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Abstract

Solving ill-posed inverse problems requires careful formulation of prior beliefs over the sig-
nals of interest and an accurate description of their manifestation into noisy measurements.
Handcrafted signal priors based on e.g. sparsity are increasingly replaced by data-driven
deep generative models, and several groups have recently shown that state-of-the-art score-
based diffusion models yield particularly strong performance and flexibility. In this paper,
we show that the powerful paradigm of posterior sampling with diffusion models can be ex-
tended to include rich, structured, noise models. To that end, we propose a joint conditional
reverse diffusion process with learned scores for the noise and signal-generating distribution.
We demonstrate strong performance gains across various inverse problems with structured
noise, outperforming competitive baselines using normalizing flows, adversarial networks
and various posterior sampling methods for diffusion models. This opens up new opportu-
nities and relevant practical applications of diffusion modeling for inverse problems in the
context of non-Gaussian measurement models.1

1 Introduction

Many signal and image processing problems, such as denoising, compressed sensing, or phase retrieval, can
be formulated as inverse problems that aim to recover unknown signals from (noisy) observations. These ill-
posed problems are, by definition, subject to many solutions under the given measurement model. Therefore,
prior knowledge is required for a meaningful and physically plausible recovery of the original signal. Bayesian
inference through posterior sampling incorporates both signal priors and observation likelihood models.
Choosing an appropriate statistical prior is not trivial and dependent on both the application as well as the
recovery task.

In these image recovery tasks, the choice of noise prior is often assumed to be Gaussian or Poisson due to
their mathematical tractability and ease of modeling. Corruptions in many applications, however, are often
highly structured and spatially correlated. Therefore, besides accurate knowledge of the signal distribution,
it is crucial to model the noise effectively. Relevant examples of structured noise include speckle, haze or
interference. In medical imaging, for instance, ultrasound images are often corrupted by speckle noise, which
limits contrast and complicates diagnoses (Yang et al., 2016). In computer vision, haze, fog and rain are
highly correlated across neighboring pixels and can significantly degrade the quality of images. (Berman
et al., 2016; Ren et al., 2019). Another example is the presence of interference in radar, which can lead to
severe artifacts in the reconstructed range-Doppler maps (Uysal, 2018).

A popular approach for solving such problems involves Bayesian inference and inverse modeling, which
requires the design of suitable priors. Before the advent of deep learning, sparsity in some transformed domain
has been the go-to prior, such as iterative thresholding (Beck & Teboulle, 2009) or wavelet decomposition
(Mallat, 1999). At present, deep generative modeling has established itself as a strong mechanism for learning
such priors for inverse problem-solving. Both generative adversarial networks (GANs) (Bora et al., 2017)
and normalizing flows (NFs) (Asim et al., 2020; Wei et al., 2022) have been applied as natural signal priors
for inverse problems in image recovery. These data-driven methods are more powerful compared to classical
methods, as they can accurately learn the natural signal manifold and do not rely on assumptions such as
signal sparsity or hand-crafted basis functions.

1Code: will be linked to after review process.
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Recently, diffusion models have shown impressive results for both conditional and unconditional image gen-
eration and can be easily fitted to a target data distribution using score matching (Vincent, 2011; Song et al.,
2020). These deep generative models learn the score of the data manifold and produce samples by reverting
a diffusion process, guiding noise samples toward the target distribution. Diffusion models have achieved
state-of-the-art performance in many downstream tasks and applications, ranging from state-of-the-art text-
to-image models such as Stable Diffusion (Rombach et al., 2022) to medical imaging (Song et al., 2021b;
Jalal et al., 2021a; Chung & Ye, 2022). Furthermore, understanding of diffusion models is rapidly improving
and progress in the field is extremely fast-paced (Chung et al., 2022b; Bansal et al., 2022; Daras et al., 2022a;
Karras et al., 2022; Luo, 2022). The iterative nature of the sampling procedure used by diffusion models
renders inference slow compared to GANs and VAEs. However, many recent efforts have shown ways to
significantly improve the sampling speed by accelerating the diffusion process, from improving the sampling
process itself (Daras et al., 2022b; Chung et al., 2022c; Salimans & Ho, 2021), to executing the diffusion in
some reduced (latent) space (Jing et al., 2022; Vahdat et al., 2021; Rombach et al., 2022).

Despite this promise, current score-based diffusion methods for inverse problems are limited to measurement
models with unstructured noise. In many image processing tasks, corruptions are however highly structured
and spatially correlated. Nevertheless, current conditional diffusion models naively assume that the noise
follows some basic tractable distribution (e.g. Gaussian or Poisson). Diffusion Posterior Sampling (DPS)
(Chung et al., 2022a), Diffusion Model Based Posterior Sampling (DMPS) (Meng & Kabashima, 2022), and
Pseudoinverse-guided Diffusion Models (ΠGDM) (Song et al., 2023), all have a different take on posterior
sampling with diffusion models. Namely, they seek to approximate the intractable noise-perturbed likelihood
score, usually involving Tweedie’s formula, in various ways. RED-diff sidesteps the challenge of posterior score
approximation using variational inference (Mardani et al., 2023), resulting in a simple gradient update rule
that resembles regularization-by-denoising. Denoising Diffusion Restoration Models (DDRM) take another
approach altogether by performing the diffusion trajectory in the spectral space, tying the measurement noise
to the diffusion noise (Kawar et al., 2022). Albeit still under the Gaussian assumption. Denoising Diffusion
Null-Space Models (DDNM) (Wang et al., 2022) opt for a different decomposition by projecting samples
to the null-space of the forward operator of noiseless and noisy (Gaussian) inverse problems. Finally, Deep
Equilibrium Diffusion Restoration (DeqIR) rethinks the sampling process by modeling it as a fixed point
system, achieving faster parallel sampling (Cao et al., 2024). To summarize, all these methods improve upon
incorporating measurements into the diffusion process. Nonetheless, they limit their scope to classic inverse
problems such as denoising (Gaussian), inpainting, super-resolution, deblurring, etc., and do not address
problems with structured noise.

Beyond the realm of diffusion models, Whang et al. (2021) extended normalizing flow (NF)-based inference
to structured noise applications. However, compared to diffusion models, NFs require specialized network
architectures, which are computationally and memory expensive.

Given the promising outlook of diffusion models, we propose to learn score models for both the noise and
the desired signal and perform joint inference of both quantities, coupled via the observation model. The
resulting sampling scheme enables solving a wide variety of inverse problems with structured noise.

The main contributions of this work are as follows:

• We propose a novel joint conditional approximate posterior sampling method to efficiently remove
structured noise using diffusion models. Our formulation is compatible with many existing iterative
sampling methods for score-based generative models.

• We show strong performance gains across various challenging inverse problems involving structured
noise compared to competitive state-of-the-art methods based on NFs and GANs.

• We provide derivations for and comparison of three recent posterior sampling frameworks for diffusion
models (ΠGDM, DPS, projection) as the backbone for our joint inference scheme.

• We demonstrate improved robustness on a range of out-of-distribution signals and noise compared
to baselines.
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Figure 1: Overview of the proposed joint posterior sampling method for removing structured noise using
diffusion models. During the sampling process, the solutions for both signal and noise move toward their
respective data manifold M through score models sθ and sϕ. At the same time, the data consistency term
derived from the joint likelihood p(y|xt, nt) ensures solutions that are in line with the (structured) noisy
measurement y = Ax + n.

2 Problem Statement

Many image reconstruction tasks can be formulated as an inverse problem with the basic form y = Ax + n,
where y ∈ Rm is the noisy observation, x ∈ Rd the desired signal or image, and n ∈ Rm the additive
noise. The linear forward operator A ∈ Rm×d captures the deterministic transformation of x. Maximum
a posteriori (MAP) inference is typically used to find an optimal solution x̂MAP that maximizes posterior
density pX|Y (x|y):

x̂MAP = arg max
x

log pX|Y (x|y) arg max
x

[
log pY |X(y|x) + log pX(x)

]
, (1)

where pY |X(y|x) is the likelihood according to the measurement model and log pX(x) the signal prior.
Assumptions on the stochastic corruption process n are of key importance too, in particular for applications
for which this process is highly structured. However, most methods assume i.i.d. Gaussian distributed
noise, such that the forward model becomes pY |X(y|x) ∼ N (Ax, σ2

N I). This naturally leads to the following
simplified problem:

x̂MAP = arg min
x

1
2σ2

N

||y −Ax||22 − log pX(x). (2)

However, this naive assumption can be very restrictive as many noise processes are much more structured
and complex. A myriad of problems can be addressed under the assumed measurement model, given the
freedom of choice for the noise source n. Therefore, in this work, our aim is to solve a more broad class of
inverse problems defined by any arbitrary noise distribution n ∼ pN (n) ̸= N and signal prior x ∼ pX(x),
resulting in the following, more general, MAP estimator:

x̂MAP = arg max
x

log pN (y −Ax)− log pX(x). (3)

In this paper, we propose to solve this class of problems using flexible diffusion models. Moreover, diffusion
models naturally enable posterior sampling, i.e. x ∼ pX|Y (x|y), allowing us to take advantage of the benefits
thereof (Jalal et al., 2021b; Kawar et al., 2021; Daras et al., 2022a) with respect to the MAP estimator which
simply collapses the posterior distribution into a single point estimate.

2.1 Background

Score-based diffusion models have been introduced independently as score-based models (Song & Ermon,
2019; 2020) and denoising diffusion probabilistic modeling (DDPM) (Ho et al., 2020). In this work, we
will consider the formulation introduced by Song et al. (2020), which unifies both perspectives on diffusion
models by expressing diffusion as a continuous-time process through stochastic differential equations (SDE).
Diffusion models produce samples by reversing a corruption (noising) process. In essence, these models are
trained to denoise their inputs for each timestep in the corruption process. Through iteration of this reverse
process, samples can be drawn from a learned data distribution, starting from random noise.
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The diffusion process of the data
{

xt ∈ Rd
}

t∈[0,1] is characterized by a continuous sequence of Gaussian
perturbations of increasing magnitude indexed by time t ∈ [0, 1]. Starting from the data distribution at
t = 0, clean images are defined by x0 ∼ p(x0) ≡ p(x). Forward diffusion can be described using an SDE
as follows: dxt = f(t)xtdt + g(t)dw, where w ∈ Rd is a standard Wiener process, f(t) : [0, 1] → R and
g(t) : [0, 1] → R are the drift and diffusion coefficients, respectively. Moreover, these coefficients are chosen
so that the resulting distribution p(x1) at the end of the perturbation process approximates a predefined
base distribution p(x1) ≈ π(x1). Furthermore, the transition kernel of the diffusion process can be defined
in one step as q(xt|x0) ∼ N (xt|αtx0, β2

t I), where αt and βt can be analytically derived from the SDE.

Naturally, we are interested in reversing the diffusion process, so that we can sample from x0 ∼ p(x0). The
reverse diffusion process is also a diffusion process given by the reverse-time SDE (Anderson, 1982; Song
et al., 2020):

dxt =
[
f(t)xt − g(t)2∇xt

log p(xt)︸ ︷︷ ︸
score

]
dt + g(t)dw̄t (4)

where w̄t is the standard Wiener process in the reverse direction. The gradient of the log-likelihood of the
data with respect to itself, a.k.a. the score function, arises from the reverse-time SDE. The score function is a
gradient field pointing back to the data manifold and can intuitively be used to guide a random sample from
the base distribution π(x) to the desired data distribution. Given a dataset X =

{
x

(1)
0 , x

(2)
0 , . . . , x

(|X |)
0

}
∼

p(x0), scores can be estimated by training a neural network sθ(xt, t) parameterized by weights θ, with score
matching techniques such as the denoising score matching (DSM) objective (Vincent, 2011):

θ∗ = arg min
θ

Et∼U [0,1]

{
E(x0,xt)∼p(x0)q(xt|x0)

[
||sθ(xt, t)−∇xt

log q(xt|x0)||22
]}

. (5)

Given a sufficiently large dataset X and model capacity, DSM ensures that the score network converges to
sθ(xt, t) ≃ ∇xt log p(xt). After training the time-dependent score model sθ, it can be used to calculate the
reverse-time diffusion process and solve the trajectory using numerical samplers such as the Euler-Maruyama
algorithm. Alternatively, more sophisticated samplers, such as ALD (Song & Ermon, 2019), probability flow
ODE (Song et al., 2020), and Predictor-Corrector sampler (Song et al., 2020), can be used to further improve
sample quality.

These iterative sampling algorithms discretize the continuous time SDE into a sequence of time steps
{0 = t0, t1, . . . , tT = 1}, where a noisy sample x̂ti

is denoised to produce a sample for the next time step
x̂ti−1 . The resulting samples {x̂ti}T

i=0 constitute an approximation of the actual diffusion process {xt}t∈[0,1].

3 Method

3.1 Joint Posterior Sampling under Structured Noise

We are interested in posterior sampling under structured noise. We recast this as a joint optimization
problem with respect to the signal x and noise n given by:

(x, n) ∼ pX,N (x, n|y) ∝ pY |X,N (y|x, n) · pX(x) · pN (n), (6)

where we assume the signal and noise components to be independent. Solving inverse problems using diffusion
models requires conditioning of the diffusion process on the observation y, such that we can sample from
the posterior pX|Y (x, n|y). Therefore, we construct a joint conditional diffusion process {xt, nt|y}t∈[0,1], in
turn producing a joint conditional reverse-time SDE:

d(xt, nt) =
[
f(t)(xt, nt)− g(t)2∇xt,nt

log p(xt, nt|y)
]
dt + g(t)dw̄t. (7)

We would like to factorize the posterior using our learned unconditional score model and tractable mea-
surement model, given the joint formulation. Consequently, we construct two separate diffusion processes,
defined by separate score models but entangled through the measurement model pY |X,N (y|x, n). In addition
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Table 1: Parameter choices for the Gaussian model of the noise-perturbed likelihood function in (9).

ΠGDM (Song et al., 2023) DPS (Chung et al., 2022a) Projection (Song et al., 2020)

γt y y ŷt

µt Ax0|t + n0|t Ax0|t + n0|t Axt + nt

Σt

(
r2

t AAT + q2
t I

)
ρ2I ρ2I

λ λ′r2
t /g(t)2 λ′ρ2/

(
g(t)2|y − µ|12

)
λ′ρ2/g(t)2

κ κ′q2
t /g(t)2 κ′ρ2/

(
g(t)2|y − µ|12

)
κ′ρ2/g(t)2

to the original score model sθ(x, t), we introduce a second score model sϕ(nt, t) ≃ ∇nt log pN (nt), parame-
terized by weights ϕ, to model the expressive noise component n. These two score networks can be trained
independently on datasets for x and n, respectively, using the objective in equation 5. This is a significant
differentiator, as our method eliminates the need to collect samples of signals and noise together with corre-
sponding ground truth. Self-supervised generative modeling on isolated signals and noise measurements is
sufficient, thus relaxing the difficulty of curating signal and noise datasets. The gradients of the posterior
with respect to x and n, used in equation 7, are now given by:{

∇xt log p(xt, nt|y) ≃ s∗
θ(xt, t) + λ∇xt log p(y|xt, nt)

∇nt
log p(xt, nt|y) ≃ s∗

ϕ(nt, t) + κ∇nt
log p(y|xt, nt),

(8)

which simply factorizes the joint posterior into prior and likelihood terms using Bayes’ rule from equation 6
for both diffusion processes. Following the literature on classifier-(free) diffusion guidance (Dhariwal &
Nichol, 2021; Ho & Salimans, 2022) and diffusion for inverse problems (Song et al., 2020; Chung et al.,
2022a; Song et al., 2023), two Bayesian weighting terms, λ and κ, are also introduced. These terms are
tunable hyper-parameters that weigh the importance of following the prior, s∗

θ(xt, t) and s∗
ϕ(nt, t), versus

the measurement model, ∇nt log p(y|xt, nt).

3.2 Data Consistency Rules

The resulting true noise-perturbed likelihood p(y|xt, nt) is generally intractable, unlike p(y|x0, n0). Different
approximations have been proposed in recent works (Song et al., 2020; Chung et al., 2022a; Song et al., 2023;
Meng & Kabashima, 2022; Feng et al., 2023; Finzi et al., 2023). Our method is agnostic to the type of
data-consistency rule employed. To study its effect on the final output, we will implement three strong
approaches proposed in literature, namely, Pseudoinverse-Guided Diffusion Models (ΠGDM) (Song et al.,
2023), Diffusion Posterior Sampling (DPS) (Chung et al., 2022a), and projection (Song et al., 2020). In all
methods, to ensure traceability of p(y|xt, nt), it is modeled as a Gaussian, namely:

p(y|xt, nt) ≈ N (γt; µt, Σt), (9)

where the three different methods employ different approximations for the parameters of the Normal distri-
bution. In all three methods, the co-variance Σt is not a function of xt or nt, and we can thus write the
noise-perturbed likelihood score as:

∇xt,nt
log p(y|xt, nt) ≈ [∇xt,nt

µt] Σ−1
t (γt − µt). (10)

We will now derive the three different data-consistency rules for our joint-diffusion process. Additionally,
Table 1 shows an overview of the choices made for each parameter in the different methods.

3.2.1 ΠGDM

The ΠGDM method starts with an approximation of xt, nt toward x0, n0, which then allows the usage of
the known relationship of p(y|x0, n0). Since y, xt, and nt are conditionally independent given x0 and n0,
we can write:

p(y|xt, nt) =
∫

x0

∫
n0

p(x0|xt)p(n0|nt)p(y|x0, n0)dn0dx0, (11)

which is a marginalization over x0 and n0. Now, we have substituted the intractability of computing
p(y|xt, nt), for the intractability of computing (scores of) p(x0|xt) and p(n0|nt). ΠGDM then estimates
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p(x0|xt) using variational inference (VI), where it models the reverse diffusion steps as Gaussians, which we
extend here to the noise as well: {

p(x0|xt) ≈ N (x0|t, r2
t I)

p(n0|nt) ≈ N (n0|t, q2
t I), (12)

where q2
t and r2

t represent the uncertainty or error made in the VI. The means of the Gaussian approximations
(x0|t, n0|t) are calculated using Tweedie’s formula, which can be thought of as a one-step denoising process
using our trained diffusion model to estimate the true x0 and n0:

x0|t = E[x0|xt] = xt + β2
t∇xt

log p(xt)
αt

≈ xt + β2
t s∗

θ(xt, t)
αt

, (13)

with an analogous equation for n0|t. Here, αt and βt can be derived from the SDE formulation as mentioned
in Section 2.1. Substitution of the VI estimate (12) into equation (11), then results in an approximation of
the noise-perturbed likelihood:

p(y|xt, nt) ≈ N (γt; µt, Σt)

 γt = y
µt = Ax0|t + n0|t
Σt = r2

t AAT + q2
t I.

(14)

Moreover, using ΠGDM, we derive the following estimated noise-perturbed likelihood scores:{
∇xt

log p(y|xt, nt) ≈ (∇xt
x0|t) ATΣ−1

t (y −Ax0|t − n0|t)
∇nt log p(y|xt, nt) ≈ (∇ntn0|t) Σ−1

t (y −Ax0|t − n0|t),
(15)

where ∇xt
x0|t and ∇nt

n0|t are the Jacobians of (13), which can be computed using automatic differentiation
methods. In ΠGDM, the Bayesian weighting terms λ and κ are not fixed scalars, rather these are chosen to
be equal to the estimated VI variances, r2

t and q2
t . Additionally, the diffusion coefficient g(t)2 gets cancelled

out in the weighting scheme. Lastly, in this work, we introduce the additional explicit scalars λ′ and κ′, to
bring it in line with the other data consistency rules. Note that introducing these scalars is the same as
scaling r2

t and q2
t by a fixed amount for all timesteps.

Song et al. provide recommendations for choosing the variance of the VI Song et al. (2023), namely r2
t = β2

β2−1 ,
when the noise model is a known tractable distribution, which we adopt. Additionally, since we here introduce
the notion of modeling n using a different diffusion model, we also set the variance of the VI estimate of
p(n0|nt) to q2

t = r2
t , as it is subjected to a similar SDE trajectory.

3.2.2 DPS

Diffusion Posterior Sampling (DPS) (Chung et al., 2022a) also leverages Tweedie’s formula in order to
estimate x0|t and n0|t. However, unlike ΠGDM, DPS does not leverage VI with Gaussian posteriors. Instead,
a Gaussian error with diagonal covariance and variance ρ2 is assumed, which again we can adapt to our
problem as such:

p(y|xt, nt) ≈ N (γt; µt, Σt)

 γt = y
µt = Ax0|t + n0|t
Σt = ρ2I,

(16)

resulting in the following scores:{
∇xt log p(y|xt, nt) ≈ 1

ρ2 (∇xtx0|t) AT(y −Ax0|t − n0|t)
∇nt

log p(y|xt, nt) ≈ 1
ρ2 (∇nt

n0|t) (y −Ax0|t − n0|t).
(17)

Note the difference between equations (15) and (17). The former employs a non-diagnonal covariance matrix,
while the latter uses a simple diagonal approximation. In other words, DPS does not take into account how
the variance of the estimation of x0|t gets mapped to y, in the case of a non-diagonal measurement matrix A.
The authors of DPS (Chung et al., 2022a) then propose to rescale the noise, or step size, of the noise-perturbed
likelihood score by a fixed scalar divided by the norm of the noise-perturbed likelihood. Additionally, the
diffusion coefficient g(t)2 gets cancelled out in the weighting scheme. Again, we achieve that here by choosing
λ and κ appropriately.
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3.2.3 Projection

The projection method (Song et al., 2020) takes another approach altogether in comparison with ΠGDM and
DPS. Instead of relating xt, nt toward x0, n0, it relates y to yt and then uses the following approximation:

p(y|xt, nt) ≈ p(ŷt|xt, nt), (18)

where ŷt is a sample from p(yt|y), and {yt}t∈[0,1] is an additional stochastic process that essentially corrupts
the observation along the SDE trajectory together with xt. Note that in the case of a linear measurement
p(yt|y) is tractable, and we can easily compute ŷt = αty + βtAz, using the reparameterization trick with
z ∈ Rd ∼ N (0, I), see Song et al. (2021b). In contrast to the case where we use DPS and ΠGDM,
which perform the data consistency using noiseless estimates at diffusion time t = 0, the projection method
projects the observation to the current diffusion step t. Consequently, we cannot sample the noise vectors z
independently anymore, but should reuse them for the forward diffusion of signal, noise and observation.

We then use the measurement model which is normally only defined for time t = 0, and apply it to the current
timestep t. In this approximation, we assume that we make a Gaussian error with diagonal covariance and
standard deviation ρ2 as:

p(y|xt, nt) ≈ N (γt; µt, Σt)

 γt = ŷt

µt = Axt + nt

Σt = ρ2I.
(19)

Calculating the score of equation 19 with respect to both xt and nt then results in:{
∇xt

log p(y|xt, nt) ≈ 1
ρ2 AT(ŷt −Axt − nt)

∇nt
log p(y|xt, nt) ≈ 1

ρ2 (ŷt −Axt − nt).
(20)

Simillar to DPS, we reweigh the scores in order to cancel out both g(t)2 and 1/ρ2, using λ and κ, see Table 1.

Algorithm 1: Joint posterior sampling with ΠGDM for score-based diffusion models
Require: T, sθ, sϕ, λ, κ, r2

t , q2
t , y

1 xT ∼ π(x), n1 ∼ π(n), ∆t← 1
T

2
3 for i = T − 1 to 0 do
4 t← i+1

T
// Data consistency steps

5 x0|t ← (xt + β2
t s∗

θ((xt, t))/αt

6 n0|t ← (nt + β2
t s∗

ϕ((nt, t))/αt

7 µt ← Ax0|t + n0|t
8 Σt ← r2

t AAT + q2
t I

9 xt ← xt − λr2
t (∇xt

x0|t)ATΣ−1
t (y − µt)

10 nt ← nt − κq2
t (∇nt

n0|t) Σ−1
t (y − µt)

11 . . .

12 . . .
// Unconditional diffusion steps

13 xt−∆t ← xt − f(t)xt∆t
14 xt−∆t ← xt−∆t + g(t)2s∗

θ(xt, t)∆t
15 z ∼ N (0, I)
16 xt−∆t ← xt−∆t + g(t)

√
∆tz

17
18 nt−∆t ← nt − f(t)nt∆t
19 nt−∆t ← nt−∆t + g(t)2s∗

ϕ(nt, t)∆t

20 z ∼ N (0, I)
21 nt−∆t ← nt−∆t + g(t)

√
∆tz

22 end
return: x0

4 Related Work

In this section, we will cover two other works that tackle inverse problems with structured noise with the use
of competitive deep generative models, namely normalizing flows (NF) and generative adversarial networks
(GAN). These methods will serve as baselines in all of our experiments in which we evaluate the presented
diffusion-based denoiser. There are no diffusion methods amongst the baselines, as our approach is the
first to address structured noise in inverse problem settings. Direct application of the diffusion posterior
sampling methods listed in the introduction without the proposed joint-sampling framework is unable to
remove structured noise as we show in the experiments. That being said, we do show the compatibility
of our method with current state-of-the-art guided diffusion samplers. Finally, the NF- and GAN-based
methods discussed in the following section rely on MAP estimation, see Section 2, whereas we perform
posterior sampling.
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Normalizing Flows: Whang et al. propose to use normalizing flows to model both the data and the noise
distributions Whang et al. (2021). Normalizing flows are a special class of likelihood-based generative models
that make use of an invertible mapping G : Rd → Rd to transform samples from a base distribution pZ(z)
into a more complex multimodal distribution x = G(z) ∼ pX(x). The invertible nature of the mapping G
allows for exact density evaluation through the change of variables formula:

log pX(x) = log pZ(z) + log |det JG−1(x)|, (21)

where J is the Jacobian that accounts for the change in volume between densities. Since exact likelihood
computation is possible through the flow direction G−1, the parameters of the generator network can be
optimized to maximize likelihood of the training data. Subsequently, the inverse task is solved using the
MAP estimation in equation 3:

x̂ = arg max
x

{log pGN
(y −Ax) + log pGX

(x)} , (22)

where GN and GX are generative flow models for the noise and data respectively. Analog to that, the
solution can be solved in the latent space rather than the image space as follows:

ẑ = arg max
z

{
log pGN

(y −A(GX(z))) + λ log pGX
(GX(z))

}
. (23)

Note that in equation 23 a smoothing parameter λ is added to weigh the prior and likelihood terms, as was
also done in Whang et al. (2021). The optimal x̂ or ẑ can then be found by applying gradient ascent on
equations equation 22 or equation 23, respectively.

Generative Adversarial Networks: Generative adversarial networks are implicit generative models that
can learn the data manifold in an adversarial manner (Goodfellow et al., 2020). The generative model is
trained with an auxiliary discriminator network that evaluates the generator’s performance in a minimax
game. The generator G(z) : Rl → Rd maps latent vectors z ∈ Rl ∼ N (0, I) to the data distribution of
interest. The structure of the generative model can also be used in inverse problem solving (Bora et al.,
2017). The objective can be derived from equation 1 and is given by:

ẑ = arg min
z

{
||y −AGX(z)||+ λ||z||22

}
, (24)

where λ weights the importance of the prior with the measurement error. Similar to NF, the optimal ẑ can
be found using gradient ascent. The ℓ2 regularization term on the latent variable is proportional to negative
log-likelihood under the prior defined by GX , where the subscript denotes the density that the generator is
approximating. While this method does not explicitly model the noise, it remains an interesting comparison,
as the generator cannot reproduce the noise found in the measurement and can only recover signals that
are in the range of the generator. Therefore, due to the limited support of the learned distribution, GANs
can inherently remove structured noise. However, the representation error (i.e. observation lies far from the
range of the generator (Bora et al., 2017)) imposed by the structured noise comes at the cost of recovery
quality.

5 Implementation Details

All data and noise models are trained on the CelebA dataset (Liu et al., 2015) and the MNIST dataset with
10000 and 27000 training samples, respectively. Images are resized to 64× 64 pixels. We test on a randomly
selected subset of 100 images and use both the peak signal-to noise ratio (PSNR) and structural similarity
index (SSIM) to evaluate our results. Automatic hyperparameter tuning for optimal inference was performed
for all baseline methods on a small validation set of only 5 images. All parameters used for training and
inference can be found in the provided code repository linked in the paper.

5.1 Proposed Method

For both the score models, we use the NCSNv2 architecture as introduced in Song & Ermon (2020). Given
the two separate datasets, one for the data and one for the structured noise, two separate score models can
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(a) CelebA with MNIST noise
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(c) OoD noise (TMNIST)

Figure 2: Qualitative results on the removing MNIST digits (noise) from CelebA (signal) experiment, com-
paring our diffusion-based method (joint posterior sampling) to the baselines2: †FLOW, ‡GAN, and §BM3D.

be trained independently. This allows for easy adaptation of our method, since many existing trained score
models can be reused. Only during inference, the two priors are combined through the proposed sampling
procedure as described in Algorithm 1, using the adapted Euler-Maruyama sampler. We use the following
SDE: f(t) = 0, g(t) = σt with σ = 25 to define the diffusion trajectory. During each experiment, we run the
sampler for T = 600 iterations.

5.2 Baseline Methods

The closest to our work is the flow-based noise model proposed by Whang et al. (2021), discussed in Section 4,
which will serve as our main baseline. To boost the performance of this baseline and to make it more
competitive we moreover replace the originally-used RealNVP (Dinh et al., 2016) with the Glow architecture
(Kingma & Dhariwal, 2018). We use the exact implementation found in Asim et al. (2020), with a flow
depth of K = 18, and number of levels L = 4, which has been optimized for the same CelebA dataset used
in this work and thus should provide a fair comparison with the proposed method.

Secondly, GANs as discussed in Section 4 are used as a comparison. We train a DCGAN (Radford et al.,
2015), with a generator latent input dimension of l = 100. The generator architecture consists of 4 strided
2D transposed convolutional layers, having 4×4 kernels yielding feature maps of 512, 256, 128 and 64. Each
convolutional layer is followed by a batch normalization layer and ReLU activation.

Lastly, depending on the reconstruction task, classical non-data-driven methods are used as a comparison.
For denoising experiments, we use the block-matching and 3D filtering algorithm (BM3D) (Dabov et al.,
2006), and in compressed sensing experiments, LASSO with wavelet basis (Tibshirani, 1996). Except for the
flow-based method of Whang et al. (2021), none of these methods explicitly model the noise distribution.
Still, they are a valuable baseline, as they demonstrate the effectiveness of incorporating a learned structured
noise prior rather than relying on simple noise priors.

6 Experiments

We subject our method to a variety of inverse problems such as denoising and compressed sensing, all with
an element of additive structured noise. To test the method’s robustness, we repeat the experiments on both
out-of-distribution (OoD) data and OoD noise. To show the capabilities of our method on high-resolution
images, we test the joint-conditional diffusion method on the FFHQ dataset at 256 × 256 resolution on
a deraining task. Lastly, we compare the methods’ computational performance. The proposed method
outperforms the baselines both qualitatively and quantitatively in all experiments.

9
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Removing MNIST digits: For comparison with Whang et al. (2021), we recreate an experiment intro-
duced in their work, where MNIST digits are added to CelebA faces. The corruption process is defined by
y = 0.5 · xCelebA + 0.5 · nMNIST. In this experiment, the noise score network sϕ is trained on the MNIST
dataset. Fig. 3a shows a quantitative comparison of our method with all baselines. Furthermore, a random
selection of test samples is shown in Fig. 2a for qualitative analysis. Diffusion and flow-based methods are
able to recover the underlying signal, with the diffusion method preserving more details. The GAN method
is also able to remove the digits, but cannot accurately reconstruct the faces as it is unable to project the
observation onto the range of the generator. Similarly, the BM3D denoiser fails to recover the underlying
signal, confirming the importance of prior knowledge of the noise in this experiment. The metrics in Fig. 3a
support these observations.

Structured noise with compressed sensing: In this experiment, the corruption process is defined by
y = Ax+nsine with a random Gaussian measurement matrix A ∈ Rm×d and a noise with sinusoidal variance
σk ∝ exp(sin( 2πk

16 )) for each pixel k, which we use to train sϕ on. The subsampling factor is defined by the
size of the measurement matrix d/m. In Fig. 4a the results of the compressed sensing experiment and the
comparison with the baselines are shown for an average standard deviation of σN = 0.2 and subsampling of
factor d/m = 2. Similar to the results of the previous experiment, the diffusion method is more robust to
the shift in distribution and is able to deliver high-quality recovery under the structured noise setting. In
contrast, the flow-based method under-performs when subjected to the OoD data.

Removing sinusoidal noise: The corruption process is defined by y = x+nsine where the noise variance
σk ∝ exp(sin( 2πk

16 )) follows a sinusoidal pattern along each row of the image k. In this experiment, the score
network sϕ is trained on a dataset generated with 1D sinusoidal noise samples nsine.

See Fig. 7 for a comparison of our method to the flow-based method for varying noise variances. Both
methods perform quite well, with the diffusion method having a slight edge. A visual comparison in Fig. 5,
however, reveals that the diffusion method preserves more detail in general.

Out-of-distribution data: Additionally, to test the robustness of the methods, we recreate all experiments
with out-of-distribution (OoD) data generated using a stable-diffusion text-to-image model (Rombach et al.,
2022) as well as random data from ImageNet. We use the exact same hyperparameters and trained models as
in previous experiments. Qualitative and quantitative results can be found in Fig.2b and Fig.3b, respectively.
Similarly to the findings of Asim et al. (2020) and Whang et al. (2021), the flow-based method is robust to
OoD data, unlike the GAN. We empirically show that the diffusion method is also resistant to OoD data in
inverse tasks with complex noise structures and even outperforms the flow-based method.

Out-of-distribution noise: In real-world applications, it can be challenging to accurately obtain noise
samples for training the noise diffusion model. Even though not trivial, in many practical cases, noise can
be measured, isolated from signals, or simulated. Still, these will be subjected to some distribution shift
with respect to the true noise signals. Therefore, we extend the existing removing MNIST digits experiment
with two OoD noise variants: (1) samples drawn from the TMNIST-Alphabet dataset containing different
characters, and (2) random translations applied to noise (digits). As can be seen in Table 3, our method is
able to consistently outperform the most competitive flow baseline in the OoD noise experiments. Again,
no retuning of hyperparameters or retraining of models was performed. In general, the random translation
seemed to be a more challenging task compared to the TMNIST-alpha characters.

Deraining FFHQ: To evaluate our method in a more realistic context, we address the problem of deraining,
which involves removing rain streaks from images significantly affected by rain. Additionally, we employ the
256 × 256 FFHQ dataset to assess our method’s performance on high-resolution images. In this setup,
the signal diffusion model is trained on the FFHQ dataset, whereas the noise model is trained using a
rain simulator. We compare our method to vanilla DPS (without explicit noise model) in Fig. 8, which
scores PSNR = 23.97, SSIM = 0.82. Unsurprisingly, we observe that diffusion models without explicit
modeling of the noise distribution fail to accurately reconstruct the images under heavy structured noise
(PSNR = 19.70, SSIM = 0.67).

Performance: To highlight the difference in inference time between our method and the baselines, bench-
marks are performed on a single 12GBytes NVIDIA GeForce RTX 3080 Ti, see Table 2. A quick comparison
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Figure 3: Quantitative results using PSNR (green) and SSIM (blue) for the removing MNIST digits experi-
ment of the (a) CelebA and (b) out-of-distribution datasets.
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Figure 4: Results on the compressed sensing with structured noise
experiment, comparing our diffusion-based method to the baselines.
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Figure 5: Results on the removing
sinusoidal noise experiment.

of inference times reveals a 4× (ΠGDM) or 10× (Projection) difference in speed between ours and the flow-
based method. All the deep generative models need approximately an equal amount of iterations (T ≈ 600)
to converge. However, given the same modeling capacity, the flow model requires substantially more trainable
parameters compared to the diffusion method. This is mainly due to the restrictive requirements imposed
on the architecture to ensure tractable likelihood computation. It should be noted that in this work no
improvements are applied to speed up the diffusion process, such as CCDF (Chung et al., 2022c), for the
diffusion method, leaving room for even more improvement in future work.

Comparison Data Consistency Methods: Although all three diffusion-based data consistency methods,
as discussed in this section, outperform the baselines of Section 4, ΠDGM provides the most consistent
results with lower variance between samples, as shown in Fig. 6a. Empirically, this trend continues to be
seen in the out-of-distribution datasets; see Fig. 6b. This is not surprising as ΠDGM has a more sophisticated
approximation for the noise-perturbed likelihood score compared to DPS and the projection method. A visual
comparison is shown in Fig. 6c. Note that in all these experiments the samplers are used in combination
with our proposed joint sampling framework. Straightforward inference without a learned model for the
noise distribution is unable to effectively remove structured noise as seen in Fig 8.
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Figure 6: Comparison of the projection, DPS an ΠDGM data-consistency rules used in the joint posterior
sampling method. Qualitative (c) and quantitative results are shown using PSNR (red) and SSIM (orange)
for the removing MNIST digits experiment on images of the (a) CelebA and (b) out-of-distribution datasets.

7 Discussions
Inverse problems are powerful tools for inferring unknown signals from observed measurements and have been
at the center of many signal and image processing algorithms. Strong priors, often those learned through
deep generative models, have played a crucial role in guiding these inferences, especially in the context of
high-dimensional data. While complex priors on the signal are commonly employed, noise sources are often
assumed to be simply distributed, drastically reducing their effectiveness in structured noise settings.

In this work, we address this limitation by introducing a novel joint posterior sampling technique. We not
only leverage deep generative models to learn strong priors for the signal, but we also extend our approach
to incorporate priors on the noise distribution. To achieve this, we employ an additional diffusion model that
has been trained specifically to capture the characteristics of structured noise. Furthermore, we show the
compatibility of our method with three existing posterior sampling techniques (projection, DPS, ΠGDM). We
demonstrate our method on natural and out-of-distribution data and noise and achieve increased performance
over the state-of-the-art and established conventional methods for complex inverse tasks. Additionally, the
diffusion-based method is substantially easier to train using the score matching objective compared to other
deep generative methods that rely on constrained neural architectures or adversarial training.

While our method is considerably faster and better in removing structured noise compared to the flow-based
method (Whang et al., 2021), it is not ready (yet) for real-time inference and is still slow compared to GANs
(Bora et al., 2017) and classical methods. Fortunately, research into accelerating the diffusion process is on
its way. In addition, although a simple sampling algorithm was adopted in this work, many more sampling
algorithms for score-based diffusion models exist. Future work should explore this wide increase in design
space to understand the limitations and possibilities of more sophisticated sampling schemes in combination
with the proposed joint diffusion method. Lastly, the connection between diffusion models and continuous
normalizing flows through the neural ODE formulation (Song et al., 2021a) is not investigated but is of great
interest given the comparison with the flow-based method in this work.

8 Conclusions

In this work, we presented a framework for removing structured noise using diffusion models. The proposed
joint posterior sampling technique for diffusion models has been shown to effectively remove highly structured
noise and outperform baselines in both image quality and computational performance. Additionally, it
exhibits enhanced robustness in out-of-distribution scenarios. Our work provides an efficient addition to
existing score-based conditional sampling methods by incorporating knowledge of the noise distribution,
whilst supporting a variety of guided diffusion samplers. Future work should focus on speeding up the
relatively slow inference process of diffusion models and furthermore investigate the applicability of the
proposed method outside the realm of natural images.
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A Appendix

A.1 Extended results

Table 2: Inference performance benchmark for all methods.

Model # trainable
parameters

Inference time
[ms]

⋆DIFF. (Proj.) 8.9M 5605
(DPS) 16818
(ΠGDM) 16094

†FLOW 25.8M 61853
‡GAN 3.9M 59
§BM3D – 29

Table 3: Results for the experiments with OoD noise.

Dataset TMNIST translation
PSNR SSIM PSNR SSIM

⋆DIFF. CelebA 25.94 ± 2.4 0.851 ± 0.04 23.63 ± 4.1 0.893 ± 0.04
†FLOW CelebA 22.61 ± 1.1 0.826 ± 0.05 22.96 ± 1.1 0.837 ± 0.05
⋆DIFF. OoD 22.59 ± 2.4 0.858 ± 0.06 21.55 ± 3.0 0.895 ± 0.05
†FLOW OoD 20.06 ± 1.8 0.831 ± 0.08 20.54 ± 2.1 0.839 ± 0.08
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Figure 7: Comparison of PSNR values for vary-
ing sinusoidal noise variances in the removing si-
nusoidal noise experiment. Shaded areas repre-
sent the standard deviation on the metric.
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Figure 8: Results on the 256×256 FFHQ dataset
for the deraining task. We compare our proposed
joint sampling framework with vanilla DPS. We
notice that performance is significantly dropped
when we do not explicitly model the structured
noise (rain).

2⋆Ours, †(Whang et al., 2021), ‡(Bora et al., 2017), §(Dabov et al., 2006), ¶(Tibshirani, 1996)
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