MathSticks: A Benchmark for Visual Symbolic
Compositional Reasoning with Matchstick Puzzles

Yuheng Ji''?'3*, Huajie Tan>**, Cheng Chi®* Yijie Xu®®, Yuting Zhao''?, Enshen Zhou>°,
Huaihai Lyu"?3, Pengwei Wang®, Zhongyuan Wang?®, Shanghang Zhang®*™, Xiaolong Zheng>*
! Institute of Automation, Chinese Academy of Smences School of Artificial Intelligence,
University of Chinese Academy of Sciences > Beijing Academy of Artificial Intelligence
4 Peking University ® The University of Sydney ® Beihang University

Abstract

We introduce MATHSTICKS, a benchmark for Visual Symbolic Compositional
Reasoning (VSCR), which unifies visual perception, symbolic manipulation, and
arithmetic consistency. Each task presents an incorrect matchstick equation that
must be corrected by moving one or two sticks under strict conservation rules. The
benchmark includes both text-guided and purely visual settings, systematically
covering digit scale, move complexity, solution multiplicity, and operator variation,
with a full dataset of 1.4M generated instances. For standardized evaluation, we
release a balanced 400-item benchmark set. Evaluations of 14 vision-language
models reveal substantial limitations: closed-source models succeed only on simple
cases, open-source models fail in the visual regime, while humans exceed 90%
accuracy. These findings establish MATHSTICKS as a rigorous testbed for advanc-
ing compositional reasoning across vision and symbols. Our code and dataset are
publicly available athttps://github.com/Yuheng2000/MathSticks.

1 Introduction

Existing tasks in vision and reasoning often tackle only one dimension, such as visual perception,
reasoning, or arithmetic computation, without forming a unified challenge. To bridge this gap, we
introduce Visual Symbolic Compositional Reasoning (VSCR), which unifies all three by linking visual
perception with symbolic manipulation. VSCR requires models to recognize structured elements, plan
transformations under explicit constraints, and verify arithmetic consistency, reflecting core aspects
of everyday cognition. Yet current vision—language models (VLMs) struggle with symbol-level
understanding and constrained edits, while existing benchmarks remain limited. As summarized in
Tab. [T] they lack: (i) constrained symbolic manipulation with solvability guarantees; (ii) fine-grained
control of task settings and difficulty; and (iii) evaluation protocols isolating pure-visual reasoning.

rected by moving one or two sticks, enforcing both stick conservation

To close these gaps, we present MATHSTICKS, a benchmark built on
Move the matchsticks to
and arithmetic consistency. Two regimes are defined: a text-prompted |

matchstick arithmetic puzzles. Each task is an incorrect equation cor- ‘ make the equation valc:

setting, where the equation string is provided, and a pure-visual setting, Recognition
where only the rendered puzzle is shown (Fig.[I). This separation enables " recognize the equation:
diagnosis of symbolic reasoning versus visual parsing. The pipeline sys- i

tematically enumerates digit-level operations, validates solvability, and

O

Reasoning

move two matchsticks

generates 1.4M instances, from which a balanced evaluation set of 400 o turm 23 into 35
items is released. The benchmark spans digit scale (Levels 1-4), move 5 i
* Equal contribution. ® Corresponding authors. |] 5435240

Figure 1: Overview of
39th Conference on Neural Information Processing Systems (NeurIPS 2025). the MATHSTICKS task.

https://github.com/Yuheng2000/MathSticks

Table 1: Comparison of representative benchmarks across five key dimensions. Partial denotes
limited coverage in specific sub-tasks or without a unified protocol.

Benchmark Valid editing Executable check Difficulty slices Symbolic grounding Scale (~1M)
CLEVR [1] X v X partial X
CLEVR-Change [2] X X X X X
MathVista [3] X partial X partial X
AI2D [4] X X X partial X
ChartQA [5] X partial X partial X
TRANCE [6] v X partial partial X
VisualTrans [7] v X partial X X
MathSticks (Ours) v v v v v

complexity, solution multiplicity, and operator flipping, while avoiding extreme cases to ensure
human accessibility.

We evaluate 14 representative VLMs, including closed-source models (e.g., 03, Gemini 2.5 Pro) and
open-source families (Qwen2.5-VL, InternVL). Results show a clear capability gap: closed models
solve simple puzzles but falter on multi-move and operator-flip cases, open-source models score
near zero in the pure-visual regime, and humans consistently exceed 90% accuracy. This establishes
MATHSTICKS as a controlled, diagnostic testbed for advancing VSCR.

2 MathSticks

Task Definition. Each puzzle is an equation x = [a, ®, b, =,], ® € {+, —}, rendered in matchstick-
based seven-segment digits. The input is always an invalid equation. The objective is to relocate
k € {1, 2} sticks, without insertion or deletion, such that the corrected form satisfies a & b = c¢. This
formulation integrates three components: visual perception of digits and operators, planning of valid
symbolic transformations under strict constraints, and verification of arithmetic correctness.

For precise evaluation, every matchstick position is indexed at the segment level (e.g., AO-A6, BO-B6).
During evaluation, VLMs are required to output edits in a canonical format such as Move (A0, C3)
for single moves or Move (A0, C3), Move(E1l, F4) for two moves. This ensures that predictions
are machine-parsable, unambiguous, and directly verifiable against ground-truth solutions. Detailed
visual conventions are provided in Appendix B}

Categorization. To support fine-grained diagnosis, we annotate each instance along four axes:
(1) digit scale (Levels 1-4, from single- to two-digit operands), (ii) move complexity (1- vs. 2-
move solvability), (iii) solution multiplicity (unique vs. multiple), and (iv) operator flipping (sign-
changed vs. preserved). These factors yield seven diagnostic categories, with precise definitions and
illustrations deferred to the Appendix[E.2]

We acknowledge that stratifying difficulty solely by digit scale is a simplification. The true cognitive
difficulty can also be influenced by factors such as the visual ambiguity of potential moves or the
complexity of the required arithmetic. For instance, a single-digit puzzle requiring an operator
flip might be more challenging than a two-digit puzzle with a straightforward digit edit. A deeper,
empirically-driven analysis of difficulty metrics remains a valuable direction for future work.

Dataset Construction. We design a two-stage generation pipeline that guarantees both completeness
in the symbolic search space and fidelity in the rendered visual stimuli. (1) Symbolic enumeration:
each equation is represented as a 7-slot state and exhaustively explored under legal one- and two-stick
moves with stick conservation. Candidate edits are filtered by arithmetic validation, deduplicated
across move types, and labeled with diagnostic attributes (digit scale, move complexity, solution
multiplicity, operator flipping). (2) Visual rendering: each symbolic state is deterministically mapped
to an image via a template library of seven-segment digits and operator slots, ensuring one-to-
one correspondence between symbolic edits and visible stick relocations. This construction yields
~1.4M solvable instances with large-scale coverage and structured metadata. Algorithmic details
and pseudocode are provided in Appendix[C|

Dataset Statistics. The benchmark comprises 1,411,388 validated solvable instances. Difficulty is
highly skewed toward Level 4 (79.07%), with Levels 1-3 contributing 0.11%, 1.31%, and 19.51%,
respectively. Most instances require two-stick edits (82.01%), while one-stick solutions are rare

(4.18%); the remainder admit both one- and two-stick corrections (13.81%). Regarding solution
multiplicity, 43.12% of instances have a unique correction, whereas 56.88% admit multiple valid
corrections. For standardized and reproducible evaluation, we constructed the MATHSTICKS bench-
mark, a compact 400-item test set. This benchmark set is stratified evenly across Levels 1-4 (100
items per level) to ensure a balanced assessment of model capabilities across different difficulties.
All experiments reported in this paper, for both VLMs and humans, are conducted on this 400-item
benchmark. More detailed statistics are provided in Appendix

3 Experiments

3.1 Experimental Setup

Setup and Protocol. We evaluate models on the MATHSTICKS benchmark under two input regimes:
(i) text-prompted, where the symbolic equation string is explicitly provided; and (ii) pure-visual,
where only the matchstick image is given, requiring OCR and structural parsing before subsequent
reasoning. Each instance is further categorized into four difficulty levels (L1-L4), ranging from
equations composed entirely of single-digit operands to cases involving one or more two-digit
numbers. This hierarchy captures progressively greater visual and structural complexity. Additional
dimensions such as operation complexity, solution multiplicity, and operator flipping are included
for comprehensive diagnosis, with detailed breakdowns deferred to Appendix [E.2} The primary
evaluation metric is accuracy (%), computed per level and regime.

Human Evaluation. To provide a reference ceiling, we recruited three adult participants who
independently solved the full 400-item evaluation set under the pure-visual regime, where only
rendered matchstick equations were shown. Because digits and operators are visually unambiguous,
the same accuracies apply to the text-prompted regime. On average, participants exceeded 90%
accuracy with about one minute per problem, confirming the solvability of all tasks and highlighting
the gap to current models. Detailed per-level results and solution times are reported in Appendix [E.3]

Evaluated Models. We include both closed and open-source VLMs. For closed models, we
evaluate o3 [[8], Gemini 2.5 Pro [9], Gemini 2.5 Flash [9], GPT-04-mini [8]], Seed-1.6-Thinking [10],
Seed 1.6 [10], Claude Sonnet 4 [11], and GPT-4o0 [12]. For open-source models, we cover two
representative families: Qwen2.5-VL (7B, 32B, 72B) [13]and InternVL3 (8B, 38B, 78B) [14]. In
addition to the aggregate results reported here, we provide a fine-grained breakdown across difficulty
dimensions in Appendix [E.2]

3.2 Performance Analysis

The benchmark results in Tab. [2]reveal systematic differences across model families and input regimes,
as well as between human and model performance. These comparisons provide a structured view of
how current VLMs engage with symbolic constraints, and where the main performance gaps emerge.

Closed-source models substantially outperform open-source systems. Proprietary models attain
markedly higher accuracies, whereas open-source baselines remain at or near chance level across
both regimes. The effect is large and consistent across difficulty levels, underscoring the challenge
of structured reasoning for today’s open-source pipelines. As we detail in Sec.[3.3] this widespread
failure stems not just from incorrect reasoning but from a more fundamental inability to adhere to the
task’s symbolic rules and output structure.

Reasoning-optimized variants outperform their standard counterparts. Within the closed-
source group, models advertised as reasoning-enhanced achieve higher accuracy: 03 reaches 60.00%
compared with 0.00% for GPT-40; Gemini-2.5-Pro achieves 45.25% compared with 26.50% for
Gemini-2.5-Flash; Seed-1.6-Thinking reaches 21.50% compared with 3.25% for its base model.
These observations point to the importance of stepwise and structured reasoning mechanisms for
handling compositional edits.

03 exhibits the strongest overall performance. It attains the highest average accuracy (49.25%)
across regimes, followed by Gemini-2.5-Pro (33.88%). Its “thinking with image” paradigm, which
integrates visual parsing with multi-step symbolic reasoning, appears particularly effective for puzzles
requiring both perceptual discrimination and arithmetic verification.

Table 2: Results on the MathSticks Reasoning Benchmark. We report accuracy (%) across
difficulty levels under two regimes (w/ and w/o text prompt). The best results are in bold and the
second-best are underlined. T Human evaluation was conducted only under the pure-visual regime. Since
the rendered digits and operators are visually unambiguous, participants consistently recognized the equations
without error; thus, providing the equation string does not alter the task.

Model | MathSticks (w/ text prompt) | MathSticks (w/o text prompt)

‘ L1 L2 L3 L4 AVG ‘ L1 L2 L3 L4 AVG
Closed Models
03-250416 73.00 56.00 56.00 55.00 60.00 69.00 37.00 30.00 18.00 38.50
Gemini-2.5-Pro-250506 67.00 41.00 35.00 38.00 45.25 42.00 19.00 21.00 8.00 22.50
Gemini-2.5-Flash-250520 53.00 19.00 19.00 15.00 26.50 22.00 7.00 5.00 0.00 8.50
GPT-04-mini-250416 47.00 19.00 21.00 12.00 24.75 30.00 7.00 3.00 2.00 10.50
Seed-1.6-Thinking-250615 | 41.00 14.00 18.00 13.00 21.50 3.00 0.00 0.00 1.00 1.00
Seed-1.6-250615 8.00 1.00 1.00 3.00 3.25 2.00 0.00 0.00 0.00 0.50
Claude Sonnet 4 7.00 0.00 2.00 0.00 225 0.00 0.00 0.00 0.00 0.00
GPT-40-241120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Open-Source Models
Qwen2.5-VL-7B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen?2.5-VL-32B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-8B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-38B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-78B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Human Performance
Human' 95.00 9833 8583 8772 91.72+6.3 | 9500 9833 8583 8772 91.72+6.13

Explicit textual input yields consistent gains. Providing the equation string improves accuracy for
all models (e.g., 03 improves from 38.50% without text to 60.00% with text). Without text, models
must additionally perform OCR-like recognition of digits and operators, making perception a salient
bottleneck for end-to-end performance.

Humans maintain a clear advantage. Participants achieve an average accuracy of 91.72%, well
above the best model’s 49.25%. This confirms that the benchmark is readily solvable for humans,
while exposing persistent limitations of current VLMs in integrating perception and reasoning.

Overall, these results delineate a consistent pattern: while closed-source reasoning-enhanced models
make tangible progress, a wide gap remains to human-level strategies, which involve reliable multi-
stage reasoning that current systems cannot yet replicate.

3.3 Error Analysis

We identify five primary error types observed in model outputs. Each reflects a distinct weakness in
the perception—reasoning—output pipeline, illustrated with representative cases.

Perception errors. Models occasionally misread digits or operators in the seven-segment display. For
example, a common failure is confusing visually similar digits such as “5” and “6,” or overlooking
the short vertical bar required to distinguish “1” from *“7.” These errors reveal insufficient robustness
in low-level visual parsing when symbolic cues are absent.

Edit-planning errors. Some solutions violate the basic rules of matchstick manipulation, such as
proposing a move from a non-existent segment or implicitly adding an extra stick. These mistakes
suggest that models often lack an internalized notion of structural constraints governing legal edits.

Arithmetic-verification errors. In certain cases, models generate edits that produce an equation
which is visually valid but numerically incorrect. For instance, transforming 9 —3 = 5into9—-2 =5
satisfies the stick-move requirement but results in an arithmetically false statement. Such cases show
that models may stop at surface plausibility without executing a full arithmetic check.

Operator-handling errors. Another weakness arises in tasks requiring operator changes. For
example, when converting 7 4+ 2 = 9 into a valid form, some models attempt digit-level edits while
leaving the operator unchanged, or misplace the segment needed to form a minus. Although less
frequent than other error types, such mistakes directly undermine equation validity.

Output-format errors. Finally, several models deviate from the required structured output format
(e.g., Move (A0, C3)), instead producing free-form natural language such as “move the top stick
from the 9 to make it a 3.” These outputs prevent automatic evaluation even when the underlying
reasoning is partially correct.

Taken together, these error types align closely with the difficulty dimensions summarized in Ap-
pendix [E.2}—for instance, edit-planning errors are prevalent in two-stick puzzles, operator-handling
errors concentrate in flip cases, and perception errors intensify under pure-visual inputs.

Systemic Failures in Open-Source Models. A particularly striking finding of our study is the near-
total failure of open-source models across all tasks, a result that goes beyond simple performance
gaps. While stronger closed-source models typically fail due to one of the aforementioned error
types in isolation, our analysis reveals that open-source models often exhibit a cascade of these
failures simultaneously. For example, a representative response might correctly perform OCR on the
input equation but then proceed to propose an edit that violates conservation rules, follows a flawed
arithmetic chain, and is ultimately presented in an incorrect output format, as detailed with qualitative
examples in Appendix [E.2] This pattern of compound errors suggests their near-zero performance
stems not from isolated weaknesses in perception or reasoning, but from a more fundamental inability
to internalize the task’s constrained, procedural, and symbolic nature.

4 Conclusion

We introduced MATHSTICKS, a benchmark targeting visual symbolic compositional reasoning
(VSCR) through matchstick arithmetic puzzles. The benchmark enforces solvability guarantees,
provides stratified difficulty slices, and supports both text-prompted and pure-visual evaluation,
enabling controlled and diagnostic assessment. Experiments with 14 VLMs reveal that even strong
closed-source systems struggle with multi-step edits and operator flips, while open-source models
collapse in the pure-visual regime. Human participants, by contrast, exceed 90% accuracy. These
results highlight a substantial capability gap and establish MATHSTICKS as a compact yet challenging
testbed for future progress in perception—symbol reasoning.

Limitations and Future Work. We acknowledge that MATHSTICKS serves as a controlled testbed,
intentionally designed to isolate core symbolic and arithmetic reasoning mechanisms from the
complexities of unconstrained visual perception. A primary limitation therefore lies in its synthetic
nature. Evaluating how the compositional skills diagnosed by our benchmark generalize to in-the-
wild scenarios, which present diverse object styles, cluttered backgrounds, and varied perspectives,
remains a critical open question for future research. A related limitation pertains to our difficulty
stratification. While based on the intuitive factor of digit scale, this metric does not encompass the
full spectrum of cognitive complexity inherent in more naturalistic problems. Future work should
therefore aim to bridge this gap, both by extending the benchmark towards more varied and realistic
visual settings and by developing more granular, empirically-grounded difficulty metrics.

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grant Nos. 72225011,
72434005, and 62476011, as well as by the National Science and Technology Major Project (No.
2022ZD0117800).

References

[1] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2901-2910, 2017.

[2] Dong Huk Park, Trevor Darrell, and Anna Rohrbach. Robust change captioning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4624-4633, 2019.

[3] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical

(4]

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

reasoning of foundation models in visual contexts. In The Twelfth International Conference on
Learning Representations.

Tuomo Hiippala, Malihe Alikhani, Jonas Haverinen, Timo Kalliokoski, Evanfiya Logacheva,
Serafina Orekhova, Aino Tuomainen, Matthew Stone, and John A Bateman. Ai2d-rst: a multi-
modal corpus of 1000 primary school science diagrams. Language Resources and Evaluation,
55(3):661-688, 2021.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A
benchmark for question answering about charts with visual and logical reasoning. In Findings
of the Association for Computational Linguistics: ACL 2022, pages 2263-2279, 2022.

Xin Hong, Yanyan Lan, Liang Pang, Jiafeng Guo, and Xueqi Cheng. Transformation driven
visual reasoning. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition, pages 6903-6912, 2021.

Yuheng Ji, Yipu Wang, Yuyang Liu, Xiaoshuai Hao, Yue Liu, Yuting Zhao, Huaihai Lyu, and
Xiaolong Zheng. Visualtrans: A benchmark for real-world visual transformation reasoning.
arXiv preprint arXiv:2508.04043, 2025.

OpenAlL Openai 03 and o4-mini system card. https://openai.com/index/
introducing-o03-and-o04-mini/} 2025. Accessed: 2025-04-16.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seedl. 5-thinking: Advancing superb
reasoning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-02-25.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
Al Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

Shuanghao Bai, Wenxuan Song, Jiayi Chen, Yuheng Ji, Zhide Zhong, Jin Yang, Han Zhao,
Wangqi Zhou, Wei Zhao, Zhe Li, et al. Towards a unified understanding of robot manipulation:
A comprehensive survey. arXiv preprint arXiv:2510.10903, 2025.

Jincai Huang, Yongjun Xu, Qi Wang, Qi Cheems Wang, Xingxing Liang, Fei Wang, Zhao Zhang,
Wei Wei, Boxuan Zhang, Libo Huang, et al. Foundation models and intelligent decision-making:
Progress, challenges, and perspectives. The Innovation, 2025.

Chunjie Zhang, Chuankai Liu, Shaohua Duan, Xiaolong Zheng, Tianyi Yu, and Jitao Zhang.
Embodied cognitive intelligence guided moon sample collection. The Innovation, 2025.

Yuting Zhao, Yuheng Ji, Xiaoshuai Hao, and Shuxiao Li. Fastrsr: Efficient and accurate road
surface reconstruction from bird’s eye view. arXiv preprint arXiv:2504.09535, 2025.

Huaihai Lyu, Hantao Yao, and Changsheng Xu. Multiple local prompts distillation for domain
generalization. IEEFE Transactions on Multimedia, 2025.

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet

[20] Enshen Zhou, Qi Su, Cheng Chi, Zhizheng Zhang, Zhongyuan Wang, Tiejun Huang, Lu Sheng,
and He Wang. Code-as-monitor: Constraint-aware visual programming for reactive and proac-
tive robotic failure detection. arXiv preprint arXiv:2412.04455, 2024.

[21] Enshen Zhou, Jingkun An, Cheng Chi, Yi Han, Shanyu Rong, Chi Zhang, Pengwei Wang,
Zhongyuan Wang, Tiejun Huang, Lu Sheng, et al. Roborefer: Towards spatial referring with
reasoning in vision-language models for robotics. arXiv preprint arXiv:2506.04308, 2025.

[22] Huaihai Lyu, Chaofan Chen, Yuheng Ji, and Changsheng Xu. Egoprompt: Prompt pool learning
for egocentric action recognition. arXiv preprint arXiv:2508.03266, 2025.

[23] Songran Bai, Yuheng Ji, Yue Liu, Xingwei Zhang, Xiaolong Zheng, and Daniel Dajun Zeng. Al-
leviating performance disparity in adversarial spatiotemporal graph learning under zero-inflated
distribution. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
11436-11444, 2025.

[24] Zhe Li, Laurence T Yang, Xin Nie, BoCheng Ren, and Xianjun Deng. Enhancing sentence
representation with visually-supervised multimodal pre-training. In Proceedings of the 31st
ACM International Conference on Multimedia, pages 56865695, 2023.

[25] Zhe Li, Zhangyang Gao, Cheng Tan, Stan Z Li, and Laurence T Yang. General point model
with autoencoding and autoregressive. arXiv preprint arXiv:2310.16861, 2023.

[26] Zhe Li, Weihao Yuan, Yisheng He, Lingteng Qiu, Shenhao Zhu, Xiaodong Gu, Weichao Shen,
Yuan Dong, Zilong Dong, and Laurence T Yang. Lamp: Language-motion pretraining for
motion generation, retrieval, and captioning. arXiv preprint arXiv:2410.07093, 2024.

[27] Zhe Li, Yisheng He, Lei Zhong, Weichao Shen, Qi Zuo, Lingteng Qiu, Zilong Dong, Lau-
rence Tianruo Yang, and Weihao Yuan. Mulsmo: Multimodal stylized motion generation by
bidirectional control flow. arXiv preprint arXiv:2412.09901, 2024.

[28] Zhe Li, Laurence T Yang, Bocheng Ren, Xin Nie, Zhangyang Gao, Cheng Tan, and Stan Z Li.
Mlip: Enhancing medical visual representation with divergence encoder and knowledge-guided
contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11704—-11714, 2024.

[29] Mengzhen Liu, Mengyu Wang, Henghui Ding, Yilong Xu, Yao Zhao, and Yunchao Wei.
Segment anything with precise interaction. In Proceedings of the 32nd ACM International
Conference on Multimedia, pages 3790-3799, 2024.

[30] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

[31] Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations.

[32] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, 2023.

[33] Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. arXiv preprint
arXiv:2503.20752, 2025.

[34] Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei
Wang, Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic
manipulation from abstract to concrete. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 1724-1734, 2025.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BAAI RoboBrain Team, Mingyu Cao, Huajie Tan, Yuheng Ji, Minglan Lin, Zhiyu Li, Zhou Cao,
Pengwei Wang, Enshen Zhou, Yi Han, et al. Robobrain 2.0 technical report. arXiv preprint
arXiv:2507.02029, 2025.

Huajie Tan, Xiaoshuai Hao, Cheng Chi, Minglan Lin, Yaoxu Lyu, Mingyu Cao, Dong Liang,
Zhuo Chen, Mengsi Lyu, Cheng Peng, et al. Roboos: A hierarchical embodied framework for
cross-embodiment and multi-agent collaboration. arXiv preprint arXiv:2505.03673, 2025.

Zirui Song, Guangxian Ouyang, Mingzhe Li, Yuheng Ji, Chenxi Wang, Zixiang Xu, Zeyu
Zhang, Xiaoqing Zhang, Qian Jiang, Zhenhao Chen, et al. Maniplvm-rl: Reinforcement
learning for reasoning in embodied manipulation with large vision-language models. arXiv
preprint arXiv:2505.16517, 2025.

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Sengiao
Yang, Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Efficient vision-
language-action model for robotic reasoning and manipulation. Advances in Neural Information
Processing Systems, 37:40085-40110, 2024.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum.
Neural-symbolic vqa: Disentangling reasoning from vision and language understanding. Ad-
vances in neural information processing systems, 31, 2018.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
In International Conference on Learning Representations. International Conference on Learning
Representations, ICLR, 2019.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 14953-14962, 2023.

Tuomo Hiippala, Malihe Alikhani, Jonas Haverinen, Timo Kalliokoski, Evanfiya Logacheva,
Serafina Orekhova, Aino Tuomainen, Matthew Stone, and John A. Bateman. Ai2d-rst: A multi-
modal corpus of 1000 primary school science diagrams. Language Resources and Evaluation,
55(3):661-688, 2021.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. In ICLR, 2024.

Wangqing Cui, Xin Hong, Yanyan Lan, Liang Pang, Jiafeng Guo, and Xueqi Cheng. Visual
transformation telling. arXiv preprint arXiv:2305.01928, 2023.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In ECCV, pages 235-251, 2016.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. In NeurIPS, 2022.

Appendix

This appendix provides supplementary materials that complement the main text. It covers related
literature, dataset representation and construction, extended statistics, and additional experimental
results. The sections are organized as follows:

e Sec. E]reviews related work, situating MATHSTICKS within research on advanced visual reason-
ing, symbolic compositionality, and diagram- or math-based benchmarks.

* Sec.[Blintroduces the visual representation of matchsticks, detailing the segment-level indexing
scheme that underlies all symbolic edits.

* Sec.[Cdescribes the dataset construction pipeline, including symbolic enumeration, arithmetic
filtering, and deterministic visual rendering.

* Sec.[D|reports detailed dataset statistics with both tabular summaries and distribution visualiza-
tions.

* Sec. [E] presents extended experimental results, including fine-grained analyses and human
evaluation.

* Sec. [F lists the exact prompts used for evaluation under both text-prompted and pure-visual
regimes, enabling full reproducibility.

* Sec.[G]presents qualitative case studies that illustrate representative model successes and common
failure patterns.

A Related Work

Vision—Language Models for Advanced Visual Reasoning. Early work in multimodal learning
largely concentrated on perception-oriented objectives such as recognition, captioning, and retrieval,
often framed around improving robustness and generalization across diverse inputs [15H19]. With
the advent of vision—language models (VLMs) [20H29], the research focus has progressively shifted
toward higher-level reasoning beyond static recognition. Recent studies highlight the effectiveness
of chain-of-thought prompting and structured exploration strategies for enhancing compositional
reasoning [30, 31]], while reinforcement-based alignment further improves multi-step logical consis-
tency [32] 33]]. Parallel efforts extend these paradigms into embodied manipulation, where VLMs
are optimized for long-horizon action planning and reasoning in physical environments [34438]].
Together, these advances suggest a broader trajectory: visual reasoning with large models is evolving
from perception-centric tasks toward dynamic, multi-step, and embodiment-aware problem solving.

Visual Symbolic Compositional Reasoning (VSCR). VSCR requires a model to identify symbolic
elements in images, plan reachable local edits under explicit constraints, and verify symbolic consis-
tency after editing. This capability extends the scope of traditional compositional visual reasoning,
which typically answers queries on a fixed scene without legal editing or post hoc verification.
Early benchmarks such as CLEVR established controlled templates for attributes, relations, and
counting, and spurred research on modular architectures and program-supervised reasoning [1].
Neuro-symbolic approaches further introduced explicit executors for logical verification [39, 140]],
while visual programming frameworks leverage large language models to synthesize executable
procedures from images, modularizing perception and symbolic manipulation [41]. However, these
paradigms usually assume gold programs or fixed structures and rarely require searching for legal,
solvable edits in the visual space. In contrast, our setting instantiates VSCR with matchstick equations
and enforces stick conservation, restricted move budgets, operator flipping when legal, and arithmetic
correctness, including the distinction between unique and multiple solutions.

Visual Transformation and Diagram- and Math-based Reasoning. Benchmarks on transformation
and structural reasoning provide useful comparators but address different objectives. CLEVR-Change
targets change captioning between image pairs without requiring algebraic verification [7, 42
44]]. TRANCE emphasizes transformation-driven reasoning in synthetic worlds but abstracts away
from fine-grained symbolic edits and correctness guarantees [6]]. VisualTrans studies real-world
human—object interactions, focusing on functional consequences of local modifications rather than
constrained symbolic correction [[7]. Datasets on diagrams and mathematics highlight complementary
reasoning skills. AI2D and AI2D_RST examine parsing and relational understanding of instructional

&} @ @ e [@ &}
ol o b IR R R S—t— : SN B N
' ooe ® ® ® © 2]
] I PR | SR R R N— L SN [RPN

Figure 2: Figure 2: Illustration of the segment-level indexing scheme. Each digit position in the
equation (indexed sequentially from left to right) is decomposed into seven labeled segments (0-6).

diagrams [42] 145]]. MathVista aggregates diverse visual math problems to test language—math
compositionality [46], while ChartQA and ScienceQA extend evaluation to chart-based reasoning
and multimodal science questions [} 47]. Although valuable, these benchmarks primarily measure
image-to-text answering. They seldom require a model to enumerate legal edits in the visual space
and to verify symbolic correctness after modification.

MATHSTICKS complements these efforts by operationalizing VSCR as an end-to-end pipeline that
integrates symbol recognition, constrained transformation planning, and arithmetic verification.
It provides unified rendering rules, controllable difficulty slices (digit scale, move complexity,
solution multiplicity, operator flipping), and large-scale coverage, enabling fine-grained diagnosis of
visual-symbolic reasoning beyond prior QA- or captioning-centric tasks.

B Visual Representation of Matchsticks

To enable reproducible data generation and unambiguous parsing, we introduce a segment-level
indexing scheme for all matchstick configurations. Each digit is rendered in a seven-segment layout,
and every possible matchstick location is assigned a unique identifier, as shown in Fig. 2]

Digit labeling. For each operand and result digit, we adopt the standard seven-segment convention
with indices {0, 1, ..., 6} referring to the horizontal and vertical strokes. As illustrated in Fig.
segment indices are prefixed with a letter denoting the digit slot (A for the first digit, B for the
second digit, etc.). For example: - A0 denotes the bottom horizontal segment of digit A, - Al the
top horizontal segment, - A2 the top-right vertical segment, - A3 the bottom-right vertical segment, -
A4 the bottom horizontal, - A5 the bottom-left vertical, - A6 the top-left vertical. The same scheme
applies for all subsequent digit slots (B0O-B6, C0-C6, etc.).

Operator labeling. The operator is placed in a dedicated slot G. We fix the horizontal bar as
immutable, and define only one editable segment GO for the vertical stroke. When GO is present, the
operator is “+”’; when absent, the operator is “—". Thus operator changes are realized by adding or
removing the single stick at GO. The equality sign “="is only a visual separator, not indexed and not
involved in edits.

Equation layout. Each equation instance thus corresponds to a set of labeled matchsticks:
{A0-A6} U {B0O-B6} U {C0-C6} U {D0-D6} U {EO-E6} U {FO-F6}

for digits, combined with operator segments (GO) and equality segments. This explicit labeling allows
us to formalize puzzle states as discrete vectors, supporting precise move operations such as

Move (A0, C3)

which denotes relocating the stick from position A0 to position C3.

Usage in prompt construction. This indexing scheme is also embedded in the evaluation
prompt (see Sec. [F), where models are required to output moves in the canonical format

‘Move(<source>, <target>) ‘ The visual-to-symbolic mapping ensures that predictions are

parsable, verifiable, and independent of rendering details.

10

A U B W N =

10

11
12
13
14

15

Algorithm 1: Symbolic Enumeration and Solution Mining

Input: Search ranges for a,c,e € {—1,...,9} (tens slots), b,d, f € {0,...,9} (units), and
g e {+7 _}’
Output: A set D of solvable instances with diagnostic labels.
Do
foreach a,b, g, c,d, e, f in the Cartesian product do
Z <_ [a7b7g7c7d7e7f}
(9%, A, B,C) + SoloToWhole(z)
if IsValidArithmetic((g*, 4, B,C)) then
continue
// Original is already valid; skip as source

Sy ¢ EnumerateOneStick(z; 77)

Sy + EnumerateTwoSticks(z; 7T2)

// Arithmetic filtering

Sy + {z' € S : IsValidArithmetic(SoloToWhole(z'))}

Sy + {7’ € Sy : IsValidArithmetic(SoloToWhole(z'))}
// Deduplicate 2-stick solutions that also appear in 1-stick

Sy« Sy \SY
if [SY'| + |S3| > 0 then

¢ < AssignLabels(z, Sy, S3)
L D+ DU{(z5),55,0)}

return D

C Dataset Construction Details

To ensure both completeness in the symbolic search space and fidelity in the visual representation,
we propose a two-stage construction pipeline. First, symbolic enumeration systematically explores
all candidate equations and mines valid solutions under one- and two-stick moves. Second, visual
rendering deterministically assembles equation images from manually designed segment templates.
This design guarantees large-scale coverage with precise alignment between symbolic transformations
and visual stimuli.

C.1 Symbolic Enumeration

State encoding. Each equation instance is represented by a 7-slot tuple z = [a, b, g, ¢, d, e, f], where
a, b are the tens/units of the first operand, ¢, d the tens/units of the second operand, e, f the tens/units
of the result, and the operator slot g € {4, —}. We allow blanks (coded as —1) for the tens slots
a, ¢, e. A helper map SOLOTOWHOLE(-) converts z into (g, A, B, C') with A = 10-max(a, 0) + b,
B = 10-max(c¢,0) 4+ d, C = 10-max(e,0) + f. Arithmetic validity is then checked directly: the
equation is valid if A + B = C when g=+, orif A — B = C when g=—.

Move space. Seven-segment digits follow the standard 7-stick layout. For each digit slot (A,B,C,...)
and segment index s € {0,...,6}, a labeled stick position (e.g., A0, Al, ..., A6) is defined (see
Fig.[2). Two lookup tables encode legal edits: 77 for all single-stick moves and 75 for all rwo-stick
composite edits (including within-digit changes, cross-digit transfers, and operator flips), all under
stick conservation.

Operator labeling. The operator occupies a dedicated slot GG. Its horizontal bar is fixed, while the
vertical stroke is the only editable segment and is indexed as GO. When GO is present the operator
is “+”7’; when absent it is “—”". Thus operator changes are realized by adding or removing the stick
at GO. The equality symbol “="is only a visual separator in figures; it is not indexed and does not
participate in edits.

Solution mining. For each z we enumerate: (i) all 1-stick reachable states S;(z); (ii) all 2-stick
reachable states So(z). After arithmetic filtering we deduplicate So(z) \ S1(z). Each surviving

11

L

wn

Figure 3: Example of the template library, showing digit slots with indexed segments and the operator
slot. Each index corresponds to a movable matchstick.

Algorithm 2: Deterministic Visual Assembly

Input: Symbolic equation z = [a, b, g, ¢, d, e, f]; template library £ with per-slot
segment-indexed assets.
Output: Rendered image Img(z).
G+« // glyph list
foreach slor s € {A,B,G,C,D,E,F} do
v < value in z at slot s
G.append(FetchGlyph(L, s, v))

Row ¢« Concat(G) // fixed kerning and baseline

6 Img(z) < Layout(Row)

return Img(z)

transformation is labeled with (digit scale: number of two-digit operands/results), (move complexity:
1- vs. 2-stick), (solution multiplicity), and (operator flipping: whether + < —).

The overall enumeration and filtering procedure is summarized in Alg. [I]

C.2 Visual Rendering

Template library. To standardize the visual construction, we manually created seven-segment
digits (0-9) and the operator slot using a vector graphics editor. For each digit position (A, B, C,
...), we assigned unique indices to its seven possible segments, denoted as AO . .. A6, BO .. .B6, etc.,
ensuring one-to-one correspondence between indices and visible sticks. Each segment was drawn as
an independent graphical object, and the operator slot was treated analogously (e.g., index GO for the
horizontal bar). All assets were exported to PNG/SVG with fixed canvas size, baseline alignment,
and uniform spacing. An example of the template library is illustrated in Fig.

Deterministic assembly. Given a symbolic equation z = [a,b,g,c,d, e, f], rendering pro-
ceeds by slot-wise retrieval and horizontal concatenation of the corresponding templates for
slots {A, B,G,C, D, E,F}. Because indices are consistent across slots, a symbolic edit such
as MOVE(AO, C3) corresponds to a unique visible stick relocation. The full procedure is summarized

in Alg.]2}

Reproducibility. All coordinates (origins, slot offsets, segment bounding boxes) are stored with the
templates. Thus any symbolic transformation applied to solvable instances D (from the construction
step in Sec. [I)) can be re-rendered without manual intervention, ensuring consistent alignment between
symbolic and visual forms.

12

ﬁ Level-10.11%
1

y — Level-2 1.31% q;&oqe 277101’5\

- Level-3 19.51% comPlexy,

Level-4 79.07%

No sign-ch.

(a) Distribution across difficulty levels. (b) Distribution across task dimensions.

Figure 4: Dataset distribution. (a) Proportions across difficulty levels. (b) Decomposition by move
complexity, solution multiplicity, and operator flipping.

Table 3: Detailed dataset statistics. Counts and percentages by difficulty level, further broken down
by move complexity, solution multiplicity, and operator flipping.

Level | Move Complexity | Solution Multiplicity | Operator

| I-move 2-move 1/2-move | Unique Multiple | Flip No flip
L1(1,505) 202 (13.42%) 880 (58.47%) 423 (28.11%) 548 (36.41%) 957 (63.59%) 819 (54.42%) 686 (45.58%)
L2 (18.466) 1,875 (10.15%) 14340 (77.66%) 2251 (12.19%) | 11,692 (63.32%) 6,774 (36.68%) | 6,743 (36.52%) 11,723 (63.48%)
L3 (275,406) 15348 (5.57%) 219.715 (79.78%) 40343 (14.65%) | 127.208 (46.19%) 148,198 (53.81%) | 105,185 (38.19%) 170,221 (61.81%)

L4(1,116,011) 41,505 (3.72%) 922,571 (82.67%) 151,935 (13.61%) | 469,204 (42.04%) 646,807 (57.96%) | 405,810 (36.36%) 710,201 (63.64%)
Total (1,411,388) 58,930 (4.18%) 1,157,506 (82.01%) 194,952 (13.81%) | 608,652 (43.12%) 802,736 (56.88%) | 518,557 (36.74%) 892,831 (63.26%)

D Detailed Dataset Statistics

This section provides a comprehensive breakdown of the MATHSTICKS dataset, complementing
the summary in the main text. In total, the benchmark contains 1,411,388 solvable instances. We
analyze their distribution along three orthogonal axes: difficulty levels, move complexity, and solution
multiplicity, as well as operator-flip requirements. Fig. {] visualizes these dimensions, and Tab. [3]
reports detailed counts and percentages.

Difficulty levels. As shown in Fig. Eka), Level 4 dominates the dataset (79.07%), while Levels 1-3
contribute 0.11%, 1.31%, and 19.51%, respectively. This skew is not an artifact of our sampling
methodology but rather an intrinsic characteristic of the problem’s combinatorial nature. The
number of solvable equations scales combinatorially with the introduction of multi-digit operands,
as they significantly enlarge the state space of valid transformations under stick conservation rules.
Consequently, the full 1.4M dataset provides an unbiased representation of the natural frequency
distribution of puzzle complexities inherent to this domain.

Move complexity. Most instances require two-stick transformations (82.01%), with one-stick
solutions accounting for only 4.18%. The remaining 13.81% can be solved by either a one-stick
or two-stick move, illustrating the presence of multiple valid correction paths. This composition
highlights the dataset’s emphasis on composite reasoning over local single-edit corrections.

Solution multiplicity. A substantial fraction of puzzles admit multiple valid edits. Across the
dataset, 56.88% of instances fall into this category, while 43.12% have a unique correction. Multi-
solution cases are particularly challenging for autoregressive models, which must converge on one
valid output despite the ambiguity.

Operator flipping. Tasks involving operator changes (+ <+ —) form a critical subspace, requiring
models to edit abstract symbolic elements in addition to digit morphology. This dimension further
stresses the need for integrating symbolic reasoning beyond perceptual transformation.

13

Table 4: Results on the MATHSTICKS Benchmark (w/ text prompt). Accuracy (%) is reported
across categories reflecting move complexity, solution multiplicity, and operator change. The best
performance is in bold, the second best is underlined.

Model | Move Complexity | Solution Multiplicity | Operator Change

| 1-move 2-move 1/2-move | Single-sol. Multi-sol. | Sign-changed No sign-ch.
Closed Models
03-250416 82.50 52.88 89.18 47.79 71.69 51.45 65.19
Gemini-2.5-Pro-250506 51.67 38.43 76.37 28.93 59.42 38.91 49.09
Gemini-2.5-Flash-250520 43.89 18.20 62.66 15.29 36.96 23.94 29.20
GPT-04-mini-250416 59.17 14.71 66.19 15.60 33.05 21.15 26.95
Seed-1.6-Thinking-250615 31.39 15.17 41.72 10.89 30.06 16.83 24.80
Seed-1.6-250615 7.78 1.36 9.40 1.96 4.21 4.76 1.92
Claude Sonnet 4 7.78 0.78 5.63 1.21 2.81 2.85 1.57
GPT-40-241120 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Open-Source Models
Qwen2.5-VL-7B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5-VL-32B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-8B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-38B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-78B 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E More Experiments

E.1 Evaluation Protocol

All models, including both closed-source and open-source families, were evaluated via their respective
public APIs to ensure a consistent testing environment. We utilized the default API settings for all
models in our experiments. Our protocol did not set an explicit max_token limit, allowing models to
generate their full reasoning without premature termination.

E.2 Fine-Grained Analysis

To further dissect model behavior, we evaluate performance across fine-grained categories that capture
different aspects of reasoning complexity. Specifically, we consider three orthogonal dimensions:
move complexity (one-stick vs. two-stick vs. mixed), solution multiplicity (single-solution vs. multiple-
solution instances), and operator flipping (addition vs. subtraction). Tab.] and Tab. [5] summarize
results under the text-prompted and pure-visual regimes, respectively.

Move complexity. Two-stick puzzles are consistently more difficult than one-stick puzzles across
all models. The performance gap is particularly striking in weaker closed-source models, where
accuracy often drops below 20%. This reflects the challenge of planning and executing composite
edits, which requires maintaining consistency across multiple segments. In contrast, one-stick puzzles
involve simpler local edits and thus remain more tractable. Mixed cases (one/two-move) typically
yield higher scores, since many can be solved with an easier one-stick transformation even when a
two-stick option exists.

Solution multiplicity. Problems admitting multiple valid corrections prove substantially harder.
Even strong models such as GPT-03 and Gemini 2.5 Pro exhibit drops of 20-30 points compared
with single-solution cases. This indicates that models are highly sensitive to ambiguity in the solution
space: when several structurally distinct transformations are possible, they often fail to converge on a
correct candidate. By contrast, single-solution instances provide a unique correction target, which
better aligns with the deterministic nature of autoregressive decoding.

Operator flipping. Tasks requiring operator changes (+ <+ —) constitute a major bottleneck.
Performance is consistently lower than in no-flip cases, suggesting that models are biased toward
digit-level manipulations rather than considering operator edits. This weakness is particularly
pronounced in weaker closed models and universal across all open-source baselines, which almost
entirely fail on operator-flip puzzles. These results highlight the difficulty of extending generalization
from digit morphology to abstract symbolic transformations.

14

Table 5: Results on the MATHSTICKS Benchmark (w/o text prompt). Accuracy (%) is reported
across categories reflecting move complexity, solution multiplicity, and operator change. The best
performance is in bold, the second best is underlined.

Model | Move Complexity | Solution Multiplicity | Operator Change

| 1-move 2-move 1/2-move | Single-sol. Multi-sol. | Sign-changed No sign-ch.
Closed Models
03-250416 70.00 32.12 56.70 31.52 45.63 34.20 41.22
Gemini-2.5-Pro-250506 25.83 18.22 36.63 14.76 29.72 19.70 25.05
Gemini-2.5-Flash-250520 18.33 5.92 15.33 4.98 11.89 8.49 8.34
GPT-04-mini-250416 10.83 7.23 22.16 5.38 13.92 10.54 9.88
Seed-1.6-Thinking-250615 0.00 0.68 1.85 0.00 1.55 1.61 0.58
Seed-1.6-250615 0.00 0.39 0.93 0.00 0.75 0.44 0.58
Claude Sonnet 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GPT-40-241120 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Open-Source Models
Qwen2.5-VL-7B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5-VL-32B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen2.5-VL-72B-Instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-8B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-38B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
InternVL3-78B 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6: Human performance on the MATHSTICKS benchmark (w/o text prompt). Accuracy
(%) is reported across difficulty levels together with the average solving time per participant. Since
human recognition of digits/operators is error-free, the same accuracies apply under the text-prompted
regime.

Participant | Accuracy (%) | Avg. Time
L1 L2 L3 L4 Avg |

P1 95.0 100.0 950 100.0 97.5 1m14s

P2 100.0 950 725 737 853 1m17s

P3 90.0 100.0 90.0 895 924 1mO06s

Mean 950 983 858 87.7 91.7

Std. 5.0 29 118 133 6.1 —

Cross-regime comparison. The shift from text-prompted to pure-visual inputs introduces system-
atic degradation. For example, Gemini 2.5 Pro drops from 51.7% on one-move text-prompted puzzles
to 25.8% in the pure-visual setting. This gap underscores OCR and structural parsing as an additional
error source, independent of symbolic reasoning itself. GPT-03, while still affected, demonstrates
relatively smaller gaps, suggesting stronger robustness to visual noise and layout variability compared
with other models.

Open-source models. All tested open-source models (Qwen2.5-VL and InternVL3 families) fail
almost entirely across categories, with accuracies close to zero. This finding emphasizes the current
limitations of open-source VLMs in handling structured visual-symbolic reasoning tasks. Notably,
increasing model scale does not alleviate the problem: even the largest variants with 70B+ parameters
remain at chance-level performance. This suggests that the failure stems not from insufficient capacity,
but from the lack of targeted supervision and inductive biases for visual-symbolic reasoning. It further
points to the need for specialized training data and architectural innovations capable of bridging
continuous perception with discrete symbolic manipulation.

E.3 Human Evaluation

To complement model-based evaluation, we conducted a small-scale human study on the MATH-
STICKS benchmark. Three adult participants (all male, aged 24-30, with university-level education
backgrounds) independently solved the full evaluation set under the pure-visual regime, where
only the rendered matchstick equations were provided. Because the digits and operators are visually

15

Prompt with text input

Task:

You are given an incorrectly displayed equation "{equation}" constructed from matchsticks in a seven-segment format. Each
segment (with matchstick or without matchstick) is labeled with a unique identifier (e.g., A0, C4). Your goal is to modify the
equation by moving one or two matchsticks to make it mathematically correct.

Constraints:

- Only reposition existing matchsticks (no addition/removal).

- Only one or two matchsticks can be moved, and each matchstick can only be moved once.
- The final equation must be mathematically valid.

- Preserve digit legibility (no broken/unrecognizable characters).

Output Requirements:
1. Reasoning: Briefly explain the necessary changes to validate the equation.
2. Final Solution Format: Provide the answer strictly in the format:
- For single move: "boxed{{Move(<original_label>, <target label>)}}", for example: ‘boxed{{Move(B2, D5)}}"
- For two moves: "boxed { {Move(<original labell>, <target labell>), Move(<original label2>, <target label2>)}}", for
example: ‘boxed{ {Move(A0, C3), Move(El, F4)}}*

Note:

Oberserve the given image carefully to identify the matchstick positions and their labels.

Gray dashed segments indicate no matchstick, while solid segments indicate a matchstick is present.
Ensure the final answer adheres precisely to the *boxed{{}}" format for automated parsing.

Figure 5: Prompt with text input. The symbolic equation string is provided together with the
matchstick rendering.

unambiguous, participants transcribed the equations without error; hence, the same results apply to
the text-prompted regime as well.

Tab. [6] summarizes participant-level accuracies across difficulty levels together with average solving
times. On average, humans achieved accuracies above 90% while spending roughly one minute per
problem. These results confirm that the benchmark is reliably solvable by humans, yet remains highly
challenging for current vision—-language models.

F Prompts

To ensure reproducibility, we provide the exact prompts used in our evaluation. Two regimes
are supported: (i) text-prompted, where the symbolic equation string is explicitly given; and (ii)
pure-visual, where only the rendered matchstick image is shown, requiring OCR and structural
parsing.

G Case Studies

To qualitatively illustrate model behavior, we sampled two representative puzzles from each difficulty
level (L1-L4), under both input regimes (text-prompted and pure-visual), resulting in 16 cases in
total. For each case, we present the input matchstick puzzle (i.e., the incorrect equation to be solved)
and compare predictions from multiple representative models. Correct solutions are not explicitly
annotated in the figure but can be verified against the solvability constraints of the benchmark. This
analysis highlights common failure modes, including: incorrect operator flipping, partial edits that
leave digits illegible, and failure to converge when multiple solutions exist. Fig. [7}-Fig. 22| present the
visualizations.

16

Prompt without text input

Task:

You are given an incorrectly displayed equation constructed from matchsticks in a seven-segment format, as shown in the
given image. Each segment (with matchstick or without matchstick) is labeled with a unique identifier (e.g., A0, C4). Your
goal is to modify the equation by moving one or two matchsticks to make it mathematically correct.

Constraints:

- Only reposition existing matchsticks (no addition/removal).

- Only one or two matchsticks can be moved, and each matchstick can only be moved once.
- The final equation must be mathematically valid.

- Preserve digit legibility (no broken/unrecognizable characters).

Output Requirements:
1. Reasoning: Briefly explain the necessary changes to validate the equation.
2. Final Solution Format: Provide the answer strictly in the format:
- For single move: ‘boxed{{Move(<original label>, <target label>)}}", for example: ‘boxed{{Move(B2, DS)}}"
- For two moves: ‘boxed { {Move(<original_labell>, <target label1>), Move(<original_label2>, <target label2>)}}", for
example: ‘boxed{{Move(A0, C3), Move(E1, F4)}}"

Note:

Oberserve the given image carefully to identify the matchstick positions and their labels.

Gray dashed segments indicate no matchstick, while solid segments indicate a matchstick is present.
Ensure the final answer adheres precisely to the ‘boxed{{}}" format for automated parsing.

Figure 6: Prompt without text input. Only the matchstick rendering is provided; models must
recognize symbols before reasoning.

17

& - - b o—at @ -

* Gemini-2.5-Pro

With Text Input :

Reasoning:

The initial equation displayed by the matchsticks is 8 - 9 = 3", which is mathematically incorrect. The goal is to make the
equation valid by moving two matchsticks.

The solution is to transform the equation into '9 -9 =0".

1. Transform '8' to '9’: The first digit '8' (composed of all seven segments A0 -A6) can be changed into a '9' by removing
the top-left matchstick, which is labeled "A6".

2. Transform ‘3’ to ‘0’: The third digit '3' (composed of segments C0, C1, C2, C3, C4) can be changed into a '0' (composed
of segments C1, C2, C3, C4, C5, C6). This requires removing the middle stick 'C0" and adding sticks at the top -left ("C6")
and bottom-left ("C5") positions ... After these two moves, the first digit is a '9', the second digit remains a '9', the operator
is unchanged, and the third digit becomes a '0'. The resulting equation is ‘9 - 9 = 0", which is correct.

Final Solution Format:

\\boxed {Move(A6, C6), Move(C0, C5)}

@03

With Text Input :

Reasoning:

« Shift the upper-right match of the “9” (segment B2) to its vacant lower -left position (B5). This removes the upper-right
stroke and adds the lower-left stroke, turning 9 into 6.

» Shift the lower-right match of the “3” (segment C3) to its vacant lower -left position (C5). This removes the lower-right
stroke and adds the lower-left stroke, turning 3 into 2.

After these two moves the equation reads 8 — 6 = 2, which is mathematically correct.

\\boxed {Move(B2, B5), Move(C3, C5)}

(Doubao-Seed-1.6

With Text Input :

To solve the problem of transforming the equation "8 -9=3" into a valid one by moving 1 or 2 matchsticks, we analyze the
structure of the digits and operator. The key insight is to adjust the digits 8 and 9 to form 9 and 6, respectively, resultin g in
the equation "9-6=3".

Reasoning:

-8 to 9: The digit 8 uses all 7 segments. To convert it to 9, we remove the upper -left segment (labeled A5, which is the "e"
segment in seven-segment notation). This leaves 8 with 6 segments, forming 9.

- 9 to 6: The digit 9 has 6 segments (missing the upper -left "e" segment). To convert it to 6, we need to add the
segment (by moving the segment removed from 8) and remove the upper -right "b" segment (labeled B2). The removed "b"
segment from 9 is moved to the lower-left "f"' segment of the digit 3 (labeled C5), but since 3 is already correct, the

critical moves are transferring the "e" segment from 8 to 9 and removing the "b" segment from 9.

Solution:

Move two matchsticks:

1. Move the upper-left segment (AS) from 8 to the upper -left segment (B5) of 9, converting 8 to 9 and starting the
conversion of 9 to 6.

2. Move the upper-right segment (B2) from 9 to the lower -left segment (C5) of 3 (though 3 remains correct, this
adjustment completes the conversion of 9 to 6 by removing its excess segment).

Final Answer:

\\boxed{Move(A5, B5), Move(B2, C5)}

et

Figure 7: Case study (Level 1, text-prompted, Case A).

18

\‘ Gemini-2.5-Pro

With Text Input :

Reasoning:

1. Analyze the initial equation: The image displays the incorrect equation "6 + 2 = 6". The correct sum of '6 + 2" is '8".
2. Identify the goal:The task is to make the equation mathematically correct by moving one or two matchsticks.

3. Explore potential solutions:

One possible approach is to keep the first number and the operator the same and change the second number and the result.
Let's aim for the equation "6 +3 =9".

4. Execute the moves:

First Move (Changing 2 to 3): To change the digit "2' to a '3', we need to move the bottom -left vertical matchstick (at
position B5) to the bottom-right vertical position (B3). The digit '2' is formed by sticks {B1, B2, B0, B5, B4}, and '3'is
formed by {B1, B2, B0, B3, B4}. So, the first move is ‘Move(B5, B3) ...

Final Solution Format:

boxed{Move(BS5, B3), Move(C5, C2)}

@ GPT-4o

With Text Input :

Reasoning:

The equation "6+2=6" is incorrect. To make it mathematically valid, we can adjust the matchstick arrangement to
transform one or more digits into new values, ensuring the equation is correct.

By analyzing the problem, one possible solution involves:

1. Transforming the "6" on the left -hand side into an "8".

2. Leaving the "+2" unchanged ...

Solution:

1. Move matchstick A2 (from the top -right of the left 6) to position A0 (completing the middle segment of left 8).
2. Move matchstick C2 (from the top -right of the right 6) to position C3 (completing the middle segment of right 8).
3. Final Solution Format:

boxed {Move(A2, A0), Move(C2, C3)}

% Claude-Sonnet-4

With Text Input :

I need to analyze the current equation "6+2=6" and find a way to make it mathematically correct by moving one or two
matchsticks.

Let me first identify what digits are currently displayed:

- First digit: 6 (segments present

- Operation: + (plus sign)

- Second digit: 2 (segments present)

- Equals sign: = (present)

- Result digit: 6 (segments present)

The equation 6+2=6 is incorrect since 6+2=8.

Let me consider possible solutions by moving matchsticks:

Option 1: Change the result from 6 to 8

To change 6 to 8 ... This requires moving one matchstick to add the middle horizontal segment to the rightmost digit,
converting the 6 into an 8.

boxed {Move(B0, C0)}

J

Figure 8: Case study (Level 1, text-prompted, Case B).

19

* Gemini-2.5-Pro

Without Text Input :

Reasoning:

1. Analyze the initial equation: The image displays the equation '8 + 6 = 5" constructed from matchsticks.

The first number is an 8, formed by all seven segments (A0, Al, A2, A3, A4, AS, A6)...

The equation '8 + 6 = 5" is mathematically incorrect.

2. Identify the required change: The goal is to form a valid equation by moving one or two matchsticks. A simple solution
can be found by moving a single matchstick.

3. Formulate the solution:

Take the middle horizontal matchstick from the ‘8", which is labeled A0. Removing this matchstick changes the '8" into a
0.,

4. Verify the final equation: After moving the matchstick from A0 to C6, the new equation becomes "0 + 6 = 6". This is a
mathematically correct statement. This solution satisfies the condition of moving only one matchstick.

Final Solution Format:
boxed{{Move(A0, C6)}}

@

Without Text Input :

Reasoning:

* Take away the upper -right matchstick of the first digit (segment A2).

— Without that segment the “8” becomes a “6”.

— Place this same stick on the empty vertical position of the operator, turning the “ —” into a “+”.

* Take away the upper -left matchstick of the middle digit (segment B6).

— Removing it changes the “9” into a “3”.

— Put this stick on the empty upper-left position of the last digit (segment C6); the “3” then becomes a “9”.
After these two moves the equation reads 6 + 3 = 9, which is mathematically correct .

Final Solution:
boxed{Move(A2, G1), Move(B6, C6)}

! Doubao-Seed-1.6

Without Text Input :

To solve the problem, we need to correct the equation by moving one or two matchsticks. The original equation,
constructed with matchsticks in a seven -segment format, is initially invalid. By analyzing the segments, we identify that
the key is to adjust the digits and operator to form a valid equation.

Key Observations:

- The first digit (A) is an 8 (all 7 segments present: A0 -A6).

- The second digit (B) is a 1 (segments B2 and B3 present, vertical right segments).

- The result digit (C) is initially incomplete (missing middle and left vertical segments).

- The operator is likely '+' (requiring a vertical segment) but needs to be adjusted to ' -' or the digits modified to form a
correct equation...

Final Solution:

The critical move is adjusting the operator by relocating a vertical segment from A to form a valid ' -', resulting in the
equation 8 - 1 = 7.

boxed{{Move(A2, C5)}})

Figure 9: Case study (Level 1, pure-visual, Case A).

20

\’ Gemini-2.5-Pro

Without Text Input :

1. Reasoning:
The initial equation displayed is "6 + 2 = 6", which is mathematically incorrect. To correct this, a single matchstick needs
to be moved.
The solution is to change the equation to '8 - 2 = 6. This can be achieved with one move:
- Take the vertical matchstick from the plus sign ("+"). The label for the plus sign is 'G0", so we will refer to this stick wi th
this label.
- Moving the vertical stick from the "+ sign changes it to a minus sign (* -")...
Final Solution Format:
boxed{{Move(G0, A2)}}

@ GPT-4o

Without Text Input :

Reasoning:

The given matchstick equation is: '8 + 8 =8’

This equation is mathematically incorrect.

By observing the matchstick arrangement, we can modify one or two matchsticks to produce a valid equation. The goal is
to preserve the seven-segment representation of all digits after moving the matchsticks.

- If we move two matchsticks, we can transform the equation to:

'8 +3 =11", which is mathematically correct . Steps:

1. To change the leftmost "8 to a *3", remove matchsticks ‘A6’ and "AS"...

Final Solution Format:

\\boxed { {Move(AS5, GO), Move(C6, G1)} }

% Claude-Sonnet-4

Without Text Input :

I need to analyze the current equation shown in the image and determine how to make it mathematically correct by
moving one or two matchsticks.

Looking at the image, I can see a seven-segment display equation. Let me identify what's currently shown:
The equation appears to be: 8 + 8 =0

This is clearly incorrect mathematically. Let me analyze the segments:

Left side: First digit appears to be 8 (all segments filled)

Middle: + sign \nSecond digit: appears to be 8 (all segments filled)

Equals sign: =

Right side: appears to be 0

To make this equation correct, I need to change one of the numbers. Some possibilities:

- Change 8 + 8 =0 to 8 - 8 =0 (change + to -)

- Change one of the 8s to make a valid equation...

boxed {Move(A0, C1)}

Figure 10: Case study (Level 1, pure-visual, Case B).

21

* Gemini-2.5-Flash

With Text Input :

The given equation is '8 +3 = 12",

Mathematically, '8 + 3 = 11", so the equation ‘8 + 3 = 12" is incorrect.

We need to make it correct by moving one or two matchsticks, ensuring all digits remain legible.Let's try to change the
equationto ‘6 +6=12".

Current state:

8 (A): Segments A1, A2, A3, A4, AS, A6, A0 are present (all segments).

3 (B): Segments B1, B2, B0, B3, B4 are present. Segments B5, B6 are dashed (missing).

12 (C, D):

1 (C):Segments C2, C3 are present. Segments C1, C4, C5, C6, CO are dashed...

boxed{Move(A2, BS), Move(B2, B6)}

@ od-mini

With Text Input :

Here’s a one-move fix that makes the arithmetic true:

1. Take the lower—left segment of the “8” (segment AS) and place it on the “1” in the result (segment C6).
- Removing A5 turns the left “8” into a “9.”

- Adding it at C6 turns the right “1” into a “2,” so the result stays “12
After the move the display reads

9+3=12

which is correct.

Answer:

boxed{Move(AS, C6)}

' Doubao-Seed-1.6-Thinking
With Text Input :

To solve the problem, we need to correct the incorrectly displayed matchstick equation by moving one or two matchsticks.
The original equation is assumed to be of the form "X +Y = Z" where the digits are represented using seven -segment
displays.
Reasoning
1. Original Equation Analysis: The leftmost digit (labeled A) is an 8 (all segments present: A0 -A6). The middle digit
(labeled B) is a 3 (segments B1, B2, B3, B4, BO present; B5, B6 absent). The rightmost digit (labeled C) is a 5 (segments
Cl, C3, C4, C6, CO present; C2, CS absent). This forms the incorrect equation "8 + 3 = 5".
2. Correcting the Equation: To make the equation valid, we need to swap the values of the leftmost and rightmost digits.
This requires moving two matchsticks from the leftmost digit (8) to the rightmost digit (5): - Move the upper right
vertical segment (A2) of the 8 to the upper right vertical segment (C2) of the 5...
Result: The corrected equation is "5 + 3 = 8", which is mathematically valid.
Final Solution:

boxed {Move(C6, C2), Move(D2, D6)}

Figure 11: Case study (Level 2, text-prompted, Case A).

22

\‘ Gemini-2.5-Pro

With Text Input :
Reasoning:
The original equation is '09 + 9 = 0°, which is mathematically incorrect as *99" is not equal to "0". To correct this equatio n
by moving two matchsticks, we can transform it into "00 +9=9".
1. Change the first'9' to a '0’: The first '9' is formed by matchsticks at positions B0, B1, B2, B3, B4, and B6. A'0' is
formed by matchsticks at B1, B2, B3, B4, BS, and B6. This can be achieved by moving the matchstick from the middle
horizontal position (BO) to the bottom -left vertical position (B5).
2. Change the final '0' to a '9’: The final '0" is formed by matchsticks at positions D1, D2, D3, D4, D5, and D6. A'9' is
formed by matchsticks at DO, D1, D2, D3, D4, and D6. This can be achieved by moving the matchstick from the bottom -
left vertical position (DS5) to the middle horizontal position (D0).
These two moves result in the arithmetically correct equation "00 + 9 = 9" (which is equivalent to "0 + 9 =9").
Final Solution Format:

boxed{Move(B0, B5), Move(D5, D0)}

@03

With Text Input :

Reasoning:
Each “9” is missing its bottom -left segment (5) and therefore can be turned into a “0” by relocating its middle segment (0)
down to that vacant bottom-left position (5).
* Move the middle bar of the first “9” (segment B0) to its empty bottom -left position B5 — the first number “09” becomes
“«00”...
Solution:

boxed{Move(B0, B5), Move(C0, C5)}

t Doubao-Seed-1.6

With Text Input :

To solve the problem of correcting the equation "09+9=0" by moving one or two matchsticks, we analyze the structure of
the seven-segment display and operators. The goal is to form a valid equation by repositioning matchsticks (solid
segments) to dashed segments.

Key Insight:

The original equation "09+9=0" can be transformed into "9 -9=0" by modifying two elements:

1. Change the first digit "0" to "9" by adding the middle segment (which 0 lacks but 9 requires).

2. Change the "+" operator to "-" by removing its vertical segment (the "+" has two segments: horizontal and vertical;
removing the vertical leaves "-").

Analysis:

- First Digit (0 to 9): A "0" in seven -segment display lacks the middle segment (dashed). To become "9", this middle
segment must be filled. Assume the middle segment of the first 0 is labeled A6 (dashed, no matchstick).

- Operator (+ to -): The "+" operator has a vertical segment that is present (solid). Removing this vertical segment (by
moving it) converts "+" to "-". Assume this vertical segment is labeled CO (solid, has matchstick).

Solution:

Move the vertical segment of the "+" (C0) to the middle segment of the first "0" (A6). This converts the first "0" to "9"
and the "+" to "-", resulting in the valid equation "9-9=0".

Final Answer:

\\boxed {Move(C0, A6)}

J

Figure 12: Case study (Level 2, text-prompted, Case B).

23

* Gemini-2.5-Flash

Without Text Input :

The original equation displayed is: 9 + 3 = 74

Let's analyze the digits based on the provided matchstick configurations:

First Digit (A): Segments A1, A2, A0, A3, A4, AS are present. Segment A6 is missing (dashed). This configuration
represents the digit '9”.

Operator (G): GO represents the '+' sign.

Second Digit (B): Segments B1, B2, B0, B3, B4 are present. Segments B5, B6 are missing (dashed). This configuration
represents the digit '3°.

Equals Sign:Correctly displayed...

This solution uses exactly two matchstick moves.

The final answer is $\\boxed { {Move(A0, A6), Move(C0, D3)}}$

@ 04-mini

Without Text Input :

Reasoning:

By removing the middle-bar of the “3” (segment B0) and re-using it as the upper-left segment of the right —hand digit
(segment D6), the left-side “83” becomes “87” and the right —side “1 ?” becomes “10” — yielding the true statement
87 =10.

Final answer:

\\(\\boxed {Move(B0, D6)}\\)

‘ Doubao-Seed-1.6-Thinking
Without Text Input :

To solve the problem, we need to correct the incorrectly displayed matchstick equation by moving one or two matchsticks.
The original equation is assumed to be of the form "X +Y = Z" where the digits are represented using seven -segment
displays.

Reasoning

1. Original Equation Analysis: The leftmost digit (labeled A) is an 8 (all segments present: A0 -A6). The middle digit
(labeled B) is a 3 (segments B1, B2, B3, B4, B0 present; BS, B6 absent). The rightmost digit (labeled C) is a 5 (segments
Cl, C3, C4, C6, CO present; C2, CS absent). This forms the incorrect equation " 8 +3 = 5".

2. Correcting the Equation: To make the equation valid, we need to swap the values of the leftmost and rightmost digits.
This requires moving two matchsticks from the leftmost digit (8) to the rightmost digit (5):

- Move the upper right vertical segment (A2) of the 8 to the upper right vertical segment (C2) of the 5. This changes the 8
to a 5 (losing the upper right segment) and the 5 to an 8 (gaining the upper right segment).

- Move the lower left vertical segment (A5) of the 8 to the lower left vertical segment (C5) of the 5. This completes the
transformation of the 8 to a 5 (losing the lower left segment) and the 5 to an 8 (gaining the lower left segment). \n\n3.
Result: The corrected equation is "5 + 3 = 8", which is mathematically valid.

Final Solution Format

\\boxed{{Move(A2, C2), Move(AS, C5)}}

Figure 13: Case study (Level 2, pure-visual, Case A).

24

\‘ Gemini-2.5-Pro

Without Text Input :

1. Reasoning:

The initial equation displayed is " 06 + 6 = 0". Interpreting the two-digit number 06" as '6°, the equation is ‘6 +6=0",
which is mathematically incorrect. To solve the puzzle, we can move two matchsticks to form a valid equation.

1. The first move is to take the middle horizontal matchstick from the second '6' (labeled C0) and place it in the empty
lower-left position of the same digit (labeled CS5). This transforms the digit '6' into a '0'. The equation now reads '06 + 0 =
0.

2. The second move is to take the upper-right vertical matchstick from the '0' on the right side of the equation (labeled D2)
and place it in the empty middle horizontal position of that same digit (labeled DO0). This transforms the '0' into a '6”.

The resulting equation is ‘06 + 0 =6" (which is ‘6 + 0 = 6"), a mathematically correct statement.

2. Final Solution Format:

\\boxed { {Move(CO0, C5), Move(D2, D0)} }

@

Without Text Input :

Reasoning:
At the start the equation shows 09 + 9 = 0 (which is wrong).
« If we turn the third digit 9 into 0, and at the same time turn the result 0 into 9, we will have 09 +0=9,1.e.9+0=9 ,
which is correct.
* A9 becomes 0 by moving its middle segment to the lower -left position.
* A 0 becomes 9 by moving its lower -left segment to the middle position.
Doing these two moves fixes the arithmetic without affecting any other part of the display.
Final Solution Format:
boxed{Move(C0, C5), Move(D5, D0)}

t Doubao-Seed-1.6

Without Text Input :

To solve the problem, we first identify the original equation using the seven -segment matchstick display. The groups A, B,
C, D correspond to digits or operators, with dashed segments indicating missing matchsticks and solid segments indicating
present matchsticks.

Key Observations:

- Group A: Segments Al, A2, A3, A4, A5, A6 are solid (middle segment A0 is dashed) — forms the digit '0".

- Group B: All segments (B0-B6) are solid — forms the operator '+' (cross shape with horizontal and vertical segments).

- Group C: All segments (C0-C6) are solid — forms the digit '8".

- Group D: Segments D1, D2, D3, D4, D5, D6 are solid (middle segment DO is dashed) — forms the digit "0".

- The original equation is thus "0 + 8 = 0", which is mathematically incorrect.

Solution:

To correct the equation, we need to modify the result digit (D) from "0" to '8"...

\\boxed { {Move(C0, D0)} }

Figure 14: Case study (Level 2, pure-visual, Case B).

25

' Doubao-Seed-1.6-Thinking

With Text Input :

To solve the problem, we need to correct the equation "65 -3=93" by moving two matchsticks. The key steps are modifying
the result digits from "93" to "62", which makes the equation "65 -3=62" (a valid mathematical statement).
Reasoning:
1. Changing "9" to "6" (first result digit, group D):
The digit "9" (group D) has a solid top right vertical segment (D2) and a missing bottom left vertical segment (D5). To
form "6", we need to remove the top right vertical segment (D2) and add the bottom left vertical segment (DS5). This
requires moving the matchstick from D2 to D5.
2. Changing "3" to "2" (second result digit, group E):
The digit "3" (group E) has a solid bottom right vertical segment (E3) and a missing bottom left vertical segment (E5). To
form "2", we need to remove the bottom right vertical segment (E3) and add the bottom left vertical segment (ES). This
requires moving the matchstick from E3 to ES.
These two moves transform the result from "93" to "62", making the equation valid.
Final Solution:

boxed{Move(D2, D5), Move(E3, ES)}

@ GPT-40

With Text Input :

Reasoning:

The equation '65 - 3 =93" is incorrect. To make it valid, we need to reposition one or two matchsticks to transform the
digits and create a correct mathematical equation. After examining the digits represented by the matchsticks, here's the
solution:

1. Transform '65" into "85 by moving the matchstick at *A0" to "A4".

- Digit "65" becomes "85".

2. Leave the *-" sign ('G0") and digit ‘3" unchanged.3. Change '93" to ‘88" by moving the matchstick at ‘D5" to 'C5".
- Digit '93" becomes '88".

This results in the equation: ‘85 - 3 = 88", which is mathematically correct.

Final Solution Format:

\\boxed {Move(A0, A4), Move(D5, C5)}

* Gemini-2.5-Flash

With Text Input :

Reasoning:

The given equation is 65 - 3 = 93.

Let's evaluate the current equation: 65 - 3 = 62. So, the equation is currently 62 = 93, which is incorrect.
To make the equation mathematically correct (62 = 62), we need to transform the right -hand side "93" into "62". This can
be achieved by moving two matchsticks:

1. Change '9' to '6' in the tens place of the result (D -segments):

The digit '9' currently uses matchsticks D1, D2, D3, D4, D6, and D0. Segment D5 is empty.

To form a '6', the matchstick D2 needs to be removed, and the segment D5 needs a matchstick...

2. After these two moves, the equation becomes 65 - 3 = 62, which is mathematically correct .

Final Solution Format:

\boxed {Move(D2, D5), Move(E3, E5)}

Figure 15: Case study (Level 3, text-prompted, Case A).

26

* Claude-Sonnet-4

With Text Input :

I need to analyze the given equation "88+2=38" and find how to move one or two matchsticks to make it mathematically
correct.
Let me first understand the current state: \n- First digit: 8 (segments A1, A2, A0, A6, A5, A4, A3 are present)
- Second digit: 8 (segments B1, B2, B0, B6, B5, B4, B3 are present) \n- Plus sign: + (segments GO and two horizontal
segments)
- Third digit: 2 (segments C1, C2, C3, C4, CO are present)
- Equals sign: = (two horizontal segments)
- Fourth digit: 3 (segments D1, D2, DO, D3, D4 are present) \n- Fifth digit: 8 (segments E1, E2, E0, E6, E5, E4, E3 are
present)
The equation 88+2=38 is incorrect because 88+2=90, not 38....
Reasoning: To make the equation mathematically correct, I need to change 38 to 90. I can do this by moving the middle
horizontal segment from the last digit (8) to the fourth digit (3). Moving segment EO to D6 will change the 8 to a 0 and the
3 to a 9, making the equation 88+2=90, which is correct.

boxed{Move(E0, D6)}

@ GPT-40

With Text Input :

Reasoning:

The equation "88 + 2 = 38" is currently incorrect. To balance it, we need to move one or two matchsticks to make the
equation mathematically correct. By analyzing the matchstick layout:

1. The leftmost number is "88" constructed from two complete sets of matchsticks.

2. The number "2" is constructed with matchsticks to form its correct shape.

3. The rightmost number is "38"

To make the equation valid:

- We can change "88" into "86" by moving one matchstick from the top horizontal segment of the middle digit (label *A0")
to form "86"

- The equation then becomes "86 + 2 = 38" which is mathematically valid.

Final Solution Format:

\\boxed {Move(AO0, E6)}

\’ Gemini-2.5-Flash

With Text Input :

Reasoning:

The initial equation displayed is 88 +2 = 38.

First, we calculate the correct sum of the left side: 88 + 2 = 90.

Therefore, the goal is to transform "38" into "90" by moving one or two matchsticks.

Let's analyze the digits on the right side: \n- The first digit is currently '3' (represented by segments DO, D1, D2, D3, D4).
To change '3' to '9', we need to add segment D6 (the top -left segment).

- The second digit is currently '8' (represented by segments EO, E1, E2, E3, E4, ES, E6). To change '8' to '0', we need to
remove segment E6 (the top-left segment)...

Final Solution:

\\boxed {Move(E6, D6)! /

Figure 16: Case study (Level 3, text-prompted, Case B).

27

' Doubao-Seed-1.6-Thinking

Without Text Input :

To solve the problem, we need to identify the incorrectly displayed equation and modify it by moving one or two
matchsticks to make it mathematically valid. The key steps involve recognizing the seven -segment digits and the required
operator/equals sign, then determining which matchsticks to reposition.

Reasoning

The original equation likely contains an incorrect digit or operator that can be fixed by repositioning a matchstick. For
example, if a digit is missing a segment to form a valid number, moving a matchstick from an over -segmented digit to the
missing segment can correct it. After analyzing the solid (present) and dashed (absent) segments, we find that moving a
matchstick from segment B2 (a solid segment in the upper right vertical of the second digit) to segment D5 (a dashed
segment in the lower left vertical of the fourth digit) will adjust the digits to form a valid equation.

Final Solution Format

\\boxed { {Move(B2, D5)} }

&

Without Text Input :

Reasoning:

* The first digit (A) is a “6”. If we move its bottom-left match A5 to the empty top -right position A2, the digit becomes
“gr.

* The second digit (B) is a “9”. If we move its top-right match B2 to the empty bottom -left position B5, the digit becomes
“g.

* No other segments are altered; the central horizontal bar remains a minus sign.

* The equation now reads 96 — 3 = 93, which is mathematically correct.

\\boxed {Move(AS5, A2), Move(B2, B5)}

\‘ Gemini-2.5-Flash

Without Text Input :

The initial equation displayed is: 69 - 3 =93.

Let's verify the digits:

- First number:

- Digit A is formed by A0, A1, A4, A5, A6. (Missing A2, A3). This forms a '6'.
- Digit B is formed by B0, B1, B3, B4, B6. (Missing B2, B5). This forms a '9".
So the first number is 69.

- Operator: GO is present, which is a horizontal matchstick, representing a minus sign (-).
- Second number:

- Digit C is formed by C0, C1, C2, C3, C4. (Missing C5, C6). This forms a '3'.
So the second...

Final selection: A5->A2, B6->B2

The final answer is $\\boxed { {Move(AS5, A2), Move(B6, B2)}}$

Figure 17: Case study (Level 3, pure-visual, Case A).

28

* Claude-Sonnet-4

Without Text Input :

I need to analyze the current equation shown in the matchstick display and find how to make it mathematically correct by
moving one or two matchsticks.

Let me first identify what digits/symbols are currently displayed:

Looking at the image from left to right:

- Position 1: Shows an "8" (all segments filled)

- Position 2: Shows an "8" (all segments filled)

- Position 3: Shows a "1" (only right vertical segments)

- Position 4: Shows what appears to be a "0" but with some segments missing (dashed lines indicate missing segments)

- Position 5: Shows two horizontal lines (equals sign)...

$\\boxed {Move(G2, G0)}$

@ GPT-40

‘Without Text Input :

Reasoning:

The current equation is represented with matchsticks as follows:

88+ 0#£88

This is not mathematically valid. However, we can adjust the matchstick placements so that the equation becomes correct
by moving either one or two matchsticks.

--- Steps:

1. Modify the right-hand side '88' to '89' by moving one matchstick from the middle horizontal segment (C0) of the right -
hand '8' to the middle horizontal segment (C3) of the right -hand '8'. This transforms the right-hand '8' into a '9".

--- Final Solution Format:

\\[\\boxed { {Move(CO0, C3)} }\\]

\‘ Gemini-2.5-Flash

Without Text Input :

The initial equation displayed is:

‘88 + 2 = [Invalid Digit] 8"

Let's identify the segments for each part:

First digit (A): All 7 segments (A0 -A6) are present, forming an '8’.

Second digit (B): All 7 segments (B0 -B6) are present, forming an '8’.

Operator (G): Two segments (GO_horizontal and GO_vertical) are present, forming a '+’.

Third digit (C): Segments C1, C2, C0, C5, C4 are present. Segments C3 and C6 are missing (dashed). This configuration
formsa 2’...

The final answer is "\\boxed { {Move(B5, D6), Move(EO, D1)}}"

/

Figure 18: Case study (Level 3, pure-visual, Case B).

29

\‘ Gemini-2.5-Pro

With Text Input :

Reasoning:

The initial equation "11 + 36 = 77" is incorrect. By repositioning one or two matchsticks, we need to make the equation
mathematically valid. Here’s the analysis:

- Keep the equality intact (i.e., left-hand side should equal the right-hand side).

- By moving matchsticks, digits can be transformed (e.g., 11 into 17, 77 into 37, etc.).

- Through analysis, moving two matchsticks can change "11 + 36 = 77" into "17 + 36 = 53", which is mathematically
correct.

Steps:

Final Solution Format:
\\boxed {Move(A3, C6), Move(D3, E1)}

G -
With Text Input :

I’m sorry — after analysing every possibility I couldn’t find any way to make the equation correct with only one or two
moves while keeping each digit recognisable.

I Doubao-Seed-1.6-Thinking

With Text Input :

To solve the problem, we need to modify the incorrect equation "11+36=77" by moving one or two matchsticks to form a
mathematically valid equation. The key insight is to adjust the digits such that the sum of the addends equals the result,
while adhering to the constraints of repositioning only existing matchsticks.

Reasoning

The original equation "11+36=77" is incorrect because 11+36=47, not 77. To fix this, we need to change the result from
"77" to "47". A"7" in seven -segment display uses three segments (top, upper right, lower right). A "4" uses four segments
(upper right, lower right, upper left, middle). To convert the first "7" (in "77") to a "4", we need to add the upper left an d
middle segments while removing the top segment.

The "3" in "36" uses five segments (top, upper right, middle, lower right, bottom). We can take the middle segment from
the "3" (converting it to a "7") and the top segment from the first "7" (converting it to a "4"). However, this results in an
invalid digit for "3". Instead, a valid solution is to adjust the addend and result to form "11+56=67", which requires
moving two matchsticks: one from the "3" to turn it into a "5" and one from the "7" to turn it into a "6".

Final Solution:

After careful analysis, the correct modification involves moving two matchsticks to form the valid equation "11+56=67".
This requires repositioning segments from the "3" (to form "5") and from the "7" (to form "6").

\\boxed {Move(C2, C6), Move(E1, ES)}

J

Figure 19: Case study (Level 4, text-prompted, Case A).

30

-* Claude-Sonnet-4

With Text Input :

I need to analyze the given equation "84+86=13" and find a way to make it mathematically correct by moving one or two
matchsticks.

Let me first understand what digits are currently displayed:

- First digit: 8 (segments A1, A2, A0, A6, A5, A4, A3) \n- Second digit: 4 (segments B1, B2, B0, B3)
- Plus sign: +

- Third digit: 8 (segments C1, C2, C0, C6, C5, C4)

- Fourth digit: 6 (segments D1, D2, DO, D6, D5, D4)

- Equals sign: =

- Fifth digit: 1 (segments E2, E3)\n- Sixth digit: 3 (segments F1, F0, F2, F4, F3)

Now I need to find a valid equation by moving 1-2 matchsticks.

Let me consider what equations could work:

- 84 + 86 = 170 (but this requires 3 digits on the right) ...

\\boxed {Move(E2, E6), Move(FO0, F6)}

@ 04-mini

‘With Text Input :

Reasoning:

1. Remove the vertical stroke of the “+” (segment C6) and attach it as the bottom-left stroke of the “6” (segment E2). This
turns “+” into “—" and the “6” into “8,” so the left side becomes 84 — 88

2. Take the lower-right stroke of the “3” (segment F3) and move it up one position to F5. That converts “3” into “2,” so
the right side becomes “-2.”

The resulting equation is 84 — 88 = -2

which is mathematically correct.

Final moves:

\\boxed {Move(C6, E2), Move(F3, F5)}

! Doubao-Seed-1.6-Thinking

With Text Input :

To solve the problem of correcting the equation "84+86=13" by moving one or two matchsticks, we analyze the seven-
segment digits and identify necessary adjustments.

Key Observations:

- The original equation is "84+86=13". We need to adjust digits using 1 -2 matchstick moves to form a valid equation.

- Digit 8 (C, the second 8 in 86) has all segments present. Removing the upper right segment (C1) converts it to 6.

- Digit 1 (E) has segments for 'b' (E1) and 'c' (E2). Adding the upper segment (EO) converts 1 to 7...

Solution:

- Move the upper right segment of the second 8 (C1) to the upper segment of 1 (E0), changing 8—6 and 1 -7 ...

Final Equation: 84 + 66 = 70 (Note: This is a valid two-digit equation with two moves.)

\\boxed {Move(C1, E0), Move(F6, F4)}

Figure 20: Case study (Level 4, text-prompted, Case B).

31

* Gemini-2.5-Pro

Without Text Input :

The initial equation displayed is "11 +35=77".

Let's analyze the numbers based on their segments:

- The first "1" is formed by segments A2, A3.

- The second 1" is formed by segments B2, B3.

- The "+ sign is formed by GO (horizontal) and a vertical matchstick...

Let's try '17460=77"."1'->'7", '3'->'6", '5'->'0".

Move DO to B1. Move C2 to C5. Move D3 to C6. Too many moves.

The intended solution is likely "71+6=77". This requires the ‘3" to be removed and its sticks used to change ‘1" to *7" and
‘57106,

1. Move "C1" to "A1". (This changes the first 1" toa *7").

2. Move "C2" to 'D5". (This changes the *5" to a *6").

This leaves the digit 'C" as 'C0, C3, C4", which is not a blank space. This violates the legibility rule. But it is the only 2-
move transformation to a correct equation.

\\boxed {Move(C1, A1), Move(C2, D5)}

&

Without Text Input

Reasoning

The expression that is built with the matches is

11+36=66

(both “11” and “36” are displayed correctly, but the result shows “66”, which is wrong). If we take the single matchstick
that forms the bottom-right vertical segment of the left-hand “6” (segment D3) and move it to become the missing top -right
vertical segment of that same digit (segment D2), the digit “6” changes to a “5” ...

solution

\\boxed {Move(D3, D2), Move(EO0, E4)}

' Doubao-Seed-1.6-Thinking

Without Text Input :

Reasoning

The original equation is incorrectly displayed as " 1+1=3" (using seven-segment matchstick digits). The digit "3" (in block
C) has a matchstick in the lower right segment (C3) but lacks one in the lower left segment (C5). By moving the
matchstick from C3 (lower right of "3") to C5 (lower left of the same digit), the "3" is transformed into a "2". This results
in the valid equation "1+1=2".

Final Solution Format

\\boxed{{Move(C3, C5)}}

Figure 21: Case study (Level 4, pure-visual, Case A).

32

ot ot Ge g o g ot a—el

- el [R N o ! ol

‘* Claude-Sonnet-4

Without Text Input :

I need to analyze the current equation shown in the matchstick display and determine what changes are needed to make it
mathematically correct.

Looking at the image, I can see a seven-segment display equation. Let me identify what each digit currently shows:
From left to right, I can see:

- First digit: Appears to be an 8 (all segments lit)

- Second digit: Appears to be a 9 (missing bottom left segment)

- Third digit: Appears to be a 6 (missing top right segment)

- Fourth digit: Appears to be an 8 (all segments lit)

- Fifth digit: Appears to be an 8 (all segments lit) \n- Sixth digit: Shows some segments (appears incomplete)...

$\\boxed {Move(F3, E3)}$

@ 04-mini

Without Text Input :

Reasoning:

1. Take the upper-left stick of the “5” (segment C6) and move it to the middle segment of the “0” (segment B0). This turns
the “0” into an “8” and the “5” into a “3.”

2. Then take the middle stick of the “3” (segment D0) and move it to the now —vacant upper-left position of the “5”
(segment C6). This turns that “3” into a <9.”

The display now reads 2 +8=10

which is a correct equation.

Final answer (in the required format):

\\boxed {Move(C6, B0), Move(DO0, C6)}

! Doubao-Seed-1.6-Thinking

Without Text Input :

To solve the problem, we first identify the original incorrectly displayed equation as a seven -segment matchstick
configuration. The key is to recognize that the equation can be corrected by repositioning one or two matchsticks to form a
valid mathematical statement.

Reasoning

The original equation is assumed to be in the form of digits and operators constructed from seven -segment displays. A
common incorrect equation that can be fixed with two moves is transforming "5 + 5 = 5" (invalid) to "3 + 2 = 5" (valid).
This requires modifying two digits...

Final Solution

After careful analysis of segment labels and their roles in forming digits, the correct moves to form a valid equation are
identified.

\\boxed { {Move(B2, D5), Move(A3, C1)}}

/

Figure 22: Case study (Level 4, pure-visual, Case B).

33

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Sec.[1]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix Sec.[]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

34

Justification: The primary contribution of this work is the introduction of a new benchmark
and an extensive empirical evaluation. As the focus is on providing a new resource and
analyzing model capabilities, the paper does not contain theoretical claims, theorems, or
proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Sec.[3l
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

35

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: See Abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sec.[Eland Sec.[3]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For our human evaluation, we report the mean accuracy and standard deviation
across the three participants, providing a clear measure of inter-annotator consistency and
performance variance. For the Vision-Language Model evaluations, we report the accuracy
from a single, complete run over our deterministic 400-item benchmark. This approach is
standard for establishing baseline performance on a new benchmark, with the primary goal
being a broad diagnostic assessment across a diverse set of existing models.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted by querying the public APIs of the respective
models, as detailed in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics, and our paper does not have these
problems.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Sec. [l
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

37

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: CC-BY 4.0.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

38

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the primary contribution of this paper is the introduction of new assets.
These include: (1) the full MATHSTICKS dataset comprising 1.4M solvable instances, (2)
the curated 400-item benchmark set for standardized evaluation, and (3) the complete open-
source codebase for data generation, visual rendering, and model evaluation. All assets
are publicly available at the GitHub repository linked in the abstract. Documentation is
provided both within the paper and via a comprehensive README . md file in the repository,
which provides setup instructions, usage examples, and details on the data format.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Yes, we conducted a small-scale study with three participants to establish a
human performance baseline. Full details regarding the participant demographics, the verbal
instructions provided, the informed consent process, and the non-compensated, volunteer
nature of their participation are documented in Appendix

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

39

paperswithcode.com/datasets

16.

Justification: Our research involved three adult participants in a minimal-risk cognitive
study. The task consisted solely of solving visual puzzles on a computer screen, posing no
risks beyond those encountered in everyday life. As such, the study was considered exempt
from formal Institutional Review Board (IRB) review according to standard institutional
guidelines for such research. Nevertheless, informed consent, which included a description
of the task, was obtained from all participants prior to their involvement.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research evaluates the performance of various existing Large Language
Models (LLMs) and Vision-Language Models (VLMs). The models themselves are the sub-
jects of our empirical study, not a component of our core methodology. The MATHSTICKS
benchmark, its data generation pipeline, and the evaluation framework were developed
algorithmically and do not rely on the use of LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	MathSticks
	Experiments
	Experimental Setup
	Performance Analysis
	Error Analysis

	Conclusion
	Related Work
	Visual Representation of Matchsticks
	Dataset Construction Details
	Symbolic Enumeration
	Visual Rendering

	Detailed Dataset Statistics
	More Experiments
	Evaluation Protocol
	Fine-Grained Analysis
	Human Evaluation

	Prompts
	Case Studies

