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Abstract

Monte Carlo (MC) integration is the de facto method for approximating the predic-
tive distribution of Bayesian neural networks (BNNs). But, even with many MC
samples, Gaussian-based BNNs could still yield bad predictive performance due to
the posterior approximation’s error. Meanwhile, alternatives to MC integration tend
to be more expensive and biased. In this work, we experimentally show that the
key to good MC-approximated predictive distributions is the quality of the approxi-
mate posterior itself. However, previous methods for obtaining accurate posterior
approximations are expensive and non-trivial to implement. We, therefore, propose
to refine Gaussian approximate posteriors with normalizing flows. When applied
to last-layer BNNs, it yields a simple post hoc method for improving pre-existing
parametric approximations. We show that the resulting posterior approximation is
competitive with even the gold-standard full-batch Hamiltonian Monte Carlo.

1 Introduction

Predictive uncertainty is crucial in safety-critical systems [1]. Yet, commonly-used neural network
(NN) predictive systems are overconfident [2, 3]. Approximate Bayesian inference of NNs, resulting
in Bayesian neural networks (BNNs), is a principled way of mitigating this issue [4]. Indeed, even
crude approximations of BNNs’ posteriors, such as the Laplace approximation [5], can lead to good
predictive uncertainty quantification (UQ) performance [6], provided the predictive distributions are
correctly computed [7].

A prediction in a BNN amounts to an integration of the likelihood w.r.t. the (approximate) posterior
measure. Due to the non-linearity of NNs, no analytic solution to the integral exists, even when
the likelihood and the approximate posterior are both Gaussian. A low-cost, unbiased, stochastic
approximation can be obtained via Monte Carlo (MC) integration: obtain S samples from the
approximate posterior and then compute the empirical expectation of the likelihood w.r.t. these
samples. While MC integration is accurate for large S, because of the sheer size of modern (B)NNs,
virtually all BNNs use small S (typically 10 to 30, see [8–14, etc.]). Due to its well-known error
scaling of Θ(1/

√
S), intuitively, MC integration with a small S is inadequate for an accurate

prediction—yet, this has not been studied in depth for BNNs. Furthermore, while linearization of an
NN around a point estimate in the parameter space is an alternative to MC integration [7, 15–17], it
is generally costly due to the computation of per-example Jacobian matrices.

In this work, we study the quality of MC integration for making predictions in BNNs. We show that
few-sample MC integration is inaccurate for even an “easy” integral such as when the domain of
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Figure 1: Left: Few-sample MC integration is inaccurate for computing classification predictive
distribution: the standard error of the MC integration of the logistic-Gaussian integral is large for
the commonly used (few) numbers of samples. Right: But one can still obtain good predictive
performance with a small S if a high-quality posterior approximation, e.g. HMC, is used.

integration is the output space of a binary-classification BNNs, cf. Fig. 1 (left). Further, we show
that its alternative, the network linearization, disagrees with large-sample MC integration, making
it unsuitable as a general-purpose predictive approximation method, i.e. when the Gauss-Newton
matrix is not employed.1 Meanwhile, as indicated by full-batch Markov Chain Monte Carlo methods
[18, 19] or even (the Bayesian interpretation of) ensemble methods [20], few-sample MC integration
might still be useful for making predictions, provided that the approximate posterior measure is “close
enough” to the true posterior—cf. Fig. 1 (right). This implies that one should focus on improving the
accuracy of posterior approximations.

Nevertheless, prior methods for obtaining expressive posteriors [e.g., 10, 21] require either significant
modification to the NN or storing many copies of the parameters. Moreover, they require training from
scratch and thus introduce a significant overhead, which can be undesirable in practical applications.
Therefore, we propose a post hoc method for “refining” a Gaussian approximate posterior by
leveraging normalizing flows [22]. Contrary to the existing normalizing flow methods with a priori
base distribution (e.g. N (0, I)), the proposed refinement method converges faster with shorter flows,
making it cheaper than the naïve application of normalizing flows in BNNs. When used in conjunction
with last-layer BNNs, which have been shown to be competitive to their all-layer counterparts [6],
the proposed method is simple, cheap, yet competitive to even the gold-standard Hamiltonian Monte
Carlo in terms of predictive performance.

To summarize, our contributions are as follows:

(i) We highlight the deficiencies of both few- and many-sample MC integration for computing
BNNs’ predictive distributions.

(ii) We argue that one must be careful when applying analytic alternatives to MC integration, such
as linearization and the probit approximation since they can yield unintended effects.

(iii) We propose a widely-applicable technique for refining parametric posterior approximations
by leveraging normalizing flows, which yields a cost-efficient post hoc method when used in
conjunction with last-layer BNNs.

(iv) We validate the method via extensive experiments and show that refined posteriors are competi-
tive with the much more expensive full-batch Hamiltonian Monte Carlo.

2 Preliminaries

2.1 Bayesian neural networks

Let D := {(xi, yi)}mi=1 be an i.i.d. dataset, sampled from some distributions p(x) on Rn and p(y | x)
on Rc. A Bayesian neural network (BNN) is a neural network (NN) fθ : Rn → Rc with a random
parameter θ ∼ p(θ) on Rd and a likelihood p(y | fθ(x)), along with the associated posterior
p(θ | D) ∝ p(θ)

∏m
i=1 p(yi | fθ(xi)). However, the exact posterior p(θ | D) is intractable in general

1The generalized Gauss-Newton matrix is the exact Hessian matrix of a linearized network.
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due to its normalization constant. Approximate BNNs, which approximate p(θ | D) with only its
samples or with a simpler parametric distributions, must thus be employed in most cases.

2.1.1 Posterior approximations

The Laplace approximation [LA, 5] is one of the simplest approximation methods for BNNs. The
main idea is to construct a local Gaussian approximation to p(θ | D), centered at a maximum a
posteriori (MAP) estimate θMAP := arg maxθ p(θ | D), with the covariance matrix given by the
negative inverse-Hessian (−∇2

θ log p(θ | D)|θMAP)
−1. Since the MAP estimation is the standard

training procedure for NNs, the LA can be efficiently applied on top of pre-trained NNs [6], especially
due to recent efficient second-order optimization libraries [23, 24].

Variational Bayes [VB, 25] assumes a family of simple approximate distributions over the parameter
space, e.g. M := {q(θ) := N (θ | µ,Σ) : (µ,Σ) ∈ Rd+d2}, and finds a q ∈M that is the closest to
p(θ | D) by minimizing the reverse Kullback-Leibler (KL) divergence DKL(q(θ), p(θ | D)) over M .
Unlike the LA, VB is not constrained to capture just the local mode of the log-posterior landscape.
However, VB is not post hoc and is generally not as straightforward to implement.

Unlike the previous two approximations, Markov Chain Monte Carlo (MCMC) methods do not obtain
parametric approximations to the posterior. Instead, they collect samples from asymptotically the
true posterior and use them to approximate integrals under the posterior measure. A popular MCMC
method is the Hamiltonian Monte Carlo (HMC) method [18, 19], where sampling processes are
casted as Hamiltonian dynamics. Nevertheless, MCMC methods are generally expensive since they
require full batches of data and storage of many copies of the networks’ parameters.

2.1.2 Predictive approximations

Let q(θ) be an approximate posterior of a NN fθ under D. Given a test point x∗, the prediction y∗ is
distributed as p(y∗ | x∗,D) :=

∫
Rd p(y∗ | fθ(x∗)) q(θ) dθ. However, even when both p(y∗ | fθ(x))

and q(θ) are Gaussians, this integral does not have an analytic solution due to the nonlinearity of fθ.
Further approximations on top of the posterior approximation are thus necessary.

Monte Carlo integration The Monte Carlo (MC) integration is a simple technique to approximate
integrals under probability measures. Specifically, in our case,

p(y∗ | x∗,D) ≈ 1

S

S∑
s=1

p(y∗ | fθs(x∗)); with θs ∼ q(θ) ∀s = 1, . . . , S, (1)

where S is the number of samples from q(θ). It is easy to show that MC integration is unbiased with
error given by the standard error around the mean that scales like Θ(1/

√
S), see e.g. Murphy [26,

Section 2.7.3]. That is, MC integration (slowly) becomes more accurate as the number of samples S
increases. In the realm of BNNs, however, S is often chosen to be a small number, e.g. S = 20, due
to the computational cost of evaluating fθ.

Analytic approximations Since a GaussianN (θ | µ,Σ) is the de facto choice for q(θ), an analytic
approximation of the marginal output distribution2 p(f(x) | x,D) can be obtained by linearizing fθ
around µ. Specifically, we perform a first-order Taylor expansion fθ(x) ≈ fµ(x) + Jf (x) · (θ − µ)
where Jf (x) ∈ Rc×d is the Jacobian matrix of the network output w.r.t. θ at µ and · denotes matrix
multiplication. Under this scheme, denoting f∗ = f(x∗), we thus have for each test point x∗

p(f∗ | x∗,D) ≈ N (f∗ | fµ(x∗), Jf (x∗)ΣJf (x∗)
>) =: N (f∗ | fµ(x∗), S(x∗)).

One can then use this distribution to obtain the predictive distribution p(y∗ | x∗,D) ≈
∫
Rc p(y |

f∗) p(f∗ | x∗,D) df∗, which again can be approximated via MC integration.

Nevertheless, there exist analytic approximations to this integral [27, 15, 28, 29]. Specifically for
binary classification where p(y | f∗) = σ(f∗) for the logistic function σ, one can use the so-called
probit approximation [27, 15]: p(y = 1 | x∗,D) ≈ σ(fµ(x∗)/

√
1 + π/8S(x∗)).3 Moreover, for

2Where θ has been marginalized out.
3Here, S(x∗) ∈ R>0 since f(x∗) is a real-valued random variable.
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Figure 2: The (absolute) errors of the MC integration and the probit approximation for computing
I(m, s) across different values of m and s. A trapezoid method with 20000 evaluation points is used
as a gold-standard baseline. Red dots indicate the maximum errors. White indicates (near) zero error.

the multi-class case, we can use the multi-class probit approximation [MPA, 28]:

p(y | x∗,D) ≈ softmax
(
fµ(x∗)/

√
1 + π/8 diag(S(x∗))

)
, (2)

where the vector division is taken component-wise.

2.2 Normalizing flows for Bayesian inference

Let F : Rd → Rd be a diffeomorphism4 in the sense of Ck(Rd) for a fixed k ≥ 1 ∈ N. If
p is a density on Rd,5 then the density p̃ of the random variable θ̃ = F (θ) is given by p̃(θ̃) =

p(F−1(θ̃)) |det JF−1(θ̃)|, where JF−1 = J−1F is the Jacobian matrix of F−1. A normalizing flow
(NF) is a method exploiting this relation [22, 30, 31]. Specifically, it is a way of constructing
a sophisticated diffeomorphism F , by composing several simple parametric ones. The resulting
diffeomorphism thus transforms a simple density into a complicated one in a tractable manner.

Let Fφl : Rd → Rd be a diffeomorphism parametrized by φl ∈ Rk with a known inverse F−1φl
and a

known d× d Jacobian matrix JFφl for l = 1, . . . , `. Writing Fφ := Fφ` ◦ · · · ◦Fφ1
and φ := (φl)

`
l=1,

then the change-of-density formula becomes

p̃φ(θ̃) = p
(
F−1φ (θ̃)

) ∣∣∣∣∣∏̀
l=1

det JF−1
φl

(θ̃)

∣∣∣∣∣ .
Given a target posterior density p∗, the goal of a normalizing flow is then to estimate φ s.t. p̃φ is close
to p∗. In Bayesian inference, the reverse KL-divergence DKL(p̃φ, p

∗) is often used.

3 Pitfalls of BNNs’ Approximate Predictive Distributions

In this section, we study the failure modes of BNNs, especially last-layer ones, for predictive
uncertainty calibration. We shall show that there are two parts contributing to the inaccuracy in the
predictive distribution of a BNN: (i) the weight-space approximation and (ii) the integration method
to do Bayesian model averaging. We shall observe that while the accuracy of the integration method
is impactful (i.e., the number of samples in MC integration), it is less important than the quality of
the posterior approximation itself. That is, higher-quality weight-space approximations—even in
last-layer BNNs—yield samples that are more efficient: Few-sample MC integration can already
yield good predictive performance in this case.

3.1 Accurate MC integration requires many samples

We begin our analysis with the simplest yet practically relevant case. Let x∗ ∈ Rn and f∗ := f(x∗),
with p(f∗ | x∗,D) = N (f∗ | m, s2) for some m ∈ R and s2 ∈ R>0. We are interested in computing

4A smooth function with a smooth inverse.
5All densities considered in this paper are assumed to be w.r.t. the Lebesgue measure.
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the integral (cf. Fig. 3)

I(m, s) := p(y | x∗,D) =

∫
R
σ(f∗)N (f∗ | m, s2) df∗.

Note that this integral is prevalent in practice, e.g. in linearized or last-layer classification BNNs
[4, 7, 17, 32].
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Figure 3: The intuition of I(m, s).

We compare MC integration with S = 100 against the
probit approximation, using a trapezoid quadrature with
20000 evaluation points to represent a gold-standard base-
line. That is, we compute the discrepancy |Ĩ(m, s) −
I∗(m, s)| where Ĩ(m, s) is I(m, s) computed either with
MC integration or the probit approximation, and I∗(m, s)
obtained via the trapezoid method.

The results are in Fig. 2: Even with S = 100 samples—
larger than the usual S = 10-30—MC integration is inaccurate. Its error can be as high as 0.18, which
is substantial considering I(m, s) ∈ [0, 1]. As S increases beyond 10000, MC integration improves
and eventually overtakes the probit approximation, as to be expected given its theoretical guarantees.
This highlights the flaw of few-sample MC integration—accurate MC integration generally requires a
large number of samples.

3.2 Many-sample MC integration is not sufficient

Table 1: The expected calibration er-
ror (ECE) and negative log-likelihood
(NLL) of LA (S = 10000) and HMC
(S = 10).

Methods ECE ↓ NLL ↓
F-MNIST
LA 10.5±0.4 0.311±0.005
HMC 3.4±0.2 0.275±0.004

CIFAR-10
LA 4.9±0.2 0.161±0.001
HMC 4.2±0.2 0.158±0.001

However, even with a large S, MC integration can still fail
to yield good predictive performance in BNNs. This can
happen when the approximation q(θ) used in (1) is an in-
accurate approximation of p(θ | D)—virtually the case for
every parametric BNN. Thankfully, there is some evidence
that the error of MC integration might be relatively small
in comparison to the error generated by crude posterior
approximations. As an extreme example, Deep Ensemble
[20] and its variants, even though they perform MC inte-
gration with a small number of samples (usually S = 5),
generally yield better approximations to the predictive dis-
tributions. This is perhaps due to their multimodality, i.e.
due to their finer-grained posterior approximations.

To show this more concretely, consider the following experiment. We take Fashion-MNIST (F-
MNIST) pre-trained LeNet and CIFAR-10 pre-trained WideResNet-16-4. For each case, we perform
a last-layer Laplace approximation with the exact Hessian and a full-batch NUTS-HMC [19], under
the same prior and likelihood. We find in Table 1 that HMC, even with few samples, yields better-
calibrated predictive distribution than the LA with three orders of magnitude more samples. This
finding validates the widely-believed wisdoms [9, 10, 14, 32, etc.] that highly accurate posterior
approximations are most important for BNNs. Furthermore, this also shows that with a fine-grained
posterior approximation, the predictive performance of a BNN is less sensitive to the number of MC
samples, leading to better test-time efficiency.

3.3 Analytic alternatives to MC integration are not the definitive answers

Of course, fine-grained posterior approximations are expensive. So, a natural question is whether
one can keep a cheap but crude posterior approximation by replacing MC integration. Network
linearization seems to be a prime candidate to replace MC integration in the case of Gaussian approx-
imations [7, 15]. But it poses several problems: First, it requires relatively expensive computation
of the per-example Jacobian Jf (x∗), where for each test point x∗, one must store the associated
c× d matrix, where d could easily be tens of millions (e.g. in ResNets) and c could be in the order of
thousands (e.g. ImageNet). Second, while Immer et al. [7] argued that network linearization is the
correct way to make predictions in Gauss-Newton-based Gaussian approximations, it is not generally
applicable. We show this in Fig. 4: Everything else being equal, MC integration (S = 10000) and
linearization yield different results especially in terms of predictive uncertainty. Since one should
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Figure 4: Predictive distributions, computed via MC integration (S = 10000) and network lineariza-
tion, of a BNN with a weight-space Gaussian approximate posterior (an all-layer LA with the exact
Hessian on a two-layer NN under a toy regression dataset).

prefer MC integration in this many-sample regime, linearization is thus not accurate for the general
cases.

Table 2: Calibration of MC integration
S = 10000 and the multi-class probit
approximation.

Methods ECE ↓ NLL ↓
F-MNIST
MPA 3.3±0.2 0.281±0.002
MC 10.5±0.4 0.311±0.005

CIFAR-10
MPA 3.8±0.1 0.161±0.001
MC 4.9±0.2 0.161±0.001

Moreover, we show that the multi-class probit approxi-
mation (MPA), which is often used on top of a linearized
output distribution p(f(x∗) | x∗,D) to obtain the pre-
dictive distribution p(y∗ | x∗,D) [6, 17, 32], can also
obscure the predictive performance, albeit often for the
better [6, 32]. To that end, we use the same experiment
setting as Section 3.2 and Table 1, and compare the MPA
against MC integration. The results are in Table 2.

Indeed, we see that the MPA yields better-calibrated pre-
dictive distributions. However, this result should be taken
with a grain of salt: The MPA ignores the off-diagonal ele-
ments of the covariance of p(f(x∗) | x∗,D), as shown in
(2)—further detail is in Appendix A. That is, the MPA “biases” the predictive distribution p(y | x∗,D)
since it generally assumes that f∗ has lower uncertainty than it actually has. And since p(f∗ | x∗,D)
is usually induced by the LA or VB which are often underconfident on large networks [7, 33, 34],
the bias of MPA towards overconfidence thus counterbalances the underconfidence of p(f∗ | x∗,D).
Therefore, in this case, the MPA can yield better-calibrated predictive distributions than MC inte-
gration [32, 6]. Nevertheless, it can also fail even in simple cases such as in Fig. 5,6 where the
MPA yields underconfident predictions even near the training data (notice the lighter shade in Fig. 5,
bottom). Moreover, the structured nature of the error of the MPA (cf. Fig. 2 for the binary case)
might also contribute to the cases where the MPA differs from MC integration. Both examples above
thus highlights the need for careful consideration when analytic alternatives to MC integration are
employed.

4 Refining Gaussian Approximate Posteriors
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Figure 5: Confidence estimate
of MC integration (top) and
the MPA (bottom).

The previous analysis indicates the importance of accurate approx-
imate posteriors q(θ) for BNNs’ predictive distributions. However,
the current de facto way of obtaining accurate posterior approxi-
mations, HMC [18, 19], are very expensive since they require a
full-batch of data in their updates [35]. While mini-batch versions
of HMC exist, they do not seem to yield as good of results as their
full-batch counterparts. Indeed, Daxberger et al. [6] showed that a
well-tuned last-layer LA can outperform a state-of-the-art all-layer
stochastic-gradient MCMC method [21]. Furthermore, these sample-
based methods—both the full- and mini-batch versions, along with
deep ensembles and their variants—are costly in terms of storage
since one effectively must store S copies of the network’s parameters.
We, therefore, propose a simple post hoc technique for “refining”

6An all-layer full-Hessian LA on a three-layer tanh network is used.

6



Gaussian approximations using normalizing flows. The resulting
method is thus analytic yet can produce high-quality samples.

Let fθ be a NN equipped with a Gaussian approximate posterior q(θ) = N (θ | µ,Σ) (e.g., via a
LA, VB, or SWAG [13]) on the parameter space under a dataset D. Given a NF Fφ of length ` with
parameter φ, we obtain the refined posterior by

q̃φ(θ̃) = q(F−1φ (θ̃))
∣∣∣det JFφ(θ̃)

∣∣∣−1 . (3)

Then, a refinement of q(θ) amounts to minimizing the reverse KL-divergence to the true posterior,
using the evidence lower bound (ELBO) as a proxy (H below is the entropy functional):

φ∗ = arg max
φ

E
θ̃∼q̃φ

[
log p(D | fθ̃) + log p(θ̃)

]
+ H [q̃φ] , (4)

Given a refined posterior qφ∗(θ̃) and a test point x∗, we can obtain the predictive distribution via MC
integration:

p(y∗ | x∗,D) ≈ 1

S

S∑
s=1

p
(
y∗ | fθ̃s(x

∗)
)

; where θ̃s = Fφ∗(θs); θs ∼ q(θ) ∀s = 1, . . . , S.

Due to the expressiveness of NFs [36], we can expect based on the previous analysis that a large S is
not necessary here to obtain good predictive performance. We shall validate this in Section 6. Last
but not least, this refinement technique is especially useful for last-layer BNNs since their parameter
spaces typically have manageable dimensions, cf. Section 6.4.7

5 Related Work

Normalizing flows have previously been used for approximate Bayesian inference in BNNs. An
obvious way to do so, based on the flexibility of NFs in approximating any density [36], would be to
apply a NF on top of the standard normal distribution N (θ | 0, I) to approximate p(θ | D), see e.g.
Izmailov et al. [38] and the default implementation of variational approximation with NF in Pyro
[39]. We show in Section 6.3 that the subtle difference that we make—using an approximate posterior
instead of an a priori distribution—is more cost-effective. In a more sophisticated model, Louizos
and Welling [10] combine VB with NF by assuming a compound distribution on each NN’s weight
matrix and using the NF to obtain an expressive mixing distribution. However, their method requires
training both the BNN and the NF jointly from scratch. In an adjacent field, Maroñas et al. [40] use
NFs to transform Gaussian process priors.

Posterior refinement in approximate Bayesian inference has recently been studied. Immer et al. [7]
proposes to refine the LA using a Gaussian-based VB and Gaussian processes. However, this implies
that they still assume a Gaussian posterior. To obtain a non-Gaussian posterior, Miller et al. [41] form
a mixture-of-Gaussians approximation by iteratively adding component distributions. But, at every
iteration, their methods require a full ELBO optimization, making it costly for BNNs. A lower-cost
LA-based alternative to their work has also been proposed by Eschenhagen et al. [32]. These methods
have high storage costs since they must store many high-dimensional Gaussians. By contrast, our
method only does an ELBO optimization once and only requires the storage of the base Gaussian and
the parameters of a NF. In a similar vein, Havasi et al. [42] perform an iterative ELBO optimization
for refining a sample of a variational approximation. But, this inner-loop optimization needs to be
conducted each time a sample is drawn, e.g., during MC integration at test time. Our method, on the
other hand, only requires sampling from a Gaussian and evaluations of a NF, cf. (4).

While our results also reaffirm the widely held belief that single-mode Gaussian approximations are
inferior to more fine-grained counterparts, our conclusion differs slightly from that of Wilson and
Izmailov [43]: They argue “[...] Ultimately, the goal is to accurately compute the predictive distri-
bution, rather than find a generally accurate representation of the posterior. [...]” and subsequently
propose a multi-modal approximation to the true posterior. Here, we show that finding an accurate
(non-Gaussian) weight-space posterior approximation can still be a worthy goal, even when only
utilizing a single mode of the true posterior.

7E.g., WideResNets’ last-layer features’ dimensionality typically range from 256 to 2048 [37].
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(a) LA (0.040) (b) VB (0.016) (c) LA+Refine (0.002) (d) HMC

Figure 6: Comparison of approximate posterior densities, visualized via a kernel density estimation,
on a 2D logistic regression problem. Black contour: The exact posterior contour, up to a normalizing
constant. Colored contour: The kernel density estimate obtained from the posterior samples of each
method. Number: The MMD distance to HMC’s samples; lower is better.

6 Experiments

Code available at: https://github.com/runame/laplace-refinement. See Appendix B and
Appendix C for additional details.

6.1 Setups

Datasets We validate our method using standard classification datasets: Fashion-MNIST (F-
MNIST), CIFAR-10, and CIFAR-100.8 For the out-of-distribution (OOD) detection task, we use
three standard OOD test sets for each in-distribution dataset, see Appendix B.2 for the full list.
Finally, for the toy logistic regression experiment, a dataset of size 50 is generated by sampling from
a bivariate, bimodal Gaussian.

Network architectures For the F-MNIST experiments, we use the LeNet-5 architecture [44].
Meanwhile, for the CIFAR experiments, we use the WideResNet architecture with a depth of 16
and widen factor of 4 [WRN-16-4, 37]. For the NF, we use the radial flow [22] which is among the
simplest and cheapest non-trivial NF architectures.

Baselines We focus on last-layer Bayesian methods to validate the refinement technique.9 We
use the LA to obtain the base distribution for our refinement method—following recent practice
[6], we tune the prior precision via post hoc marginal likelihood maximization. The No-U-Turn-
Sampler Hamiltonian Monte Carlo [HMC, 18, 19] with 600 samples is used as a gold-standard
baseline—all HMC results presented in this paper are well-converged in term of the Gelman-Rubin
diagnostic [45], see Appendix B. Furthermore, we compare our method against recent, all-layer BNN
baselines: variational Bayes with the Flipout estimator [VB, 46] and cyclical stochastic-gradient HMC
[CSGHMC, 21]. For all methods, we use MC integration with 20 samples to obtain the predictive
distribution, except for HMC and CSGHMC where we use S = 600 and S = 12, respectively. We
use prior precisions of 510 and 40 for the last-layer F-MNIST and CIFAR experiments, respectively.
These prior precisions are obtained via grid search on the respective HMC baseline, maximizing
validation log-likelihood. Additionally, we use MAP and its temperature-scaled version (MAP-Temp)
as non-Bayesian baselines. More implementation details are in Appendix B.

Metrics We use standard metrics to measure both calibration and OOD-detection performance. For
the former, we use the negative log-likelihood (NLL) and the expected calibration error [ECE, 47].
For the latter, we employ the false-positive rate at 95% true-positive rate (FPR95). Finally, to measure
the closeness between an approximate posterior to the true posterior, we use the maximum-mean
discrepancy [MMD, 48] distance between the said approximation’s samples to the HMC samples, i.e.
we use HMC as a proxy to the true posterior.

6.2 Toy example

We visualize different approximations to the posterior of the toy logistic regression problem in Fig. 6.
Note that the true posterior density is non-symmetric and non-Gaussian.

8Additionally, see Appendix C for results on text classifications.
9Results for an all-layer network are in Table 6 (Appendix C).
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Table 3: In-distribution calibration performance. All-layer baselines are marked with an asterisk.

F-MNIST CIFAR-10 CIFAR-100

Methods MMD ↓ NLL ↓ MMD ↓ NLL ↓ MMD ↓ NLL ↓
MAP 1.093±0.003 0.3116±0.0049 0.438±0.001 0.1698±0.0009 0.416±0.001 0.9365±0.0063
MAP-Temp 1.093±0.003 0.2694±0.0025 0.438±0.001 0.1545±0.0007 0.416±0.001 0.9155±0.0047

VB∗ - 0.2673±0.0016 - 0.2823±0.0020 - 1.2638±0.0059
CSGHMC∗ - 0.2854±0.0018 - 0.2101±0.0033 - 0.9892±0.0070

LA 0.418±0.002 0.3076±0.0046 0.299±0.001 0.1672±0.0009 0.063±0.000 0.9865±0.0057
LA-Refine-1 0.356±0.004 0.2752±0.0031 0.346±0.000 0.1616±0.0007 0.063±0.000 0.9548±0.0062
LA-Refine-5 0.022±0.002 0.2699±0.0028 0.290±0.000 0.1582±0.0007 0.018±0.000 0.9073±0.0062
LA-Refine-10 0.013±0.002 0.2701±0.0028 0.130±0.001 0.1577±0.0008 0.019±0.000 0.9037±0.0058
LA-Refine-30 0.012±0.002 0.2701±0.0028 0.002±0.000 0.1581±0.0008 0.020±0.000 0.9035±0.0055

HMC 0.000±0.000 0.2699±0.0028 0.000±0.000 0.1581±0.0008 0.000±0.000 0.8849±0.0047

The LA matches the weight-space posterior mean, but is inaccurate the further away from it. It even
assigns probability mass on what are supposed to be low-density regions. While VB yields a more
accurate result than the LA, it still assigns some probability mass on low-density regions due to the
symmetry of the Gaussian approximation. Furthermore, it is unable to match the posterior’s mode
well. The proposed refinement method, on the other hand, is able to make the LA more accurate—it
yields a skewed, non-Gaussian approximation, similar to HMC.

We further quantify the previous observation using the MMD distance between each approximation’s
samples and HMC’s samples. The LA, as expected, obtain the worst weight-space MMD. While VB
is better than the LA with an MMD, the refined LAs achieve even better MMDs. This quantifies the
previous visual observation.

6.3 Image classification

Table 4: OOD detection in terms of
FPR95 (in percent, lower is better), av-
eraged over three test sets and five seeds.
All-layer baselines are asterisk-marked.

Methods CIFAR-10 CIFAR-100

VB∗ 62.9±2.0 80.8±1.0
CSGHMC∗ 58.7±1.6 79.3±1.0

LA 49.2±2.4 79.6±1.0
LA-Refine-1 47.7±2.1 77.3±0.7
LA-Refine-5 46.8±2.2 77.8±0.7
LA-Refine-10 46.2±2.3 77.8±0.7
LA-Refine-30 46.1±2.3 77.9±0.8

HMC 46.0±2.3 77.8±0.9

We present the calibration results in Table 3 using the LA
and HMC as baselines, which represent two “extremes” in
the continuum of posterior approximations. As has pre-
viously shown by e.g. Guo et al. [49], the vanilla MAP
approximation yields uncalibrated, low-quality predictive
distributions in terms of NLL and ECE. While the LA is
a cheap way to improve MAP predictive, its predictive
performance is still lagging behind HMC. By refining it
with a NF, the LA becomes even better and closer to the
HMC predictive. We also note that one does not need
a complicated or long (thus expensive) NF to achieve
these improvements. Furthermore, we observe a positive
correlation between posterior-approximation quality (mea-
sured via MMD) and predictive quality. Considering that
S = 20 is used, this validates our hypothesis that one
can “get away” with fewer MC samples when accurate
weight-space posterior approximations are employed.
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Figure 7: Calibration and wall-clock re-
finement time vs. flow length.

Moreover, we present out-of-distribution (OOD) data de-
tection in Table 4. We observe that while the last-layer LA
baseline can already be better than all-layer baselines—as
also observed by Daxberger et al. [6]—refining it can yield
better results: Even with a small NF, e.g., ` = 5, the OOD
detection performance of the refined LA is close to that of
the gold-standard HMC.

Finally, we show that it is indeed desirable to do refinement,
i.e. using an approximate posterior as the base distribution
of the NF, instead of starting from scratch, i.e. starting
from a data-independent distribution such as N (0, I). As
shown in Fig. 7, starting from an approximate posterior
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yields better predictive distributions faster than when N (0, I) is used as the base distribution of the
NF. This is particularly important since the computational cost of a NF depends on its length: We
see a 53% increase in training time from ` = 5 to ` = 10—the latter is required for the a priori NF
approximation to yield similar predictive performance to the refined posterior.

6.4 Costs

The proposed refinement technique is post hoc and cheap when applied to last-layer BNNs. Suppose
one already has a last-layer Gaussian approximate posterior. Using a standard consumer GPU
(Nvidia RTX 2080Ti), each epoch a length-5 NF’s optimization takes around 3.4 seconds. From our
experiments, we found that a low number of epochs (we use 20) is already sufficient for improving a
crude approximate posterior. Thus, the entire refinement process is quick, especially when compared
to MAP estimation, ELBO optimization, or HMC sampling. Additional details in Appendix C.3.

7 Concluding Remarks

7.1 Limitations

A NF is a composition of diffeomorphisms—it is bijective and invertible. Since we use the NF to
transform the density on the parameter space of a NN, which has tens of millions of dimensions, the
proposed refinement framework is thus costly for all-layer BNNs or when the number of last-layer
parameters is prohibitively large. Interesting future works to alleviate this limitation are to refine a
posterior in the subspace of the parameter space [38] or in the “pruned” parameter space [50].

Moreover, by refining a Gaussian with a NF, one loses the convenient properties associated with
Gaussians, making the resulting BNN unsuitable for cheaply addressing tasks such as continual
learning [51] and model selection [52]. Nevertheless, this is not unique to our method—any sample-
based method such as MCMC and ensembles are unsuitable for such tasks.

7.2 Conclusion

We have shown that MC integration tends to produce underperforming predictive distributions under
a crude posterior approximation, even with a large number of samples. While recently analytic
approximations such as network linearization and the probit approximation have been extensively
used in BNNs, we show that one must be careful with them since they are biased and do not have
theoretical guarantees like MC integration. Inspired by the high predictive performance of full-batch
HMC—even when a low number of samples are used—we confirm the widely-held belief that a
finer-grained posterior approximation is a key to achieving better predictive performance in BNNs.
To that end, we proposed a post hoc method for last-layer parametric BNNs, based on normalizing
flows, that can cheaply refine crude posterior approximations. In conjunction with the post hoc
last-layer Laplace approximation, the proposed method can thus give practitioners similar predictive
performance to full-batch, expensive HMC in a cost-efficient manner.
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