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Abstract

Model-agnostic meta-learning (MAML) is one of the most popular and widely1

adopted meta-learning algorithms nowadays, which achieves remarkable success2

in various learning problems. Yet, with the unique design of nested inner-loop and3

outer-loop updates which govern the task-specific and meta-model-centric learning4

respectively, the underlying learning objective of MAML still remains implicit and5

thus impedes a more straightforward understanding of it. In this paper, we provide a6

new perspective of the working mechanism of MAML. We discover that MAML is7

analogous to a meta-learner using a supervised contrastive objective function, where8

the query features are pulled towards the support features of the same class and9

against those of different classes, in which such contrastiveness is experimentally10

verified via an analysis based on the cosine similarity. Moreover, we reveal that the11

vanilla MAML algorithm has an undesirable interference term originating from the12

random initialization and the cross-task interaction. We therefore propose a simple13

but effective technique, zeroing trick, to alleviate such interference, where extensive14

experiments are then conducted on both miniImagenet and Omniglot datasets to15

demonstrate the consistent improvement brought by our proposed technique thus16

validating its effectiveness.17

1 Introduction18

Humans can learn from very few samples. They can readily establish their cognition and understand-19

ing to novel tasks, environments, or domains even with very limited experience in the corresponding20

circumstances. Meta-learning, a subfield of machine learning aims at equipping machines with such21

capacity to effectively accommodate new scenarios [1, 2]. Machines learn to extract task-agnostic22

information so that their performance on unseen tasks can be improved [3].23

One highly influential meta-learning algorithm is Model Agnostic Meta-Learning (MAML) [4],24

which has inspired numerous follow-up extensions [5, 6, 7, 8, 9, 10]. MAML estimates a set of25

model parameters such that an adaptation of the model to a new task only requires some updates to26

those parameters. We take the few-shot classification task as an example to review the algorithmic27

procedure of MAML. A few-shot classification problem refers to classifying samples from some28

classes (i.e. query data) after seeing a few examples per class (i.e. support data). In a meta-learning29

scenario, we consider a distribution of tasks, where each task is a few-shot classification problem30

and different tasks have different target classes. MAML aims to meta-train the base-model based on31

training tasks (i.e., the meta-training dataset) and evaluate the performance of the base-model on the32

testing tasks sampled from a held-out unseen dataset (i.e. the meta-testing dataset). In meta-training,33

MAML follows a bi-level optimization scheme composed of the inner loop and the outer loop, as34

shown in Algorithm A (please refer to Section 2 for detailed definition). In the inner loop (also35

known as fast adaptation ), the base-model θ is updated to θ′ using the support set. In the outer36

loop, a loss is evaluated on θ′ using the query set, and its gradient is computed with respect to θ to37

update the base-model. Since the outer loop requires computing the gradient of gradient , it is called38
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second-order MAML (SOMAML). To prevent computing the Hessian matrix, [4] proposes first-order39

MAML (FOMAML) that uses the gradient computed with respect to θ′ to update the base-model.40

The widely accepted intuition behind MAML is that the models are encouraged to learn a general-41

purpose representations which are broadly applicable not only to the seen tasks but also to novel42

tasks [4, 11, 12]. [11] confirms this perspective by showing that during fast adaptation, the majority43

of changes made are in the final linear layers, while the convolution layers (as the feature encoder)44

remain almost static. This implies the models trained with MAML learn a good feature representation45

and that they only have to change the linear mapping from features to outputs during the fast46

adaptation . Similar ideas of freezing feature extractor during the inner loop have also been explored47

in [13, 14, 15], and has been held as assumption in theoretical works such as [16, 17, 18].48

While this intuition sounds satisfactory, we further ask the most fundamental questions: (1) In what49

sense does MAML guide any model to learn general-purpose representations? (2) And how do the50

inner loop and outer loop in the training mechanism of MAML collaboratively prompt to achieve so?51

(3) What is the role of the support and query data and how do they, if any, interact with each other?52

In this paper, we answer these questions and give new insights on the working mechanism of MAML,53

which turns out to be closely connected to supervised contrastive learning (SCL)1.54

Figure 1: A step-by-step illustration showing the SCL objective underlying MAML. Assume the
linear layer w0 to be zero, we find that, during the inner loop, the ith column of w0 is added with
the support features of class i. In the outer loop, the output of a query sample is the inner product of
φ(q1) and w1, which is essentially the inner product of the query features and all the support features.
Thus, MAML displays the characteristic of supervised contrastiveness, where the support set acts as
the positive and negative samples.

Here, we provide a sketch of our analysis in Figure 1. We consider a setting of (a) a 5-way 1-shot55

paradigm of few-shot learning, (b) the mean square error (MSE) between the one-hot encoding of56

1We use the term supervised contrastiveness to refer to the setting of using groundtruth label information
to differentiate positive samples and negative samples [19]. This setting is different from (unsupervised/self-
supervised) contrastive learning.
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groundtruth label and the outputs as the objective function, and (c) MAML with a single inner-loop57

update. At the beginning of the inner loop, we set the linear layer w0 to zero. Then, the inner loop58

update of w0 is equivalent to adding the support features to w0. In the outer loop, the output of a59

query sample q1 is actually the inner product between the query feature φ(q1) and all support features60

(the learning rate is omitted for now). As the groundtruth is an one-hot vector, the encoder is trained61

to either minimize the inner product between the query features and the support features (when they62

are from different classes, as shown in the green box), or to pull the inner product between the query63

features and the support features to 1 (when they have the same label, as shown in the red box). Under64

this derivation, the inner loop and the outer loop together manifest a SCL objective. Particularly, as65

the vanilla implementation of MAML uses non-zero (random) initialization for the linear layer, we66

will show such initialization leads to a noisy SCL objective which would impede the training.67

In this paper, we present a more general case of MAML with cross entropy loss and show the68

underlying learning protocol of the vanilla MAML algorithm as an interfered SCL in Section 2. We69

then experimentally verify the supervised contrastiveness of MAML, and proposed to mitigate the70

interference with our simple but effective technique of the zero-initialization and zeroing trick (cf.71

Section 3). In summary, our main contributions are three-fold:72

• We show that MAML is an implicitly SCL algorithm and that the noise comes from the randomly73

initialized linear layer and the cross-task interaction, compromising the capability of the encoder.74

• We verify the inherent contrastiveness of MAML based on the cosine similarity analysis.75

• We experimentally validate our analysis and show that applying the zeroing trick induces a76

notable improvement in testing accuracy during training. We also show that during meta-testing, a77

pronounced increase in accuracy occurs when the zeroing trick is applied.78

2 Why MAML is Implicitly a Noisy Supervised Contrastive Algorithm?79

2.1 Preliminary: Supervised Contrastive Learning80

In [19], supervised contrastive learning (SCL) is described as “contrasts the set of all samples from81

the same class as positives against the negatives from the remainder of the batch” and “embeddings82

from the same class are pulled closer together than embeddings from different classes.” For a sample83

s, label information is leveraged to indicate positive samples (i.e., samples having the same label as84

sample s) and negative samples (i.e., samples having different labels to sample s). The loss of SCL is85

designed to increase the similarity (or decrease metric distance) of embeddings of positive samples86

and to decrease the similarity (or increase the metric distance) of embeddings of negative samples87

[20, 21, 19]. In essence, SCL combines supervised learning and contrastive learning, and it differs88

from supervised learning in that the loss contains a measurement of the similarity or metric distance89

between the embedding of a sample and embedding of its positive/negative sample pairs.90

Now we give a formal definition of SCL. For a set of N samples drawn from a n-class dataset. Let91

i ∈ I = {1, ..., N} be the index of an arbitrary sample. Let A(i) = I \ {i}, P (i) be the set of indices92

of all positive samples of sample i, and N(i) = A(i) \ P (i) be the set of indices of all negative93

samples of sample i. Let zi indicates the embedding of sample i.94

Definition 1 Let Msim be a measurement of similarity (e.g., inner product, cosine similarity). Train-95

ing algorithms that adopt loss of the following form belong to SCL:96

LSCL =
∑
p∈P (i)

c−pMsim(zi, zp) +
∑

n∈N(i)

c+nMsim(zi, zn) + c (1)

where c−p < 0 and c+n > 0 for all n and p, and c is a constant independent of samples. A training97

algorithm that follows Eq.(1), but with either (a) c+n < 0 for some n or (b) c is a constant dependent98

of samples, belongs to noisy SCL.99

2.2 Problem Setup100

We provide the detailed derivation to show that MAML is implicitly a noisy SCL, where we101

adopt the few-shot classification as the example application. Consider drawing a batch of tasks102
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{T1, . . . , TNbatch} from a meta-training task distribution D. Each task Tn contains a support set103

Sn and a query set Qn, where Sn = {(sm, tm)}Nway×Nshotm=1 , Qn = {(qm, um)}Nway×Nquerym=1 ,104

sm, qm ∈ RNin are data samples, and tm, um ∈ {1, ..., Nway} are labels. We denote Nway the num-105

ber of classes in each task, and {Nshot, Nquery} respectively the number of support and query samples106

per class. The architecture of our base-model comprises of a convolutional encoder φ : RNin → RNf107

(parameterized by ϕ), a fully connected linear head w ∈ RNf×Nway , and a Softmax output layer,108

where Nf is the dimension of the feature space. We denote the kth column of w as wk. Note that109

the base-model parameters θ consist of ϕ and w.110

As shown in Algorithm A, both SOMAML and FOMAML adopt a training strategy comprising the111

inner loop and the outer loop. At the beginning of a meta-training iteration, we sample Nbatch tasks.112

For each task Tn, we perform inner loop update using the inner loop loss (c.f. Eq. (2)) evaluated113

on the support data, and then evaluate the outer loop loss (c.f. Eq. (3)) on the updated base-model114

using the query data. In the ith step of the inner loop, the parameters {φi−1,wi−1} are updated to115

{φi,wi} using the multi-class cross entropy loss evaluated on the support dataset Sn as116

L{φi,wi},Sn = E
(s,t)∼Sn

Nway∑
j=1

1j=t[− log
exp(φi(s)>wj

i)∑Nway
k=1 exp(φi(s)>wk

i)
] (2)

After Nstep inner loop updates, we compute the outer loop loss using the query data Qn:117

L{φNstep ,wNstep},Qn = E
(q,u)∼Qn

[− log
exp(φNstep(q)>wu

Nstep)∑Nway
k=1 exp(φNstep(q)>wk

Nstep)
] (3)

Then, we sum up the outer loop losses of all tasks, and perform gradient descent to update the118

base-model’s initial parameters {φ0,w0}.119

In the following, we aim to show the noisy supervised contrastiveness entailed in MAM L’s objective120

function. To achieve this goal, we assume that the encoder φ is frozen during the inner loop. Without121

loss of generality, we consider a base-model trained with MAML with Nbatch = 1 and Nstep = 1,122

and we discuss the generalized version in Section 2.5. For simplicity, the kth channel softmax123

predictive output exp(φ(s)>wk
0)∑Nway

j=1 exp(φ(s)>wj
0)

( exp(φ(q)>wk
1)∑Nway

j=1 exp(φ(q)>wj
1)

) of sample s (q) is denoted as sk (qk).124

2.3 Inner Loop and Outer Loop Update of Linear Layer and Encoder125

In this section, we primarily focus on the update of parameters in the case of FOMAML. The full126

derivation and discussion of SOMAML are provided in Section B.127

Inner loop update of the linear layer. In the inner loop, the linear layer w0 is updated to w1 with a128

learning rate η as shown in Eq. (4) in both FOMAML and SOMAML. In contrast to the example in129

Figure 1, the columns of the linear layer are added with the weighted sum of the features extracted130

from support samples (i.e., support features). Compared to wk
0, wk

1 is pushed towards the support131

features of the same class (i.e., class k) with strength of 1− sk, while being pulled away from the132

support features of different classes with strength of sk.133

wk
1 = wk

0 − η
∂L{φ,w0},S

∂wk
0

= wk
0 + η E

(s,t)∼S
(1k=t − sk)φ(s) (4)

Outer loop update of the linear layer. In the outer loop, w0 is updated using the query data with a134

learning rate ρ. For FOMAML, the final linear layer is updated as follows.135

w′k
0

= wk
0 − ρ

∂L{φ,w1},Q

∂wk
1

= wk
0 + ρ E

(q,u)∼Q
(1k=u − qk)φ(q) (5)

Note that the computation of qk requires the inner-loop updated w1. Generally speaking, Eq. (5)136

resembles Eq. (4). It is obvious that, in the outer loop, the query features are added weightedly to the137

linear layer, and the strength of change relates to the output value.138

Outer loop update of the encoder. Using the chain rule, the gradient of the outer loop loss with139

respect to ϕ is given by
∂L{φ,w1},Q

∂ϕ = E(q,u)∼Q
∂L{φ,w1},Q

∂φ(q)
∂φ(q)
∂ϕ +E(s,t)∼S

∂L{φ,w1},Q
∂φ(s)

∂φ(s)
∂ϕ , where140
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the second term can be neglected when FOMAML is considered. Below, we take a deeper look at the141

backpropagated error of one query data (q, u) ∼ Q. The full derivation is provided in Appendix B.3.142

∂L{φ,w1},q

∂φ(q)
=

Nway∑
j=1

(qj − 1j=u)wj
0 + η E

(s,t)∼S
[−(

Nway∑
j=1

qjsj) + su + qt − 1t=u]φ(s) (6)

2.4 MAML is a Noisy Contrastive Learner143

Reformulating the outer loop loss for the encoder as a noisy SCL loss. We observe from Eq. (6)144

that the actual loss for the encoder (evaluated on a single query data (q, u) ∼ Q) is as follows:145

L{φ,w1},q =

Nway∑
j=1

(qj − 1j=u)wj
0>

stop gradient

φ(q) + η E
(s,t)∼S

[−(

Nway∑
j=1

qjsj) + su + qt − 1t=u]φ(s)
>

stop gradient

φ(q)
(7)

To better deliberate the effect of each term in the reformulated outer loop loss, we define the first146

term in Eq. (7) as interference term, the second term as noisy contrastive term, and the coefficients147

−(
∑Nway
j=1 qjsj) + su + qt − 1t=u as contrastive coefficients.148

Understanding the interference term. In the case of j = u, the outer loop loss forces the model to149

minimize (qj − 1)wj
0>φ(q). This can be problematic because (a) at the beginning of training, w0150

is assigned with random values and (b) w0 is added with query features of previous tasks as shown151

in Eq. (5). Consequently, φ(q) is pushed to a direction composed of previous query features or to a152

random direction, introducing an unnecessary cross-task interference or an initialization interference153

that slows down the training of the encoder. Noting that the cross-task interference also occurs at154

the testing period, since, at testing stage, w0 is already added with query features of training tasks,155

which can be an interference to testing tasks.156

Understanding the noisy contrastive term. When the query and support data have the same label,157

e.g., class 1, then the contrastive coefficient becomes−
∑Nway
j=2 qjsj−(1−q1)(1−s1) < 0, indicating158

the encoder is updated to maximize the inner product between φ(q) and the support features of class159

1. However, when the query and support data are in different classes, the sign of the contrastive160

coefficient can sometimes be negative. The outer loop loss thus cannot well contrast the query features161

against the support features of different classes, making this loss term not an ordinary SCL loss.162

To better illustrate the influence of the interference term and the noisy contrastive term, we provide163

an ablation experiment in Section B.7.164

Theorem 1 With the assumption of (a) no inner loop update of the encoder, FOMAML is a noisy SCL165

algorithm. With assumptions of (a) no inner loop update of the encoder and (b) a single inner-loop166

update, SOMAML is a noisy SCL algorithm.167

Proof: For FOMAML, both Eq. (7) (one inner loop update step) and Eq. (22) (multiple inner loop168

update steps) follows Definition 1. For SOMAML, Eq. (14) follows Definition 1.169

Introduction of the zeroing trick makes Eq. (7) SCL losses. To tackle the interference term and170

make the contrastive coefficients more accurate, we introduce the zeroing trick: setting the w0 to be171

zero after each outer loop update, as shown in Algorithm A. With the zeroing trick, the original outer172

loop loss (of FOMAML) becomes173

L{φ,w1},q = η E
(s,t)∼S

(qt − 1t=u)φ(s)>

stop gradient

φ(q)
(8)

The zeroing trick brings two nontrivial effects: (a) eliminating the interference term in Eq. (7); (b)174

making the contrastive coefficients follow SCL. For (b), since all the predictive values of support data175

become the same, i.e., sk = 1
Nway

, the contrastive coefficient becomes qt − 1t=u, which is negative176

when the support and query data have the same label, and positive otherwise. With the zeroing trick,177

the contrastive coefficient follows the SCL loss.178

Corollary 1 With mild assumptions of (a) no inner loop update of the encoder, (b) a single inner-loop179

update and (c) training with the zeroing trick (i.e., the linear layer is zeroed at the end of each outer180

loop), both FOMAML and SOMAML are SCL algorithms.181
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Proof: Both Eq. (8) and Eq. (14) follow Definition 1.182

The introduction of the zeroing trick makes the relationship between MAML and SCL more straight-183

forward. Generally speaking, by connecting MAML and SCL, we can better understand other184

MAML-based meta-learning studies. For example, [22] and [23] combine MAML and adversarial185

training by using adversarially perturbed query data in the outer loop to compute the outer loop loss,186

which, from our perspective, can be directly connected to using adversarially perturbed data for SCL.187

In Section 3, we experimentally validate this intuition and show that zero-initialization of w0,188

reduction in the initial norm of w0, or the application of zeroing trick can speed up the learning189

profile. This is applicable to both SOMAML and FOMAML.190

2.5 Generalization of our Analysis191

The analysis of the outer loop update of the encoder is derived under the condition of Nbatch = 1192

and Nstep = 1 in the inner loop. We include the full analysis in Appendix C while keeping the193

assumption of freezing encoder during the inner loop. This assumption can hardly be dropped because194

the behavior of the updated encoder is intractable. Moreover, the assumption of the frozen encoder is195

empirically reasonable since previous works of [11, 13, 14, 15] yield comparable performance with196

keeping the encoder fixed during the inner loop.197

3 Experimental Results198

3.1 Setup199

We conduct our experiments on the miniImagenet dataset [24, 25] and the Omniglot dataset [26]. For200

the results on the Omniglot dataset, please refer to Appendix E. For the miniImagenet, it contains201

84× 84 RGB images of 100 classes from the ImageNet dataset with 600 samples per class. We split202

the dataset into 64, 16 and 20 classes for training, validation, and testing as proposed in [25]. We do203

not perform hyperparameter search and thus are not using the validation data. For all our experiments204

of applying MAML into few-shot classification problem, where we adopt two experimental settings:205

5-way 1-shot and 5-way 5-shot, with the batch size Nbatch being 4 and 2, respectively[4]. The206

few-shot classification accuracy is calculated by averaging the results over 400 tasks in the test phase.207

For model architecture, optimizer and other experimental details, please refer to Appendix D.1.208

3.2 Cosine Similarity Analysis Verifies the Implicit Contrastiveness in MAML209

In Section 2, we show that the encoder is updated so that the query features are pushed towards the210

support features of the same class and pulled away from those of different classes. Here we verify211

this supervised contrastiveness experimentally. Consider a relatively overfitting scenario where there212

are five classes of images and for each class there are 20 support images and 20 query images. We fix213

the support and query set (i.e. the data is not resampled every iteration) to verify the concept that214

the support features work as positive and negative samples. Channel shuffling is used to avoid the215

undesirable channel memorization effect [9, 27]. We train the model using FOMAML and examine216

how well the encoder can separate the data of different classes in the feature space by measuring217

the averaged cosine similarities between the features of each class. The results are averaged over 10218

random seeds.219

As shown in the top row of Figure 2, the model trained with MAML0 learns to separate the features220

of different classes. Moreover, the contrast between the diagonal and the off-diagonal entries of the221

heatmap increases as we remove the initialization interference (by zero-initializing w0, shown in222

the middle row) and remove the cross-task interference (by applying the zeroing trick, shown in the223

bottom row). The result agrees with our analysis that MAML implicitly contains the interference224

term which can impede the encoder from learning a good feature representation.225

3.3 Zeroing Linear Layer at Testing Time Increases Testing Accuracy226

Before starting our analysis on benchmark datasets, we note that the cross-task interference can also227

occur during meta-testing. In the meta-testing stage, the base-model is updated in the inner loop using228

S and then the performance is evaluated using Q, where S and Q are drawn from a held-out unseen229

dataset. Recall that at the end of the outer loop (in meta-training stage), the query features are added230
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Figure 2: The supervised contrastiveness entailed in MAML manifests when zero initialization
or the zeroing trick is applied. The value in the heatmap is calculated by averaging the pairwise
cosine similarities between query features or between query features and support features. We
consider the setting of having randomly initialized w0 (top), zero-initialized w0 (middle), and the
zeroing trick (bottom), and experiment with various numbers of outer loop updates.

weightedly to the linear layer. In other words, at the beginning of meta-testing, the linear layer of the231

model is already added with the features of previous training tasks, which can drastically influence232

the performance on the unseen tasks. To validate this idea, we show that zeroing the linear layer at233

the beginning of the testing time increases the testing accuracy of the model trained with FOMAML.234

As illustrated in Figure 3, compared to directly entering meta-testing (i.e. the subplot at the left),235

additionally zeroing the linear layer at the beginning of each meta-testing time (i.e. the subplot at236

the right) increases the testing accuracy of the model whose linear layer is randomly initialized or237

zero-initialized (denoted by the red and orange curves, respectively). And the difference in testing238

performance sustains across the whole training session. In the following experiments, we evaluate239

the testing performance only with zeroing the linear layer at the beginning of the meta-testing stage.240

By zeroing the last linear layer, the potential interference brought by the prior (of the linear layer) is241

ignored. Then, we can focus on the capacity of the encoder in learning a good feature representation.

Figure 3: Using the zeroing trick at testing stage improves the testing accuracy. The left/right
subplot shows the performance of models without/with their w0 zeroed at the beginning of testing
time. The curves in red: w0 is randomly initialized. The curves in yellow: w0 is zeroed at
initialization. The curves in green: the models trained with the zeroing trick in the training stage.242

3.4 Single Inner Loop Update Suffices when Models are Trained with the Zeroing Trick243

In Eq. (4) and Eq. (17), we show that the features of the support data are added to the linear layer in244

the inner loop. Larger number of inner loop update steps can better offset the effect of interference245

brought by a non-zeroed linear layer. In other words, when the models are trained with the zeroing246

trick, a larger number of inner loop updates can not bring any benefit. We validate this intuition in247

Figure 4 under a 5-way 1-shot setting. In the original FOMAML, the models trained with a single248

inner loop update step (denoted as red curve) converge slower than those trained with update step249

of 7 (denoted as purple curve). On the contrary, when the models are trained with the zeroing trick,250

models with various inner loop update steps converge at the same speed.251

3.5 Effect of Initialization and the Zeroing Trick252

In Eq. (7), we observe an interference derived from the historical task features or random initialization.253

We validate our formula by examining the effects of (1) reducing the norm of w0 at initialization;254
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Figure 4: With the zeroing trick, a larger number of inner loop update steps is not necessary.
In MAML, a larger number of inner loop update steps yield better testing accuracy (refer to figure
at the leftmost), even with zeroing trick applied in the testing stage (refer to figure at the middle).
However, models trained using the zeroing trick do not show this trend (refer to the rightmost figure).

(2) applying the zeroing trick (i.e. zeroing w0 after each outer loop update) which forces the model255

to forget the information of previous query features. From Figure 5, the testing accuracy is higher256

when the norm of w0 at initialization is lower. Compared to random initialization, reducing the norm257

via down-scaling w0 by 0.7 yields visible differences in testing performance. As for the case of258

zeroingw0 per outer loop (the purple curve), the resultant testing accuracy outperforms that of the259

models with a randomly initialized w0. The results with SOMAML are shown in Figure 6.

Figure 5: Effect of initialization and the zeroing trick. Both reducing the norm of w0 and zeroing
w0 each outer loop increases the accuracy. The curves in red: models with w0 randomly initialized.
The curves in orange/green: reducing the norm of w0 at initialization by a factor of 0.7/ 0.5. The
curve in blue: w0 is zero-initialized. The curve in blue: models trained with the zeroing trick.

260

Figure 6: Both FOMAML and SOMAML benefit from the zeroing trick. We examine if reducing
or removing the interference can increase the testing performance in models trained with FOMAML
and SOMAML. The results suggest that SOMAML suffers from the interference term. Note that the
second subplots from the right shows lower testing performance of models trained with the zeroing
trick as compared to the zero-initialized model. This may result from the overfitting problem.

4 Conclusion261

In this paper, we perform an extensive study to demystify how the seminal MAML algorithm guides262

the encoder to learn a general-purpose feature representation and what is the interaction between263

the support and query set. Our analysis shows that MAML is implicitly a supervised contrastive264

learner using the support features as positive and negative samples to direct the update of the encoder.265

Moreover, we unveil an interference term hidden in the MAML algorithm originated from the random266

initialization and the cross-task interaction, which can impede the representation learning. Driven by267

our analysis, removing the interference term by a simple zeroing trick renders the model unbiased to268

seen or unseen tasks. With this zeroing trick, we show constant improvements in both the training269

and testing profiles, with experiments conducted on the miniImagenet and Omniglot datasets.270
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Appendix344

A Original MAML and MAML with the Zeroing Trick345

Algorithm 1 Second-order MAML
Require: Task distribution D
Require: η, ρ: inner loop and outer loop learning rates
Require: Randomly initialized base-model parameters θ

1: while not done do
2: Sample tasks {T1, . . . TNbatch} from D
3: for n = 1, 2, . . . , Nbatch do
4: {Sn, Qn} ← sample from Tn
5: θ′n = θ
6: for i = 1, 2, . . . , Nstep do
7: θ′n = θ′n − η∇θ′nLθ′n,Sn
8: end for
9: end for

10: Update θ ← θ − ρ
∑Nbatch
n=1 ∇θLθ′n,Qn

11: end while

Algorithm 2 First-order MAML
Require: Task distribution D
Require: η, ρ: inner loop and outer loop learning rates
Require: Randomly initialized base-model parameters θ

1: while not done do
2: Sample tasks {T1, . . . TNbatch} from D
3: for n = 1, 2, . . . , Nbatch do
4: {Sn, Qn} ← sample from Tn
5: θ′n = θ
6: for i = 1, 2, . . . , Nstep do
7: θ′n = θ′n − η∇θ′nLθ′n,Sn
8: end for
9: end for

10: Update θ ← θ − ρ
∑Nbatch
n=1 ∇θ′nLθ′n,Qn

11: end while
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Algorithm 3 Second-order MAML with the zeroing trick
Require: Task distribution D
Require: η, ρ: inner loop and outer loop learning rates
Require: Randomly initialized base-model parameters θ

1: Set w← 0 (the zeroing trick)
2: while not done do
3: Sample tasks {T1, . . . TNbatch} from D
4: for n = 1, 2, . . . , Nbatch do
5: {Sn, Qn} ← sample from Tn
6: θ′n = θ
7: for i = 1, 2, . . . , Nstep do
8: θ′n = θ′n − η∇θ′nLθ′n,Sn
9: end for

10: end for
11: Update θ ← θ − ρ

∑Nbatch
n=1 ∇θLθ′n,Qn

12: Set w← 0 (the zeroing trick)
13: end while

B Supplementary Derivation346

In this section, we provide the full derivations that supplement the main paper. We consider the347

case of Nbatch = 1, Nstep = 1 and the assumption of frozen encoder (no inner loop update for the348

encoder). We provide the outer loop update of the linear layer under SOMAML in Section B.1 and349

discuss the main difference in FOMAML and SOMAML in detail in Section B.2. Next, we offer the350

full derivation of the outer loop update of the encoder in Section B.3. Then, we reformulate the outer351

loop loss for the encoder in both FOMAML and SOMAML in Section B.4 and Section B.5. Finally,352

we show the performance of the models trained using the reformulated loss in Section B.6.353

B.1 The Derivation of Outer Loop Update for the Linear Layer Using SOMAML354

Here, we provide the complete derivation of the outer loop update for the linear layer. Using355

SOMAML with support set S and query set Q, the update of the linear layer follows356

w′0k = wk
0 − ρ

∂L{φ,w1},Q

∂wk
0

= wk
0 − ρ

Nway∑
m=1

∂wm
1

∂wk
0
·
∂L{φ,w1},Q

∂wm
1

= wk
0 − ρ∂wk

1

∂wk
0
·
∂L{φ,w1},Q

∂wk
1
− ρ

Nway∑
m 6=k

∂wm
1

∂wk
0
·
∂L{φ,w1},Q

∂wm
1

= wk
0 + ρ[I − η E

(s,t)∼S
(sk − s2k)φ(s)φ(s)T ] E

(q,u)∼Q
(1k=u − qk)φ(q)

+ ρη
∑
m 6=k

[ E
(s,t)∼S

(smsk)φ(s)φ(s)T ][ E
(q,u)∼Q

(1m=u − qm)φ(q)]

= wk
0 + ρ[I − η E

(s,t)∼S
skφ(s)φ(s)T ] E

(q,u)∼Q
(1k=u − qk)φ(q)

+ ρη

Nway∑
m=1

[ E
(s,t)∼S

(smsk)φ(s)φ(s)T ][ E
(q,u)∼Q

(1m=u − qm)φ(q)]

(9)

We can further simplify Eq. (9) to Eq. (10) with the help of the zeroing trick.357

w′0k = ρ[I − η E
(s,t)∼S

skφ(s)φ(s)T ] E
(q,u)∼Q

(1k=u − qk)φ(q) (10)

This is because the zeroing trick essentially turns the logits of all support samples to zero, and conse-358

quently the predicted probability (softmax) output sm becomes 1
Nway

for all channel m. Therefore,359

the third term in Eq. (9) turns out to be zero (c.f. Eq. (11)). The equality of Eq. (11) holds since the360
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summation of the (softmax) outputs is one.361

ρη

N2
way

Nway∑
m=1

[ E
(s,t)∼S

φ(s)φ(s)T ][ E
(q,u)∼Q

(1m=u − qm)φ(q)]

=
ρη

N2
way

[ E
(s,t)∼S

φ(s)φ(s)T ] E
(q,u)∼Q

φ(q)

Nway∑
m=1

(1m=u − qm) = 0

(11)

B.2 Discussion of the difference between FOMAML and SOMAML362

With the derivation of Eq. (10), we can turn to the difference in using SOMAML and FOMAML363

to update the linear layer. There are plenty of works dedicated to approximating or estimating the364

second-order derivatives in the MAML algorithm in a more computational-efficient or accurate365

manner [28, 29, 7]. However, most of them do not interpret the effect of the Hessian matrix. Here,366

we provide a new perspective that, for the final linear layer, the Hessian matrix is to inform the367

crowdedness of the feature space. For simplicity, we denote the matrix E(s,t)∼S skφ(s)φ(s)> as H .368

Figure 7: Illustration of the difference between
FOMAML and SOMAML in updating the linear
layer. In Eq. 5, the gradient of wk

0 is a weighted
sum of the support features (denoted as the red ar-
row). Regarding SOMAML, if w0 is zeroed, then
the gradient is preconditioned by I − ηH matrix.
In this figure, the support features predominantly
occupy the first and the third quadrant, thus the
eigenvector with the largest eigenvalue of the Hes-
sian matrix points at the [1, 1] direction. Then,
I − ηH matrix biases the gradient towards regions
of lower variance (denoted as the blue arrow).

To this end, we conduct an analysis here. Without loss of generality, we introduce a zero mean369

assumption: E(s,t)∼S φ(s) is a zero vector. Then, H is essentially a covariance matrix weighted by370

the predicted probability (softmax) output. Since a covariance matrix is positive semi-definite, we can371

decompose H into RΛR> where columns of R are the eigenvectors of H and the diagonal entries372

of Λ are the eigenvalues of H . Recall that in the Pricipal Component Analysis (PCA) algorithm,373

larger eigenvalues of the covariance matrix indicates larger variance of the features projected onto374

the corresponding eigenvector. Consequently, the term ρR(I − ηΛ)R> generally preconditions the375

gradient (i.e. E(q,u)∼Q(1k=u − qk)φ(q)) to the eigen-directions whose variances are relatively small.376

This preconditioner helps the features to avoid the crowdedness and to explore the subspace of smaller377

variance. We illustrate the concept of such preconditioning in Figure 7.378

B.3 The Full Derivation of the Outer Loop Update of the Encoder.379

As the encoder φ is parameterized by ϕ, the outer loop gradient with respect to ϕ is given by380
∂L{φ,w1},Q

∂ϕ = E(q,u)∼Q
∂L{φ,w1},Q

∂φ(q)
∂φ(q)
∂ϕ + E(s,t)∼S

∂L{φ,w1},Q
∂φ(s)

∂φ(s)
∂ϕ . We take a deeper look at the381

backpropagated error
∂L{φ,w1},Q

∂φ(q) of the feature of one query data (q, u) ∼ Q, based on the following382

form:383

−
∂L{φ,w1},Q

∂φ(q)
= wu

1 −
Nway∑
j=1

(qjwj
1) =

Nway∑
j=1

(1j=u − qj)wj
1

=

Nway∑
j=1

(1j=u − qj)wj
0 + η

Nway∑
j=1

[1j=u − qj ][ E
(s,t)∼S

(1j=t − sj)φ(s)]

=

Nway∑
j=1

(1j=u − qj)wj
0 + η E

(s,t)∼S
[(

Nway∑
j=1

qjsj)− su − qt + 1t=u]φ(s)

(12)
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B.4 Reformulation of the Outer Loop Loss for the Encoder as Noisy SCL Loss.384

We can derive the actual loss (evaluated on a single query data (q, u) ∼ Q) that the encoder uses385

under FOMAML scheme as follows:386

L{φ,w1},q =

Nway∑
j=1

(qj − 1j=u)wj
0>

stop gradient

φ(q)− η E
(s,t)∼S

[(

Nway∑
j=1

qjsj)− su − qt + 1t=u]φ(s)>

stop gradient

φ(q)

(13)

For SOMAML, we need to additionally plug Eq. (4) into Eq. (3).387

L{φ,w1},q =

Nway∑
j=1

(qj − 1j=u)wj
0>

stop gradient

φ(q)− η E
(s,t)∼S

[(

Nway∑
j=1

qjsj)− su − qt + 1t=u]

stop gradient

φ(s)>φ(q)

(14)

B.5 Introduction of the zeroing trick makes Eq. (7) and Eq. (14) SCL losses.388

Apply the zeroing trick to Eq. (7) and Eq. (14), we can derive the actual loss Eq. (15) and Eq. (16)389

that the encoder follows.390

L{φ,w1},q = η E
(s,t)∼S

(qt − 1t=u)φ(s)>

stop gradient

φ(q)
(15)

391

L{φ,w1},q = η E
(s,t)∼S

(qt − 1t=u)

stop gradient

φ(s)>φ(q)
(16)

With these two equations, we can observe the essential difference in FOMAML and SOMAML: in392

FOMAML, the loss forces the query features to move closer to the support features of the same class;393

in SOMAML, the loss forces both the query and the support features of the same class to move closer394

to each other. This observation can explain why models trained with SOMAML generally converge395

faster. To simply wrap up, using the zeroing trick and considering a single update step in the inner396

loop, we show in Section B.2 and Section B.5, the explicit difference of FOMAML and SOMAML397

from the perspective of features.398

B.6 Explicitly Computing the Reformulating Loss Using Eq. (7) and Eq. (14)399

Under the assumption of no inner loop update of the encoder, we show that MAML can be reformu-400

lated as a loss taking noisy SCL form. Below, we consider a setting of 5-way 1-shot miniImagenet401

few-shot classification task under the condition of no inner loop update of the encoder. We empiri-402

cally show that explicitly computing the reformulated losses of Eq. (7), Eq. (15) and Eq. (16) yield403

almost the same curves as MAML (with the assumption of no inner loop update of the encoder).404

Please note that the reformulated losses are used to update the encoders, for the linear layer w0,405

we explicitly update it using Eq. (5). Note that although the performance models training using406

FOMAML, FOMAML with the zeroing trick, and SOMAML converge to similar testing accuracy,407

the overall testing performance during the training process is distinct. The results are averaged over408

three random seeds.409

B.7 The Effect of Interference Term and Noisy Contrastive Term410

Reformulating the loss of MAML into a noisy SCL form also enables us to further investigate the411

effects brought by the interference term and the noisy contrastive term. To investigate the effect of412

the interference term in Figure 9, we simply consider the loss in Eq. (7) with the interference term413

dropped (denoted as “ITF ×”). As for the noisy contrastive term, the noise comes from the fact414

that “when the query and support data are in different classes, the sign of the contrastive coefficient415

can sometimes be negative”, discussed in Section 2.4. To mitigate this noise, we consider the loss416

in Eq. (7) with dropping −(
∑Nway
j=1 qjsj) + su from the contrastive coefficient, and denote it as417
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Figure 8: Updating the encoder using the
reformulated outer loop loss. We experi-
mentally validate that the testing accuracy of
models trained using MAML (with no inner
loop update of encoder) consists with that us-
ing their supervised contrastive counterpart,
i.e., Eq. (7), Eq. (15) and Eq. (16).

“nCTT ×”. On the other hand, we also implement a loss with “ITF ×, nCTT ×", which is actually418

Eq. (8). We consider a setting of FOMAML with 5-way 1-shot few-shot learning problem on the419

miniImagenet. The results are averaged over three random seeds.420

In Figure 9, we show the testing profiles of the original reformulated loss (i.e., the curve in red,421

labeled as “ITF X, nCTT X”), dropping the interference term (i.e., the curve in orange, labeled as422

“ITF ×, nCTT X”), dropping the noisy part of the contrastive term (i.e., the curve in green, labeled423

as “ITF X, nCTT ×”) or dropping both (i.e., the curve in blue, labeled as “ITF ×, nCTT ×”). We424

can see that either dropping the interference term or dropping dropping the noisy part of contrastive425

coefficients yield profound benefit.426

Figure 9: The effect of the interference
term and the noisy contrastive term. We
perform an ablation study of the reformulated
loss in Eq. (7) by dropping the interference
term (denoted as “ITF”) or dropping the noisy
part in the noisy contrastive term (denoted as
“nCTT”). To better visualize the benefit, we
compare the testing accuracy in the inlet.

15



C A Generalization of our Analysis427

In this section, we derive a more general case of the encoder update in the outer loop. We consider428

drawing Nbatch tasks from the task distribution D and having Nstep update steps in the inner loop429

while keeping the assumption of frozen encoder in the inner loop.430

To derive a more general case, we use wk
i,n to denote the kth column of wi,n, where wi,n is updated431

from w0 using support data Sn for i inner-loop steps. For simplicity, the kth channel softmax432

predictive output exp(φ(s)>wk
i,n)∑Nway

j=1 exp(φ(s)>wj
i,n)

of sample s (using wi−1,n) is denoted as si,nk .433

Inner Loop Update for the Linear Layer We yield the inner loop update for the final linear layer434

in Eq. (17) and Eq. (18).435

wk
i,n = wi−1,n

k − η
∂L{φ,wi−1,n},Sn
∂wk

i−1,n = wk
i−1,n + η E

(s,t)∼Sn
(1k=t − si−1,nk )φ(s) (17)

436

wk
Nstep,n = wk

0 − η
Nstep∑
i=1

E
(s,t)∼Sn

(1k=t − si−1,nk )φ(s) (18)

Outer Loop Update for the Linear Layer We derive the outer loop update for the linear layer in437

SOMAML, with denoting I = {1, 2, ..., Nway}:438

w′k
0

= wk
0 − ρ

Nbatch∑
n=1

∂L{φ,wk
Nstep,n},Qn

∂wk
0

= wk
0 − ρ

Nbatch∑
n=1

∑
p0=k,p1∈I,...,pNway∈I

[(

Nstep−1∏
i=0

∂wpi+1
i+1,n

∂wpi
i,n

)
∂L{φ,wNstep,n},Qn
∂wpNstep

Nstep,n
]

(19)

When it comes to FOMAML, we have439

w′0k = wk
0 − ρ

Nbatch∑
n=1

∂L{φ,wk
Nstep,n},Qn

∂wk
Nstep,n

= w0
k + ρ

Nbatch∑
n=1

E
(q,u)∼Qn

(1k=u − qNstep,nk )φ(q)

(20)

Outer Loop Update for the Encoder We derive the outer loop update of the encoder under FO-440

MAML as below. We consider the back-propagated error of the feature of one query data (q, u) ∼ Qn.441
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Note that the third equality below holds by leveraging Eq. (17).442

−
∂L{φ,wNstep,n},Qn

∂φ(q)
= wu

Nstep,n −
Nway∑
i=1

(qNstep,ni wi
Nstep,n)

=

Nway∑
i=1

(1i=u − qNstep,ni )wi
Nstep,n

=

Nway∑
i=1

(1i=u − qNstep,ni )[w0
i + η

Nstep∑
p=1

E
(s,t)∼Sn

(1i=t − sp−1,ni )φ(s)]

=

Nway∑
i=1

(1i=u − qNstep,ni )w0
i

+ η

Nway∑
i=1

(1i=u − qNstep,ni )

Nstep∑
p=1

E
(s,t)∼Sn

(1i=u − sp−1,ni )φ(s)

=

Nway∑
i=1

(1i=u − qNstep,ni )w0
i

+ η E
(s,t)∼Sn

Nstep∑
p=1

[(

Nway∑
j=1

qNstep,nj sp−1,nj )− sp−1,nu − qNstep,nt + 1t=u]φ(s)

(21)

Reformulating the Outer Loop Loss for the Encoder as Noisy SCL Loss. From Eq. (21), we can443

derive the generalized loss (of one query sample (q, u) ∼ Qn) that the encoder uses under FOMAML444

scheme.445

L{φ,wNstep,n},q =

Nway∑
i=1

(1i=u − qNstep,ni )w0
i
>

stop gradient

φ(q)

+ η E
(s,t)∼Sn

Nstep∑
p=1

[(

Nway∑
j=1

qNstep,nj sp−1,nj )− sp−1,nu − qNstep,nt + 1t=u]φ(s)>

stop gradient

φ(q)

(22)

D Experiments on MiniImagenet Dataset446

D.1 Experimental Details in MiniImagenet Dataset447

The model architecture contains four basic blocks and one fully connected linear layer, where448

each block comprises a convolution layer with a kernel size of 3 × 3 and filter size of 64, batch449

normalization, ReLU nonlineartity and 2× 2 max-poling. The models are trained with the softmax450

cross entropy loss function using the Adam optimizer with an outer loop learning rate of 0.001 [30].451

The inner loop step size η is set to 0.01. The models are trained for 30000 iterations [11]. The452

results are averaged over four random seeds, and we use the shaded region to indicate the standard453

deviation. Each experiment is run on either a single NVIDIA 1080-Ti or V100 GPU. The detailed454

implementation is based on [31] (MIT License).455

D.2 The Zeroing Trick Mitigates the Channel Memorization Problem456

The channel memorization problem [9, 27] is a known issue occurring in a non-mutually-exclusive457

task setting, e.g., the task-specific class-to-label is not randomly assigned, and thus the label can be458

inferred from the query data alone [32]. Consider a 5-way K-shot experiment where the number of459

training classes is 5 × L. Now we construct tasks by assigning the label t to a class sampled from460
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class tL to (t+ 1)L. It is conceivable that the model will learn to directly map the query data to the461

label without using the information of the support data and thus fails to generalize to unseen tasks.462

This phenomenon can be explained from the perspective that the tth column of the final linear layer463

already accumulates the query features from tLth to (t+ 1)Lth classes. Zeroing the final linear layer464

implicitly forces the model to use the imprinted information from the support features for inferring465

the label and thus mitigates this problem. We use the miniImagenet dataset and consider the case of466

L = 12. As shown in Figure 10, the zeroing trick prevents the model from the channel memorization467

problem whereas zero-initialization of the linear layer only works out at the beginning. Besides, the468

performance of models trained with the zeroing trick under this non-mutually-exclusive task setting469

equals the ones under the conventional few-shot setting as shown in Figure 5. As the zeroing trick470

clears out the final linear layer and equalizes the value of logits, our result essentially accords with471

[9] that proposes a regularizer to maximize the entropy of prediction of the meta-initialized model.472

Figure 10: The performance of the models trained on non-mutually exclusive tasks. The models
are trained under a non-mutually exclusive tasks setting where there is a one-to-one assignment be-
tween class and channel. Under this circumstance, the zeroing trick tackles the channel memorization
problem and yields a performance similar to conventional few-shot settings.

E Experiments on Omniglot Dataset473

Omniglot is a hand-written character dataset containing 1623 character classes, each with 20 drawn474

samples from different people [26]. The dataset set is splitted into training (1028 classes), validation475

(172 classes) and testing (423 classes) sets [24]. Since we follow [4] for setting hyperparamters, we do476

not use the the validation data. The character images are resized to 28 × 28. For all our experiments,477

we adopt two experimental settings: 5-way 1-shot and 5-way 5-shot where the batch size Nbatch is 32478

and Nquery is 15 for both cases [4]. The inner loop learning rate η is 0.4. The models are trained for479

30000 or 20000 iterations using FOMAML or SOMAML, respectively. For channel memorization480

problem, the models are trained for 10000 iterations using FOMAML. The few-shot classification481

accuracy is calculated by averaging the results over 500 tasks in the test stage. The model architecture482

follows the architecture used to train on miniImagenet, but we substitute the convolution with max-483

pooling with strided convolution operation as in [4]. The loss function, optimizer, and outer loop484

learning rate are the same as the ones used in the experiments on miniImagenet. Each experiment is485

run on either a single NVIDIA 1080-Ti or V100 GPU. The results are averaged over four random486

seeds, and the standard deviation is illustrated with the shaded region. The models are trained using487

FOMAML unless stated otherwise. The detailed implementation is based on [33] (MIT License).488

We revisit the application of the zeroing trick at the testing stage on Omniglot in Figure 11 and489

observe the increasing testing accuracy, in which such results are compatible with the ones on mini-490

Imagenet (cf. Figure 3 in the main manuscript). In the following experiments, we evaluate the testing491

performance only after applying the zeroing trick.492

In Figure 12, the distinction between the performance of models trained with the zeroing trick and493

zero-initialized models is less prominent as compared to miniImagenet (cf. Figure 5 in the main494

manuscript) in 5-way 1-shot setting. This result can be explained by the larger inner loop learning495

rate η = 0.4 used in Omniglot. We also show the testing performance of models trained using496

SOMAML in Figure 13, where there is little distinction in performance (in comparison to the results497

on miniImagenet, cf. Figure 6 in the main manuscript) between the models trained with the zeroing498

trick and the ones trained with random initialization.499

For channel memorization task, we construct non-mutually-exclusive training tasks by assigning the500

label t (where 1 ≤ t ≤ 5 in 5-way setting) to a class sampled from class tL to (t+ 1)L where L is501

205 on Omniglot. The class-to-channel assignment is not applied to the testing tasks. The result is502

shown in Figure 14. For a detailed discussion, please refer to Section D.2 in the main manuscript.503
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Figure 11: Zeroing the final linear layer before testing time improves the testing accuracy on
Omniglot. The two subplots on the left: original testing setting. The two subplots at the right: the
final linear layer is zeroed before testing time. The curves in red: the models whose linear layer is
randomly initialized. The curves in yellow: the models whose linear layer is zeroed at initialization.
The curves in green: the models whose linear layer is zeroed after each outer loop at training stage.

Figure 12: Effect of initialization and the zeroing trick in testing accuracy on Omniglot. The
test performance of the models with reducing the initial norm of the weights of final linear layer
is similar to that with the final linear layer being zero-initialized. The distinction in performance
between models trained using the zeroing trick and zero-initialized model is more prominent in 5-way
5-shot setting.

Figure 13: The effect of the zeroing trick on models trained using FOMAML and SOMAML
on Omniglot. The results suggest that the effect of the zeroing trick is more prominent in models
trained with FOMAML and less visible when models are trained with SOMAML on Omniglot.
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Figure 14: The performance of the models trained on non-mutually exclusive tasks on Om-
niglot. The results are compatible to those on miniImagenet (cf. Figure 14 in the main manuscript),
suggesting that the zeroing trick alleviates the channel memorization problem. Besides, the testing
accuracy of the models trained on non-mutually exclusive task setting with the zeroing trick (i.e. the
green curves in Figure 14) is lower than that of the models trained on conventional few-shot setting
with the zeroing trick (i.e. the green curves in Figure 10), whereas in miniImagenet the distinction in
performance between the models trained on these two settings is relatively small.
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