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ABSTRACT

With the rise of digital media content production, the need for analyzing movies
and TV series episodes to locate the main cast of characters precisely is gain-
ing importance. Specifically, Video Face Clustering aims at grouping together
detected video face tracks with common facial identities. This problem is very
challenging due to the large range of pose, expression, appearance, and lighting
variations of a given face across video frames. Generic pre-trained Face Iden-
tification (ID) models fail to adapt well to the video production domain, given
its high dynamic range content and also unique cinematic style. Furthermore,
traditional clustering algorithms depend on hyperparameters requiring individual
tuning across datasets. In this paper, we present a novel video face clustering ap-
proach that learns to adapt a generic face ID model to new video face tracks in a
fully self-supervised fashion. We also propose a parameter-free clustering algo-
rithm that is capable of automatically adapting to the finetuned model’s embedding
space for any input video. Due to the lack of comprehensive movie face cluster-
ing benchmarks, we also present a first-of-kind movie dataset: MovieFaceCluster.
Our dataset is handpicked by film industry professionals and contains extremely
challenging face ID scenarios. Experiments demonstrate our method’s effective-
ness in handling difficult mainstream movie scenes on our benchmark dataset and
state-of-the-art performance on traditional TV series datasets.

1 INTRODUCTION

Video Face Clustering can be defined as the task of grouping together human faces in a video among
common identities. It contributes significantly to several other research domains, such as video scene
captioning|Rohrbach et al.|(2017)), video question answering|Tapaswi et al.|(2016), and video under-
standing |Vicol et al.| (2018)). Having an understanding of the spatial location, face size, and identity
of the characters that appear in specific scenes is essential for all the aforementioned tasks. Cluster-
ing faces in a video is a challenging unsupervised problem that has garnered a lot of interest over
the past few decades |Satoh et al.| (1999); |Pham et al.| (2009); [Zhou et al.| (2015); 'Wu et al.| (2013b).
Given the rise in the creation of video production content and the subsequent need for its analysis,
face clustering in the movie/TV series domain has garnered significant interest in the last couple of
years [Sharma et al.| (2019)); Tapaswi et al.[ (2019). It serves as an effective editing tool for movie
post-production personnel, helping them select scenes with a specific group of characters, among
other benefits. We thus primarily focus on the video production content domain for evaluating our
proposed method, given its closeness to real-world scenarios and use cases.

The video production content domain often provides an unique set of challenges for face clustering,
in terms of large variations in facial pose, lighting, expression and appearance w.r.t. a given character
across its entire duration (Fig.[I). In specific domains with high-quality standards, such as movies
that possess an unique cinematic stylg'| performance of face identification (ID) models trained on
generic large-scale datasets is often limited for such domains (Tab. [5)). Furthermore, hand labeling
a large cast of characters, often present in movies/TV series, can be very time-consuming and error-
prone. As a result, the inherent challenges in video face clustering and difficulties in hand labeling
often limit video-specific model training. In this paper, we propose an algorithm that successfully

"Particular movie features are high resolution, high dynamic range, and large facial attribute variations.
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tackles these limitations. Specifically, our proposed method adapts a generic face ID model to a
specific set of faces and their observed variations in a given video in a fully self-supervised fashion.
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Overall, our proposed method VideoClusterNet can be divided into two main stages. The first stage
involves a fully self-supervised learning (SSL) based finetuning of a generic face ID model on a
given set of video faces. Finetuning is formulated as an iterative optimization task facilitated through
alternating stages of model finetuning and coarse face track matching. The SSL finetuning boot-
straps itself by soft grouping together high-confidence matching tracks at regular training intervals.
The second stage involves a track clustering algorithm that adopts the loss function used for model
SSL finetuning as a distance metric. Our clustering algorithm computes a custom matching thresh-
old for each track and combines tracks with high-confidence matches in an iterative bottom-up style.

Given that the video content production domain provides unique in-the-wild challenges regarding
video face clustering, the academic research community lacks a standardized video dataset bench-
mark for real-world performance evaluation (Appendix [E). Thus, we also present a novel video face
clustering dataset, which incorporates challenging movies hand-selected by experienced film post-
production specialists. We conduct extensive experiments of our proposed method on this dataset
to validate its effectiveness for character clustering in mainstream movies. In addition, we provide
results on selects benchmark datasets, showing that our method attains state-of-the-art performance.

In summary, we propose the following contributions: 1) A fully self-supervised video face clus-
tering algorithm, which progressively learns robust identity embeddings for all faces within a given
face video dataset, facilitated via iterative soft matching of faces across pose, illumination, and ex-
pression variations observed in the dataset. 2) A self-supervised model finetuning approach that
unlike prior works relies only on positive match pairs, removing any dependence on manual ground
truth labels or use of temporal track constraints to obtain negative match pairs. 3) A deep learning-
based similarity metric for face clustering, which automatically adapts to a given model’s learned
embedding space. 4) A novel parameter-free video face clustering method that requires neither user-
defined thresholds nor an initial number of clusters. 5) A new comprehensive movie face clustering
benchmark dataset to better evaluate video face clustering algorithms on real-world challenges.

2 RELATED WORK

We review prior work in video-based face clustering and list out some deep learning metric and
self-supervised learning based methods since they form an important component in our approach.

Auxiliary labels assisted Video Face Clustering: Single frame-based face clustering has drawn a
lot of attention in the past few decades. For a detailed survey, please refer to Zhou et al.| (2022c).
For the video domain, early work focused on using additional information available from TV series
episodes/movies. Specifically, methods such as [Satoh et al. (1999); |Berg et al.| (2004)); |Cour et al.
(2010); |[Everingham et al.| (2009); Tang et al.|(2015);|Ozkan & Duygulu|(2006); |[Pham et al.| (2009);
Everingham et al.| (2000) utilize aligned captions, transcripts, dialogues, or a combination of the
above with detected faces to perform identity clustering.
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Figure 2: Overview of VideoClusterNet: Given the temporal continuity in the video domain, faces detected in consecutive frames are
first locally grouped into tracks using a motion tracking algorithm. A large-scale pre-trained face ID model is finetuned on these tracks
using temporal self-supervision (w/ only positive pairing), via learning through natural face variations available within each track. Then, the
finetuning is bootstrapped by soft-matching tracks across common identities. Performing these two steps alternatively helps the model better
understand the given set of faces. A final clustering algorithm based on a model-learned similarity metric groups common identity tracks.

Contextual Information based Video Face Clustering: Following work using supplementary la-
bels, methods such as|Zhang et al.|(2013)); [El Khoury et al.| (2010) leverage contextual information,
e.g., clothing and surrounding scene contents, while |Paul et al. use aligned audio to help
localize faces. Alternatively, incorporate gender information along with tempo-
ral constraints through face motion tracking. Unlike previous approaches, our method requires no
explicit contextual information.

Video Face Clustering using temporal feature aggregation, 3D convolutions: Another line of

work, such as in Liu et al.| (2019); |Gong et al.[| (2019), incorporates mechanisms to aggregate deep
learning-based features of a given face track to provide a single track level embedding, which is

in turn used to perform non-temporal face clustering. Recent approaches, such as
(2020), adopt 3D convolutions inside the feature extractor to model temporal identity information
better. Our method utilizes temporal information in a more flexible way, thus allowing the use of
any feature encoder architecture.

Temporal Track Constraints based Video Face Clustering: A large body of methods focuses on
generating identity labels through the creation of positive image pairs. They track a given face across
consecutive frames and negative pairs through co-occurring tracks. Approaches such as

et al| (2010); [Kapoor et al.| (2009); [Yan et al.| (2006) apply such temporal constraints in semi/fully
supervised settings, whereas methods like [Wu et al.| (2013a:b); [Tapaswi et al.| (2014); Xiao et al.
(2014); [Dahake et al. (2021)); Tapaswi et al.| (2019); [Somandepalli & Narayanan| (2019); |Aggarwal

let al.[(2022); |Datta et al.| (2018)) use temporal constraints in an unsupervised manner, with the major-
ity of them adopting some contrastive pair loss formulation. We significantly improve on this major
trend by skipping negative pairs selection and thus any complex mining strategy for obtaining them.

Deep Metric Learning: Deep face clustering inherently relies on having embeddings of the same
identity closer to each other and of different identities farther away in the representation space.
Approaches such as[Song et al.|(2017);|Cinbis et al.|(2011);Zhang et al.| (2016a));|Yang et al.| (2016);
Law et al.| (2017); Mensink et al|(2012) focus on optimizing such a space and require defining a
face similarity metric to improve video face clustering performance. Most approaches incorporate a
contrastive-based similarity metric, such as triplet loss, to help obtain an embedding space optimized
for a given set of faces in a video. We adopt the metric defined in Eq. (2) that does not rely on
any negative pairing, thereby avoiding any sub-optimality induced through incorrect negative pair
selection. In this paper, we also utilize this metric for final video track clustering, which provides
enhanced performance since the embeddings are optimized w.r.t. the metric itself.

Joint Representation and Clustering{Sharma et al| (2019) propose two methods, TSiam and
SSiam, to generate positive and negative pairs for model finetuning on a set of given video faces.
TSiam adopts track-level constraints, i.e., sampling faces within the same and co-occurring tracks
for positive and negative pairing, respectively. SSiam mines hard contrastive pairs using a pseudo-
relevance feedback (pseudo-RF) inspired mechanism|Yan et al.| (2006). Both methods employ com-
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plex modules that depend on finetuned parameters to mine negative pairs. In contrast, our proposed
method does not depend on negative pairs at all, making it much simpler and generalized. Also,
while Sharma et al.| (2019) incorporates a baseline final clustering algorithm, which depends on the
number of clusters as initialization, we propose a novel final clustering algorithm that is directly
linked to the model finetuning approach and requires no initial guidance. [Zhang et al.| (2016b) in-
corporate a Markov Random Field (MRF) model to assign coarse track cluster labels, used as weak
supervision for iteratively training a feature encoder. Negative pairs are mined through specific tem-
poral constraints to boot start optimization of MRF. We introduce a much simpler weak matching
mechanism that removes any dependency on negative pairs, thus requiring no complex training as
in MRF. Besides, our clustering algorithm requires no input number of known characters for deter-
mining final cluster labels.

3 METHOD

3.1 OVERVIEW

A high-level overview of our proposed method is shown in Fig.[2] The following subsections de-
scribe in detail the prominent components of our approach.

3.2 FACE TRACK PRE-PROCESSING

In a standard frame rate video, frame content within the same scene gradually varies w.r.t. its tempo-
ral neighboring frames. To exploit this temporal stability for face clustering, we first locally cluster
detected faces in a video by motion tracking, akin to all major prior works |Cinbis et al.| (2011);
Sharma et al.| (2019); Wu et al.|(2013b). This pre-processing stage consists of four components.

First, scene cuts are detected in the given video, which divides it into contiguous separate sections,
here coined as shots. Each scene cut represents a major change in scene composition, either in-
volving a camera angle or scene setting change. We employ a threshold-based scene cut detection
algorithm implemented in PySceneDetect library |API| (2022)). Second, we utilize a face detection
algorithm to find all visible faces in each frame of the processed shots. We adopt RetinaFace Deng
et al.|(2020) as our face detector due to its current state-of-the-art benchmark performance.

Third, the detected face crops are evaluated for their face ID quality by thresholding facial attributes
based on blurriness and crop size. Crops failing the quality test are directly labeled as Unknown.
Fourth, detected faces within a given shot are locally linked into a face track using a motion tracking
algorithm. We adopt the state-of-the-art method, BoT-SORT |Aharon et al.|(2022), to generate tracks.
For each face track ¢, a face crop I is sampled every 12-th frame, i.e., t = [I¢,, Iy, ...., I, |, where
t, = 12xn + f; and f; denotes the original frame index for the first frame in the track’s sampled
set ¢. This particular frame interval assumes a video frame rate of 24 fps and ensures, in most cases,
that there is a significant change in either facial pose and/or expressions through the track duration.

3.3 TASK OBJECTIVE FORMULATION

Following (Gong et al.| (2019); Wu et al.| (2013a)), we consider a set of all detected tracks within a
given video, which can be denoted by 7" = {t;|j = 1,2,...., N} for a set of N tracks. The face
clustering objective can be defined as assigning an unique cluster id d for each track t;, where all
tracks with the same id belong to an unique facial identity in the set 7. Note that the ground truth
number of clusters is undefined. More formally,

d .
i = {-1,1,2,..}, V5 ={1,2,..., N}, Q)

where d = —1 indicates the Unknown face cluster. This cluster represents tracks with the majority
of their faces flagged as failures in any of the previously mentioned face attributes tests or if the face
ID model was uncertain about it. The latter case is detailed in Section 3.6

3.4 SELF SUPERVISED MODEL FINETUNING

To adapt a large-scale pre-trained face ID model to a specific set of faces, we incorporate the notion
of finetuning the model for that face track set. Traditional supervised finetuning would require
human supervision, i.e. ground truth labels, which can be tedious depending on the number of
tracks involved. To alleviate this problem, several approaches in the domain of self-supervised
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feature learning (SSL) have recently been proposed [van den Oord et al. (2018)); [Tian et al.| (2020);
He et al|(2020);[Chen et al.|(2020). Especially interesting are methods that only use positive pairs for

contrastive-based learning|Grill et al| (2020);/Zhou et al.| (2022b). Inspired by[Zhou et al.|(2022a)), we

adopt a self-distillation-based SSL method that uses a teacher-student mechanism and positive pairs.

First, we modify the technique MLP head netunec wihbase |
tO perform ﬁnetuning rather than model weights frozen for initial few epochs
training from scratch. As shown in Student Branch - A I Graent
Fig. 3] given the pre-trained face- _/’ \c.assw
ID model, which has no specific ar- 55 Pl N I Vinihe
chitecture limitations, we attach a E.\ \
randomly initialized multilayer per- of student branch weights \
ceptron (MLP) as a model head. o N /W-_’I e okn
For a Transformer model architec- e oo o p _\\ R I Y

ture|Dosovitskiy et al.| (2021]), sepa- sampled from witin e

same/matched track(s) Teacher Branch
rate heads are attached for the class (modiied with randomnly

A ‘sampled augmentations) ! * Oy for ransformer archs
and patch token embeddings, re-
spectively. The base model with Figure 3: Self-Supervised Model Finetuning: Face crop pair sampled from within

the attached head(s) is duplicated same/matched track(s) is passed through a student and teacher branch, respectively. Gra-

. dients w.r.t. similarity loss are backpropagated only through the student branch, while
to create a teacher braHCh’ with the the teacher weights are updated as moving average of student weights. Random augmen-

original one designated as the stu- tations set includes horizontal flipping, rotation and color temperature variations.
dent branch.

MLP head
Teacher branch weights
updated as moving average

Second, image pairs are curated from each track’s sampled crop set. Images in a given pair are
first passed through a set of augmentations, then an embedding pair is obtained as the output of the
two constructed branches. We adopt a similarity loss to compare these embeddings, presented as
follows:

embed; — ¢

Lgg = —1 % softmax ( ) * log(so ftmax(embedy)), ()

temp

where embed; and embeds are the embeddings from teacher and student branches, respectively.
Here, c denotes a rolling average teacher embedding computed across training batches, and temp
is a fixed softening temperature. Respective loss gradients are backpropagated through the student
branch weights only, while the teacher branch weights are updated via a moving average of the stu-
dent weights at regular training intervals. Please refer Appendix [A3]for additional implementation
details.

As the branch heads are randomly initialized, each of the branch’s base model is frozen for an
initial training phase. First, the heads are updated separately, akin to the description above. Then,
both the base model and the heads are updated. Such a structured training regime encourages the
model branch heads to produce robust and consistent embeddings for a given facial identity across
the observed range of poses, expressions, lighting and appearance changes, thus improving overall
clustering performance for that specific video.

3.5 COARSE TRACK MATCHING

Since a given face track is limited to being within a shot, there is no significant variation in lighting
and/or face appearance across the track, which theoretically puts an upper bound on the model
learning capacity. However, for real-world scenarios such as those likely to be observed in movies
and TV series, such parameters can vary greatly throughout the video. To account for such variations
and facilitate further model learning, we perform fully automated coarse matching of tracks across
the entire dataset. Image pairs generated from such coarse-matched tracks enable the model to
better adapt to specific lighting and appearance variations encountered in a given face across the
entire dataset. This notion is supported by our experimental findings in Sectiondand Appendix [H]

For coarse track matching, we leverage multiple sampled crops of the same identity in a given face
track. To model this track crop distribution, we found empirically that fitting a multivariate normal
distribution on all track crop embeddings works the best. Mathematically, we adopt

Ny, (pey, X¢,) = (277)—d/2 * det(Et]_)—l/2 * exp (‘71(:0 — ut‘j)TEt_jl(a: — ,utj)> , 3
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where 41, € R? and ;, € R%*¢ are the mean and covariance matrix for the j'" face track, com-
puted using all its sampled face crop embeddings. Here, d denotes the number of dimensions of the
fitted distribution, which equals the dimension of track crop embeddings.

To automatically set a custom threshold value
for matching a given face track to other neigh-
boring tracks in the model learned embedding
space, we resort to the probability density func- 35
tion (pdf) values of a given track’s crop em-
beddings. Specifically, the pdf values of all
crop embeddings are computed w.r.t. their par- —

ent track’s fitted distribution using Eq. (3). We . = oo
. L) o
then consider the lowest 25% of these val- eose — '3'.'. —’ — \\ matched

Visualized model embedding space Multivariate gaussian fitted
for each track crop distribution

)
° . N
. . neighbouring track

ues and: compute Fhelr mean. ThlS'pI‘O.Vl(.ieS a S;:'Pe‘a;hcz':cl’;fcempdf Step 2: Select outlier Custom track matching ~ Step 3: Match other
customized matching threshold, which is illus- Wit fg | COPS it pdfvalues teshald visualzed - wracks by compuing

. N . . . . Gi ian iven tracl
trated as a ring around the track’s distribution in e given rack
Fig. E} To get coarse matches for a given track, Figure 4: Coarse Face Track Matching: A Multivariate Gaussian is
we compute a mean embedding for every other fitted to every track crop distribution. Then, a custom track match-

. . ing threshold is computed using outlier crops pdf values. Neighboring

dataset track and its (;‘OI"I‘CSpOIld:lIlg. p df value tracks having a mean pdf value higher than custom threshold are soft-
w.rt. the given track’s fitted distribution. If matched with the given track.
a neighboring track’s pdf value is equal to or
higher than that given track’s custom match threshold, then the track pair’s distributions have signif-
icant overlap, hinting at a strong face identity match.

Further, given coarse matches for every dataset face track, we curate face crop pairs across these
track matches for the next iteration of model finetuning. In particular, for each face crop in a given
track, we randomly sample a track from a set of its coarsely matched tracks. The image pair is
created by randomly sampling a crop from within the sampled track. We empirically found that
this image pairing mechanism works better than other more complex strategies such as thresholding
inter track euclidean/cosine distances. If a track has no coarse matches, then we create pairs from
within the same track.

3.6 TRACK FACE QUALITY ESTIMATION

In complex face identification scenarios, excluding bad quality crops/tracks becomes essential
for coarse track matching and final clustering. Bad face quality of a given track often relates to
model uncertainty, which can result in false track matches during the coarse matching phase or
wrong clustering in the final stage. To automatically estimate the face quality of track crops, we
adopt SER-FIQ [Terhorst et al.| (2020), which utilizes a dropout layer to determine consistency in
embeddings predicted by the model for multiple iterations of the same face crop input. For bad
quality crops, the learned model that is uncertain about them would predict embeddings with high
variance, thus resulting in a low-quality score.

To compute the face quality score for a given track (tqs), we adapt SER-FIQ to work on a track level
by obtaining scores for each track crop and averaging them. To detect bad quality tracks, we adopt
the median absolute deviation (MAD)|Leys et al.|(2013)) to detect roughly the lower 5% outlier tracks
based on dataset track score distribution and compute a threshold value. Please refer to Appendix [B]
for details. Low quality score tracks are filtered out from coarse track matching and final clustering
modules and label their final track cluster IDs as Unknown.

3.7 FINAL CLUSTERING

To cluster tracks across common identities, we utilize the SSL loss function in Eq. @) as an embed-
ding similarity metric. Prior works incorporate Euclidean or other pre-defined distance metrics to
compare model embeddings [Sharma et al.| (2019); [Tapaswi et al.| (2019). Our proposed metric has
significant benefit. A finetuned model’s embedding space is directly optimized w.r.t. this metric,
thus making it optimal for evaluating embedding similarity. As such, there are no implicit assump-
tions made about the space through generic distance functions. Unlike other methods that define a
global matching threshold [Defays| (1977)), our approach automatically computes a custom threshold
per face track, which measures how well the model has learned about that particular facial identity.
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Figure 5: Comparative t-SNE embedding visualizations |der Maaten & Hinton| (2008) on MovieFaceCluster:The Hidden Soldier dataset.
Left: Ground truth, Right: Our method. Each dot in the diagram above represents the finetuned model’s extracted embedding for a given face
crop I¢,, in a given track’s sampled crop set ¢. Face embeddings assigned to a given color constitute a single cluster. Our method predicts
almost perfectly the cluster designations (22 clusters) w.r.t. ground truth (21 clusters).

The proposed algorithm is described in Algorithm[I} We begin by creating all possible pair combi-
nations among sampled face crops within a given track. Here, we exclude tracks filtered out by the
track face quality estimation module described in Section[3.6] A pair’s similarity value is computed
via the loss metric by passing the respective face crops through each of the model branches. As
the loss metric is not commutative, a mean value is computed by alternatively sending both images
through each of the branches. A custom track matching threshold is set as the average of all curated
pair similarity values in the given track. This threshold represents quantitatively how well the model
matches face crops belonging to a given common facial identity since the crops are part of the same

track. We repeat this step for all tracks in the dataset.

The next stage comprises of merging tracks in a
bottom-up approach, akin to Hierarchical Agglom-
erative Clustering (HAC) |Defays| (1977). Initially,
each track is assigned an individual cluster, and
tracks are iteratively merged if they satisfy a match-
ing criterion. It involves creating all pairwise com-
binations of face crops across both tracks for a given
candidate pair of tracks. Given the similarity (loss)
value for every crop pair combination, taking a mean
across them provides a matching potential value for
that candidate track pair. If this match potential is
lower than either of the track’s custom match thresh-
olds, then the track pair is considered a positive
match. This process is repeated for all possible track
combinations in the dataset. All positively matched
pairs are searched for common tracks so that they
can be combined together into a bigger cluster. For
example, if track pair 1,2 and 2,3 are matched, then
tracks 1, 2, and 3 are combined together. This entire
matching process is run in an iterative fashion. For
later iterations, where clusters could have more than
one track, mean track embeddings are considered
instead of a combined set of face crops for cluster
pair matching, to avoid exponentially growing match
computations. The algorithm terminates when no
new clusters are merged in the new iteration.

4 RESULTS

We present our experimental analysis on popular
benchmark datasets and our curated movie dataset.

Algorithm 1: Face Track Clustering

Input:

Filtered Face Tracks T' = {t;| j = 1,2,..., N}
Sty =A{Ity, Ity, ... Ity | tn =12 % n+ f1},

finetuned model ¢ 7, Similarity metric S

Stage 3.1 (Compute track crop embedding set):
for t; in T do
for I, int; do
| Etn «— 05e(Ity,)

end
tie = {Et;, Bty, ..., Be, }
end
Te = {tig, t2E, .- -tNE}
Stage 3.2 (Compute custom track threshold):

for t;p in T do
Simyp = {S(Ey,, Et,,) ¥V (I, m) € "Ca}
Thresy; «— Trwan(SimtjE)

end

Tinres = {Threst,, Thresi,, ..., Thres; }

Stage 3.3 (Perform track clustering):
Initialize
i=0,C={C; ={t;p}Vji=12..,N}
repeat
for C; in C do
for Cy in Cifk # j do
Simjk <
mean({S(tjr,,tkE,)
Y (a,b) € "Ca})
if Simjp, < Threstj/ Threst,
then
| Cj «— merge(Cy,Cy)
end
end

end
C = link merges (C)

N¢,; = ClusterCount(C)

Repeat Stage 2 for new merged cluster set C
i=1+1
until chﬂ — Nci7

1 =0

Output: Clustered track IDs C'
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4.1 BENCHMARK DATASETS

Following prior work [Bduml et al.|(2013)); Tapaswi et al.| (2019); |Sharma et al.| (2019), we evaluate
our proposed method on TV series episodes of Big Bang Theory (BBT) and Buffy The Vampire
Slayer (BVS), specifically the first six episodes of BBT season 1 and BVS season 5, respectively.
BBT is a TV series with primarily indoor setting, a cast of 5~8 different characters and 625 average
face tracks per episode. Here, all shots include wide-angle scenes, and faces are relatively small. The
most common face ID challenges are pose and lighting variations. BVS poses different challenges.
The main cast comprises 12~ 18 characters, and there are 919 average face tracks per episode. Shots
are mainly captured outdoors, and scenes are dark. It also has more close-up shots and, thus, larger
face sizes. Detailed statistics on these datasets are shown in Tab. 1 in [Biuml et al.| (2013). To
compare against previous methods, we use the same face detection, tracking, and clustering labels
as provided in [Tapaswi et al.[(2019); Sharma et al.|(2019)). Tab. compares our method with state-
of-the-art methods on BBT and BVS, respectively.

4.2 METRICS

We define two primary metrics at face  ygemoa BBT Episode BVS Episode
: : STET | Combined| SSEZ bi
track 'level for evaluating v1deoi face e b ! L !
clustermg performance, name]y Welghted MLR[Bauml et al.|(2013] 95.18 83.71 61.27 66.37
. HMRF[Wau et al.|{2013b) - - 50.30 -
Cluster Purity/Accuracy (WCP) and Pre-  waSLRRiXuo ctal. (2014} - - 6270
. . . Zhang et al.[(2016b} - - 92.10
dicted Cluster Ratio (PCR). WCP is de- TSiam{Sharma et al.|(2019} 96.40 - 92.46
3 1 1 SSiam|Sharma et al.[(2019] 96.20 - 90.87 -
fined as the fra(.:non of common identity BCL[Tapaswi et al. |(2010] 9863 | 89.63 | 79.76 | 83.62
tracks in a predlcted cluster, Welghted by CP-SSC[Somandepalli & Narayanan|(2019) - - 65.20 -
MvCorr|Somandepalli et al. [(2021] 97.70

the cluster track count. PCR is the ratio =5 T
between the predicted cluster and ground

truth cluster count. Note that a ratio closer Table 1: WCP/Clustering Accuracy on BBT Season 1 and BVS Season 5. The

1i s Kk . - results on all six episodes combined are presented in column 2 and 4 for BBT
to 1 is deemed better. Here “Unknown” is and BVS respectively. *Note that here, we use ArcFace-R100 [Deng et al.

considered as a separate ground truth clus-  2019) as our pre-trained base model.
ter if available.

99.72 9735 | 99.10

4.3 MOVIE DATASET

Mainstream movies present challenges for face clustering due to extreme pose, illumination, and
appearance variations. Considering the lack of significant benchmark datasets in the academic re-
search community, we present a new movie benchmark dataset named MovieFaceCluster, con-
taining a collection of movies, hand-selected by film post-production specialists, with unique face
clustering challenges. Refer to Appendix [E| for additional details on the dataset. Given the set of
movies, we run the preprocessing mentioned in Section [3.2]to obtain a specific track dataset for each
movie. We hand-label each track with an ID using the main character cast from that track’s parent
movie. Also, false detections and extreme unidentifiable tracks are pre-filtered out using the track
face quality estimation module mentioned in Section [3.6] Tab. [2] provides detailed statistics on this
curated dataset.

Tab. [2] also compares our method to other similar state-of-the-art approaches on this benchmark to
provide empirical evidence of our algorithm’s effectiveness, specifically for extremely challenging
cases. We achieve the best cluster accuracy (WCP) and predicted cluster ratios closest to 1 for all
individual movies. Fig. [5] additionally shows a t-SNE plot visualization of our learned embeddings
for one of our dataset movie and Fig. [T]illustrates some hard case clustered tracks using our proposed
method on MovieFaceCluster dataset.

Movie
Statistics An Armed Angel Death American The Under The SM.ART. || Total
Elephant’s Response Of The Do Us Fright Fortress The Hidden Chase
Journey (2019) Skies Part (2019) Fest Shadow Soldier

Track Count 562 119 319 395 457 917 143 594 113 3619

Character Count 18 | 14 29 7 37 | 64 9 21 10 209

Avg. Track Length (secs) 3.625 2912 4.064 4.775 3.702 5.357 5.458 4.058 5.190 4.349

Method Weighted Cluster Accuracy (%) & Pred Cluster Ratio (Pred / GT)
TSiam|Sharma et al.[2019 90.7 & 1.44 849& 136 | 77.1&0.62 | 929 & 1.57 | 89.3&0.83 | 68.6 & 0.69 | 71.8 & 2.11 | 90.7 & 1.33 | 79.6 & 1.70
SSiam|Sharma et al.[(2019) 88.1 & 1.61 86.6& 121 | 755&0.59 | 944 & 1.28 | 86.2&0.78 | 71.1 & 0.73 | 68.3 & 2.33 | 88.7 & 1.24 | 82.3 & 1.80
Zhang et al.|(2016b 91.4 & 1.33 852&1.50 | 73.4&0.62 | 90.8&0.71 | 91.5&0.86 | 653 &0.77 | 73.1 &2.00 | 92.6 & 1.19 | 85.8 & 1.70
Ours [ 972&111 94.1&0.93 [ 85.9&0.72 [ 98.0 & 1.14 [ 97.6 & 0.92 893 & 1.02 | 82.5 & 1.88 [ 98.5 & 1.04 | 93.83 & 1.50 ||

Table 2: Top: Statistics on our MovieFaceCluster Benchmark Dataset. Bottom: Quantitative comparisons on each individual movie. All
computed results are based on incorporating ArcFace-R100|Deng et al.|(2019) as the pre-trained base model. We outperform SoTA methods
w.r.t. cluster accuracy and predicted cluster ratio. For implementation details on comparative methods please refer to AppendixE]
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5 ABLATIVE ANALYSIS
We ablate the central components of our method and analyze limitations and future directions.

Model Finetuning We ablate on the effectiveness of finetuning a generic face ID model to a
given set of face tracks as part of our proposed method. Tab. 3] provides a comparison of clustering
performance with and without using the model finetuning module. Note that our proposed final
clustering algorithm depends on the similarity metric learned during the finetuning stage. As such,
to compare both methods in a fair way, we adopt a common baseline clustering algorithm, i.e., HAC
with average linkage and cosine distance metric. Performing model finetuning results in roughly 6%
increase in cluster accuracy, which underlines its usefulness.

Final Clustering Algorithm We further ablate on the performance of our final clustering approach
vs. baseline algorithm, i.e., HAC with average linkage and cosine distance metric in Tab. 4| Here,
we keep the model finetuning stage constant in all methods to compare fairly. As for HAC, we take
the mean of a given track’s sampled crop embeddings to obtain a representative track embedding.
We further ablate on the loss function as a similarity metric. Specifically, we compare our final
clustering algorithm with using Euclidean and Cosine distances as similarity metrics. Our approach
involving the loss metric outperforms all other methods.

Generic face ID Model Architectures In Tab.[5] we ablate on our approach’s generalization ca-
pabilities to incorporate any generic face ID model, fairly agnostic to its architecture class. Specifi-
cally, we compare some prominent face ID models from both Convolutional Neural Network (CNN)
and Transformer architecture classes incorporated as part of our method, against using them (w/o
finetuning) along with baseline clustering method (HAC). Regardless of the incorporated face ID
model, our finetuning method provides roughly a 5 ~ 12% performance boost, which underlines
our method’s capability to adapt to and improve any generic face ID model.

Clustering | Similarity Cluster Cluster

Method Cluster Algorithm Metric Accuracy Ratio Face ID Model 'C. lus}.er Acé“(r‘s%) -
A“g“‘”” ] i (%) (Pred/GT) FaRL-P16[Zheng ot al.[(2022] 787 90.2
el NomFimtmad e Bascline [ Cosine 9152 [ 143(30720) VGGFace-R30/Cao et al [(2015) | 842 | 95.7
o ‘“eF'.( on-Pinetuned) | 2680 (HAC) ) ArcFace-R100[Deng et al.|(2019) | 86.1 98.5
ma-d ) = Ours Cosine 9370 | 2.0(42/21) AdaFace-R100[Kim ctal.|(2022] | 86.9 | 98.4
Ours Euclidean 96.50 3.5(74/21) =
S . o Ours Loss Func. 98.50 1.04 (22/21)
Table 3:  Ablation for model . .
f . . Table 5: Ablation for various base face ID
netuning module, using

ArcFace-R100 as the base model.
Experiments are performed on
MovieFaceCluster: The Hidden
Soldier dataset and HAC as final
clustering algorithm.

Table 4: Ablation for final clustering algorithm,
compared with baseline HAC, and using pre-
defined metrics within our algorithm. Experi-
ments are performed on MovieFaceCluster: The
Hidden Soldier dataset and using ArcFace-R100

models incorporated in our method. We per-
form comparisons using our proposed method
and pre-trained model + baseline cluster-
ing (HAC). Experiments are performed on
MovieFaceCluster: The Hidden Soldier
dataset.

as base model.

Limitations and Future Work Usage of a generic face ID model means that any pre-existing
model biases may also be propagated through our method. For example, if the generic model has
learned an incorrect similarity between two distinct facial identities, then our algorithm might adapt
to it and provide a false positive cluster for that given pair. A future direction could be to auto-
matically detect such biases, such that a given pair’s embeddings are specifically pulled apart. This
could be done by incorporating an outlier detection technique based on pair similarity values for
a cluster’s tracks. Also, given that we finetune on a set of face tracks, it might not be optimal for
real-time applications depending on the track set size. A future extension of our work could be to
perform clustering on person rather than face bounding boxes, so that clustering is based on addi-
tional body cues rather than just focusing on the facial features. Comprehensive movie datasets such
as MovieNet Huang et al.|(2020) could be used to train large-scale pretrained models for the same.

6 CONCLUSION

We present a novel video face clustering algorithm that specifically adapts to a given set of face
tracks through a fully self-supervised mechanism. This helps the model better understand and adapt
to all observed variations for a given facial identity across the entire video without any human-in-
the-loop label guidance. Our fully automated approach at video face clustering specifically helps
avoid any sub-optimal solutions that maybe induced from non-intuitive user-defined parameters. In
addition, using a model-learned similarity metric over generic distance functions helps provide state-
of-the-art video face clustering performance over other competing methods. Extensive experiments
and ablation studies on our presented comprehensive movie dataset and traditional benchmarks un-
derline our method’s effectiveness under extremely challenging real-world scenarios.
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A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE

As part of our method, any CNN or Transformer architecture can be incorporated as the base Face
ID model. For the attached MLP head, we incorporate a 3-layer network with GELU activation
Hendrycks & Gimpel| (2016). The length of the head’s output feature embedding is kept the same
as the base model’s embedding length. Unnormalized model output embeddings are used for both
training and the final clustering stage. Also, teacher branch head weights are initialized separately
from their student counterpart. When using a transformer class base model, the head is shared
between the class and path token embeddings in both student and teacher branches respectively

(Fig.[3).

A.2 DATA PRE-PROCESSING

Generation of tracks as part of given video dataset curation for finetuning and/or clustering purposes
involves processing the video through the four stage pipeline mentioned in detail in Section[3.2] To
further augment variations in a sampled face crop pair, ’global’ and ’local’ views are created from
the original crops. Specifically, crops are randomly resized and cropped with a scale between 0.7 and
1.0 to create multiple global crops, while a scale between 0.4 and 0.6 provides local crop variants.
Given a total of 6 views for each non-cropped original pair, we set the global and local crop count to
2 and 4 respectively. The loss for a given non-cropped original pair is computed using all possible
pairs within each global and local crop group separately. We further apply horizontal flipping and
color temperature variations as additional augmentations.

Face alignment is performed for each face crop prior to the model finetuning and final clustering
stages, in order to further enhance model learning of facial features and in turn for better face clus-
tering performance. For this, a given face crop is first resized to the pre-trained model’s expected
input image size. Then, five point face landmarks are predicted for that crop (we incorporate the
landmarks provided as an auxiliary output by the face detection model RetinaFace | Deng et al.|(2020)
as we empirically find them to be quite accurate). Given the facial landmarks, a similarity transform
is computed w.r.t. a mean landmark template. An affine warp is then computed to align the face
within the face crop.

A.3 MODEL FINETUNING

For the initial finetuning iteration, we train the model for 30 epochs. Note that the first 10 epochs
are dedicated to finetuning the branch heads. All subsequent iterations include 10 training epochs
without individual head training stages since the heads aren’t randomly reinitialized for every new
iteration. The teacher branch weights are updated with the exponential moving average of the student
branch weights after every epoch. We adopt AdamW optimizer Loshchilov & Hutter| (2019) and an
initial learning rate (Ir) of 1 x 10~%. We use cosine decay scheduling and reduce the Ir to a final
value of 1 x 10~°. The initial Ir is linearly warmed up for the first 5 epochs for each iteration from
a starting value of 5 x 1075, Experiments were conducted using a Nvidia A10 GPU with 24 GB
VRAM, running CUDA 12.0, with code implemented in PyTorch 1.13 [Paszke et al.| (2019). For
finer details on the loss function and training hyperparameters, please refer to|Zhou et al.|(2022a)).

A.4 BASELINE METHODS IMPLEMENTATION DETAILS

Implementation for TSiam and SSiam Sharma et al. (2019) The methods were implemented in
Pytorch 1.13 |Paszke et al.|(2019). For a fair comparison with other methods, we utilize ArcFace-
R100 Deng et al.| (2019) instead of VGGFace2 |Cao et al.| (2018)) as the base Face ID model. Since
finer details on training hyperparameters are unavailable, we assume standard values for batch size
(32 for TSiam) and training epochs (100). Besides, no image augmentations are added during train-
ing. We remark that we generate results on the MovieFaceCluster dataset tracks, excluding any bad
face quality tracks that the original method struggles to cluster. A global threshold which was empir-
ically deemed to be optimal for the entire MovieFaceCluster dataset was set as the cut-off threshold
for HAC clustering module. For additional implementation details (which weren’t modified in our
implementation), please refer to|Sharma et al.| (2019).

14



Under review as a conference paper at ICLR 2024

Implementation for Joint Face Representation and Adaptation Zhang et al.[(2016b) The ap-
proach was implemented in Pytorch 1.13 [Paszke et al.| (2019). For a fair comparison with other
methods, we adopt ArcFace-R100 Deng et al.| (2019) instead of DeepID2+ Sun et al.| (2015) as
the base Face ID model. We implement a Markov Random Field (MRF) approach in Python from
scratch for face clustering. For additional implementation details (which weren’t modified in our
implementation), please refer to|/Zhang et al.| (2016b).

B ADDITIONAL DETAILS FOR TRACK QUALITY ESTIMATION

Threshold value for filtering out bad face quality tracks For a given set of IV tracks, a quality
score threshold is computed as follows:

thres(tqs(N)) = tqs(N) — (2.7 x MAD(tqs(N))) 4)

where tgs(t,) is the face quality score computed for the nt" track using technique detailed in Sec-
tion 3.6} tqs(N) = {tgs(t1),tqs(tz),....,tqs(t;)} ¥ j = {1,2..,N}. Tracks having score lower
than thres(tgs(NN)) are filtered out from both coarse track matching and final clustering modules.
The value of 2.7 was empirically found to work well for removing bad quality tracks from a wide
range of movie track sets.

C ALGORITHM PSEUDO-CODE

We present the pseudo-code of the different steps in our algorithm in Algorithm[2] Mentioned stage
numbers correspond to Fig. 2]

Algorithm 2: VideoClusterNet

Input:
Face Tracks T" = {t;| j = 1,2,..., N}

Sty ={lt;, Ity, - It, | fnt1 — fn = 12} (obtained from stage 1)
pretrained model 0,,,, cluster iterations total iters

Stage 2: Self Supervised model finetuning

0s,0¢ «— replicate(6,,)

0s +— 05 + attach head(0})

0t <— 0 + attach head(0},)

Ttrittered =T, Tem = None

for i in total iters do
0s,,0¢, «— finetune model(0s, ,,0t, |, Tfittercd, Tem)
Tyq +— face quality estimation(T,05,)
Ttittered <— filter outliers(T,Tyq)
Tem +— track coarse matching(0s;, Trittered)
9” — Hsi

end

Stage 3: Fully Automated Face Track Clustering

Tpq <— face quality estimation(T, 05¢)

Ttittered <— filter outliers(T,Tyq)

C «— cluster tracks(Triitered, O5t)

Output: Clustered track IDs C'

D ADDITIONAL RESULTS FOR BBT AND BVS DATASETS

Method BVS Episode
Method BBT Episod SSET [ S5E2 [ SSE3 | S5E4 [ SSE5 [ S5E6 | Combined
etho Episode . HMRF|Wu ct al.{2013b] — 503 | - - - - -
S 2615; STEZ | STE3 | SIE4 | SIES | STEG | Combined WBSL Rty Tl e
TSic e | S078 | - - - - - TSiam|Sharma et al. (2019 - | 9246
lamg ETTEXHEN, > SSiam/Sharma et al. (2019 - 90.87
SSiam|Sharma et al. 2019 | 96.2 | - - - - - - CP-SSCRoma T T N a1 50 10| 652
MLR[Biuml et al {2013] | 95.18| 94.16| 77.81| 79.35| 79.93| 75.85| 83.71 "Mvco‘ém;‘gn;"n“cie'pam:{‘2"}“‘"2“(')‘,)‘]* s
BCL[Tapmwictal P0T9) | 98.63| 98.5¢ 5061 8695 | 89.12] 81.07| 8963 L 290l et | 6660l 67071 6959 | 6172|6637
gﬁm gg-zg ?,3'?5 gfgg 3?’?3 32‘23 gg;g ggzg BCL[Tapaswi et al. (2019 92.08| 79.76 | 84.00 | 84.97| 89.05| 80.58| 83.62
’ S e ’ - Oursx 96.30| 99.10] 98.70 97.43] 99.00] 96.78| 98.10
Ourst 93.30| 94.50| 94.40 91.18| 9240| 9321 91.32

Table 6: WCP/Clustering Accuracy on BBT Season 1. Here

* / 1 denote not including / including filtered out tracks as an  Table 7: WCP/Clustering Accuracy on BVS Season 5. Here x / {

incorrect cluster, respectively. Note that we adopt ArcFace-  denote not including / including filtered out tracks as an incorrect cluster,

R100[Deng et al| (2019) as our pre-trained base model. respectively. Note that we use ArcFace-R100 [Deng et al| (2019) as our
pre-trained base model.
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E MOVIEFACECLUSTER DATASET CURATION

The MovieFaceCluster dataset provides challenging face ID tracks within a set of hand-selected
mainstream movies. These challenges involve large variations in pose, appearance, illumination and
occlusions that are unavailable in any generic movie face ID datasets. To the best of our knowledge,
this is the most comprehensive Video Face Identification dataset for movies to be open sourced. It
consists of a total of 3619 face tracks across 209 different identities spanning nine movies. Each
constituent movie has an unique set of characteristics in terms of number of characters, average
track length, character age, ethnicity, and background environments, among other factors. Please
refer to Tab. [8]for further specific details on it.

Movie / TV Series | Specific Face ID chall
An Elephant’s Journey (2019) Bright outdoor scenes, American cast
Armed Response Low light scenes, facial occlusions with military helmets,sunglasses etc., African American
and Middle Eastern Cast
Angel Of The Skies Unique heavy occlusions with oxygen masks in bright settings
Death Do Us Part (2019) Low light scenes, Extreme facial expressions like screaming, Extreme poses, Rapid
movements, African American Cast
American Fright Fest Facial occlusions like see through masks, sunglasses, extreme poses
The Fortress Facial occlusions like headgear, Large main cast with primarily Asian characters
Under The Shadow Low light scenes, Middle Eastern Cast
The Hidden Soldier Low Light scenes, Asian Cast
S.M.A.R.T. Chase Extreme lighting in some scenes, Asian Cast
Big Bang Theory (SIE01-06) Mainly Indoor scenes in constant well lit environments, American cast
Buffy The Vampire Slayer (SSE01-06) Overall darker scenes, American Cast

Table 8: Specific Face ID challenges presented by each movie, as part of MovieFaceCluster dataset and literature benchmark datasets

Ground truth data is provided in form of tracks and face box spatial locations corresponding to
a global movie frame index, w.r.t. a specific frame rate. These tracks are generated using the
preprocessing module explained in detail in Section[3.2] As part of this processing stage, any bad
quality tracks are discarded from the dataset. Also, each dataset movie consists of a mix of main and
secondary characters. We remark that an unique face identity, which has at least two good quality
tracks, is included as part of the movie dataset.

F VIDEO FACE CLUSTERING DATASET COMPARISON

In order to provide evidence to the uniqueness and advantages of our proposed MovieFaceCluster
dataset compared to existing literature, in Tab. [9] we present a comparison across some dataset at-
tributes that are critical for the face clustering task. In Fig.[6] we present a dataset percent histogram
comparison across face crop quality scores computed per dataset track using a large scale pretrained
Face ID model (ArcFace-R100Deng et al|(2019)). Similarly in Fig.[7] we present a dataset percent
histogram comparison for face crop parameters that are highly relevant for face clustering, namely
scene lighting and face blur level. Scene lighting values are estimated as the average of lightness (L)
parameter values in a given face crop image converted to HLS space. Face crop blur is estimated
using a Singular Value Decomposition (SVD) based method|Su et al.|(2011)). Significant differences
weren’t observed in face pose attribute across all datasets.

Dataset Face Quality Score Distribution Comparison
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Figure 6: Comparison of track face crop quality score distributions across The Big Bang Theory (BBT), Bufty, The Vampire Slayer (BVS) and
our MovieFaceCluster dataset. For a given dataset, face crop quality score is computed for each of its constituent track. It is estimated as the
average of scores calculated for a given track’s sampled crop set (using SER-FIQ |Terhorst et al.|(2020) and ArcFace-R100|Deng et al.|(2019)
as the pre-trained model for extracting embeddings). The distribution mean is relatively lower for our MovieFaceCluster dataset compared to
other benchmark datasets, along with more bias towards lower quality score interval - 0.66 to 0.7. This provides empirical evidence towards
our dataset containing more challenging cases for face clustering due to lower face quality scores.
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Attribute
Dataset TV series Unique Track Count | Unique ethnicity (other than | Avg. Track Face
episode/Movie characters ‘White/Caucasian) (cast Quality Score 71
percentage)
SOI1EO1 6 647 A (Minor) 0.7193
SO01E02 5 613 A (Minor) 0.7108
The Big Bang SO01E03 7 562 A (Minor) 0.7094
Theory (BBT) SO1E04 8 568 A (Minor) 0.7140
SO1E05 6 463 A (Minor) 0.7177
SO01E06 6 651 A (Minor) 0.7111
Average: 6.33 Total: 3504 Unique Count: T (A) Average: 0.7136
SOSEO1 12 786 None 0.7090
SO05SE02 13 866 None 0.7117
Buffy The SO05E03 14 1185 None 0.7150
Vampire Slayer SO5E04 15 852 None 0.7125
(BVS) SO5E05 15 733 None 0.7081
SO05E06 18 1055 None 0.7142
Average: 14.5 Total: 5477 Unique Count: 0 Average: 0.7120
An Elephant’s Journey 18 562 None 0.7112
Armed Response 14 119 AA (Major), ME (Major) 0.7085
Angel Of The Skies 29 319 None 0.7150
Death Do Us Part (2019) 7 395 AA (Major) 0.7177
MovieFaceCluster American Fright Fest 37 457 AA (Minor) 0.7098
The Fortress 64 917 A (Major) 0.6918
Under The Shadow 9 143 ME (Major) 0.7134
The Hidden Soldier 21 594 A (Major) 0.7056
S.M.AR.T. Chase 10 113 A (Major) 0.7110
Average: 23.22 Total: 3619 T Unique Count: 3 (A,AAME) | Average: 0.7062

Table 9: Specific dataset attribute comparisons across BBT, BVS and our MovieFaceCluster dataset. A: Asian, AA: African American, ME:
Middle Eastern characters. { Only tacks that contained decent quality face crops were added as part of each movie dataset. Bad face crop
quality and background character tracks were discarded. {1 Score computed as average of all track crop quality scores as part of a given
TV series episode/movie. A given track quality score is computed as average of quality scores for each of its sampled crops, using SER-FIQ

[Terhrst et al] (2020) and ArcFace-R100[Deng et al|(2019) as the pre-trained model for extracting embeddings. A lower average quality score

would mean that the given dataset contains on average more challenging cases for face clustering

Dataset Scene Lighting Distribution Comparison
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Figure 7: Dataset attribute histogram comparisons for scene lighting and face bluriness across The Big Bang Theory (BBT), Buffy, The
Vampire slayer (BVS) and our MovieFaceCluster dataset. Each respective dataset attribute is computed per track, taken as average of each of
its sampled crops attributes. For Scene Lighting, MovieFaceCluster has higher distribution variance compared to literature datasets, with more
bias towards darker lighting (values have positive correlation to amount of track scene lighting). For Face Blur, MovieFaceCluster has higher
sample count in 0.65 to 0.75 value range compared to literature datasets, providing evidence of having higher level of bluriness in track face
crops (Blur values have negative correlation to amount of blur present in face crops).
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With reference to Tab. [0 our proposed MovieFaceCluster dataset has on average lot more unique
character faces and significantly better cast racial diversity. Also, it manages to obtain a much lower
average face quality score, alluding to the fact that our dataset contains on average more challenging
data samples w.r.t. face clustering/identification task. Fig. [6] further strengthens this argument by
providing evidence of higher percent of dataset tracks having lower face quality scores within our
dataset. In addition, Fig. [/] signifies, firstly that MovieFaceCluster has higher variance in scene
lighting across its face samples with bias towards lot darker scenes which helps provide harder
scenarios for face clustering. Secondly, for facial blur, our dataset has higher count of track samples
with larger amount of facial blur compared to literature datasets, which again helps provide more
challenging scenarios for face clustering.

G TRAINING AND EVALUATION TIMINGS

Our proposed algorithm comprises two main stages from a computation standpoint: 1) Model SSL
finetuning and 2) Final clustering. Tab.[I0] presents run times of each of these stages for each movie
of MovieFaceCluster dataset.

Movie
Statistics An Armed Angel Death American The Under The SM.ART. Average
Elephant’s Response Of The Do Us Fright Fortress The Hidden Chase (Per
Journey(2019) Skies Part (2019) Fest Shadow Soldier Track)
Track Count 562 119 319 395 457 917 143 594 113 -
Finetuning Iterations 5 6 5 8 10 9 6 S5 5 =
Model Finetuning (mins) 193.76 ‘ 38.45 110.16 397.24 298.41 ‘ 645.06 57.21 307.12 48.19 ‘ 0.579
Final Clustering (secs) 66.36 6.74 28.42 40.82 61.94 167.32 13.93 81.32 9.13 0.132

Table 10: Training iteration count and runtimes for SSL finetuning and final clustering computed on MovieFaceCluster dataset. Here, the
training iteration count represents the SSL finetuning iteration at which the process was terminated, and final clustering was performed.

H SSL FINETUNING ITERATION ABLATION

This section provides ablation results for the Self-  SSL Finetuning | Accuracy/ WCP | Pred Cluster Ratio/

Supervised Learning (SSL) finetuning iteration pa- Horation 5(2%; L P%ﬁ;g'(el‘é//z ]G)T)
rameter, performed on the MovieFaceCluster:The 2 72.12 0.571 (12/21)
Hidden Soldier dataset. Our overall experiments ; ot 1000 a1t
showed that a minimum of 5 iterations are required 5 99.50 1.048 (22/21)
. . .. . . . X 5
to obtain optimal results. Additional few iterations ? 33_3; ;835 Eggg};
(e.g., 2 or 3) are necessary for harder datasets. This g 3328 123 82@:;
is assuming the first iteration is run for about 30 10 99.41 1238 (26121

epochs, with each succeeding one comprising 10

CpOChS. For iteration 10 and above, our method Table 11: Ablation for SSL finetuning iterations parameter,
ioh 1 he d . . find b presented for MovieFaceCluster:The Hidden Soldier dataset.

might OVC'I‘—C' uster t e ataset, 1.c., lt. Il 'S sub- Finetuning until iteration 5 provides optimal results in terms of

clusters within the optimal clusters, optimizing for both metrics.

variants of a given character. Note that the first SSL

finetuning iteration involves image pair generation from within the same track only. For all succeed-

ing iterations, image pairs are generated across coarse-matched tracks, facilitated through the coarse

track matching process detailed in Section [3.5]
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I ADDITIONAL T-SNE VISUALIZATIONS

Figs. [8] to [T0] present additional t-SNE learned embedding visualizations for select movies that are
part of the MovieFaceCluster dataset.

T-SNE embedding visualization - Ground Truth T-SNE embedding visualization - Predicted
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Figure 8: Comparative t-SNE embedding visualizations on MovieFaceCluster:An Elephant’s Journey dataset. Left: Ground truth, Right:
Our method. Each dot in the diagram above represents the finetuned model’s extracted embedding for a face crop I¢,, in a given track’s
sampled crop set ¢. Face embeddings assigned to a given color constitute a single cluster.
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Figure 9: Comparative t-SNE embedding visualizations on MovieFaceCluster:Death Do Us Part dataset. Left: Ground truth, Right: Our
method. Each dot in the diagram above represents the finetuned model’s extracted embedding for a face crop I¢,, in a given track’s sampled
crop set t. Face embeddings assigned to a given color constitute a single cluster.
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Figure 10: Comparative t-SNE embedding visualizations on MovieFaceCluster:American Fright Fest dataset. Left: Ground truth, Right:
Our method. Each dot in the diagram above represents the finetuned model’s extracted embedding for a face crop I¢,, in a given track’s
sampled crop set t. Face embeddings assigned to a given color constitute a single cluster.
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J  ADDITIONAL HARD CASE CLUSTER VISUALIZATIONS

Fig. presents an additional selection of hard case cluster results obtained with our proposed
method on the MovieFaceCluster dataset.

Varying Parameter
@ Pose @ Lighting @ (Partial) Occlusion @ Expression @ Facial Appearance Change

Figure 11: Select hard case clusters obtained through our proposed method on MovieFaceCluster dataset. The term “varying parameter”

depicts the dominant image attributes that are particularly challenging for a given face crop. It isn’t part of the available dataset annotations but
simply mentioned for enhanced reader understanding.
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