = ... = v, = 7, while dashed lines indicate the test errors of wide and shallow dRFs with
architecture y1 = 3 = v and y2 = (m — 2) x k. All values were evaluated using the sharp asymptotic characterization of conjecture
4.3, see also App.D. The parameter m, which parameterizes the number of parameters in these two networks, is varied from 0 to 15. For
v = 4 (left), the deep architecture is consistently outperformed by the wide architecture. Closer to the interpolation peak, for v = 1
(right), the implicit depth-induced regularization means that deeper architectures perform better than wider architectures.

intermediate layers frozen at initialization, allows to make some headway and gather some preliminary insight into these
interrogations. It constitutes a highly stylized, but nonetheless versatile, playground for which some questions can be
explored, and which hopefully pave the first preliminary steps in the understanding of networks trained end-to-end.

Section 5 in the main text discussed the regularization induced by depth in dRF architectures. In this section, we further
explore, using conjecture 4.3 as a flexible toolbox to access asymptotic test errors, the role of other architectural features in
the performance of dRF. Our purpose is mainly to complement the discussion of section E, and highlight some observations
of interest. A more complete study falls out of the scope of the present manuscript and is left for future work. In this section,
we briefly discuss two questions:

* For a fixed number of parameters, is it better to have a deep or wide architecture?

* What is the influence of a narrow (bottleneck) hidden layer on the test error?

E.1. Deeper or wider

For a given number of parameters m-yd, for m € [14] we explore the performance of

A rectangular deep net of depth L = m with width sequence v; = ... = v, = 7.
* A wide net with widths 71 = 3 = v and 2 = (m — 2)7 of depth L = 3.

for m > 3, learning from a two-layers target with sign activation. The activation is taken to be tanh for all layers, in both
networks. Note that in both architectures, the number of trainable parameter is also always the same, since the readout layer
is in any case of width ~d.

Fig. 6 compares the deep architecture (dashed lines) with the wide architecture (solid lines). In general, the wide architecture
provides smaller test errors, in accordance with the intuition that additional layers introduce more effective noise and
therefore generically prove detrimental to the learning ability of the dRF, see Fig. 6, right panel. However, as discussed in
section 5 in the main text, the implicit regularization induced by this noise can help mitigate overfitting in some regimes.
This is in particular the case in the vicinity of the interpolation peaks, for noisy targets. The left panel of Fig. 6 shows such a
case, where deep architectures outperform wide architectures in small data regimes o = 0.5, 1. If the explicit regularization
A is optimized over, this effect disappears.
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Figure 7. Regression problem over a L, = 1 target with sign activation and width v7. Dashed lines represent the test error (evaluated
using the sharp asymptotics of conjecture 4.3, see also App.D) of L = 4 dRFs, with 71 = 2 = 4 = 7 and a bottleneck third layer
~vs = 1/2. Solid lines corresponds to a rectangular network with no bottleneck v1 = 2 = 3 = a4 = . Close to the interpolation peak
(oo = 1, 2) the regularization induced by the bottleneck mitigates the overfitting and leads to smaller test errors.

E.2. Bottleneck hidden layer

Another question of interest is the effect of a very narrow hidden layer. Fig. 7 investigates the performance overa L, =1
target with sign activation and width 77, of L = 4 dRFs, with v; = 75 = 4 = y and a bottleneck third layer 5 = 1/2. The
parameter vy was varied between 1 and 4. As intuitively expected, the bottleneck, by forcing an intermediary low-dimensional
representation, has a regularizing effect. We refer the interested reader to (Zavatone-Veth et al., 2022) where the regularizing
effect of bottlenecks is discussed for linear networks. While generically the bottleneck translates into a loss of information,
it is beneficial in regimes where regularization is helpful, e.g. close to interpolation peaks or noisy settings. Such an instance
is presented in Fig. 7. Again, if the explicit regularization X is tuned, this effect disappears.
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