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Abstract
Long-horizon tasks in robotic manipulation
present significant challenges in reinforcement
learning (RL) due to the difficulty of designing
dense reward functions and effectively explor-
ing the expansive state-action space. However,
despite a lack of dense rewards, these tasks of-
ten have a multi-stage structure, which can be
leveraged to decompose the overall objective into
manageable subgoals. In this work, we propose
Demonstration-Augmented Reward, Policy, and
World Model Learning (DEMO3), a framework
that exploits this structure for efficient learning
from visual inputs. Specifically, our approach
incorporates multi-stage dense reward learning,
a bi-phasic training scheme, and world model
learning into a carefully designed demonstration-
augmented RL framework that strongly mitigates
the challenge of exploration in long-horizon tasks.
Our evaluations demonstrate that our method im-
proves data-efficiency by an average of 40% and
by 70% on particularly difficult tasks compared
to state-of-the-art approaches. We validate this
across 16 sparse-reward tasks spanning four do-
mains, including challenging humanoid visual
control tasks using as few as five demonstrations.
Website with code and visualizations can be found
at https://adrialopezescoriza.github.io/demo3.

1. Introduction
Reinforcement learning (RL) with dense rewards has en-
abled significant progress in high-dimensional control tasks.
Many such tasks are now solvable when the reward func-
tion is carefully designed for the specific goal. In partic-
ular, model-based RL (MBRL) has demonstrated strong
performance in these high-dimensional problems (Ha &
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Schmidhuber, 2018; Zhang et al., 2018; Kidambi et al.,
2020; Hafner et al., 2020; Yu et al., 2020; Hansen et al.,
2022; 2024; Sferrazza et al., 2024). However, designing
accurate reward functions is challenging. Poorly designed
rewards can lead agents to become trapped in local min-
ima or exploit unintended shortcuts, resulting in undesirable
behaviors (Clark & Amodei, 2016). More critically, scal-
ing reward design to complex tasks is highly impractical:
the larger the state space and the longer the horizon, the
more intricate the reward must be. While recent approaches
leveraging Large Language Models (Kwon et al., 2023;
Ma et al., 2023; Xie et al., 2024) and Vision-Language
Models (Rocamonde et al., 2024; Baumli et al., 2024) for
reward generation show promise, they still struggle with
high-precision requirements, particularly in manipulation
problems. In contrast, sparse rewards, such as binary signals
indicating task or subtask completion, are much easier to
obtain. However, traditional RL methods still struggle to
learn effectively from sparse rewards.

Fortunately, long-horizon tasks do offer opportunities to
simplify the problem. Typically, such tasks exhibit a natural
multi-stage structure. For example, a pick-and-place task
can be broken down into subtasks such as grasping, lifting,
and placing. Each of these can be associated with stage
indicators or rewards that can easily be queried from the
environment. This multi-stage structure allows these tasks
to be decomposed into more manageable subgoals, enabling
the agent to collect rewards more frequently (Smith et al.,
2020; Di Palo & Johns, 2021). However, subgoal sparse
rewards can still be insufficient if the distance between sub-
goals is too great, leading back to the exploration problem.

Prior work shows that Learning from Demonstrations (LfD)
can help mitigate exploration issues in sparse reward set-
tings. Algorithms such as CoDER (Zhan et al., 2022) and
MoDem (Hansen et al., 2023; Lancaster et al., 2024) lever-
age demonstrations to populate the replay buffer of an off-
policy RL algorithm (Sutton & Barto, 2018), but they often
scale poorly with task complexity as they need demonstra-
tions that sufficiently cover the behavior space. Inverse RL
methods (Trott et al., 2019; Wu et al., 2021; Memarian et al.,
2021; Escontrela et al., 2022) train RL on a reward function
that is learned from demonstrations, but inverse RL alone
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Figure 1. Summary of results. Final success rate (%) achieved by our method and a set of strong baselines, averaged across all tasks
within each of 4 domains. Average of 5 seeds. Given a handful of demonstrations, our method achieves high success rates in challenging
visual manipulation tasks with sparse rewards, far exceeding previous state-of-the-art methods. See Appendix A for per-task results.

often struggles as the learned reward function can have poor
predictions on unseen states. Lastly, these methods typically
require a vast amount of samples to learn a reward func-
tion (Kumar et al., 2022; Mu et al., 2024) before any policy
learning can begin.

In this paper, we build on demonstration-augmented RL
to tackle multi-stage manipulation tasks with sparse stage-
wise rewards. We introduce DEMO3, a model-based RL
algorithm that leverages a limited number of demonstrations
for three key purposes: learning a policy, a world model,
and a dense reward. DEMO3 exploits the multi-stage
structure of long-horizon tasks to transform sparse stage
indicators into a stage-wise dense reward. This enables
dense feedback in a structured way, prioritizing achieving
subgoals over following demonstrations. Unlike prior work,
our dense reward is learned online, alongside policy and
world model learning.

We evaluate our method on a range of challenging manipu-
lation tasks from Meta-World (Yu et al., 2021), Robosuite
(Zhu et al., 2022), as well as both humanoid and tabletop
manipulation tasks from ManiSkill3 (Tao et al., 2024b). Our
results (see Figure 1) demonstrate that our method outper-
forms state-of-the-art methods by an average of 40%, and
for more complex, longer-horizon tasks, this performance
gap increases to 70%. Our main contributions can be
summarized as follows:

1. We introduce DEMO3, an MBRL algorithm for highly
data-efficient robotic manipulation from visual inputs
and sparse rewards. Our method integrates online dense
reward learning into RL for multi-stage tasks.

2. We conduct extensive experiments in 16 tasks across 4
domains to demonstrate the data-efficiency and robust-
ness of our approach compared to existing methods.

3. We analyze the relative importance of each component
of our framework, and are open-sourcing all code and
demonstrations used in this work.

Figure 2. Task domains. We evaluate methods on 16 multi-stage
image-based sparse-reward tasks spanning four domains: Meta-
World (Yu et al., 2021), Robosuite (Zhu et al., 2022), as well as
manipulation and humanoid tasks from ManiSkill3 (Tao et al.,
2024b). See Appendix D for a complete overview of tasks.

2. Preliminaries
Problem formulation. We aim to learn control policies for
multi-stage, long-horizon tasks, which we model as infinite-
horizon Markov Decision Processes (Bellman, 1957) de-
fined by the tuple (S,A,P,R, γ). Here, S and A denote
the state and action spaces, respectively, P is the (unknown)
state transition probability function, R is a sparse reward
function, and γ ∈ [0, 1) is the discount factor. Our goal
is to learn a policy πθ : S → A parameterized by θ that
maximizes the expected cumulative reward (return) over an
infinite time horizon, formalized as maxEπθ

[
∑∞

t=0 γ
trt].

Multi-stage sparse rewards. In this work, we focus on
multi-stage tasks where the overall objective can be de-
composed into a sequence of N subgoals or stages. Stage
indicators are often easy to obtain; for example, in manipu-
lation tasks, it is straightforward to query whether the agent
has grasped an object. We model the (sparse) reward as a
stage indicator function r : S → {1, 2, . . . , N} that maps
each state to its corresponding stage. We assume no access
to any privileged information from the environment (e.g.
object configurations), and instead consider multi-modal
observations o = (x,q) where x denotes raw RGB images
coming from the agent’s cameras, and q denotes the propri-
oceptive state of the robot. This constitutes realistic sensory
inputs available in typical robotic platforms.

TD-MPC2 (Hansen et al., 2022; 2024) is a model-based RL
algorithm that combines Model Predictive Control (MPC), a
learned latent-space world model, and a terminal value func-
tion learned via temporal difference (TD) learning. Specif-
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Figure 3. Method overview. We present a two-phase framework for multi-stage visual manipulation from sparse rewards that leverages
a handful of demonstrations for dense reward learning and MBRL. Phase 1 (left): policy and encoder is pre-trained on the available
demonstrations using behavioral cloning, which serve as initialization for the next phase. Phase 2 (right): the agent iteratively collects
environment data via planning and uses all available data to update its world model as well as a latent state discriminator; this discriminator
is used to transform sparse environment rewards into a learned dense reward for world model learning and subsequent planning.

ically, TD-MPC2 learns a representation z = hθ(o) that
maps a high-dimensional observation o into a compact rep-
resentation z, as well as a dynamics model in this latent
space z′ = dθ(z,a). In addition, TD-MPC2 also learns
prediction heads, Rθ, Qθ, πθ, for (i) instantaneous reward
r = Rθ(z,a), (ii) state-action value Qθ(z,a), and (iii) a pol-
icy prior a ∼ πθ(z). The policy prior πθ serves to “guide”
planning towards high-return trajectories and is optimized
to maximize temporally weighted Q-values. The remaining
components are jointly optimized to minimize TD-errors,
and reward and latent state prediction errors, minimizing

LTD-MPC(θ) =

t+H∑
i=t

λi−t [LQ(θ) + LR(θ) + Lh(θ)] , (1)

where o′
t, z

′
t are the (latent) states at time t+1. During envi-

ronment interaction, TD-MPC2 selects actions via sample-
based planner MPPI (Williams et al., 2015) and the learned
world model. We adopt TD-MPC2 as our choice of visual
MBRL algorithm due to its simplicity and strong empiri-
cal performance but emphasize that our framework can be
instantiated with any MBRL algorithm.

3. Method
In this work, we address the challenge of solving multi-stage
manipulation tasks from sparse rewards. Such long-horizon
tasks are particularly difficult due to the combinatorial com-
plexity of the state-action space and the lack of informative
feedback across extended horizons. To overcome these is-
sues, we propose DEMO3, a novel RL method that uses
demonstrations for a three-fold purpose: to learn a policy, a

world model, and a dense reward function simultaneously.

As our main algorithmic contribution, we introduce stage-
specific reward learning. In particular, we extend the strat-
egy on reward learning from demonstrations (LfD) pre-
sented in Mu et al. (2024) to online reward learning within
a world model. By learning structured, multi-stage rewards
online alongside world model and policy, our method pro-
vides more frequent and meaningful training signals to the
agent than prior work on demonstration-augmented RL.

Our approach builds directly upon the strengths of prior
work. In particular, we leverage MoDem’s multi-phase
accelerated learning framework and use TD-MPC2 as our
backbone for its robustness and generalizability.

3.1. Model-based RL with online reward learning

Sparse rewards are a major challenge in RL, particularly
for long-horizon tasks comprising multiple stages. To over-
come this, we learn to densify sparse rewards with a small
number of demonstrations. For this, we introduce a series
of discriminators {δk}Nk=0, each corresponding to a task
stage k ∈ {0 . . . N}. The objective of each discriminator
is to predict the likelihood of progressing to the next stage
based on the latent state representation zt produced by the
back-bone world model.

Therefore, each discriminator δk acts as a stage classifier
trained to distinguish states as either leading or not leading
to successful stage transitions. For each stage k, we use a
typical Binary Cross Entropy (BCE) loss:

Lδk = E
(ot,rt=k,st)∼B

[BCE(1st>k, δk(h(ot)))] , (2)
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Figure 4. Dense reward learning. At each update step, the contin-
uous output of a stage discriminator is added to the environment
sparse reward. The discriminator output is normalized to the
[−β, β] interval with a tanh operator.

where h denotes the world model encoder, B is the replay
buffer, and st represents the maximum stage that will be
reached by the trajectory after the given sample:

st = max
t′≥t

rt′ , (3)

We refer to st as the maximum stage label of a sub-trajectory.
Thus, each trajectory, τi = {(ot,at, rt,ot+1, st)}T−1

t=0 , is
annotated with maximum stage labels st that serve as suc-
cess labels for the stage discriminators. Then, as presented
in Algorithm 1, at each update of the world model, the dis-
criminators are updated as an additional part of the model.
Specifically, for a given sample from the replay buffer
(ot,at,ot+1, rt, st) ∼ B, the sparse reward associated with
a given stage, k = rt, will tell us which discriminator, δk,
will be updated by that sample. If the maximum stage la-
bel st is greater than the current stage reward k = rT , the
sample belonging to a trajectory with a successful stage tran-
sition will be treated as a positive example in the classifier
loss. Note that in the event that no samples with a stage
reward, rt = k, would appear in a given batch, the discrimi-
nator δk for that stage would simply not get updated at that
step. Therefore, while the algorithm is capable of working
without any demonstrations, using a small demonstration
dataset can significantly accelerate the training of the world
model and discriminators.

While training the world model, the discriminators are used
to generate dense rewards as per

r̂δt = rt + β · tanh(δrt(zt)) (4)

where the output of the discriminator is mapped to the
[−β, β] interval. The process is illustrated by Figure 4.
We set β to be a hyperparameter with β ≤ 1/3 to ensure
that rewards never cross between different stage regions.
This is to ensure that states belonging to a more advanced
stage always get a higher reward than lower-stage states.
Effectively, our method rewards states that have a higher
chance of transitioning to the next stage and penalizes those

Algorithm 1 DEMO3 (Phase 2)

Require: Demonstration dataset D, number of stages N
1: Initialize discriminators {δk}Nk=0

2: Initialize replay buffer B ← {Ø}
Rollout

3: for each environment step do
4: if rand() ≥ α then
5: Agent step: at ∼ πBC(a|h(ot))
6: else
7: Agent step: at ←WMplan(ot)
8: end if
9: Env step: (ot+1, rt)← Env(ot,at)

10: Save sample: τ ← τ ∪ (ot,at,ot+1, rt)
11: if episode done then
12: Reset environment
13: Compute maximum stage labels: {st}T0
14: Save trajectory: B ← B ∪ (τ ∪ {st}T0 )
15: end if
16: α← min(1, α0 · t)
17: end for

Update
18: for each update step do
19: Sample:

{
(ot,ot+1,at, rt, st)

t0+H
t0

}
∼ (B ∪ D)

20: Predict dense reward (r̂δt )
t+H
t0

21: Compute world model losses: LR,LQ,Lh,Lπ

22: Compute discriminator loss: Lδ = 1
N

∑
k Lk

δ

23: Gradient step: θ ← θ + ρ∇LP

24: end for

that do not, encouraging the agent to explore regions with a
higher probability of transition.

The total world model loss integrating these signals becomes

LP = LR + LQ + Lh + Lδ, (5)

where LR, LQ, and Lh represent the TD-MPC2 world
model losses: (i) reconstruction, (ii) value estimation, and
(iii) latent dynamics losses. Importantly, LR is computed to
predict the learned dense reward produced by the discrimi-
nator, r̂δt , thus providing a richer learning signal than pure
sparse rewards. Finally,Lδ is the average loss of all the stage
discriminators. As in Hansen et al. (2024), the total loss is
used to compute gradients for the world model, meaning
that Lδ is also used to learn the observation encoder.

3.2. Training scheme

In order to further boost the data-efficiency of DEMO3,
we build upon previous work on accelerating MBRL with
demonstrations. Specifically, we draw inspiration from Mo-
Dem (Hansen et al., 2023) and propose a bi-phase training
scheme in which we first use demonstrations to pre-train an
initial policy through behavioral cloning (Atkeson & Schaal,
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Figure 5. Learning curves. Success rate as a function of interaction steps for each of the four domains that we consider, averaged across
all tasks and 5 random seeds. The shaded area corresponds to a 95% confidence interval. Our method consistently outperforms baselines.

1997; Pomerleau, 1988), πBC to collect informative samples
during early stages of training. In phase 2, we gradually
phase out the (frozen) pre-trained policy and start collecting
samples by planning through the world model, which is
learned via interactive learning. An overall diagram of our
training strategy can be found in Figure 3.

Phase 1: Pretraining. One of the main bottlenecks of RL
in long-horizon sparse reward tasks is the low-informative
data that is collected at the early stages of training. As early
data tends to contain no rewards, learning a meaningful
representation for such states becomes challenging. Tradi-
tional methods tend to start collecting data with a randomly
initialized policy that usually struggles to find any rewards
in the environment. For this reason, we jointly pre-train a
policy πBC and an encoder hBC on the full demonstration
dataset D using the classic behavioral cloning (BC) loss as
an objective function:

LBC(θ) = E
(o,a)∼D

[− log πθ(a|hθ(o))] , (6)

where the policy learns to imitate the behaviors encoded in
the dataset. At interaction time, the interactive policy πRL
and the world model encoder, h, are initialized with their
pre-trained analogs πBC, hBC.

Given that we focus on datasets with limited demonstrations,
behavioral cloning can be prone to overfitting (Peters et al.,
2010; Parisi et al., 2022; Duan et al., 2017). To mitigate this,
we regularly evaluate πBC during pretraining by rolling out
episodes in the environment. We use early stopping on the
evaluation set (Yao et al., 2007) to select the best-performing
policy for the interactive learning phase.

Phase 2: Interactive Learning. After initial pretraining
of the encoder and policy, the agent starts collecting data
from the environment to learn using offline reinforcement
learning (RL). In order to utilize the demonstrations, we
follow Hansen et al. (2023) by sampling from the replay
bufferB and the demonstration datasetD at each update step.
Specifically, every time we sample a batch, a fraction of the
samples come from D while the remaining fraction comes

Table 1. Experimental setup. We consider 16 challenging visual
manipulation tasks in 4 different domains. Domains that empiri-
cally present a slower convergence are given a bigger budget of
interactions. The number of stages is determined according to the
nature of the task and by the typical horizon of demonstrations.

Domain Tasks Demos Interactions Stages

ManiSkill 5 5-100 500k 3
Meta-World 5 5 500k 2
Robosuite 4 5-25 100k 1

Humanoids 2 5 100k 3

from. This approach prevents collected data from quickly
outnumbering the demonstrations. While the sampling ratio
is a tunable hyperparameter, we empirically found that an
initial 50% demonstration ratio works well for most tasks.

Therefore, as detailed in Algorithm 1, at each update step,
the world model gets updated as explained in Section 3.1.
The agent will then proceed to interact with the environment
to collect more data that will be stored in the replay buffer.

Similar to Lancaster et al. (2024), we use annealing to con-
trol the probability of a sample coming from πBC or from
the planning module of the world model. In this way, the
data distribution of the replay buffer B is initially biased
toward the one of the dataset D. This technique aims to
collect more informative data than the one a purely random
policy would collect during early stages of training. As the
world model starts learning and πRL is able to collect more
meaningful samples, we increase the annealing coefficient
αt to improve the diversity of collected samples and stop re-
lying on the suboptimal pre-trained policy πBC. Eventually,
αt will converge to 1, at which point all samples will come
from planning with πRL (see Algorithm 1).

4. Experiments
We consider 16 challenging visual multi-stage manipulation
tasks with a long-horizon for our experimental evaluation.
This includes 5 manipulation tasks from ManiSkill3 (Tao
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Figure 6. Challenging tasks. Success rate of our method and baselines on the 2 hardest tasks from each domain. Averaged across 5
random seeds. LaNE results in Robosuite are kindly provided by Zhao et al. (2024). Shaded areas correspond to 95% confidence intervals.

et al., 2024b), 5 manipulation tasks from Meta-World (Yu
et al., 2021) and 4 manipulation tasks from Robosuite (Zhu
et al., 2022). Additionally, we include 2 humanoid manipu-
lation tasks from ManiSkill3 with a high-dimensional action
space, which we refer to as ManiSkill Humanoids in our
evaluations. We place a strong emphasis on long-horizon
precise manipulation, which is why we select the most chal-
lenging tasks from each domain. We relate the difficulty to
the required precision of a task, its horizon, and the level of
randomization in the scene (see Appendix D.3 for further
details on difficulty categorization). For each task, the agent
is given a constrained budget of demonstrations and inter-
action steps (see Table 1). To allow most baselines to solve
the task, we set the interaction budget and demonstrations
to a different amount for each task. For a complete list of
details on our experimental setup, please refer to Table 1 and
Appendix D. Through our evaluations, we aim to answer
the following questions:

1. Can our proposed method effectively accelerate MBRL
with demonstrations in long-horizon multi-stage tasks?

2. What is the relative importance of each algorithmic com-
ponent of Demonstration-Augmented Reward, Policy,
and World Model Learning (DEMO3), and how does it
scale with the amount of demonstration data?

3. How do sparse reward functions compare to our learned
rewards at different levels of stage granularity?

4.1. Baselines

To assess our method’s effectiveness, we compare it against
three relevant approaches. A complete comparison of other
methods can be found in Appendix B.

MoDem (Hansen et al., 2023) is a MBRL algorithm de-
signed to enhance data-efficiency in visual control tasks

with sparse rewards. Similarly to our method, MoDem em-
ploys a three-phase framework: policy pretraining, seeding,
and interactive learning with oversampling of demonstra-
tion data. The authors show state-of-the-art performance
on Meta-World and Adroit domains from visual inputs and
sparse rewards.

LaNE (Zhao et al., 2024) is a data-efficient model-free RL
method for sparse-reward tasks from visual inputs. LaNE
utilizes a pre-trained feature extractor to learn an embedding
space and rewards the agent for exploring regions near
the demonstrations within this latent space. The authors
also show state-of-the-art data-efficiency in the Robosuite
environment with a limited amount of demonstrations.

TD-MPC2 (Hansen et al., 2022; 2024) is the state-of-the art
MBRL algorithm for control tasks. It combines temporal
difference learning with model predictive control (MPC)
and constitutes the backbone of our approach. Compared
to TD-MPC, TD-MPC2 includes a series of algorithmic
changes that improve robustness and scaling.

4.2. Benchmark Results

The main result of our evaluations (see Figure 5) compares
the data-efficiency of our method against the proposed base-
lines. On average, our method achieves 40% better data-
efficiency than the proposed baselines. Notably, in Man-
iSkill3, our most difficult domain, our method averages a
75% success rate after only 500k steps, performing 50% bet-
ter than the second-best baseline. Furthermore, our DEMO3

can deal better with the high-dimensional action space in
ManiSkill Humanoids. Interestingly, while our DEMO3

does better on average, it thrives in the most difficult tasks
where the horizon and precision of the task are the highest.
While the results of LaNE in the Robosuite domain are cer-
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Figure 7. Ablations. Success rate as a function of interaction steps
for variations of our method on all 5 ManiSkill manipulation tasks.
Averaged across 5 random seeds. Baselines included for complete-
ness. Shaded areas correspond to 95% confidence intervals.

tainly impressive, the same approach doesn’t transfer to the
rest of the domains.

Figure 6 shows the learning curves for the most challenging
task of each benchmark. Particularly, the ManiSkill tasks,
Peg Insertion, and Stack Cube, require a very high level of
precision and a long horizon. As shown in 6, DEMO3 is the
only algorithm to reliably solve both tasks in the interaction
budget. While performance is quite matched with LaNE
(Zhao et al., 2024) in Robosuite, LaNE uses a pre-trained
encoder to preprocess image observations while our method
is completely learned from scratch. Finally, TD-MPC2
struggles to get any performance as is typical for pure RL
algorithms learning from sparse rewards. Overall, DEMO3

shows the highest degree of robustness and efficiency on the
proposed long-horizon tasks.

4.3. Analysis

Relative importance of each component . Figure 7
shows the effect of removing dense reward learning, policy
pretraining, and demonstration oversampling in the 5 manip-
ulation tasks from ManiSkill3. Interestingly, a considerable
jump in performance is brought by pretraining and oversam-
pling from the demonstration dataset with the TD-MPC2
backbone (no learned reward). The effect of reward learn-
ing becomes evident in long-horizon tasks where advancing
stages can be very challenging without rewards (e.g., Peg
Insertion, Pick Place), especially when reducing the number
of demonstrations (see Appendix A.2).

Demonstration efficiency In Figure 8, we experiment
with different dataset sizes and evaluate the data-efficiency
of different baselines using demonstrations. While most
methods scale well with the number of demonstrations,
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%
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Figure 8. Demonstration efficiency. Number of steps to reach a
critical success rate (30%) as a function of demonstration count.
Data points that did not converge are assigned a 500k step count.
Results are aggregated over 2 challenging manipulation tasks
(Stack Cube and Peg Insertion) and averaged across 5 seeds.
Shaded areas correspond to a 95% confidence interval.

DEMO3 shows the strongest performance in the lowest
regime of demonstrations. This is particularly evident in
challenging tasks such as Peg Insertion and Stack Cube,
where DEMO3 is the only method capable of reaching
meaningful performance within the interaction budget (see
Appendix A.2) with only 5 demonstrations.

Wall-time comparison Our method achieves competitive
wall-time performance, ranking as the second fastest among
all evaluated algorithms (Table 2). While slightly slower
than TD-MPC2, we attribute the overhead to the additional
computation required for reward learning. Importantly,
DEMO3 performs much faster than other demonstration-
augmented RL approaches, such as Modem and LaNE.

Table 2. Wall-time. Hours per 100k interaction steps, averaged
across 5 seeds and all tasks in Robosuite. Lower is better ↓.

Algorithm Time (hours) ↓
LaNE 20.40
MoDem 8.37
TD-MPC2 4.84
Ours 5.19

Reward granularity Figure 9 illustrates the data-
efficiency of our method across the same tasks under varying
reward granularities: 1 stage, 2 stages, 3 stages, and dense
rewards. Please refer to D for details about the stage def-
initions. As expected, dense rewards provide the optimal
learning signal, resulting in the fastest task completion. Re-
markably, our method achieves near-equal performance with
only 2 stages, demonstrating that stage indicators combined
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with a minimal set of demonstrations are sufficient to guide
the learning process effectively. This result shows that over-
engineered dense reward functions can easily be avoided
by only providing a small number of demonstrations. By
relying solely on stage indicators and demonstrations, our
method simplifies the reward design process while maintain-
ing high performance in complex long-horizon tasks.
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Figure 9. Reward granularity. Success rate of our method with
increasing granularity in the stage division of a task. Results are
aggregated over 2 challenging manipulation tasks (Stack Cube
and Peg Insertion) and averaged across 5 seeds. The shaded area
corresponds to a 95% confidence interval.

5. Related work
Model-based RL Model-based Reinforcement Learning
(MBRL) improves data-efficiency by leveraging a model of
the environment to guide decision-making. These models
can be either prior-based, such as physics-based simulators,
or learned, where the agent approximates a dynamic model
of the world from data. World models (Schmidhuber, 1990;
Ha & Schmidhuber, 2018) are an internal representation of
the environment that enables planning and policy learning
without direct interaction. A notable example is MuZero
(Schrittwieser et al., 2020), which extends value-based plan-
ning by implicitly learning environment dynamics. Recent
advances, such as Dreamer (Hafner et al., 2020; 2022; 2024)
and TD-MPC (Hansen et al., 2022; 2024), improve learn-
ing in high-dimensional spaces, allowing MBRL to scale to
complex visual and continuous control tasks.

Demonstration-Augmented RL Learning policies purely
through trial and error can be inefficient and unstable,
prompting research into leveraging demonstrations to en-
hance RL. During online interactions, demonstrations can
serve as off-policy experience (Hester et al., 2018; Kaptur-
owski et al., 2018; Ball et al., 2023; Nair et al., 2018; Escon-
trela et al., 2022) or for on-policy regularization (Kang et al.,
2018; Rajeswaran et al., 2017). Alternatively, demonstra-
tions can be used to estimate reward functions for RL (Xie
et al., 2018; Aytar et al., 2018; Vecerik et al., 2019; Zolna

et al., 2020; Singh et al., 2019). In this work, we leverage
demonstrations in multiple ways simultaneously: learning
an initial policy, the world model, and a reward function.

Reward Learning Designing rewards is challenging due
to the need for extensive domain knowledge, prompting
the development of data-driven reward learning methods.
Rewards can be learned from offline datasets by classifying
goals (Smith et al., 2019; Kalashnikov et al., 2021; Du et al.,
2023) or estimating goal distances (Zakka et al., 2022). Al-
ternatively, inverse RL approaches (Ng et al., 2000; Ziebart
et al., 2008; Ho & Ermon, 2016; Fu et al., 2017) leverage
online interactions to infer a reward function from expert
demonstrations. Additionally, reward shaping techniques
(Trott et al., 2019; Wu et al., 2021; Memarian et al., 2021;
Escontrela et al., 2022) transform sparse rewards into dense
rewards using specific domain knowledge. The reward learn-
ing in this work builds upon DrS (Mu et al., 2024), with
modifications tailored for compatibility with MBRL.

6. Conclusions and Future Directions
In this work, we tackle the challenge of learning long-
horizon manipulation skills with sparse rewards using only
proprioceptive and visual feedback. We propose DEMO3,
a demonstration-augmented MBRL algorithm that simulta-
neously learns a reward, policy and world-model for multi-
stage manipulation. Our experiments (Section 4) show that
our method achieves 40% better performance than the cur-
rent state-of-the-art. Additionally, DEMO3 excels at the
most difficult tasks, converging up to 4x faster than current
methods. We propose possible future research directions:

Firstly, although our experiments show that a small number
of demonstrations is sufficient for accelerated learning, we
do not explore the effect of using different sources, e.g.,
data collected via human teleoperation. While prior work
suggests such sources have limited impact on RL perfor-
mance (Hansen et al., 2023), improving robustness to di-
verse demonstration types remains relevant for deployment.

Another limitation is that our experiments are limited to
simulation. We aim to deploy DEMO3 on real robot hard-
ware to evaluate its generalization under domain shift and
whether the same constrained regime of demonstrations and
interaction samples can yield reliable real-world policies.
Notably, Hansen et al. (2023) shows that a similar pipeline
transfers well to physical systems. Since DEMO3 improves
on these components in simulation, we are optimistic its
benefits will carry over.

Finally, while our 50% demonstration sampling ratio yields
strong results, more sophisticated strategies (Schaul et al.,
2016) could further enhance learning efficiency.
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A. Additional Results
A.1. Single Task Experimental Results
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Figure 10. ManiSkill Manipulation results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence interval.
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Figure 11. Meta-World results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence interval.
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Figure 12. ManiSkill Humanoids results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence interval.
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Figure 13. Robosuite results. Results averaged across 5 seeds. The shaded area corresponds to a 95% confidence interval.

A.2. Additional Ablations
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Figure 14. Demonstration ablation. Success rate on an increasing number of demonstrations (5-200) in the 2 most challenging
manipulation tasks in ManiSkill (Stack Cube and Peg Insertion). DEMO3 is the only method that has a relative success with only 5
demonstrations. Results are aggregated over both tasks and averaged across 5 seeds.
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A.3. Learned Reward

Figure 15. Learned reward animation. Visualization of the learned dense reward across three representative rollouts—successful, failed,
and semi-successful. The reward curves closely track task progress.
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B. Baselines
B.1. Comparison to prior work

In Table 3, we compare key components of DEMO3 to relevant prior methods on demonstration-augmented RL. Our
approach is the only one incorporating online reward learning in multi-stage settings for visual inputs and sparse rewards.

Table 3. Comparison to prior work. We compare DEMO3 to relevant approaches and ablations. Selected baselines are highlighted .

Method Visual Inputs Sparse Rewards Multi-Stage Online Reward Learning

Ours ✓ ✓ ✓ ✓

LaNE (Zhao et al., 2024) ✓ ✓ ✗ ✓

MoDem (Hansen et al., 2023) ✓ ✓ ✗ ✗

CoDER (Zhan et al., 2022) ✓ ✓ ✗ ✗

SAC + DrS (Mu et al., 2024) ✗ ✓ ✓ ✗

AMP (Escontrela et al., 2022) ✗ ✗ ✗ ✓

B.2. Baseline Implementations

TD-MPC2 We use the official implementation1 with default parameters. We add two extra layers to the convolutional
encoders to handle the higher image resolution of the Meta-World and Robosuite benchmarks.

MoDem We use the official implementation2 with default parameters. To process observations containing multiple images,
we add an extra encoder to the world model and average all the embeddings.

LaNE We use the code from the official implementation3 with default parameters. To adapt it to our experimental setup,
we add extra encoders to handle the additional observations. The proprioceptive state is passed through an MLP, and its
embedding is averaged with the other inputs. Additionally, we adapt the algorithm to handle infinite-horizon MDPs by
removing value function bootstrapping from the MDP.

1https://github.com/nicklashansen/tdmpc2
2https://github.com/facebookresearch/modem
3https://github.com/PhilipZRH/LaNE
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C. Demonstrations
All of our demonstrations are obtained by training a TD-MPC2 model with dense rewards and state observations. The
model trained on state observations is then used to rollout N episodes in the stage-based environment, from where we query
image observations, proprioceptive states, and sparse stage rewards. Please find below a detailed table on the number of
demonstrations used per task.

Table 4. Number of demonstrations for each task. We use the minimum amount of demonstrations (empirically determined) to ensure
that the best-performing algorithm can solve the task in the given interaction budget.

Domain Task Number of Demonstrations

ManiSkill Manipulation

Peg Insertion 100
Pick Place 100
Stack Cube 25
Poke Cube 5

Lift Peg Upright 5

Meta-World

Assembly 5
Peg Insert Side 5

Stick Push 5
Stick Pull 5
Pick Place 5

ManiSkill Humanoids
Place Apple 5

Transport Box 5

Robosuite

Lift 5
Door 10

Pick Place Can 10
Stack Blocks 20
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D. Experiment Details

Stack Cube Peg Insertion Poke Cube Pick Place Lift Peg Upright

Assembly Peg Insert Stick Push Stick Pull Pick Place

Place Apple Transport Box

Lift Door Pick Place Can Stack Blocks

Figure 16. All tasks. Visual description of all tasks organized by domains. In descending order: ManiSkill Manipulation, Meta-World,
ManiSkill Humanoids, and Robosuite.

D.1. Domain Implementation

Table 5. Implementation details for each of our four domains. Time horizon is measured in agent steps (policy forward passes).
Proprio. stands for Proprioceptive State. Each domain uses different image resolutions according to the detail of the scene.

ManiSkill Manipulation Meta-World ManiSkill Humanoids Robosuite

Time Horizon 100 100 100 100

Image Size 128× 128 224× 224 128× 128 128× 128

Observations RGB(x2) + Proprio. RGB + Proprio. RGB(x2) + Proprio. RGB(x2)
Cameras Hand + Front Front Head + Front Hand + Front

Action Repeat 2 2 2 1

Action Dim 7 4 25 7
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D.2. Stage Definitions

Table 6. ManiSkill Manipulation stage definitions.

Task Stage 1 Stage 2 Success Criteria

Stack Cube Cube A grabbed. Cube A above Cube B. Cube A stacked on top of Cube B.
Peg Insertion Peg grabbed. Peg aligned with hole. Peg inserted in hole.

Pick Place Cube grabbed. Cube close to goal. Cube at goal.
Poke Cube Peg grabbed. Peg touching Cube. Cube at goal.

Lift Peg Upright Peg grabbed. Peg upright. Peg upright on desk.

Table 7. Meta-World stage definitions.

Task Stage 1 Success Criteria

Assembly Grab hook. Pass nut through pole.
Peg Insert Peg grabbed. Peg inserted in hole.
Stick Push Stick grabbed. Object pushed to goal location.
Stick Pull Stick grabbed. Object pulled to goal location.
Pick Place Cube grabbed. Cube is static at goal.

Table 8. ManiSkill Humanoids stage definitions.

Task Stage 1 Stage 2 Success Criteria

Place Apple Apple is grabbed. Apple is above bowl. Apple is inside bowl.
Transport Box Box grabbed with 2 hands. Box above table 2. Box is on table 2.

Table 9. Robosuite stage definitions.

Task Success Criteria

Lift Block lifted above the desk.
Door Door is open.

Pick Place Can Can is at goal location.
Stack Block A is in contact with Block B and above the ground.
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D.3. Difficulty Categorization

Across this paper, we often refer to some tasks as more difficult than others. To characterize task difficulty, we follow (Tao
et al., 2024a). As in previous work on demonstration-augmented reinforcement learning (RL), we observe that environments
with high complexity and substantial initial state randomization are typically more difficult to solve and require a larger
number of demonstrations. For example, the Peg Insertion task from ManiSkill exhibits significant variability in the peg’s
position, orientation, and the hole’s size. Consequently, around 100 demonstrations are needed to solve the task from visual
inputs. In contrast, a task like Meta-World Assembly requires only 5 demonstrations to be successfully solved. Figure
17 qualitatively compares the different initial states of these two tasks. We hypothesize that this effect is related to the
distributional coverage of the demonstration dataset: higher randomization reduces the likelihood that the agent encounters
familiar states during training if the dataset is limited. Therefore, as the variability in a task’s initial state increases, this
variability must also be well-represented in the dataset to ensure effective learning.

Figure 17. Randomization comparison. Qualitative comparison of both Peg Insertion tasks in the ManiSkill and Meta-World domain
and Door task in Robosuite. Visibly, ManiSkill presents the highest level of randomization, not only varying the initial state at reset but
also changing the geometric properties of the objects.

19



Demonstration-Augmented Reward, Policy, and World Model Learning

E. Implementation Details
E.1. Model Architecture

Following TD-MPC2, all modules are implemented as MLPs. Here, as an example, we summarize our architecture for a
single-camera Meta-World task using PyTorch-like notation:

Architecture: TD-MPC2 World Model
Encoder: ModuleDict(
(rgb_frontview): Sequential(

(0): ShiftAug()
(1): PixelPreprocess()
(2): Conv2d(3, 32, kernel_size=(7, 7), stride=(2, 2))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(5, 5), stride=(2, 2))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(7): ReLU(inplace=True)
(8): Conv2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(9): ReLU(inplace=True)
(10): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
(11): Flatten(start_dim=1, end_dim=-1)
(12): Linear(in_features=512, out_features=512, bias=True)
(13): SimNorm(dim=8)

)
)
Dynamics: Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): NormedLinear(in_features=512, out_features=512, bias=True, act=SimNorm)

)
Reward: Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)
Policy prior: Sequential(
(0): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=14, bias=True)

)
Q-functions: Vectorized [Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

), Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

), Sequential(
(0): NormedLinear(in_features=519, out_features=512, bias=True, dropout=0.01, act=Mish)
(1): NormedLinear(in_features=512, out_features=512, bias=True, act=Mish)
(2): Linear(in_features=512, out_features=101, bias=True)

)]
Learnable parameters: 5,448,748
Discriminator Architecture: Discriminator(
(nets): ModuleList(

(0): Sequential(
(0): Linear(in_features=512, out_features=32, bias=True)
(1): Sigmoid()
(2): Linear(in_features=32, out_features=1, bias=True)

)
)
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E.2. Hyperparameters

Most of the hyperparameters remain unchanged from our backbone algorithm, TD-MPC2. Here, we list some of the most
relevant to our method and highlight the ones that are unique to our approach. Please refer to the TD-MPC2 paper (Hansen
et al., 2024) for a complete list of hyperparameters.

Table 10. Hyperparameters used in the training setup.

Hyperparameter Value

Replay buffer
Capacity 300, 000
Sampling Uniform

Architecture (5M)
Encoder arch. ConvNet (image inputs)

MLP (state inputs)
Conv. layers 7 (Meta-World)

5 (Otherwise)
Encoder MLP dim 256
Dynamics MLP dim 512
Latent state dim 512
Task embedding dim 96

Optimization
Update-to-data ratio 1
Batch size 256
Joint-embedding coef. 20
Reward prediction coef. 0.1
Value prediction coef. 0.1
Temporal coef. (λ) 0.5
Q-fn. momentum coef. 0.99
Policy prior entropy coef. 1× 10−4

Policy prior loss norm. Moving (5%, 95%) percentiles
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 1× 10−4

Pretraining
Pretraining loss Behavioral cloning
BC Policy Architecture MLP
MLP dim 512
Optimizer Adam
Learning rate 3× 10−4

Encoder learning rate 3× 10−4

α0 5× 10−5

Reward learning
Discriminator architecture MLP
MLP dim 32
Discriminator learning rate 3× 10−4

Discriminator optimizer Adam
Batch size 256
β 1/3
Demo. sampling ratio 50%
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E.3. Computational Resources

All our experiments run on a single NVIDIA GeForce RTX 3090 GPU and 32GB of RAM to store collected samples.
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