
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENSEMBLE AND MIXTURE-OF-EXPERTS DEEPONETS
FOR OPERATOR LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel deep operator network (DeepONet) architecture for operator
learning, the ensemble DeepONet, that allows for enriching the trunk network of a
single DeepONet with multiple distinct trunk networks. This trunk enrichment al-
lows for greater expressivity and generalization capabilities over a range of operator
learning problems. We also present a spatial mixture-of-experts (MoE) DeepONet
trunk network architecture that utilizes a partition-of-unity (PoU) approximation
to promote spatial locality and model sparsity in the operator learning problem.
We first prove that both the ensemble and PoU-MoE DeepONets are universal
approximators. We then demonstrate that ensemble DeepONets containing a trunk
ensemble of a standard trunk, the PoU-MoE trunk, and/or a proper orthogonal
decomposition (POD) trunk can achieve 2-4x lower relative ℓ2 errors than standard
DeepONets and POD-DeepONets on both standard and challenging new operator
learning problems involving partial differential equations (PDEs) in two and three
dimensions. Our new PoU-MoE formulation provides a natural way to incorporate
spatial locality and model sparsity into any neural network architecture, while our
new ensemble DeepONet provides a powerful and general framework for incor-
porating basis enrichment in scientific machine learning architectures for operator
learning.

1 INTRODUCTION

In recent years, machine learning (ML) has been applied with great success to problems in science
and engineering. Notably, ML architectures have been leveraged to learn operators, which are
function-to-function maps. In many of these applications, ML-based operators, often called neural
operators, have been utilized to learn solution maps to partial differential equations (PDEs). This
area of research, known as operator learning, has shown immense potential and practical applicability
to a variety of real-world problems such as weather/climate modeling (Bora et al., 2023; Pathak
et al., 2022), earthquake modeling (Haghighat et al., 2024), material science (Gupta & Brandstetter,
2022; Oommen et al., 2023), and shape optimization (Shukla et al., 2024). Some popular neural
operators that have emerged are deep operator networks (DeepONets) (Lu et al., 2021), Fourier neural
operators (FNOs) (Li et al., 2021), and graph neural operators (GNOs) (Li et al., 2020). DeepONets
have also been extended to incorporate discretization invariance (Zhang et al., 2023), more general
mappings (Jin et al., 2022), and multiscale modeling (Howard et al., 2023). In this work, we focus
on the DeepONet architecture due to its ability to separate the function spaces involved in operator
learning; for completeness, we discuss one possible extension to the FNO in Appendix B.

At a high level, operator learning consists of learning a map from an input function to an output
function. The DeepONet architecture is an inner product between a trunk network that is a function
of the output function domain, and a branch network that learns to combine elements of the trunk
using transformations of the input function. In fact, one can view the trunk as a set of learned,
nonlinear, data-dependent basis functions. This perspective was first leveraged to replace the trunk
with a set of basis functions learned from a proper orthogonal decomposition (POD) of the training
data corresponding to the output functions; the resulting POD-DeepONet achieved state-of-the-art
accuracy on a variety of operator learning problems (Lu et al., 2022). More recently, this idea was
further generalized by extracting a basis from the trunk as a postprocessing step (Lee & Shin, 2023);
this approach proved to be highly successful in learning challenging operators (Peyvan et al., 2024).

In this work, we present the ensemble DeepONet, a DeepONet architecture that explicitly enables
enriching a trunk network with multiple distinct trunk networks; however, this enriched/augmented

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

trunk uses a single branch that learns how to combine multiple trunks in such a way as to minimize the
DeepONet loss function. The ensemble DeepONet essentially provides a natural framework for basis
function enrichment of a standard (vanilla) DeepONet trunk. We also introduce a novel partition-of-
unity (PoU) mixture-of-experts (MoE) trunk, the PoU-MoE trunk, that produces smooth blends of
spatially-localized, overlapping, distinct trunks. The use of compactly-supported blending functions
allows the PoU formulation to have a strong inductive bias towards spatial locality. Acknowledging
that such an inductive bias is not always appropriate for learning inherently global operators, we
simply introduce this PoU-MoE trunk into our ensemble DeepONet as an ensemble member alongside
other global bases such as the POD trunk.

Our results show that the ensemble DeepONet, especially the POD-PoU ensemble, shows 2-4x
accuracy improvements over vanilla-DeepONets with single branches and up to 2x accuracy
improvements over the POD DeepONet (also with a single branch) in challenging 2D and 3D
problems where the output function space of the operator has functions with sharp spatial gradients. In
Section 4, we summarize the relative strengths of five different ensemble formulations, each carefully
selected to answer a specific scientific question about the effectiveness of ensemble DeepONets. We
conclude that the strength of ensemble DeepONets lie not merely in overparametrization but rather in
the ability to incorporate spatially local information into the basis functions.

1.1 RELATED WORK

Basis enrichment has been widely used in the field of scientific computing in the extended finite
element method (XFEM) (McQuien et al., 2020; Belytschko & Black, 1999; Ballard et al., 2022),
modern radial basis function (RBF) methods (Flyer et al., 2016; Bayona et al., 2019; Shankar &
Fogelson, 2018; Shankar et al., 2021), and others (Cai et al., 2001). In operator learning, basis
enrichment (labeled “feature expansion”) with trigonometric functions was leveraged to enhance
accuracy in DeepONets and FNOs (Lu et al., 2022). The ensemble DeepONet generalizes these
prior results by providing a natural framework to bring data-dependent, locality-aware, basis function
enrichment into operator learning. PoU approximation also has a rich history in scientific comput-
ing (Melenk & Babuvska, 1996; Larsson et al., 2017; Shcherbakov & Larsson, 2016; Heryudono
et al., 2016; Safdari-Vaighani et al., 2015; Shankar & Wright, 2018), and has recently found use
in ML applications (Han et al., 2023; Cavoretto et al., 2021; Trask et al., 2022). In (Trask et al.,
2022), which targeted (probabilistic) regression applications, the authors used trainable partition
functions that were effectively black-box ML classifiers with polynomial approximation on each
partition. In Han et al. (2023) (which also targeted regression), the authors used compactly-supported
kernels as weight functions (like in this work), but used kernel-based regressors on each partition.
Our PoU-MoE formulation generalizes both these works by using neural networks on each partition
and further generalizes the technique to operator learning. In general, ensemble learning and MoE
have a rich history, and we provide a more in-depth overview in Appendix A. The ensemble and
PoU-MoE DeepONets introduced here extend this body of work to deterministic operator learning
and PDE applications.

Broader Impacts: To the best of the authors’ knowledge, there are no negative societal impacts of
our work including potential malicious or unintended uses, environmental impact, security, or privacy
concerns.

Limitations: Ensemble DeepONets, especially when using PoU-MoE trunks, contain 2-3x as many
trainable trunk network parameters as a vanilla-DeepONet and consequently require more time
to train (see Section 3.4 for runtime results and discussion); however, in future work, we plan to
ameliorate this issue with a novel parallelization strategy for the PoU-MoE trunk. Further, due to
limited time, we used a single branch network that outputs to Rp for all our results (an unstacked
branch) rather than using p branch networks that each output to R (a stacked branch) from Lu
et al. (2022). This choice may result in lowered accuracy for all methods (not just ours), but certainly
resulted in fewer parameters. However, our results extend straightforwardly to stacked branches also.

2 ENSEMBLE DEEPONETS

In this section, we first discuss the operator learning problem, then present the ensemble DeepONet
architecture for learning these operators. We also present the novel PoU-MoE trunk and a modification
the POD trunk from the POD-DeepONet, both for use within the ensemble DeepONet.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: An ensemble DeepONet containing a POD trunk and a PoU-MoE trunk.

2.1 OPERATOR LEARNING WITH DEEPONETS

Let U
(
Ωu;Rdu

)
and V

(
Ωv;Rdv

)
be two separable Banach spaces of functions taking values in

Ωu ⊂ Rdu and Ωv ⊂ Rdv , respectively. Further, let G : U → V be a general (nonlinear) operator.
The operator learning problem involves approximating G : U → V with a parametrized operator
Ĝ : U × Θ → V from a finite number of function pairs {(ui, vi)}, i = 1, . . . , N where ui ∈ U
are typically called input functions, and vi ∈ V are called output functions, i.e., vi = G(ui). The
parameters Θ are chosen to minimize ∥G − Ĝ∥ in some norm.

In practice, the problem must be discretized. First, one puts samples the input and output functions
at a finite set of function sample locations X ∈ Ωu and Y ∈ Ωv, respectively; also let Nx =

|X| and Ny = |Y |. One then requires that ∥vi(y) − Ĝ(ui)(y)∥22 is minimized over (ui, vi), i =
1, . . . , N , where ui are sampled at x ∈ X and vi at y ∈ Y . The vanilla-DeepONet is one particular
parametrization of Ĝ(u)(y) as Ĝ(u)(y) = ⟨τ (y),β(u)⟩ + b0 where ⟨, ⟩ is the p-dimensional inner
product, β : RNx × Θβ → Rp is the branch (neural) network, τ : Rdv × Θτ → Rp is the trunk
network, and b0 is a trainable bias parameter; p is a hyperparameter that partly controls the expressivity
of Ĝ(u)(y). Θβ and Θτ are the trainable parameters in the branch and trunk, respectively.

2.2 MATHEMATICAL FORMULATION

We now present the new ensemble DeepONet formulation; an example is illustrated in Figure 1. With-
out loss of generality, assume that we are given three distinct trunk networks τ 1(y; θτ1

),τ 2(y; θτ2
),

and τ 3(y; θτ3
), where y corresponds to the domain of the output function v(y). Assume further that

τ j : Rd × Θτ j → Rpj , j = 1, 2, 3. Then, given a single branch network β̂(u; θb), the ensemble
DeepONet is given in vector form by:

Ĝ(u, y) =
〈
[τ 1(y; θτ1

), τ 2(y; θτ2
), τ 3(y; θτ3

)], β̂(u; θb)
〉
+ b0 =

〈
τ̂ , β̂(u; θb)

〉
+ b0. (1)

Here, τ̂ : Rdv × Θτ1
× Θτ2

× Θτ3
→ Rp1+p2+p3 is the ensemble trunk. Clearly, the individual

trunks simply “stack” column-wise to form the ensemble trunk τ̂ ; in Appendix C, we discuss other
suboptimal attempts to form an ensemble trunk. The ensemble trunk now consists of p1 + p2 + p3
(potentially trainable) basis functions, necessitating that the branch β̂ : RNx ×Θβ̂ → Rp1+p2+p3 .

A universal approximation theorem
Theorem 1. Let G : U → V be a continuous operator. Define Ĝ as Ĝ(u, y) =〈
τ̂ (y; θτ1 ; θτ2 ; θτ3), β̂(u; θb)

〉
+ b0, where β̂ : RNx × Θβ̂ → Rp1+p2+p3 is a branch network

embedding the input function u, b0 is the bias, and τ̂ : Rdv ×Θτ̂1
×Θτ̂2

×Θτ̂3
→ Rp1+p2+p3 is

an ensemble trunk network. Then Ĝ can approximate G globally to any desired accuracy, i.e.,

G(u)(y)− Ĝ(u)(y)∥V ≤ ϵ, (2)

where ϵ > 0 can be made arbitrarily small.

Proof. This automatically follows from the (generalized) universal approximation theorem (Lu et al.,
2021) which holds for arbitrary branches and trunks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Enriched bases on the 2D reaction-diffusion problem 3.2. The solutions exhibit sharp
gradients (left); the PoU-MoE trunk has learned spatially-localized basis functions (middle); the POD
trunk has learned a global basis function (right).

2.2.1 THE POU-MOE TRUNK

We now present the PoU-MoE trunk architecture, which leverages partition-of-unity approximation.
We begin by partitioning Ωv into P overlapping circular/spherical patches Ωk, k = 1, . . . , P ,
with each patch having its own radius ρk and containing a set of sample locations Yk; of course,
P⋃

k=1

Yk = Y . The key idea behind the PoU-MoE trunk is to employ a separate trunk network on each

patch Ωk and then blend (and train) these trunks appropriately to yield a single trunk network on Ω.
Each τ k is trained at data on Yk, but may also be influenced by spatial neighbors. The PoU-MoE
trunk τ PU(x) is given as follows:

τ PU(y; θτ PU
) =

P∑
k=1

wk(y)τ k(y; θτk
), (3)

where θτk
, k = 1, . . . , P are the trainable parameters for each trunk. In this work, we choose

the weight functions wk to be (scaled and shifted) compactly-supported, positive-definite kernels
ψk : Rd × Rd → R that are C2

(
Rd
)
. More specifically, on the patch Ωk, we select ψk to be the

C2
(
R3
)

Wendland kernel (Wendland, 1995; 2005; Fasshauer, 2007; Fasshauer & McCourt, 2015),
which is a radial kernel given by

ψk(y, y
c) = ψk

(
∥y − yck∥

ρk

)
= ψk(r) =

{
(1− r)4(4r + 1), if r ≤ 1

0, if r > 1
, (4)

where yck is the center of the k-th patch. The weight functions are then given by

wk(y) =
ψk(y)∑
j ψj(y)

, k, j = 1, . . . , P, (5)

which automatically satisfy
∑

k wk(y) = 1. Each trunk τ k can be viewed as an “expert” on its
own patch Ωk, thus leading to a spatial MoE formulation via the PoU formalism. Both training
and evaluation of τ PU can proceed locally in that each location y lies in only a few patches; our
implementation leverages this fact for efficiency. Further, since the weight functions wk(y) are each
compactly-supported on their own patches Ωk, τ PU can be viewed as sparse in its constituent spatial
experts τ k. Nevertheless, by ensuring that neighboring patches overlap sufficiently, we ensure that
τ PU still constitutes a global set of basis functions. For simplicity, we use the same p value within
each local trunk τ k. Figure 2 (middle) shows one of the learned PoU-MoE basis functions in the
POD-PoU ensemble; the learned basis function exhibits strong spatial locality corresponding to
partitions. In Appendix G, we present more evidence for this spatial localization in the PoU-MoE
basis functions.

Partitioning: We placed the patch centers in a bounding box around Ω, place a Cartesian grid
in that box, then simply select P of the grid points to use as centers. In this case, the uniform
radius ρ is determined as (Larsson et al., 2017) ρ = (1 + δ)0.5H

√
d where δ is a free parameter to

describe the overlap between patches and H is the side length of the bounding box. However, as
a demonstration, we also used variable radii ρk in Section 3.1. In this work, we placed patches by
using spatial gradients of a vanilla-DeepONet as our guidance, attempting to balance covering the
whole domain with resolving these gradients; see Appendix E.3 for a more in-depth discussion on
partitioning strategies.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A universal approximation theorem
Theorem 2. Let G : U → V be a continuous operator. Define G† as G†(u)(y) =〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j
)

〉
+ b0, where β : RNx ×Θβ → Rp is a branch network embedding

the input function u, τ j : Rdv ×Θτ j
→ Rp are trunk networks, b0 is a bias, and wj : Rdv → R are

compactly-supported, positive-definite weight functions that satisfy the partition of unity condition∑
j wj(y) = 1, j = 1, . . . , P . Then G† can approximate G globally to any desired accuracy, i.e.,

G(u)(y)− G†(u)(y)∥V ≤ ϵ, (6)

where ϵ > 0 can be made arbitrarily small.

Proof. See Appendix D for the proof. The high level idea is to use the fact that the (generalized)
universal approximation theorem (Chen & Chen, 1995; Lu et al., 2021) already holds for each local
trunk on a patch, then use the partition of unity property to effectively blend that result over all
patches to obtain a global estimate.

2.2.2 THE POD TRUNK

The POD trunk is a modified version of the trunk used in the POD-DeepONet (Chatterjee, 2000) of
the output function data. First, we remind the reader of the POD procedure. Recalling that {vi(y)}Ni=1

are the output functions, first define the matrix Vij = 1
σi
(vi(yj)− µi), where µi is the spatial mean

of the i-th function and σi is its spatial standard deviation. Define the matrix T = 1
N V V

T , and let
Φ be the matrix of eigenvectors of T ordered from the smallest eigenvalue to the largest. Then, the
POD-DeepONet involves selecting the first p columns of Φ to be the trunk of a DeepONet so that

GPOD(u, y) =
p∑

i=1

βi(u)ϕi(y) + ϕ0(y), where ϕ0(y) is the mean function of v(y) computed from the

training dataset, and ϕi(y) are the columns of Φ as explained above. In this work, we use a POD trunk
that includes the mean function ϕ0 in the set of basis functions. We label this the “Modified-POD”
trunk in our experiments; this “Modified-POD” trunk τ POD is given by

τ POD(y) = [ϕ0(y) ϕ1(y) . . . ϕp−1(y)] , (7)

Consistent with the POD-DeepONet philosophy, no activation function is needed and the POD trunk
has no trainable parameters. Figure 2 (right) shows one of the learned POD basis functions in the
POD-PoU ensemble.

2.2.3 OTHER NEURAL OPERATORS

While we restricted our attention to DeepONets in this work, the ensemble idea naturally extends to
other neural operator architectures. In Appendix B, we briefly discuss our ideas on creating ensembles
of global and local basis functions within the FNO.

3 RESULTS

We present results of our comparison of the new ensemble DeepONet (with and without a PoU-MoE
trunk) against vanilla and POD DeepONets. We considered different ensemble combinations of the
vanilla, POD, and PoU-MoE trunks. Each of the following ensembles attempted to address a specific
scientific question:

1. Vanilla-POD: Does adding POD modes to a vanilla trunk enhance expressivity over using
either trunk in isolation?

2. Vanilla-PoU: Does spatial locality introduced by the PoU-MoE trunk aid a DeepONet?
3. POD-PoU: Does having both POD global modes and PoU-MoE local expertise enhance

expressivity over simply using a vanilla trunk?
4. Vanilla-POD-PoU: If the answer above is affirmative, then does adding a vanilla trunk

(representing extra trainable parameters) to a POD-PoU ensemble help further enhance
expressivity?

5. (P + 1)-Vanilla: Is spatial localization truly important or is simple overparametrization
all that is needed? We use P + 1 vanilla trunks in this model, where P is the number
of PoU-MoE patches. This ensemble thus contains as many trunks as the vanilla-PoU or
POD-PoU ensembles, but all basis functions are purely global in this setting.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Relative l2 errors (as percentage) on the test dataset for the 2D Darcy flow, cavity flow, and
reaction-diffusion, and the 3D reaction-diffusion problems. RD stands for reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 0.857± 0.08 5.53± 1.05 0.144± 0.01 0.127± 0.03
POD 0.297± 0.01 7.94± 2e− 5 5.06± 8e− 7 9.40± 8

Modified-POD 0.300± 0.04 7.93± 2e− 5 0.131± 4e− 5 0.155± 4e− 5
(Vanilla, POD) 0.227± 0.03 0.310± 0.03 0.0751± 4e− 5 5.24± 10.4
(P + 1)-Vanilla 1.19± 0.06 2.17± 0.3 0.0644± 0.02 5.25± 10.3
(Vanilla, PoU) 0.976± 0.03 1.06± 0.05 0.0946± 0.03 5.25± 10.3
(POD, PoU) 0.204± 0.02 0.204± 0.01 0.0539± 4e− 5 0.0576± 0.05

(Vanilla, POD, PoU) 0.187± 0.02 0.229± 0.01 0.0666± 8e− 5 5.22± 10.4

The answers to these questions are shown in Table 4 and summarized in Section 4. In a nutshell,
spatial localization is indeed important, as is using a mix of global and localized basis functions;
simple overparametrization is insufficient to attain state-of-the-art accuracy. We now describe our
experimental setup, and both the standard and novel benchmark test results that led us to this
conclusion.

Important DeepONet details. In all cases, for parsimony in the number of training parameters, we
used a single branch (the unstacked DeepONet) that outputs to Rp rather than p branches. We found
that output normalization did not help significantly in this case. We scaled all our POD architecture
outputs by 1

p (standalone or in ensembles), as advocated in Lu et al. (2022).

Experiment design. In the remainder of this section, we establish the performance of ensemble
DeepONets on benchmarks such as a 2D lid-driven cavity flow problem (Section 3.1) and a 2D Darcy
flow problem on a triangle (Appendix F.1), both common in the literature (Lu et al., 2022; Batlle et al.,
2024). However, we also wished to develop challenging new spacetime PDE benchmarks where
the PDE solutions (output functions) possessed steep gradients, while the input functions were well-
behaved. To this end, we present results for both a 2D reaction-diffusion problem (Section 3.2) and a
3D reaction-diffusion problem with sharply (spatially) varying diffusion coefficients (Section 3.3). In
both cases, we constructed spatially discontinuous reaction terms that resulted in PDE solutions
(output functions) with steep gradients. Such PDE solutions abound in scientific applications. We
note at the outset that the ensemble DeepONet with the PoU-MoE trunk performed best when
the solutions had steep spatial gradients. Results on the Darcy problem show that the ensemble
approaches tested here were not as effective on that problem.

Error calculations. For all problems, we compared the vanilla- and POD-DeepONets with the five
different ensemble architectures described at the top of Section 3. We also compared these ensembles
against a DeepONet with the modified POD trunk from Section 2.2.2 (labeled Modified-POD). For
all experiments, we first computed the relative l2 error for each test function, eℓ2 = ∥ũ−u∥2

∥u∥2
where u

was the true solution vector and ũ was the DeepONet prediction vector; we then computed the mean
over those relative ℓ2 errors. For vector-valued functions, we first computed pointwise magnitudes
of the vectors, then repeated the same process. We also report a squared error (MSE) between the
DeepONet prediction and the true solution averaged over N functions emse(y) =

1
N (ũ(y)− u(y))

2
.

Notation. In the following text, we denote the space and time domains with Ω and T respectively;
the spatial domain boundary is denoted by ∂Ω. A single spatial point is denoted by y, which can
either be a point (y1, y2) in R2 or a point (y1, y2, y3) in R3.

Setup. We trained all models for 150,000 epochs on an NVIDIA GTX 4080 GPU. All results
were calculated over five random seeds. We annealed the learning rates with an inverse-time decay
schedule. We used the Adam optimizer (Kingma & Ba, 2017) for training on the Darcy flow and
the cavity flow problems, and the AdamW optimizer (Loshchilov & Hutter, 2018) on the 2D and 3D
reaction-diffusion problems. Other DeepONet hyperparameters and the network architectures are
listed in Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: The 2D lid-driven cavity flow problem. We show in (A) an example input function; in (B)
an example output function component; in (C) the four patches used for the PoU-MoE trunk; in (D),
(E), and (F) the spatial mean squared error (MSE) for the vanilla, ensemble vanilla-POD-PoU, and
ensemble POD-PoU DeepONets respectively.

3.1 2D LID-DRIVEN CAVITY FLOW

The 2D lid-driven cavity flow problem involves solving for fluid flow in a container whose lid moves
tangentially along the top boundary. This can be described by the incompressible Navier-Stokes
equations (with boundary conditions),

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u, ∇ · u = 0, y ∈ Ω, t ∈ T, (8)

u = ub, (9)

where u = (u(y), v(y)) is the velocity field, p is the pressure field, ν is the kinematic viscosity, and
ub = (ub, vb) is the Dirichlet boundary condition. We focused on the steady state problem and used
the dataset specified in Lu et al. (2022, Section 5.7, Case A). We set Ω = [0, 1]2 and learned the
operator G : ub → u. The steady state boundary condition is defined as,

ub = U

(
1−

cosh
(
r(x− 1

2)
)

cosh
(
r
2

))
, vb = 0, (10)

where r = 10. The other boundary velocities were set to zero. As described in Lu et al. (2022), the
equations were then solved using a lattice Boltzmann method (LBM) to generate 100 training and
10 test input and output function pairs. All function pairs were generated over a range of Reynolds
numbers in the range [100, 2080] (with U and ν chosen appropriately), with no overlap between the
training and test dataset. Figure 3 shows the four patches used to partition the domain.

We report the relative ℓ2 errors (as percentage) on the test dataset in Table 1. The vanilla-, modified
POD-, and POD-DeepONets had the highest errors (in increasing order). The POD-PoU ensemble
was the most accurate model by about an order of magnitude over the vanilla-DeepONet, and almost
two orders of magnitude over the POD variants. While all ensembles outperformed the standalone
DeepONets, the ensembles possessing POD modes appeared to do best in general. Further, adding a
PoU-MoE trunk to the ensemble seemed to aid accuracy in general, but especially when POD modes
were present. The spatial MSE figures in Figure 3 reflect the same trends.

3.2 A 2D REACTION-DIFFUSION PROBLEM

Next, we present experimental results on a 2D reaction-diffusion problem. This equation governs the
behavior of a chemical whose concentration is c(y, t), and is given (along with boundary conditions)
below:

∂c

∂t
= kon (R− c) camb − koff c+ ν∆c, y ∈ Ω, t ∈ T, (11)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: The 2D reaction-diffusion problem. We show in (A) an example input function; in (B) an
example output function; in (C) the six patches used for the PoU-MoE trunk; in (D), (E), and (F) the
spatial mean squared error (MSE) for the vanilla, ensemble (P + 1)-vanilla, and ensemble POD-PoU
DeepONets respectively.

with the boundary condition ν ∂c
∂n = 0 on ∂Ω. The first r.h.s term is a binding reaction term

modulated by kon and the second term an unbinding term modulated by koff. camb(y, t) = 1 +
cos(2πy1) cos(2πy2)) exp(−πt) is a background source of chemical available for reaction, ν = 0.1
is the diffusion coefficient, R = 2 is a throttling term, and n(y) is the unit outward normal vector on
the boundary. In our experiments, we used Ω = [0, 2]2 and T = [0, 0.5]. We set the initial condition
as a spatial constant c(y, 0) ∼ U(0, 1). More importantly, kon and koff are discontinuous and given by

kon =

{
2, y1 ≤ 1.0,

0, otherwise
, koff =

{
0.2, y1 ≤ 1.0,

0, otherwise
, (12)

where y1 is the horizontal direction. This discontinuity induces a sharp solution gradient at y1 = 1.0
(see Figure 4 (B)). Our goal was to learn the solution operator G : c(y, 0) → c(y, 0.5). We solved
the PDE numerically at Ny = 2207 collocation points using a fourth-order accurate RBF-FD
method (Shankar & Fogelson, 2018; Shankar et al., 2021); using this solver, we generated 1000
training and 200 test input and output function pairs. We sampled the random spatially-constant input
on a regular spatial grid for the branch input. We used six patches for the PoU trunks as shown in
Figure 4.

The third column of Table 1 shows that the POD-PoU ensemble achieved the lowest error, with an
error reduction of almost 3x over the standalone DeepONets. The (P + 1)-vanilla ensemble also
performed reasonably well, with a greater than 2x error reduction over the same; this indicates that
overparametrization indeed helped on this test case. However, the relatively higher errors of the
vanilla-PoU ensemble (compared to the best results) indicate that POD modes are possibly vital to
fully realizing the benefits of the PoU-MoE trunk. Once again, the spatial MSE plots in Figure 4
corroborate the relative errors.

3.3 3D REACTION-VARIABLE-COEFFICIENT-DIFFUSION

Finally, we present results on a 3D reaction-diffusion problem with variable-coefficient diffusion.
We used a similar setup to the 2D case but significantly also allow the diffusion coefficient to vary
spatially via a function K(y), y ∈ R3. The PDE and boundary conditions are given by

∂c

∂t
= kon (R− c) camb − koff c+∇ · (K(y)∇c) , y ∈ Ω, t ∈ T, (13)

with K(y) ∂c
∂n = 0 on ∂Ω. Here, Ω was the unit ball, i.e., the interior of the unit sphere S2, and

T = [0, 0.5]. We set the kon and koff coefficients to the same values as in 2D in y1 ≤ 0, and to zero in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: The 3D reaction-diffusion problem. We show in (A) an example input function; in (B)
an example output function; in (C) the eight patches used for the PoU-MoE trunk; in (D), (E), and
(F) the spatial mean squared error (MSE) for the vanilla, modified POD, and ensemble POD-PoU
DeepONets respectively.

the y1 > 0 half of the domain. We set camb = (1+ cos(2πy1) cos(2πy2) sin(2πy3))e
(−πt). All other

model parameters were kept the same. K(y) was chosen to have steep gradients, here defined as

K(y) = B +
C

tanh(A)
((A− 3) tanh(8x− 5)− (A− 15) tanh(8x+ 5) +A tanh(A)) , (14)

where A = 9, B = 0.0215, and C = 0.005. Once again, we learned the operator G : c(y, 0) →
c(y, 0.5). We again used the same RBF-FD solver to generate 1000 training and 200 test input/output
function pairs (albeit at 4325 collocation points in 3D). We used eight spatial patches for the PoU
trunks as shown in Figure 5. The last column in Table 1 shows that most of the ensemble DeepONets
did poorly, as did the POD-DeepONet. However, the POD-PoU ensemble achieved almost a 2x
reduction in error over the vanilla-DeepONet.

3.4 RUNTIME COMPARISON

The ensemble DeepONet architectures all have more trainable parameters than the vanilla and POD
DeepOnets. This leads to higher training and inference times. We report the average time per training
epoch and inference time on the test dataset in Tables 2 and 3 respectively. The training times
were larger in ensemble DeepONets with more trunk networks, considerably so when the PoU-MoE
trunks were used (an order of magnitude increase in training time on the 3D reaction-diffusion
problem). The inference times showed a similar trend, although much less pronounced (only half
an order of magnitude slowdown in the 3D problem). These slowdowns are because our current
PoU-MoE implementation contains a serial loop over the patches in the forward pass, leading to
slower back-propagation over its parameters. In future work, we plan to address this with a novel
parallelization strategy; we believe this will speed up the ensemble architectures with the PoU-MoE
trunk considerably. It is also important to note that despite this increased cost, Table 1 shows that the
POD-PoU ensemble is more than 2x as accurate as the vanilla-DeepONet; the POD-DeepONet (and
other ensembles) have errors that are two orders of magnitude worse!

4 CONCLUSIONS AND FUTURE WORK

We presented the ensemble DeepONet, a method of enriching a DeepONet trunk with arbitrary
trunks. We also developed the PoU-MoE trunk to aid in spatial locality. Our results demonstrated
significant accuracy improvements over standalone DeepONets on several challenging operator
learning problems, including a particularly challenging 3D problem in the unit ball. One of the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Average time per training epoch in seconds. RD stands for reaction-diffusion.
Darcy flow Cavity flow 2D RD 3D RD

Vanilla 8.93e− 4 3.99e− 4 2.97e− 4 2.10e− 4
POD 5.19e− 4 2.46e− 4 2.06e− 4 1.22e− 4

Modified-POD 6.86e− 4 2.49e− 4 2.08e− 4 1.22e− 4
(Vanilla, POD) 9.80e− 4 3.92e− 4 3.03e− 4 2.32e− 4
(P + 1)-Vanilla 1.10e− 3 8.51e− 4 7.27e− 4 9.45e− 4

Vanilla-PoU 8.67e− 4 9.52e− 4 1.03e− 3 1.39e− 3
POD-PoU 6.74e− 4 8.21e− 4 9.24e− 4 1.28e− 3

Vanilla-POD-PoU 8.55e− 4 9.48e− 4 1.05e− 3 1.43e− 3

Table 3: Inference time on the test dataset in seconds. RD stands for reaction-diffusion.
Darcy flow Cavity flow 2D RD 3D RD

Vanilla 1.66e− 4 1.39e− 4 1.32e− 4 7.20e− 5
POD 1.57e− 4 1.12e− 4 1.12e− 4 6.42e− 5

Modified-POD 1.34e− 4 1.08e− 4 9.94e− 5 6.62e− 5
(Vanilla, POD) 1.69e− 4 1.33e− 4 1.20e− 4 7.76e− 5
(P + 1)-Vanilla 2.08e− 4 2.12e− 4 1.71e− 4 1.48e− 4

Vanilla-PoU 1.91e− 4 2.42e− 4 2.21e− 4 2.37e− 4
POD-PoU 1.63e− 4 1.94e− 4 1.96e− 4 2.30e− 4

Vanilla-POD-PoU 2.00e− 4 2.18e− 4 2.28e− 4 2.41e− 4

Table 4: Effectiveness of different trunk choices. The yes/no refers to whether the strategy beats
a vanilla-DeepONet. The bolded results are the best strategy for each experiment. RD stands for
reaction-diffusion.

Trunk Choices Darcy flow Cavity flow 2D RD 3D RD

Only POD global modes Yes No No No
Only modified POD global modes Yes No No No
Adding POD global modes Yes Yes Yes No
Adding spatial locality No Yes Yes No
Only POD global modes + spatial locality Yes Yes Yes Yes
Only POD global modes + spatial locality + mild
overparametrization

Yes Yes Yes No

Adding excessive overparametrization No Yes Yes No

goals of this work was to provide insight into choices for ensemble trunk members. Thus, we
considered different combinations of three very specific choices: a vanilla-DeepONet trunk (vanilla
trunk), the POD trunk, and the new PoU-MoE trunk. Our results (summarized in Table 4) make
clear that while different ensemble strategies beat the vanilla-DeepONet in different circumstances,
only the POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems. Simple
overparametrization ((P +1)-Vanilla DeepONet) is not enough and sometimes deteriorates accuracy;
a judicial combination of local and global basis functions is vital. Further, adding the PoU-MoE trunk
aids expressivity in every problem that involves steep spatial gradients in either the input or output
functions. Finally, it appears that the full benefits of the PoU-MoE trunk are mainly achieved when
the POD trunk is also used in the ensemble.

Given the generality of our work, there are numerous possible extensions along the lines of problem-
dependent choices for the ensemble members. The PoU-MoE trunk merits further investigation. It
is plausible that adding adaptivity to the PoU weight functions could improve its accuracy further,
as could a spatially hierarchical formulation. Our work also paves the way for the use of other
non-neural network basis functions within the ensemble DeepONet.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Thomas Abeel, Thibault Helleputte, Yves Van de Peer, Pierre Dupont, and Yvan Saeys. Robust
biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinfor-
matics, 26(3):392–398, 2010.

Kevin W Aiton and Tobin A Driscoll. An adaptive partition of unity method for chebyshev polynomial
interpolation. SIAM Journal on Scientific Computing, 40(1):A251–A265, 2018.

Wael Awada, Taghi M Khoshgoftaar, David Dittman, and Randall Wald. The effect of number of
iterations on ensemble gene selection. In 2012 11th International Conference on Machine Learning
and Applications, volume 2, pp. 198–203. IEEE, 2012.

M. Keith Ballard, Roman Amici, Varun Shankar, Lauren A. Ferguson, Michael Braginsky, and
Robert M. Kirby. Towards an extrinsic, CG-XFEM approach based on hierarchical enrichments
for modeling progressive fracture. Computer Methods in Applied Mechanics and Engineering,
388:114221, January 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2021.114221.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive
for operator learning. Journal of Computational Physics, 496:112549, January 2024. ISSN
0021-9991. doi: 10.1016/j.jcp.2023.112549.

Víctor Bayona, Natasha Flyer, and Bengt Fornberg. On the role of polynomials in RBF-FD approxi-
mations: III. Behavior near domain boundaries. Journal of Computational Physics, 380:378–399,
2019. doi: 10.1016/j.jcp.2018.12.013.

T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing.
International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999. ISSN 1097-
0207. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.

Aniruddha Bora, Khemraj Shukla, Shixuan Zhang, Bryce Harrop, Ruby Leung, and George Em
Karniadakis. Learning bias corrections for climate models using deep neural operators, February
2023. arXiv:2302.03173 [physics].

Zhiqiang Cai, Seokchan Kim, and Byeong-Chun Shin. Solution Methods for the Poisson Equation
with Corner Singularities: Numerical Results. SIAM Journal on Scientific Computing, 23(2):
672–682, January 2001. ISSN 1064-8275. doi: 10.1137/S1064827500372778. Publisher: Society
for Industrial and Applied Mathematics.

Roberto Cavoretto, Alessandra De Rossi, and Wolfgang Erb. Partition of Unity Methods for Signal
Processing on Graphs. Journal of Fourier Analysis and Applications, 27(4):66, July 2021. ISSN
1531-5851. doi: 10.1007/s00041-021-09871-w.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts, 2024.

Anindya Chatterjee. An introduction to the proper orthogonal decomposition. Current Science, 78
(7):808–817, 2000. ISSN 0011-3891.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, July 1995. ISSN 1941-0093. doi: 10.1109/72.392253.
Conference Name: IEEE Transactions on Neural Networks.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards Understanding the
Mixture-of-Experts Layer in Deep Learning. Advances in Neural Information Processing Systems,
35:23049–23062, December 2022.

Hugh Chipman, Edward George, and Robert McCulloch. Bayesian ensemble learning. Advances in
neural information processing systems, 19, 2006.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of svms for very large scale
problems. Advances in Neural Information Processing Systems, 14, 2001.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

B.V. Dasarathy and B.V. Sheela. A composite classifier system design: Concepts and methodology.
Proceedings of the IEEE, 67(5):708–713, May 1979. ISSN 1558-2256. doi: 10.1109/PROC.1979.
11321. Conference Name: Proceedings of the IEEE.

David J Dittman, Taghi M Khoshgoftaar, Randall Wald, and Amri Napolitano. Comparing two new
gene selection ensemble approaches with the commonly-used approach. In 2012 11th International
Conference on Machine Learning and Applications, volume 2, pp. 184–191. IEEE, 2012.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey on ensemble learning.
Frontiers of Computer Science, 14(2):241–258, April 2020. ISSN 2095-2236. doi: 10.1007/s117
04-019-8208-z.

Haytham Elghazel and Alex Aussem. Unsupervised feature selection with ensemble learning.
Machine Learning, 98:157–180, 2015.

Gregory E. Fasshauer. Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary
Mathematical Sciences. World Scientific, 2007. ISBN 9789812706348.

Gregory E. Fasshauer and Michael J. McCourt. Kernel-based Approximation Methods Using MAT-
LAB, volume 19 of Interdisciplinary Mathematical Sciences. World Scientific, 2015. ISBN
9789814630139.

Natasha Flyer, Gregory A. Barnett, and Louis J. Wicker. Enhancing finite differences with radial
basis functions: Experiments on the Navier–Stokes equations. Journal of Computational Physics,
316:39–62, July 2016. ISSN 0021-9991. doi: 10.1016/j.jcp.2016.02.078.

Charles Gadd, Sara Wade, and Alexis Boukouvalas. Enriched mixtures of generalised gaussian
process experts. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, pp. 3144–3154. PMLR, 26–28 Aug 2020.

Donghai Guan, Weiwei Yuan, Young-Koo Lee, Kamran Najeebullah, and Mostofa Kamal Rasel. A
review of ensemble learning based feature selection. IETE Technical Review, 31(3):190–198, 2014.

Jayesh K. Gupta and Johannes Brandstetter. Towards Multi-spatiotemporal-scale Generalized PDE
Modeling, November 2022. arXiv:2209.15616 [cs].

Ehsan Haghighat, Umair bin Waheed, and George Karniadakis. En-DeepONet: An enrichment
approach for enhancing the expressivity of neural operators with applications to seismology.
Computer Methods in Applied Mechanics and Engineering, 420:116681, February 2024. ISSN
0045-7825. doi: 10.1016/j.cma.2023.116681.

Mingxuan Han, Varun Shankar, Jeff M. Phillips, and Chenglong Ye. Locally Adaptive and Differen-
tiable Regression. Journal of Machine Learning for Modeling and Computing, 4(4), 2023. ISSN
2689-3967, 2689-3975. doi: 10.1615/JMachLearnModelComput.2023049746. Publisher: Begel
House Inc.

Alfa Heryudono, Elisabeth Larsson, Alison Ramage, and Lina von Sydow. Preconditioning for Radial
Basis Function Partition of Unity Methods. Journal of Scientific Computing, 67(3):1089–1109,
June 2016. ISSN 1573-7691. doi: 10.1007/s10915-015-0120-6.

Amanda A. Howard, Sarah H. Murphy, Shady E. Ahmed, and Panos Stinis. Stacked networks
improve physics-informed training: applications to neural networks and deep operator networks,
November 2023. arXiv:2311.06483 [cs, math].

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Pengzhan Jin, Shuai Meng, and Lu Lu. MIONet: Learning Multiple-Input Operators via Tensor
Product. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, December 2022. ISSN
1064-8275. doi: 10.1137/22M1477751. Publisher: Society for Industrial and Applied Mathematics.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pp.
1339–1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
arXiv:1412.6980 [cs].

Anders Krogh and Peter Sollich. Statistical mechanics of ensemble learning. Physical Review E, 55
(1):811, 1997.

Elisabeth Larsson, Victor Shcherbakov, and Alfa Heryudono. A Least Squares Radial Basis Function
Partition of Unity Method for Solving PDEs. SIAM Journal on Scientific Computing, 39(6):
A2538–A2563, January 2017. ISSN 1064-8275. doi: 10.1137/17M1118087. Publisher: Society
for Industrial and Applied Mathematics.

Sanghyun Lee and Yeonjong Shin. On the training and generalization of deep operator networks,
September 2023. arXiv:2309.01020 [cs, math, stat].

Yun Li, Suyan Gao, and Songcan Chen. Ensemble feature weighting based on local learning
and diversity. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pp.
1019–1025, 2012.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NeurIPS ’20, pp. 6755–6766, Red Hook, NY, USA, December 2020. Curran Associates
Inc. ISBN 978-1-71382-954-6.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
2021.

Clodoaldo AM Lima, André LV Coelho, and Fernando J Von Zuben. Hybridizing mixtures of
experts with support vector machines: Investigation into nonlinear dynamic systems identification.
Information Sciences, 177(10):2049–2074, 2007.

Clodoaldo AM Lima, André LV Coelho, and Fernando J Von Zuben. Pattern classification with
mixtures of weighted least-squares support vector machine experts. Neural Computing and
Applications, 18:843–860, 2009.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256
-021-00302-5. Publisher: Nature Publishing Group.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with prac-
tical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engineering,
393:114778, April 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2022.114778.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42(2):275–293, August 2014. ISSN 1573-7462. doi: 10.1007/s10462-012-9338-y.

Jeffrey S. McQuien, Kevin H. Hoos, Lauren A. Ferguson, Endel V. Iarve, and David H. Mollenhauer.
Geometrically nonlinear regularized extended finite element analysis of compression after impact
in composite laminates. Composites Part A: Applied Science and Manufacturing, 134:105907,
July 2020. ISSN 1359-835X. doi: 10.1016/j.compositesa.2020.105907.

J. M. Melenk and I. Babuvska. The partition of unity finite element method: Basic theory and appli-
cations. Computer Methods in Applied Mechanics and Engineering, 139(1):289–314, December
1996. ISSN 0045-7825. doi: 10.1016/S0045-7825(96)01087-0.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jun Wei Ng and Marc Peter Deisenroth. Hierarchical mixture-of-experts model for large-scale
gaussian process regression. arXiv preprint arXiv:1412.3078, 2014.

Vivek Oommen, Khemraj Shukla, Saaketh Desai, Remi Dingreville, and George Em Karniadakis.
Rethinking materials simulations: Blending direct numerical simulations with neural operators,
December 2023. arXiv:2312.05410 [physics].

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. FourCastNet: A Global Data-
driven High-resolution Weather Model using Adaptive Fourier Neural Operators, February 2022.
arXiv:2202.11214 [physics].

Ahmad Peyvan, Vivek Oommen, Ameya D. Jagtap, and George Em Karniadakis. RiemannONets:
Interpretable neural operators for Riemann problems. Computer Methods in Applied Mechanics
and Engineering, 426:116996, June 2024. ISSN 0045-7825. doi: 10.1016/j.cma.2024.116996.

Yongjun Piao, Minghao Piao, Kiejung Park, and Keun Ho Ryu. An ensemble correlation-based gene
selection algorithm for cancer classification with gene expression data. Bioinformatics, 28(24):
3306–3315, 2012.

Robi Polikar. Ensemble Learning. In Cha Zhang and Yunqian Ma (eds.), Ensemble Machine Learning:
Methods and Applications, pp. 1–34. Springer, New York, NY, 2012. ISBN 978-1-4419-9326-7.
doi: 10.1007/978-1-4419-9326-7_1.

Yvan Saeys, Thomas Abeel, and Yves Van de Peer. Robust feature selection using ensemble feature
selection techniques. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II
19, pp. 313–325. Springer, 2008.

Ali Safdari-Vaighani, Alfa Heryudono, and Elisabeth Larsson. A Radial Basis Function Partition of
Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications.
Journal of Scientific Computing, 64(2):341–367, August 2015. ISSN 1573-7691. doi: 10.1007/s1
0915-014-9935-9.

Varun Shankar and Aaron L. Fogelson. Hyperviscosity-based stabilization for radial basis function-
finite difference (RBF-FD) discretizations of advection–diffusion equations. Journal of Computa-
tional Physics, 372:616–639, November 2018. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.06.036.

Varun Shankar and Grady B. Wright. Mesh-free semi-Lagrangian methods for transport on a sphere
using radial basis functions. Journal of Computational Physics, 366:170–190, August 2018. ISSN
0021-9991. doi: 10.1016/j.jcp.2018.04.007.

Varun Shankar, Grady B. Wright, and Aaron L. Fogelson. An efficient high-order meshless method
for advection-diffusion equations on time-varying irregular domains. Journal of Computational
Physics, 445:110633, November 2021. ISSN 0021-9991. doi: 10.1016/j.jcp.2021.110633.

Victor Shcherbakov and Elisabeth Larsson. Radial basis function partition of unity methods for
pricing vanilla basket options. Computers & Mathematics with Applications, 71(1):185–200,
January 2016. ISSN 0898-1221. doi: 10.1016/j.camwa.2015.11.007.

Khemraj Shukla, Vivek Oommen, Ahmad Peyvan, Michael Penwarden, Nicholas Plewacki, Luis
Bravo, Anindya Ghoshal, Robert M. Kirby, and George Em Karniadakis. Deep neural operators
as accurate surrogates for shape optimization. Engineering Applications of Artificial Intelligence,
129:107615, March 2024. ISSN 0952-1976. doi: 10.1016/j.engappai.2023.107615.

Nathaniel Trask, Amelia Henriksen, Carianne Martinez, and Eric Cyr. Hierarchical partition of unity
networks: fast multilevel training. In Bin Dong, Qianxiao Li, Lei Wang, and Zhi-Qin John Xu
(eds.), Proceedings of Mathematical and Scientific Machine Learning, volume 190 of Proceedings
of Machine Learning Research, pp. 271–286. PMLR, August 2022.

Eugene Tuv. Ensemble learning. Feature extraction: foundations and applications, pp. 187–204,
2006.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Sofie Van Landeghem, Thomas Abeel, Yvan Saeys, and Yves Van de Peer. Discriminative and
informative features for biomolecular text mining with ensemble feature selection. Bioinformatics,
26(18):i554–i560, 2010.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Advances in Computational Mathematics, 4(1):389–396, December 1995.
ISSN 1572-9044. doi: 10.1007/BF02123482.

Holger Wendland. Scattered Data Approximation. Cambridge University Press, 2005. ISBN
9780521843355.

Chao Yuan and Claus Neubauer. Variational mixture of gaussian process experts. Advances in neural
information processing systems, 21, 2008.

Seniha Esen Yuksel, Joseph N. Wilson, and Paul D. Gader. Twenty Years of Mixture of Experts.
IEEE Transactions on Neural Networks and Learning Systems, 23(8):1177–1193, August 2012.
ISSN 2162-2388. doi: 10.1109/TNNLS.2012.2200299. Conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

Zecheng Zhang, Leung Wing Tat, and Hayden Schaeffer. BelNet: basis enhanced learning, a mesh-
free neural operator. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 479(2276):20230043, August 2023. doi: 10.1098/rspa.2023.0043. Publisher: Royal
Society.

Zhi-Hua Zhou. Ensemble Learning. In Zhi-Hua Zhou (ed.), Machine Learning, pp. 181–210. Springer,
Singapore, 2021. ISBN 9789811519673. doi: 10.1007/978-981-15-1967-3_8.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ENSEMBLE LEARNING AND MIXTURE-OF-EXPERTS (MOE)
The key idea behind ensemble learning is to combine a diverse set of learnable features from individual
models into a single model (Polikar, 2012; Dong et al., 2020; Zhou, 2021; Dasarathy & Sheela,
1979). This technique has been used for both supervised and unsupervised feature selection in a
variety of applications (Saeys et al., 2008; Li et al., 2012; Elghazel & Aussem, 2015; Abeel et al.,
2010; Van Landeghem et al., 2010; Awada et al., 2012; Dittman et al., 2012; Piao et al., 2012). Guan
et al. (2014) draws an important distinction between using ensemble learning for feature selection
and using feature selection for ensemble learning (where the former category is known to overcome
the problem of local minima in machine learning). It is generally known that these methods are
more stable than single base learners (Tuv, 2006; Guan et al., 2014). While ensemble methods have
traditionally been studied with a statistical perspective (Krogh & Sollich, 1997; Chipman et al., 2006),
we focus more on its feature selection capability, i.e. our work falls in the category of ensemble
learning for feature selection. We use ensemble learning specifically to aggregate the global and local
spatial features learned by the vanilla, POD, and PoU-MoE trunks into a single ensemble trunk.

MoE, first introduced in (Jacobs et al., 1991; Jordan & Jacobs, 1993), is a method in which an
“expert” model focuses on learning from a subset of the training dataset. These models can be
support vector machines (Lima et al., 2007; Lima et al., 2009; Collobert et al., 2001), Gaussian
Processes (Ng & Deisenroth, 2014; Yuan & Neubauer, 2008; Gadd et al., 2020), and neural networks.
Similar to ensemble learning, the MoE idea has also proven to be very successful in diverse ML
applications (Masoudnia & Ebrahimpour, 2014; Yuksel et al., 2012; Chen et al., 2022). Most recently,
MoE has also been used in physics-informed learning; Chalapathi et al. (2024) uses MoE across
the spatial domain with non-overlapping patches to decompose global physical hard constraints into
multiple local constraints. Our PoU-MoE trunk uses a similar methodology where it has individual
expert trunk networks on each patch in the domain, albeit with overlapping patches. However, instead
of learning physical constraints, we let our experts learn spatially local basis functions (see Appendix
G for further discussion on this spatial locality).

B SPECULATION ON AN ENSEMBLE FNO
Here, we show one possible technique for incorporating the PoU-MoE localized bases into the FNO
architecture, i.e., we show how to create an ensemble FNO. FNOs consist of a lifting operator that lifts
the input functions to multiple channels, a projection operator that undoes the lift, and intermediate
layers (Fourier layers) consisting of kernel-based integral operators discretized by the fast Fourier
transform (FFT); these integral operators are also typically augmented by pointwise convolution
operations. Let ft denote the intermediate function at the tth Fourier layer. Then, the output ft+1 of
this layer (and the input to the next layer) is given by

ft+1(y) = σ

(∫
Ω

K(x, y)ft(x) dx + Wft(y)

)
, x ∈ Ω, (15)

where σ is an activation function applied pointwise, K is a matrix-valued kernel learned in Fourier
space via the FFT, and W is the aforementioned pointwise convolution (Li et al., 2021). Since
FNOs use the FFT to compute the integral operator in (15), this effectively constitutes a projection of
ft(x) onto a set of global Fourier modes (trigonometric polynomials or complex exponentials). One
possible method for creating an ensemble FNO would involve modifying (15) to incorporate a set of
localized basis functions using the PoU-MoE formulation as follows:

ft+1(y) = σ

∫
Ω

K(x, y)ft(x) dx︸ ︷︷ ︸
Global basis

+

P∑
k=1

wk(y)

∫
Ωk

K(x, y) ft(x)|Ωk
dx︸ ︷︷ ︸

Localized basis

+Wft(y)

 , (16)

where P is the number of spatial patches (all of which are hypercubes). The PoU-MoE formulation
now combines a set of localized integrals on each patch, each of which when computed by an FFT
would constitute a projection of ft (restricted to Ωk) onto a local Fourier basis. This loosely resembles
the Chebyshev polynomial PoU approximation introduced by Aiton & Driscoll (2018).

It is worth mentioning that this is one of many ways to combine different basis functions in FNOs.
Another way is to introduce a set of local basis functions at the final projection operator that maps to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the output function. The projection operator’s final layer can be enlarged to weight the additional basis
functions, closely resembling how the branch weights the ensemble trunk in ensemble DeepONets.
Similar extensions are possible for the GNO and even kernel/GP-based operator learning techniques.

C SUBOPTIMAL ENSEMBLE TRUNK ARCHITECTURES

We document here our experience with other ensemble trunk architectures. We primarily made the
following two other attempts:

A residual ensemble: Our first attempt was to combine the different trunk outputs using weighted
residual connections with trainable weights, then activate the resulting output, then pass that activated
output to a dense layer. For instance, given two trunks τ 1 and τ 2, this residual ensemble trunk would
be given by

τ̂ res =Wσ (tanh(w1)τ 1 + tanh(w2)τ 2) + b, (17)
where σ was some nonlinear activation, W was some matrix of weights, and b a bias. We also
attempted using the sigmoid instead of the tanh. The major drawback of this architecture was that the
output dimensions of the individual trunks had to match, i.e., p1 = p2 to add the results (otherwise,
some form of padding would be needed). We found that this architecture indeed outperformed the
vanilla-DeepONet in some of our test cases, but required greater fine tuning of the output dimension
p. In addition, we found that this residual ensemble failed to match the accuracy of our final ensemble
architecture.
An activated ensemble: Our second attempt resembled our final architecture, but had an extra
activation function and weights and biases. This activated ensemble trunk would be given by

τ̂ act =Wσ ([τ1, τ2]) + b. (18)
This architecture allowed for different p dimensions (columns) in τ1 and τ2. However, we found
that this architecture did not perform well when the POD trunk was one of the constituents of
the ensemble; this is likely because it is suboptimal to activate a POD trunk, which is already a
data-dependent basis. There would also be no point in moving the activation function onto the other
ensemble trunk constituents, since these are always activated if they are not POD trunks. Finally,
though W and b allowed for a trainable combination rather than simple stacking, they did not offer
greater expressivity over simply allowing a wider branch to combine these different trunks. We found
that this architecture also underperformed our final reported architecture.

D PROOF OF UNIVERSAL APPROXIMATION THEOREM FOR THE POU-MOE
DEEPONET

We have

∥G(u)(y)− G†(u)(y)∥V =

∥∥∥∥∥∥G(u)(y)−
〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j)

〉
− b0

∥∥∥∥∥∥
V

,

=

∥∥∥∥∥∥∥∥∥∥
 P∑

j=1

wj(y)

︸ ︷︷ ︸

=1

G(u)(y)−

〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j
)

〉

−

 P∑
j=1

wj(y)

︸ ︷︷ ︸

=1

b0

∥∥∥∥∥∥∥∥∥∥
V

,

=

∥∥∥∥∥∥
P∑

j=1

wj(y)
(
G(u)(y)−

〈
β(u; θb), τ j(y; θτ j)

〉
− b0

)∥∥∥∥∥∥
V

,

≤
P∑

j=1

wj(y)∥G(u)(y)−
〈
β(u; θb), τ j(y; θτ j

)
〉
− b0∥V .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Given a branch network β that can approximate functionals to arbitrary accuracy, the (generalized)
universal approximation theorem for operators automatically implies that (Chen & Chen, 1995; Lu
et al., 2021) a trunk network τ j (given sufficient capacity and proper training) can approximate the
restriction of G to the support of wi(y) such that:

∥G(u)(y)−
〈
β(u; θb), τ j(y; θτ j

)
〉
− b0∥V ≤ ϵj ,

for all y in the support of wj and any ϵj > 0. Setting ϵj = ϵ, j = 1, . . . , P , we obtain:

∥G(u)(y)− G†(u)(y)∥V ≤ ϵ

P∑
j=1

wi(y)︸ ︷︷ ︸
=1

,

=⇒ ∥G(u)(y)− G†(u)(y)∥V ≤ ϵ.

where ϵ > 0 can be made arbitrarily small. This completes the proof.

E HYPERPARAMETERS

E.1 NETWORK ARCHITECTURE

In this section, we describe the architecture details of branch and trunk networks. The architecture
type, size, and activation functions are listed in Table 5. The CNN architecture consists of two
five-filter convolutional layers with 64 and 128 channels respectively, followed by a linear layer with
128 nodes. Following Lu et al. (2021), the last layer in the branch network does not use an activation
function, while the last layer in the trunk does. The individual PoU-MoE trunks in the ensemble
models also use the same architecture as the vanilla trunk. We use the unstacked DeepONet with bias
everywhere (except the POD-DeepONet which does not use a bias).

Table 5: DeepONet network architectures across all models and problems. The CNN architecture is
described in Appendix E.1.

Branch Trunk Activation function

Darcy flow 3 layers, 128 nodes 3 layers, 64 nodes Leaky-ReLU
2D Reaction-Diffusion CNN 3 layers, 128 nodes ReLU

Cavity flow CNN [128, 128, 128, 100] tanh
3D Reaction-Diffusion 3 layers, 128 nodes 3 layers, 128 nodes ReLU

E.2 OUTPUT DIMENSION p

We list the relevant DeepONet hyperparameters we use below. The p (pPOD for POD) values are listed
in Table 6 for all the DeepONets.

Table 6: p (pPOD for POD) values for the various DeepONet models. For (P + 1)-vanilla DeepONet,
the total number of basis functions is shown below. RD stands for reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 100 100 100 100
POD 20 6 20 20

Modified-POD 20 6 20 20
(Vanilla, POD) (100, 20) (100, 6) (100, 20) (100, 20)
(P + 1)-Vanilla 400 500 700 900

Vanilla-PoU (100, 100) (100, 100) (100, 100) (100, 100)
POD-PoU (20, 100) (6, 100) (20, 100) (20, 100)

Vanilla-POD-PoU (100, 20, 100) (100, 6, 100) (100, 20, 100) (100, 20, 100)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E.3 PARTITIONING

The PoU-MoE trunk has certain hyperparameters that must be chosen. In our experiments, to
maximize accuracy, we chose the patch size and the number of patches that produced the smallest
possible patches and the smallest number of patches, while simultaneously seeking that the domain
was covered and ensuring that the patches did not extend too far outside the domain boundary.
Coincidentally, this strategy coincided with placing individual patches over regions of high spatial
error in the vanilla-DeepONet solution (effectively, patches over "features of interest"). In the
reaction-diffusion examples, even though we used uniform patch radii, we ensured that the patches
did not overlap horizontally over line of the discontinuity. This choice combined with the use of
ReLU activation ensured that we resolved that discontinuity better than vanilla-DeepONet; we believe
this is one of the unique strengths of the PoU-MoE approach. Currently, we use the same trunk
architectures on each patch as in the vanilla-DeepONet. In future work, adaptive patch selection
strategies (such as making the patch centers and radii trainable or enforcing soft constraints on them
as part of the loss function) can be used to automate determining patch placement and patch size.
Furthermore, the patch shape can be changed depending on the problem domain; elongated/ellipsoidal
patches can be used in narrower regions where spherical patches are not well suited.

F ADDITIONAL RESULTS

We present additional results and figures in this section related to the problems in Section 3.

F.1 2D DARCY FLOW

Figure 6: The 2D Darcy flow problem. (A) and (B) show example input and output functions
respectively. (C) shows the three patches used for the PoU-MoE trunk. (D), (E), and (F) show
the spatial mean squared error (MSE) for the vanilla, ensemble vanilla-POD-PoU, and ensemble
POD-PoU DeepONets respectively.

The 2D Darcy flow problem models fluid flow within a porous media. The flow’s pressure field u(y)
and the boundary condition are given by

−∇ · (K(y)∇u(y)) = f(y), y ∈ Ω, (19)

u(y) ∼ GP (0,K(y1, y
′
1)) , (20)

where K(y) is the permeability field, and f(y) is the forcing term. The Dirichlet boundary condition
was sampled from a zero-mean Gaussian process with a Gaussian kernel as the covariance function;
the kernel length scale was σ = 0.2. As in Lu et al. (2022), we learned the operator G : u(y)|∂Ω →
u(y)|Ω. We used the dataset provided in Lu et al. (2022) which contains 1900 training and 100 test
input and output function pairs. Ω was a triangular domain (shown in Figure 6). The permeability
field and the forcing term were set to K(y) = 0.1 and f(y) = −1. Example input and output
functions, and the three patches for PoU trunks are shown in Figure 6. The partitioning always

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Vanilla-DeepONet and PoU (from POD-PoU ensemble DeepONet) basis functions for the
largest branch modes on the 2D reaction-diffusion problem.

ensures that the regions with high spatial gradients are captured completely or near-completely by a
patch.

We report the relative ℓ2 errors (as percentages) on the test dataset for the all the models in Table
1. The vanilla-POD-PoU ensemble was the most accurate model with a 4.5x error reduction over
the vanilla-DeepONet and a 1.5x reduction over our POD-DeepOnet. The POD-PoU ensemble was
second best with a 3.7x error reduction over the vanilla-DeepONet and a 1.5x reduction over the
POD-DeepONet. The highly overparametrized (P + 1)-vanilla model was less accurate than the
standalone DeepONets. On this problem, overparametrization appeared to help only when spatial
localization was also present; the biggest impact appeared to be from having both the right global and
local information. The MSE errors as shown in Figure 6 corroborate these findings.

G EVIDENCE FOR SPATIAL LOCALIZATION OF THE POU-MOE BASIS

Here, we present further evidence showing that the PoU-MoE trunk learns spatially local features. In
Figure 7, we show basis functions from the vanilla-DeepONet trunk and the PoU-MoE trunk of the
POD-PoU ensemble DeepONet. Unlike the basis functions shown in Figure 2, these correspond to
the largest branch coefficients in the respective models, i.e., the most “important” basis functions.
Clearly, the PoU basis has a significantly higher spatial variation than the vanilla basis. We believe
that this learned spatial locality helps the ensemble DeepONets with the PoU-MoE trunk achieve
superior accuracy on problems with strong local features (such as those tested in this work).

20

	Introduction
	Related work

	Ensemble DeepONets
	Operator learning with DeepONets
	Mathematical formulation
	The PoU-MoE trunk
	The POD trunk
	Other Neural Operators

	Results
	2D Lid-driven Cavity Flow
	A 2D Reaction-Diffusion Problem
	3D Reaction-Variable-Coefficient-Diffusion
	Runtime Comparison

	Conclusions and Future Work
	Ensemble Learning and Mixture-of-Experts (MoE)
	Speculation on an ensemble FNO
	Suboptimal ensemble trunk architectures
	Proof of Universal Approximation Theorem for the PoU-MoE DeepONet
	Hyperparameters
	Network architecture
	Output dimension p
	Partitioning

	Additional Results
	2D Darcy flow

	Evidence for Spatial Localization of the PoU-MoE Basis

