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ABSTRACT

We present a novel deep operator network (DeepONet) architecture for operator
learning, the ensemble DeepONet, that allows for enriching the trunk network of a
single DeepONet with multiple distinct trunk networks. This trunk enrichment al-
lows for greater expressivity and generalization capabilities over a range of operator
learning problems. We also present a spatial mixture-of-experts (MoE) DeepONet
trunk network architecture that utilizes a partition-of-unity (PoU) approximation
to promote spatial locality and model sparsity in the operator learning problem.
We first prove that both the ensemble and PoU-MoE DeepONets are universal
approximators. We then demonstrate that ensemble DeepONets containing a trunk
ensemble of a standard trunk, the PoU-MoE trunk, and/or a proper orthogonal
decomposition (POD) trunk can achieve 2-4x lower relative ℓ2 errors than standard
DeepONets and POD-DeepONets on both standard and challenging new operator
learning problems involving partial differential equations (PDEs) in two and three
dimensions. Our new PoU-MoE formulation provides a natural way to incorporate
spatial locality and model sparsity into any neural network architecture, while our
new ensemble DeepONet provides a powerful and general framework for incor-
porating basis enrichment in scientific machine learning architectures for operator
learning.

1 INTRODUCTION

In recent years, machine learning (ML) has been applied with great success to problems in science
and engineering. Notably, ML architectures have been leveraged to learn operators, which are
function-to-function maps. In many of these applications, ML-based operators, often called neural
operators, have been utilized to learn solution maps to partial differential equations (PDEs). This
area of research, known as operator learning, has shown immense potential and practical applicability
to a variety of real-world problems such as weather/climate modeling (Bora et al., 2023; Pathak
et al., 2022), earthquake modeling (Haghighat et al., 2024), material science (Gupta & Brandstetter,
2022; Oommen et al., 2023), and shape optimization (Shukla et al., 2024). Some popular neural
operators that have emerged are deep operator networks (DeepONets) (Lu et al., 2021), Fourier neural
operators (FNOs) (Li et al., 2021), and graph neural operators (GNOs) (Li et al., 2020). DeepONets
have also been extended to incorporate discretization invariance (Zhang et al., 2023), more general
mappings (Jin et al., 2022), and multiscale modeling (Howard et al., 2023). In this work, we focus
on the DeepONet architecture due to its ability to separate the function spaces involved in operator
learning; for completeness, we discuss one possible extension to the FNO in Appendix B.

At a high level, operator learning consists of learning a map from an input function to an output
function. The DeepONet architecture is an inner product between a trunk network that is a function
of the output function domain, and a branch network that learns to combine elements of the trunk
using transformations of the input function. In fact, one can view the trunk as a set of learned,
nonlinear, data-dependent basis functions. This perspective was first leveraged to replace the trunk
with a set of basis functions learned from a proper orthogonal decomposition (POD) of the training
data corresponding to the output functions; the resulting POD-DeepONet achieved state-of-the-art
accuracy on a variety of operator learning problems (Lu et al., 2022). More recently, this idea was
further generalized by extracting a basis from the trunk as a postprocessing step (Lee & Shin, 2023);
this approach proved to be highly successful in learning challenging operators (Peyvan et al., 2024).

In this work, we present the ensemble DeepONet, a DeepONet architecture that explicitly enables
enriching a trunk network with multiple distinct trunk networks; however, this enriched/augmented
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trunk uses a single branch that learns how to combine multiple trunks in such a way as to minimize the
DeepONet loss function. The ensemble DeepONet essentially provides a natural framework for basis
function enrichment of a standard (vanilla) DeepONet trunk. We also introduce a novel partition-of-
unity (PoU) mixture-of-experts (MoE) trunk, the PoU-MoE trunk, that produces smooth blends of
spatially-localized, overlapping, distinct trunks. The use of compactly-supported blending functions
allows the PoU formulation to have a strong inductive bias towards spatial locality. Acknowledging
that such an inductive bias is not always appropriate for learning inherently global operators, we
simply introduce this PoU-MoE trunk into our ensemble DeepONet as an ensemble member alongside
other global bases such as the POD trunk.

Our results show that the ensemble DeepONet, especially the POD-PoU ensemble, shows 2-4x
accuracy improvements over vanilla-DeepONets with single branches and up to 2x accuracy
improvements over the POD DeepONet (also with a single branch) in challenging 2D and 3D
problems where the output function space of the operator has functions with sharp spatial gradients. In
Section 4, we summarize the relative strengths of five different ensemble formulations, each carefully
selected to answer a specific scientific question about the effectiveness of ensemble DeepONets. We
conclude that the strength of ensemble DeepONets lie not merely in overparametrization but rather in
the ability to incorporate spatially local information into the basis functions.

1.1 RELATED WORK

Basis enrichment has been widely used in the field of scientific computing in the extended finite
element method (XFEM) (McQuien et al., 2020; Belytschko & Black, 1999; Ballard et al., 2022),
modern radial basis function (RBF) methods (Flyer et al., 2016; Bayona et al., 2019; Shankar &
Fogelson, 2018; Shankar et al., 2021), and others (Cai et al., 2001). In operator learning, basis
enrichment (labeled “feature expansion”) with trigonometric functions was leveraged to enhance
accuracy in DeepONets and FNOs (Lu et al., 2022). The ensemble DeepONet generalizes these
prior results by providing a natural framework to bring data-dependent, locality-aware, basis function
enrichment into operator learning. PoU approximation also has a rich history in scientific comput-
ing (Melenk & Babuvska, 1996; Larsson et al., 2017; Shcherbakov & Larsson, 2016; Heryudono
et al., 2016; Safdari-Vaighani et al., 2015; Shankar & Wright, 2018), and has recently found use
in ML applications (Han et al., 2023; Cavoretto et al., 2021; Trask et al., 2022). In (Trask et al.,
2022), which targeted (probabilistic) regression applications, the authors used trainable partition
functions that were effectively black-box ML classifiers with polynomial approximation on each
partition. In Han et al. (2023) (which also targeted regression), the authors used compactly-supported
kernels as weight functions (like in this work), but used kernel-based regressors on each partition.
Our PoU-MoE formulation generalizes both these works by using neural networks on each partition
and further generalizes the technique to operator learning. In general, ensemble learning and MoE
have a rich history, and we provide a more in-depth overview in Appendix A. The ensemble and
PoU-MoE DeepONets introduced here extend this body of work to deterministic operator learning
and PDE applications.

Broader Impacts: To the best of the authors’ knowledge, there are no negative societal impacts of
our work including potential malicious or unintended uses, environmental impact, security, or privacy
concerns.

Limitations: Ensemble DeepONets, especially when using PoU-MoE trunks, contain 2-3x as many
trainable trunk network parameters as a vanilla-DeepONet and consequently require more time
to train (see Section 3.4 for runtime results and discussion); however, in future work, we plan to
ameliorate this issue with a novel parallelization strategy for the PoU-MoE trunk. Further, due to
limited time, we used a single branch network that outputs to Rp for all our results (an unstacked
branch) rather than using p branch networks that each output to R (a stacked branch) from Lu
et al. (2022). This choice may result in lowered accuracy for all methods (not just ours), but certainly
resulted in fewer parameters. However, our results extend straightforwardly to stacked branches also.

2 ENSEMBLE DEEPONETS

In this section, we first discuss the operator learning problem, then present the ensemble DeepONet
architecture for learning these operators. We also present the novel PoU-MoE trunk and a modification
the POD trunk from the POD-DeepONet, both for use within the ensemble DeepONet.
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Figure 1: An ensemble DeepONet containing a POD trunk and a PoU-MoE trunk.

2.1 OPERATOR LEARNING WITH DEEPONETS

Let U
(
Ωu;Rdu

)
and V

(
Ωv;Rdv

)
be two separable Banach spaces of functions taking values in

Ωu ⊂ Rdu and Ωv ⊂ Rdv , respectively. Further, let G : U → V be a general (nonlinear) operator.
The operator learning problem involves approximating G : U → V with a parametrized operator
Ĝ : U × Θ → V from a finite number of function pairs {(ui, vi)}, i = 1, . . . , N where ui ∈ U
are typically called input functions, and vi ∈ V are called output functions, i.e., vi = G(ui). The
parameters Θ are chosen to minimize ∥G − Ĝ∥ in some norm.

In practice, the problem must be discretized. First, one puts samples the input and output functions
at a finite set of function sample locations X ∈ Ωu and Y ∈ Ωv, respectively; also let Nx =

|X| and Ny = |Y |. One then requires that ∥vi(y) − Ĝ(ui)(y)∥22 is minimized over (ui, vi), i =
1, . . . , N , where ui are sampled at x ∈ X and vi at y ∈ Y . The vanilla-DeepONet is one particular
parametrization of Ĝ(u)(y) as Ĝ(u)(y) = ⟨τ (y),β(u)⟩ + b0 where ⟨, ⟩ is the p-dimensional inner
product, β : RNx × Θβ → Rp is the branch (neural) network, τ : Rdv × Θτ → Rp is the trunk
network, and b0 is a trainable bias parameter; p is a hyperparameter that partly controls the expressivity
of Ĝ(u)(y). Θβ and Θτ are the trainable parameters in the branch and trunk, respectively.

2.2 MATHEMATICAL FORMULATION

We now present the new ensemble DeepONet formulation; an example is illustrated in Figure 1. With-
out loss of generality, assume that we are given three distinct trunk networks τ 1(y; θτ1

),τ 2(y; θτ2
),

and τ 3(y; θτ3
), where y corresponds to the domain of the output function v(y). Assume further that

τ j : Rd × Θτ j → Rpj , j = 1, 2, 3. Then, given a single branch network β̂(u; θb), the ensemble
DeepONet is given in vector form by:

Ĝ(u, y) =
〈
[τ 1(y; θτ1

), τ 2(y; θτ2
), τ 3(y; θτ3

)], β̂(u; θb)
〉
+ b0 =

〈
τ̂ , β̂(u; θb)

〉
+ b0. (1)

Here, τ̂ : Rdv × Θτ1
× Θτ2

× Θτ3
→ Rp1+p2+p3 is the ensemble trunk. Clearly, the individual

trunks simply “stack” column-wise to form the ensemble trunk τ̂ ; in Appendix C, we discuss other
suboptimal attempts to form an ensemble trunk. The ensemble trunk now consists of p1 + p2 + p3
(potentially trainable) basis functions, necessitating that the branch β̂ : RNx ×Θβ̂ → Rp1+p2+p3 .

A universal approximation theorem
Theorem 1. Let G : U → V be a continuous operator. Define Ĝ as Ĝ(u, y) =〈
τ̂ (y; θτ1 ; θτ2 ; θτ3), β̂(u; θb)

〉
+ b0, where β̂ : RNx × Θβ̂ → Rp1+p2+p3 is a branch network

embedding the input function u, b0 is the bias, and τ̂ : Rdv ×Θτ̂1
×Θτ̂2

×Θτ̂3
→ Rp1+p2+p3 is

an ensemble trunk network. Then Ĝ can approximate G globally to any desired accuracy, i.e.,

G(u)(y)− Ĝ(u)(y)∥V ≤ ϵ, (2)

where ϵ > 0 can be made arbitrarily small.

Proof. This automatically follows from the (generalized) universal approximation theorem (Lu et al.,
2021) which holds for arbitrary branches and trunks.
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Figure 2: Enriched bases on the 2D reaction-diffusion problem 3.2. The solutions exhibit sharp
gradients (left); the PoU-MoE trunk has learned spatially-localized basis functions (middle); the POD
trunk has learned a global basis function (right).

2.2.1 THE POU-MOE TRUNK

We now present the PoU-MoE trunk architecture, which leverages partition-of-unity approximation.
We begin by partitioning Ωv into P overlapping circular/spherical patches Ωk, k = 1, . . . , P ,
with each patch having its own radius ρk and containing a set of sample locations Yk; of course,
P⋃

k=1

Yk = Y . The key idea behind the PoU-MoE trunk is to employ a separate trunk network on each

patch Ωk and then blend (and train) these trunks appropriately to yield a single trunk network on Ω.
Each τ k is trained at data on Yk, but may also be influenced by spatial neighbors. The PoU-MoE
trunk τ PU(x) is given as follows:

τ PU(y; θτ PU
) =

P∑
k=1

wk(y)τ k(y; θτk
), (3)

where θτk
, k = 1, . . . , P are the trainable parameters for each trunk. In this work, we choose

the weight functions wk to be (scaled and shifted) compactly-supported, positive-definite kernels
ψk : Rd × Rd → R that are C2

(
Rd
)
. More specifically, on the patch Ωk, we select ψk to be the

C2
(
R3
)

Wendland kernel (Wendland, 1995; 2005; Fasshauer, 2007; Fasshauer & McCourt, 2015),
which is a radial kernel given by

ψk(y, y
c) = ψk

(
∥y − yck∥

ρk

)
= ψk(r) =

{
(1− r)4(4r + 1), if r ≤ 1

0, if r > 1
, (4)

where yck is the center of the k-th patch. The weight functions are then given by

wk(y) =
ψk(y)∑
j ψj(y)

, k, j = 1, . . . , P, (5)

which automatically satisfy
∑

k wk(y) = 1. Each trunk τ k can be viewed as an “expert” on its
own patch Ωk, thus leading to a spatial MoE formulation via the PoU formalism. Both training
and evaluation of τ PU can proceed locally in that each location y lies in only a few patches; our
implementation leverages this fact for efficiency. Further, since the weight functions wk(y) are each
compactly-supported on their own patches Ωk, τ PU can be viewed as sparse in its constituent spatial
experts τ k. Nevertheless, by ensuring that neighboring patches overlap sufficiently, we ensure that
τ PU still constitutes a global set of basis functions. For simplicity, we use the same p value within
each local trunk τ k. Figure 2 (middle) shows one of the learned PoU-MoE basis functions in the
POD-PoU ensemble; the learned basis function exhibits strong spatial locality corresponding to
partitions. In Appendix G, we present more evidence for this spatial localization in the PoU-MoE
basis functions.

Partitioning: We placed the patch centers in a bounding box around Ω, place a Cartesian grid
in that box, then simply select P of the grid points to use as centers. In this case, the uniform
radius ρ is determined as (Larsson et al., 2017) ρ = (1 + δ)0.5H

√
d where δ is a free parameter to

describe the overlap between patches and H is the side length of the bounding box. However, as
a demonstration, we also used variable radii ρk in Section 3.1. In this work, we placed patches by
using spatial gradients of a vanilla-DeepONet as our guidance, attempting to balance covering the
whole domain with resolving these gradients; see Appendix E.3 for a more in-depth discussion on
partitioning strategies.
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A universal approximation theorem
Theorem 2. Let G : U → V be a continuous operator. Define G† as G†(u)(y) =〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j
)

〉
+ b0, where β : RNx ×Θβ → Rp is a branch network embedding

the input function u, τ j : Rdv ×Θτ j
→ Rp are trunk networks, b0 is a bias, and wj : Rdv → R are

compactly-supported, positive-definite weight functions that satisfy the partition of unity condition∑
j wj(y) = 1, j = 1, . . . , P . Then G† can approximate G globally to any desired accuracy, i.e.,

G(u)(y)− G†(u)(y)∥V ≤ ϵ, (6)

where ϵ > 0 can be made arbitrarily small.

Proof. See Appendix D for the proof. The high level idea is to use the fact that the (generalized)
universal approximation theorem (Chen & Chen, 1995; Lu et al., 2021) already holds for each local
trunk on a patch, then use the partition of unity property to effectively blend that result over all
patches to obtain a global estimate.

2.2.2 THE POD TRUNK

The POD trunk is a modified version of the trunk used in the POD-DeepONet (Chatterjee, 2000) of
the output function data. First, we remind the reader of the POD procedure. Recalling that {vi(y)}Ni=1

are the output functions, first define the matrix Vij = 1
σi
(vi(yj)− µi), where µi is the spatial mean

of the i-th function and σi is its spatial standard deviation. Define the matrix T = 1
N V V

T , and let
Φ be the matrix of eigenvectors of T ordered from the smallest eigenvalue to the largest. Then, the
POD-DeepONet involves selecting the first p columns of Φ to be the trunk of a DeepONet so that

GPOD(u, y) =
p∑

i=1

βi(u)ϕi(y) + ϕ0(y), where ϕ0(y) is the mean function of v(y) computed from the

training dataset, and ϕi(y) are the columns of Φ as explained above. In this work, we use a POD trunk
that includes the mean function ϕ0 in the set of basis functions. We label this the “Modified-POD”
trunk in our experiments; this “Modified-POD” trunk τ POD is given by

τ POD(y) = [ϕ0(y) ϕ1(y) . . . ϕp−1(y)] , (7)

Consistent with the POD-DeepONet philosophy, no activation function is needed and the POD trunk
has no trainable parameters. Figure 2 (right) shows one of the learned POD basis functions in the
POD-PoU ensemble.

2.2.3 OTHER NEURAL OPERATORS

While we restricted our attention to DeepONets in this work, the ensemble idea naturally extends to
other neural operator architectures. In Appendix B, we briefly discuss our ideas on creating ensembles
of global and local basis functions within the FNO.

3 RESULTS

We present results of our comparison of the new ensemble DeepONet (with and without a PoU-MoE
trunk) against vanilla and POD DeepONets. We considered different ensemble combinations of the
vanilla, POD, and PoU-MoE trunks. Each of the following ensembles attempted to address a specific
scientific question:

1. Vanilla-POD: Does adding POD modes to a vanilla trunk enhance expressivity over using
either trunk in isolation?

2. Vanilla-PoU: Does spatial locality introduced by the PoU-MoE trunk aid a DeepONet?
3. POD-PoU: Does having both POD global modes and PoU-MoE local expertise enhance

expressivity over simply using a vanilla trunk?
4. Vanilla-POD-PoU: If the answer above is affirmative, then does adding a vanilla trunk

(representing extra trainable parameters) to a POD-PoU ensemble help further enhance
expressivity?

5. (P + 1)-Vanilla: Is spatial localization truly important or is simple overparametrization
all that is needed? We use P + 1 vanilla trunks in this model, where P is the number
of PoU-MoE patches. This ensemble thus contains as many trunks as the vanilla-PoU or
POD-PoU ensembles, but all basis functions are purely global in this setting.

5
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Table 1: Relative l2 errors (as percentage) on the test dataset for the 2D Darcy flow, cavity flow, and
reaction-diffusion, and the 3D reaction-diffusion problems. RD stands for reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 0.857± 0.08 5.53± 1.05 0.144± 0.01 0.127± 0.03
POD 0.297± 0.01 7.94± 2e− 5 5.06± 8e− 7 9.40± 8

Modified-POD 0.300± 0.04 7.93± 2e− 5 0.131± 4e− 5 0.155± 4e− 5
(Vanilla, POD) 0.227± 0.03 0.310± 0.03 0.0751± 4e− 5 5.24± 10.4
(P + 1)-Vanilla 1.19± 0.06 2.17± 0.3 0.0644± 0.02 5.25± 10.3
(Vanilla, PoU) 0.976± 0.03 1.06± 0.05 0.0946± 0.03 5.25± 10.3
(POD, PoU) 0.204± 0.02 0.204± 0.01 0.0539± 4e− 5 0.0576± 0.05

(Vanilla, POD, PoU) 0.187± 0.02 0.229± 0.01 0.0666± 8e− 5 5.22± 10.4

The answers to these questions are shown in Table 4 and summarized in Section 4. In a nutshell,
spatial localization is indeed important, as is using a mix of global and localized basis functions;
simple overparametrization is insufficient to attain state-of-the-art accuracy. We now describe our
experimental setup, and both the standard and novel benchmark test results that led us to this
conclusion.

Important DeepONet details. In all cases, for parsimony in the number of training parameters, we
used a single branch (the unstacked DeepONet) that outputs to Rp rather than p branches. We found
that output normalization did not help significantly in this case. We scaled all our POD architecture
outputs by 1

p (standalone or in ensembles), as advocated in Lu et al. (2022).

Experiment design. In the remainder of this section, we establish the performance of ensemble
DeepONets on benchmarks such as a 2D lid-driven cavity flow problem (Section 3.1) and a 2D Darcy
flow problem on a triangle (Appendix F.1), both common in the literature (Lu et al., 2022; Batlle et al.,
2024). However, we also wished to develop challenging new spacetime PDE benchmarks where
the PDE solutions (output functions) possessed steep gradients, while the input functions were well-
behaved. To this end, we present results for both a 2D reaction-diffusion problem (Section 3.2) and a
3D reaction-diffusion problem with sharply (spatially) varying diffusion coefficients (Section 3.3). In
both cases, we constructed spatially discontinuous reaction terms that resulted in PDE solutions
(output functions) with steep gradients. Such PDE solutions abound in scientific applications. We
note at the outset that the ensemble DeepONet with the PoU-MoE trunk performed best when
the solutions had steep spatial gradients. Results on the Darcy problem show that the ensemble
approaches tested here were not as effective on that problem.

Error calculations. For all problems, we compared the vanilla- and POD-DeepONets with the five
different ensemble architectures described at the top of Section 3. We also compared these ensembles
against a DeepONet with the modified POD trunk from Section 2.2.2 (labeled Modified-POD). For
all experiments, we first computed the relative l2 error for each test function, eℓ2 = ∥ũ−u∥2

∥u∥2
where u

was the true solution vector and ũ was the DeepONet prediction vector; we then computed the mean
over those relative ℓ2 errors. For vector-valued functions, we first computed pointwise magnitudes
of the vectors, then repeated the same process. We also report a squared error (MSE) between the
DeepONet prediction and the true solution averaged over N functions emse(y) =

1
N (ũ(y)− u(y))

2
.

Notation. In the following text, we denote the space and time domains with Ω and T respectively;
the spatial domain boundary is denoted by ∂Ω. A single spatial point is denoted by y, which can
either be a point (y1, y2) in R2 or a point (y1, y2, y3) in R3.

Setup. We trained all models for 150,000 epochs on an NVIDIA GTX 4080 GPU. All results
were calculated over five random seeds. We annealed the learning rates with an inverse-time decay
schedule. We used the Adam optimizer (Kingma & Ba, 2017) for training on the Darcy flow and
the cavity flow problems, and the AdamW optimizer (Loshchilov & Hutter, 2018) on the 2D and 3D
reaction-diffusion problems. Other DeepONet hyperparameters and the network architectures are
listed in Appendix E.

6
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Figure 3: The 2D lid-driven cavity flow problem. We show in (A) an example input function; in (B)
an example output function component; in (C) the four patches used for the PoU-MoE trunk; in (D),
(E), and (F) the spatial mean squared error (MSE) for the vanilla, ensemble vanilla-POD-PoU, and
ensemble POD-PoU DeepONets respectively.

3.1 2D LID-DRIVEN CAVITY FLOW

The 2D lid-driven cavity flow problem involves solving for fluid flow in a container whose lid moves
tangentially along the top boundary. This can be described by the incompressible Navier-Stokes
equations (with boundary conditions),

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u, ∇ · u = 0, y ∈ Ω, t ∈ T, (8)

u = ub, (9)

where u = (u(y), v(y)) is the velocity field, p is the pressure field, ν is the kinematic viscosity, and
ub = (ub, vb) is the Dirichlet boundary condition. We focused on the steady state problem and used
the dataset specified in Lu et al. (2022, Section 5.7, Case A). We set Ω = [0, 1]2 and learned the
operator G : ub → u. The steady state boundary condition is defined as,

ub = U

(
1−

cosh
(
r(x− 1

2 )
)

cosh
(
r
2

) )
, vb = 0, (10)

where r = 10. The other boundary velocities were set to zero. As described in Lu et al. (2022), the
equations were then solved using a lattice Boltzmann method (LBM) to generate 100 training and
10 test input and output function pairs. All function pairs were generated over a range of Reynolds
numbers in the range [100, 2080] (with U and ν chosen appropriately), with no overlap between the
training and test dataset. Figure 3 shows the four patches used to partition the domain.

We report the relative ℓ2 errors (as percentage) on the test dataset in Table 1. The vanilla-, modified
POD-, and POD-DeepONets had the highest errors (in increasing order). The POD-PoU ensemble
was the most accurate model by about an order of magnitude over the vanilla-DeepONet, and almost
two orders of magnitude over the POD variants. While all ensembles outperformed the standalone
DeepONets, the ensembles possessing POD modes appeared to do best in general. Further, adding a
PoU-MoE trunk to the ensemble seemed to aid accuracy in general, but especially when POD modes
were present. The spatial MSE figures in Figure 3 reflect the same trends.

3.2 A 2D REACTION-DIFFUSION PROBLEM

Next, we present experimental results on a 2D reaction-diffusion problem. This equation governs the
behavior of a chemical whose concentration is c(y, t), and is given (along with boundary conditions)
below:

∂c

∂t
= kon (R− c) camb − koff c+ ν∆c, y ∈ Ω, t ∈ T, (11)
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Figure 4: The 2D reaction-diffusion problem. We show in (A) an example input function; in (B) an
example output function; in (C) the six patches used for the PoU-MoE trunk; in (D), (E), and (F) the
spatial mean squared error (MSE) for the vanilla, ensemble (P + 1)-vanilla, and ensemble POD-PoU
DeepONets respectively.

with the boundary condition ν ∂c
∂n = 0 on ∂Ω. The first r.h.s term is a binding reaction term

modulated by kon and the second term an unbinding term modulated by koff. camb(y, t) = 1 +
cos(2πy1) cos(2πy2)) exp(−πt) is a background source of chemical available for reaction, ν = 0.1
is the diffusion coefficient, R = 2 is a throttling term, and n(y) is the unit outward normal vector on
the boundary. In our experiments, we used Ω = [0, 2]2 and T = [0, 0.5]. We set the initial condition
as a spatial constant c(y, 0) ∼ U(0, 1). More importantly, kon and koff are discontinuous and given by

kon =

{
2, y1 ≤ 1.0,

0, otherwise
, koff =

{
0.2, y1 ≤ 1.0,

0, otherwise
, (12)

where y1 is the horizontal direction. This discontinuity induces a sharp solution gradient at y1 = 1.0
(see Figure 4 (B)). Our goal was to learn the solution operator G : c(y, 0) → c(y, 0.5). We solved
the PDE numerically at Ny = 2207 collocation points using a fourth-order accurate RBF-FD
method (Shankar & Fogelson, 2018; Shankar et al., 2021); using this solver, we generated 1000
training and 200 test input and output function pairs. We sampled the random spatially-constant input
on a regular spatial grid for the branch input. We used six patches for the PoU trunks as shown in
Figure 4.

The third column of Table 1 shows that the POD-PoU ensemble achieved the lowest error, with an
error reduction of almost 3x over the standalone DeepONets. The (P + 1)-vanilla ensemble also
performed reasonably well, with a greater than 2x error reduction over the same; this indicates that
overparametrization indeed helped on this test case. However, the relatively higher errors of the
vanilla-PoU ensemble (compared to the best results) indicate that POD modes are possibly vital to
fully realizing the benefits of the PoU-MoE trunk. Once again, the spatial MSE plots in Figure 4
corroborate the relative errors.

3.3 3D REACTION-VARIABLE-COEFFICIENT-DIFFUSION

Finally, we present results on a 3D reaction-diffusion problem with variable-coefficient diffusion.
We used a similar setup to the 2D case but significantly also allow the diffusion coefficient to vary
spatially via a function K(y), y ∈ R3. The PDE and boundary conditions are given by

∂c

∂t
= kon (R− c) camb − koff c+∇ · (K(y)∇c) , y ∈ Ω, t ∈ T, (13)

with K(y) ∂c
∂n = 0 on ∂Ω. Here, Ω was the unit ball, i.e., the interior of the unit sphere S2, and

T = [0, 0.5]. We set the kon and koff coefficients to the same values as in 2D in y1 ≤ 0, and to zero in

8
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Figure 5: The 3D reaction-diffusion problem. We show in (A) an example input function; in (B)
an example output function; in (C) the eight patches used for the PoU-MoE trunk; in (D), (E), and
(F) the spatial mean squared error (MSE) for the vanilla, modified POD, and ensemble POD-PoU
DeepONets respectively.

the y1 > 0 half of the domain. We set camb = (1+ cos(2πy1) cos(2πy2) sin(2πy3))e
(−πt). All other

model parameters were kept the same. K(y) was chosen to have steep gradients, here defined as

K(y) = B +
C

tanh(A)
((A− 3) tanh(8x− 5)− (A− 15) tanh(8x+ 5) +A tanh(A)) , (14)

where A = 9, B = 0.0215, and C = 0.005. Once again, we learned the operator G : c(y, 0) →
c(y, 0.5). We again used the same RBF-FD solver to generate 1000 training and 200 test input/output
function pairs (albeit at 4325 collocation points in 3D). We used eight spatial patches for the PoU
trunks as shown in Figure 5. The last column in Table 1 shows that most of the ensemble DeepONets
did poorly, as did the POD-DeepONet. However, the POD-PoU ensemble achieved almost a 2x
reduction in error over the vanilla-DeepONet.

3.4 RUNTIME COMPARISON

The ensemble DeepONet architectures all have more trainable parameters than the vanilla and POD
DeepOnets. This leads to higher training and inference times. We report the average time per training
epoch and inference time on the test dataset in Tables 2 and 3 respectively. The training times
were larger in ensemble DeepONets with more trunk networks, considerably so when the PoU-MoE
trunks were used (an order of magnitude increase in training time on the 3D reaction-diffusion
problem). The inference times showed a similar trend, although much less pronounced (only half
an order of magnitude slowdown in the 3D problem). These slowdowns are because our current
PoU-MoE implementation contains a serial loop over the patches in the forward pass, leading to
slower back-propagation over its parameters. In future work, we plan to address this with a novel
parallelization strategy; we believe this will speed up the ensemble architectures with the PoU-MoE
trunk considerably. It is also important to note that despite this increased cost, Table 1 shows that the
POD-PoU ensemble is more than 2x as accurate as the vanilla-DeepONet; the POD-DeepONet (and
other ensembles) have errors that are two orders of magnitude worse!

4 CONCLUSIONS AND FUTURE WORK

We presented the ensemble DeepONet, a method of enriching a DeepONet trunk with arbitrary
trunks. We also developed the PoU-MoE trunk to aid in spatial locality. Our results demonstrated
significant accuracy improvements over standalone DeepONets on several challenging operator
learning problems, including a particularly challenging 3D problem in the unit ball. One of the

9
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Table 2: Average time per training epoch in seconds. RD stands for reaction-diffusion.
Darcy flow Cavity flow 2D RD 3D RD

Vanilla 8.93e− 4 3.99e− 4 2.97e− 4 2.10e− 4
POD 5.19e− 4 2.46e− 4 2.06e− 4 1.22e− 4

Modified-POD 6.86e− 4 2.49e− 4 2.08e− 4 1.22e− 4
(Vanilla, POD) 9.80e− 4 3.92e− 4 3.03e− 4 2.32e− 4
(P + 1)-Vanilla 1.10e− 3 8.51e− 4 7.27e− 4 9.45e− 4

Vanilla-PoU 8.67e− 4 9.52e− 4 1.03e− 3 1.39e− 3
POD-PoU 6.74e− 4 8.21e− 4 9.24e− 4 1.28e− 3

Vanilla-POD-PoU 8.55e− 4 9.48e− 4 1.05e− 3 1.43e− 3

Table 3: Inference time on the test dataset in seconds. RD stands for reaction-diffusion.
Darcy flow Cavity flow 2D RD 3D RD

Vanilla 1.66e− 4 1.39e− 4 1.32e− 4 7.20e− 5
POD 1.57e− 4 1.12e− 4 1.12e− 4 6.42e− 5

Modified-POD 1.34e− 4 1.08e− 4 9.94e− 5 6.62e− 5
(Vanilla, POD) 1.69e− 4 1.33e− 4 1.20e− 4 7.76e− 5
(P + 1)-Vanilla 2.08e− 4 2.12e− 4 1.71e− 4 1.48e− 4

Vanilla-PoU 1.91e− 4 2.42e− 4 2.21e− 4 2.37e− 4
POD-PoU 1.63e− 4 1.94e− 4 1.96e− 4 2.30e− 4

Vanilla-POD-PoU 2.00e− 4 2.18e− 4 2.28e− 4 2.41e− 4

Table 4: Effectiveness of different trunk choices. The yes/no refers to whether the strategy beats
a vanilla-DeepONet. The bolded results are the best strategy for each experiment. RD stands for
reaction-diffusion.

Trunk Choices Darcy flow Cavity flow 2D RD 3D RD

Only POD global modes Yes No No No
Only modified POD global modes Yes No No No
Adding POD global modes Yes Yes Yes No
Adding spatial locality No Yes Yes No
Only POD global modes + spatial locality Yes Yes Yes Yes
Only POD global modes + spatial locality + mild
overparametrization

Yes Yes Yes No

Adding excessive overparametrization No Yes Yes No

goals of this work was to provide insight into choices for ensemble trunk members. Thus, we
considered different combinations of three very specific choices: a vanilla-DeepONet trunk (vanilla
trunk), the POD trunk, and the new PoU-MoE trunk. Our results (summarized in Table 4) make
clear that while different ensemble strategies beat the vanilla-DeepONet in different circumstances,
only the POD-PoU ensemble consistently beats the vanilla-DeepONet across all problems. Simple
overparametrization ((P +1)-Vanilla DeepONet) is not enough and sometimes deteriorates accuracy;
a judicial combination of local and global basis functions is vital. Further, adding the PoU-MoE trunk
aids expressivity in every problem that involves steep spatial gradients in either the input or output
functions. Finally, it appears that the full benefits of the PoU-MoE trunk are mainly achieved when
the POD trunk is also used in the ensemble.

Given the generality of our work, there are numerous possible extensions along the lines of problem-
dependent choices for the ensemble members. The PoU-MoE trunk merits further investigation. It
is plausible that adding adaptivity to the PoU weight functions could improve its accuracy further,
as could a spatially hierarchical formulation. Our work also paves the way for the use of other
non-neural network basis functions within the ensemble DeepONet.
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A ENSEMBLE LEARNING AND MIXTURE-OF-EXPERTS (MOE)
The key idea behind ensemble learning is to combine a diverse set of learnable features from individual
models into a single model (Polikar, 2012; Dong et al., 2020; Zhou, 2021; Dasarathy & Sheela,
1979). This technique has been used for both supervised and unsupervised feature selection in a
variety of applications (Saeys et al., 2008; Li et al., 2012; Elghazel & Aussem, 2015; Abeel et al.,
2010; Van Landeghem et al., 2010; Awada et al., 2012; Dittman et al., 2012; Piao et al., 2012). Guan
et al. (2014) draws an important distinction between using ensemble learning for feature selection
and using feature selection for ensemble learning (where the former category is known to overcome
the problem of local minima in machine learning). It is generally known that these methods are
more stable than single base learners (Tuv, 2006; Guan et al., 2014). While ensemble methods have
traditionally been studied with a statistical perspective (Krogh & Sollich, 1997; Chipman et al., 2006),
we focus more on its feature selection capability, i.e. our work falls in the category of ensemble
learning for feature selection. We use ensemble learning specifically to aggregate the global and local
spatial features learned by the vanilla, POD, and PoU-MoE trunks into a single ensemble trunk.

MoE, first introduced in (Jacobs et al., 1991; Jordan & Jacobs, 1993), is a method in which an
“expert” model focuses on learning from a subset of the training dataset. These models can be
support vector machines (Lima et al., 2007; Lima et al., 2009; Collobert et al., 2001), Gaussian
Processes (Ng & Deisenroth, 2014; Yuan & Neubauer, 2008; Gadd et al., 2020), and neural networks.
Similar to ensemble learning, the MoE idea has also proven to be very successful in diverse ML
applications (Masoudnia & Ebrahimpour, 2014; Yuksel et al., 2012; Chen et al., 2022). Most recently,
MoE has also been used in physics-informed learning; Chalapathi et al. (2024) uses MoE across
the spatial domain with non-overlapping patches to decompose global physical hard constraints into
multiple local constraints. Our PoU-MoE trunk uses a similar methodology where it has individual
expert trunk networks on each patch in the domain, albeit with overlapping patches. However, instead
of learning physical constraints, we let our experts learn spatially local basis functions (see Appendix
G for further discussion on this spatial locality).

B SPECULATION ON AN ENSEMBLE FNO
Here, we show one possible technique for incorporating the PoU-MoE localized bases into the FNO
architecture, i.e., we show how to create an ensemble FNO. FNOs consist of a lifting operator that lifts
the input functions to multiple channels, a projection operator that undoes the lift, and intermediate
layers (Fourier layers) consisting of kernel-based integral operators discretized by the fast Fourier
transform (FFT); these integral operators are also typically augmented by pointwise convolution
operations. Let ft denote the intermediate function at the tth Fourier layer. Then, the output ft+1 of
this layer (and the input to the next layer) is given by

ft+1(y) = σ

(∫
Ω

K(x, y)ft(x) dx + Wft(y)

)
, x ∈ Ω, (15)

where σ is an activation function applied pointwise, K is a matrix-valued kernel learned in Fourier
space via the FFT, and W is the aforementioned pointwise convolution (Li et al., 2021). Since
FNOs use the FFT to compute the integral operator in (15), this effectively constitutes a projection of
ft(x) onto a set of global Fourier modes (trigonometric polynomials or complex exponentials). One
possible method for creating an ensemble FNO would involve modifying (15) to incorporate a set of
localized basis functions using the PoU-MoE formulation as follows:

ft+1(y) = σ


∫
Ω

K(x, y)ft(x) dx︸ ︷︷ ︸
Global basis

+

P∑
k=1

wk(y)

∫
Ωk

K(x, y) ft(x)|Ωk
dx︸ ︷︷ ︸

Localized basis

+Wft(y)

 , (16)

where P is the number of spatial patches (all of which are hypercubes). The PoU-MoE formulation
now combines a set of localized integrals on each patch, each of which when computed by an FFT
would constitute a projection of ft (restricted to Ωk) onto a local Fourier basis. This loosely resembles
the Chebyshev polynomial PoU approximation introduced by Aiton & Driscoll (2018).

It is worth mentioning that this is one of many ways to combine different basis functions in FNOs.
Another way is to introduce a set of local basis functions at the final projection operator that maps to
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the output function. The projection operator’s final layer can be enlarged to weight the additional basis
functions, closely resembling how the branch weights the ensemble trunk in ensemble DeepONets.
Similar extensions are possible for the GNO and even kernel/GP-based operator learning techniques.

C SUBOPTIMAL ENSEMBLE TRUNK ARCHITECTURES

We document here our experience with other ensemble trunk architectures. We primarily made the
following two other attempts:

A residual ensemble: Our first attempt was to combine the different trunk outputs using weighted
residual connections with trainable weights, then activate the resulting output, then pass that activated
output to a dense layer. For instance, given two trunks τ 1 and τ 2, this residual ensemble trunk would
be given by

τ̂ res =Wσ (tanh(w1)τ 1 + tanh(w2)τ 2) + b, (17)
where σ was some nonlinear activation, W was some matrix of weights, and b a bias. We also
attempted using the sigmoid instead of the tanh. The major drawback of this architecture was that the
output dimensions of the individual trunks had to match, i.e., p1 = p2 to add the results (otherwise,
some form of padding would be needed). We found that this architecture indeed outperformed the
vanilla-DeepONet in some of our test cases, but required greater fine tuning of the output dimension
p. In addition, we found that this residual ensemble failed to match the accuracy of our final ensemble
architecture.
An activated ensemble: Our second attempt resembled our final architecture, but had an extra
activation function and weights and biases. This activated ensemble trunk would be given by

τ̂ act =Wσ ([τ1, τ2]) + b. (18)
This architecture allowed for different p dimensions (columns) in τ1 and τ2. However, we found
that this architecture did not perform well when the POD trunk was one of the constituents of
the ensemble; this is likely because it is suboptimal to activate a POD trunk, which is already a
data-dependent basis. There would also be no point in moving the activation function onto the other
ensemble trunk constituents, since these are always activated if they are not POD trunks. Finally,
though W and b allowed for a trainable combination rather than simple stacking, they did not offer
greater expressivity over simply allowing a wider branch to combine these different trunks. We found
that this architecture also underperformed our final reported architecture.

D PROOF OF UNIVERSAL APPROXIMATION THEOREM FOR THE POU-MOE
DEEPONET

We have

∥G(u)(y)− G†(u)(y)∥V =

∥∥∥∥∥∥G(u)(y)−
〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j )

〉
− b0

∥∥∥∥∥∥
V

,

=

∥∥∥∥∥∥∥∥∥∥
 P∑

j=1

wj(y)


︸ ︷︷ ︸

=1

G(u)(y)−

〈
β(u; θb),

P∑
j=1

wj(y)τ j(y; θτ j
)

〉

−

 P∑
j=1

wj(y)


︸ ︷︷ ︸

=1

b0

∥∥∥∥∥∥∥∥∥∥
V

,

=

∥∥∥∥∥∥
P∑

j=1

wj(y)
(
G(u)(y)−

〈
β(u; θb), τ j(y; θτ j )

〉
− b0

)∥∥∥∥∥∥
V

,

≤
P∑

j=1

wj(y)∥G(u)(y)−
〈
β(u; θb), τ j(y; θτ j

)
〉
− b0∥V .
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Given a branch network β that can approximate functionals to arbitrary accuracy, the (generalized)
universal approximation theorem for operators automatically implies that (Chen & Chen, 1995; Lu
et al., 2021) a trunk network τ j (given sufficient capacity and proper training) can approximate the
restriction of G to the support of wi(y) such that:

∥G(u)(y)−
〈
β(u; θb), τ j(y; θτ j

)
〉
− b0∥V ≤ ϵj ,

for all y in the support of wj and any ϵj > 0. Setting ϵj = ϵ, j = 1, . . . , P , we obtain:

∥G(u)(y)− G†(u)(y)∥V ≤ ϵ

P∑
j=1

wi(y)︸ ︷︷ ︸
=1

,

=⇒ ∥G(u)(y)− G†(u)(y)∥V ≤ ϵ.

where ϵ > 0 can be made arbitrarily small. This completes the proof.

E HYPERPARAMETERS

E.1 NETWORK ARCHITECTURE

In this section, we describe the architecture details of branch and trunk networks. The architecture
type, size, and activation functions are listed in Table 5. The CNN architecture consists of two
five-filter convolutional layers with 64 and 128 channels respectively, followed by a linear layer with
128 nodes. Following Lu et al. (2021), the last layer in the branch network does not use an activation
function, while the last layer in the trunk does. The individual PoU-MoE trunks in the ensemble
models also use the same architecture as the vanilla trunk. We use the unstacked DeepONet with bias
everywhere (except the POD-DeepONet which does not use a bias).

Table 5: DeepONet network architectures across all models and problems. The CNN architecture is
described in Appendix E.1.

Branch Trunk Activation function

Darcy flow 3 layers, 128 nodes 3 layers, 64 nodes Leaky-ReLU
2D Reaction-Diffusion CNN 3 layers, 128 nodes ReLU

Cavity flow CNN [128, 128, 128, 100] tanh
3D Reaction-Diffusion 3 layers, 128 nodes 3 layers, 128 nodes ReLU

E.2 OUTPUT DIMENSION p

We list the relevant DeepONet hyperparameters we use below. The p (pPOD for POD) values are listed
in Table 6 for all the DeepONets.

Table 6: p (pPOD for POD) values for the various DeepONet models. For (P + 1)-vanilla DeepONet,
the total number of basis functions is shown below. RD stands for reaction-diffusion.

Darcy flow Cavity flow 2D RD 3D RD

Vanilla 100 100 100 100
POD 20 6 20 20

Modified-POD 20 6 20 20
(Vanilla, POD) (100, 20) (100, 6) (100, 20) (100, 20)
(P + 1)-Vanilla 400 500 700 900

Vanilla-PoU (100, 100) (100, 100) (100, 100) (100, 100)
POD-PoU (20, 100) (6, 100) (20, 100) (20, 100)

Vanilla-POD-PoU (100, 20, 100) (100, 6, 100) (100, 20, 100) (100, 20, 100)
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E.3 PARTITIONING

The PoU-MoE trunk has certain hyperparameters that must be chosen. In our experiments, to
maximize accuracy, we chose the patch size and the number of patches that produced the smallest
possible patches and the smallest number of patches, while simultaneously seeking that the domain
was covered and ensuring that the patches did not extend too far outside the domain boundary.
Coincidentally, this strategy coincided with placing individual patches over regions of high spatial
error in the vanilla-DeepONet solution (effectively, patches over "features of interest"). In the
reaction-diffusion examples, even though we used uniform patch radii, we ensured that the patches
did not overlap horizontally over line of the discontinuity. This choice combined with the use of
ReLU activation ensured that we resolved that discontinuity better than vanilla-DeepONet; we believe
this is one of the unique strengths of the PoU-MoE approach. Currently, we use the same trunk
architectures on each patch as in the vanilla-DeepONet. In future work, adaptive patch selection
strategies (such as making the patch centers and radii trainable or enforcing soft constraints on them
as part of the loss function) can be used to automate determining patch placement and patch size.
Furthermore, the patch shape can be changed depending on the problem domain; elongated/ellipsoidal
patches can be used in narrower regions where spherical patches are not well suited.

F ADDITIONAL RESULTS

We present additional results and figures in this section related to the problems in Section 3.

F.1 2D DARCY FLOW

Figure 6: The 2D Darcy flow problem. (A) and (B) show example input and output functions
respectively. (C) shows the three patches used for the PoU-MoE trunk. (D), (E), and (F) show
the spatial mean squared error (MSE) for the vanilla, ensemble vanilla-POD-PoU, and ensemble
POD-PoU DeepONets respectively.

The 2D Darcy flow problem models fluid flow within a porous media. The flow’s pressure field u(y)
and the boundary condition are given by

−∇ · (K(y)∇u(y)) = f(y), y ∈ Ω, (19)

u(y) ∼ GP (0,K(y1, y
′
1)) , (20)

where K(y) is the permeability field, and f(y) is the forcing term. The Dirichlet boundary condition
was sampled from a zero-mean Gaussian process with a Gaussian kernel as the covariance function;
the kernel length scale was σ = 0.2. As in Lu et al. (2022), we learned the operator G : u(y)|∂Ω →
u(y)|Ω. We used the dataset provided in Lu et al. (2022) which contains 1900 training and 100 test
input and output function pairs. Ω was a triangular domain (shown in Figure 6). The permeability
field and the forcing term were set to K(y) = 0.1 and f(y) = −1. Example input and output
functions, and the three patches for PoU trunks are shown in Figure 6. The partitioning always
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Figure 7: Vanilla-DeepONet and PoU (from POD-PoU ensemble DeepONet) basis functions for the
largest branch modes on the 2D reaction-diffusion problem.

ensures that the regions with high spatial gradients are captured completely or near-completely by a
patch.

We report the relative ℓ2 errors (as percentages) on the test dataset for the all the models in Table
1. The vanilla-POD-PoU ensemble was the most accurate model with a 4.5x error reduction over
the vanilla-DeepONet and a 1.5x reduction over our POD-DeepOnet. The POD-PoU ensemble was
second best with a 3.7x error reduction over the vanilla-DeepONet and a 1.5x reduction over the
POD-DeepONet. The highly overparametrized (P + 1)-vanilla model was less accurate than the
standalone DeepONets. On this problem, overparametrization appeared to help only when spatial
localization was also present; the biggest impact appeared to be from having both the right global and
local information. The MSE errors as shown in Figure 6 corroborate these findings.

G EVIDENCE FOR SPATIAL LOCALIZATION OF THE POU-MOE BASIS

Here, we present further evidence showing that the PoU-MoE trunk learns spatially local features. In
Figure 7, we show basis functions from the vanilla-DeepONet trunk and the PoU-MoE trunk of the
POD-PoU ensemble DeepONet. Unlike the basis functions shown in Figure 2, these correspond to
the largest branch coefficients in the respective models, i.e., the most “important” basis functions.
Clearly, the PoU basis has a significantly higher spatial variation than the vanilla basis. We believe
that this learned spatial locality helps the ensemble DeepONets with the PoU-MoE trunk achieve
superior accuracy on problems with strong local features (such as those tested in this work).
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