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ABSTRACT

Locality-sensitive hashing (LSH) is an effective randomized technique widely
used in many machine learning tasks such as outlier detection, neural network
training and nearest neighbor search. The cost of hashing is the main perfor-
mance bottleneck of these applications because the index construction function-
ality, a core component dominating the end-to-end latency, involves the evalua-
tion of a large number of hash functions. Surprisingly, however, little work has
been done to improve the efficiency of LSH computation. In this paper, we de-
sign a simple yet efficient LSH scheme, named FastLSH, by combining random
sampling and random projection. FastLSH reduces the hashing complexity from
O(n) to O(m) (m < n), where n is the data dimensionality and m is the num-
ber of sampled dimensions. More importantly, FastLSH has provable LSH prop-
erty, which distinguishes it from the non-LSH fast sketches. To demonstrate its
broad applicability, we conduct comprehensive experiments over three machine
learning tasks, i.e., outlier detection, neural network training and nearest neighbor
search. Experimental results show that algorithms powered by FastLSH provides
up to 6.1x, 1.7x and 20x end-to-end speedup in anomaly detection latency, train-
ing time and index construction, respectively. The source code is available at
https://anonymous.4open.science/r/FastLSHForMachineLearning-7CAC.

1 INTRODUCTION

Locality-sensitive hashing (LSH) is an effective randomized technique in machine learning, which
is originally proposed to solve the problem of approximate nearest neighbor (ANN) search in high
dimensional space Indyk & Motwani (1998); Datar et al. (2004); Andoni & Indyk (2008). The basic
idea of LSH is to map high dimensional points into buckets in low dimensional space using random
hash functions, by which similar points have higher probability to end up in the same bucket than
dissimilar points.

The LSH scheme for l2 norm (E2LSH) is proposed in Datar et al. (2004); Andoni (2005) based on
p-stable distributions. Owing to the sub-linear time complexity and theoretical guarantee on query
accuracy, E2LSH is arguably one of the most popular ANN search algorithms both in theory and
practice. Many variants of E2LSH have been proposed to achieve much better space occupation
and query response time Lv et al. (2007); Tao et al. (2010); Gan et al. (2012); Sun et al. (2014);
Huang et al. (2015); Lu & Kudo (2020); Yang et al. (2020); Zheng et al. (2020); Tian et al. (2022).
Throughout this article, we focus on the LSH scheme under l2 norm, and the extension to angular
similarity, maximum inner product and lp norm (p ∈ (0, 2)) is discussed in Section 5.

In addition to answering ANN queries, LSH finds applications in many other domains. To name a
few, Arrays of (locality-sensitive) Count Estimators (ACE) detects anomaly in data by performing
lookup in hash tables, where the counts of collision are used as estimators for outlier Luo & Shri-
vastava (2018). ACE first processes high-dimensional data using LSH and constructs multiple hash
tables. Each hash bucket is equipped with a counter to record how many data points fall into that
bucket. ACE then leverages these counters across multiple hash tables to analyze the collision fre-
quency of a given query. If a query shows a low collision frequency, it may be flagged as an outlier.
Although ACE efficiently uses collisions to detect outliers, building the hash tables and counters is
quite time-consuming.
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SLIDE (Sub-LInear Deep learning Engine), a novel deep learning engine, uses LSH and parallel
programming to achieve more efficient training on large-scale recommendation datasets using solely
multi-core CPUs Chen et al. (2020). SLIDE maps the weight vectors of neurons in each layer of the
neural network to be hash codes and then store these neurons into hash tables. During the forward
propagation, SLIDE can quickly retrieve and activate the relevant neurons from these hash buckets
based on the hash codes of the input data (acted as query). However, building these hash tables
and updating them due to weight changes during the backward propagation often takes significantly
more time than simply retrieving the neurons. Especially when neuron weights undergo substantial
changes, the reconstruction and update of hash tables can greatly increase computational overhead.

For aforementioned LSH-based applications, the nearest neighbor search is a part of a larger appli-
cation, where index construction time is more important than query time. This is because that the
LSH index has to be built frequently due to data update or gradient update (SLIDE) or the index
construction time occupies a large proportion of the end-to-end execution time (ACE). The index
construction time translates directly to hashing cost because building an index involves massive
computation of LSH functions. Take the widely used E2LSH as an example, computing k hashes
of a vector v takes O(nk) computation, where n is the dimensionality of v and k is the number of
hash functions. For typical ANN search task, k commonly ranges from few hundreds to several
thousands, and keeps growing with the cardinality of the dataset (N ) since the number of hashes
required by E2LSH is O(Nρ) Datar et al. (2004). To sum up, hashing cost (index construction time)
is the main computational and resource bottleneck step in almost such LSH-based applications, es-
pecially when data come in a streaming fashion and/or LSH data structures have to be constructed
repeatedly Yang et al. (2020); Sundaram et al. (2013).

Surprisingly enough, little endeavor has been made on more efficient LSH schemes under l2 norm.
The only known technique, termed as ACHash Dasgupta et al. (2011), exploits fast Hadamard trans-
form to estimate the distance distortion of two points in the Euclidean space. This method, like other
fast JL sketches Ailon & Chazelle (2006); Ailon & Liberty (2009), does not owns the provable LSH
property. Thus, it is not a desirable alternative to the standard LSH because there are substantial em-
pirical evidence that using these (non-LSH) sketches incurs a drastic bias in the expected behavior,
leading to poor accuracy Shrivastava (2017).

Our Contribution: We develop a simple yet efficient LSH scheme (FastLSH), which needs only
two basic operations – random sampling and random projection, and offers better time complexity
than E2LSH. Also, we derive the expression of the probability of collision (equity of hash values) for
FastLSH and prove the asymptotic equivalence between FastLSH and E2LSH, which means that our
proposal owns the desirable LSH property. We also rigidly analyze how the sampling ratio affects
the probability of collision when the number of sampled dimensions is relatively small. To further
validate our claims, we conduct comprehensive experiments over three machine learning tasks, i.e.,
outlier detection, neural network training and nearest neighbor search, in which the standard LSH
is replaced by FastLSH. Experimental results show that algorithms powered by FastLSH provide
significant end-to-end speedup in anomaly detection latency, training time and the index construction
time, respectively.

2 PRELIMIANRIES

In this section, we introduce notations and background knowledge used in this article. Let D be the
dataset of size N in Rn and v ∈ D be a data point (vector) and u ∈ Rn be a query vector. We
denote ϕ(x) = 1√

2π
exp(−x2

2 ) and Φ(x) =
∫ x

−∞
1√
2π

exp(−x2

2 )dx as the probability density func-
tion (PDF) and cumulative distribution function (CDF) of the standard normal distribution N (0, 1),
respectively.

2.1 LOCALITY SENSITIVE HASHING

Definition 2.1. (Locality Sensitive Hashing) A hash function family H = {h : Rn → U} is called
(R, cR, p1, p2)-sensitive if for any v,u ∈ Rn

• if ∥v − u∥2 ≤ R then PrH[h(v) = h(u)] ≥ p1;
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• if ∥v − u∥2 ≥ cR then PrH[h(v) = h(u)] ≤ p2;

In order for the LSH family to be useful, it has to satisfy c > 1 and p1 > p2. Please note that
only hashing schemes with such a property are qualified locality sensitive hashing and can enjoy the
theoretical guarantee of LSH.

Datar et al. (2004) presents an LSH family that can be employed for lp (p ∈ (0, 2]) norms based on
p-stable distribution. When p = 2, it yields the well-known LSH family for l2 norm (E2LSH). The
hash function is defined as follows:

ha,b(v) =
⌊

aT v + b

w

⌋
(1)

where ⌊⌋ is the floor operation, a is a n-dimensional vector with each entry chosen independently
from N (0, 1) and b is a real number chosen uniformly from the range [0, w]. w is an important
parameter by which one could tune the performance of E2LSH.

For E2LSH, the probability of collision of (v,u) under ha,b(·) is computed as

p(s) = Pr[ha,b(v) = ha,b(u)] =
∫ w

0

f|sX|(t)(1−
t

w
)dt (2)

where s = ∥v−u∥2 is the Euclidean distance between (v,u), and f|sX|(t) is the PDF of the absolute
value of normal distribution sX (X is a random variable following the standard normal distribution).
Given w, p(s) is a monotonically decreasing function of s, which means ha,b(·) satisfies the LSH
property.

2.2 TRUNCATED NORMAL DISTRIBUTION

The truncated normal distribution is suggested if one need to use the normal distribution to describe
the random variation of a quantity that, for physical reasons, must be strictly in the range of a
truncated interval instead of (−∞,+∞) Cohen (1991). The truncated normal distribution is the
probability distribution derived from that of normal random variables by bounding the values from
either below or above (or both). Assume that the interval (a1, a2) is the truncated interval, then the
probability density function can be written as:

ψ(x;µ, σ2, a1, a2) =


0 x ≤ a1

ϕ(x;µ,σ2)
Φ(a2;µ,σ2)−Φ(a1;µ,σ2) a1 < x < a2

0 a2 ≤ x

(3)

The cumulative distribution function is:

Ψ(x;µ, σ2, a1, a2) =


0 x ≤ a1

Φ(x;µ,σ2)−Φ(a1;µ,σ
2)

Φ(a2;µ,σ2)−Φ(a1;µ,σ2) a1 < x < a2
1 a2 ≤ x

(4)

3 FAST LSH VIA RANDOM SAMPLING

3.1 THE PROPOSED LSH FUNCTION FAMILY

The cost of hashing defined in Eqn. 1 is dominated by the inner product aT v, which takes O(n)
multiplication and addition operations. As mentioned in Section 1, hashing is one of the main
computational bottleneck in almost all LSH-based applications. To address this issue, we propose a
novel family of locality sensitive hashing termed as FastLSH. Computing hash values with FastLSH
involves two simple steps, i.e., random sampling and random projection.

In the first step, we do random sampling from n dimensions. Particularly, we draw m i.i.d. sam-
ples in the range of 1 to n uniformly to form a multiset S. For every v = {v1, v2, · · · , vn}, we
concatenate all vi to form a m-dimensional vector ṽ = {ṽ1, ṽ2, · · · , ṽm} if i ∈ S. As a quick
example, suppose v = {1, 3, 5, 7, 9} is a 5-dimensional vector and S = {2, 4, 2}. Then we can
get a 3-dimensional vector ṽ = {3, 7, 3} under S. It is easy to see that each entry in v has equal
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probability m
n of being chosen. Next, we slightly overuse notation S and denote by S(·) the random

sampling operator, that is, ṽ ∈ Rm = S(v) for v ∈ Rn (m < n).

In the second step, the hash value is computed in the same way as Eqn. 1 using ṽ instead of v, and
then the overall hash function is formally defined as follows:

hã,b̃(v) =

⌊
ãTS(v) + b̃

w̃

⌋
(5)

where ã ∈ Rm is the random projection vector of which each entry is chosen independently from
N (0, 1), w̃ is a user-specified constant and b̃ is a real number uniformly drawn from [0, w̃]. The
hash function hã,b̃(v) maps a n-dimensional vector v onto the set of integers.

Compared with E2LSH, FastLSH reduces the complexity of hashing from O(n) to O(m). As will
be discussed in Section 6, a relatively small m < n suffices to provide competitive performance
against E2LSH, which leads to significant performance gain in hash function evaluation.

4 THEORETICAL ANALYSIS

While FastLSH is easy to comprehend and simple to implement, it is non-trivial to show that the
proposed LSH function meets the LSH property, i.e., the probability of collision for (v,u) decreases
as their l2 distance increases. In this section, we first derive the probability of collision for FastLSH
in Theorem 4.2, and then prove that its asymptotic behavior is equivalent to E2LSH in Corollary 4.7
and Fact 4.5. Thereafter, by using both rigid analysis and numerical method, we demonstrate that
FastLSH still owns desirable LSH property even if m is relatively small in Lemma 4.8 and Fact 4.9.

4.1 PROBABILITY OF COLLISION

For given vector pair (v,u), let s = ∥v − u∥2. The collection of n entries (vi−ui)2 {i = 1, 2, . . . , n}
follows an unknown distribution with a finite mean µ = (

∑n
i=1(vi − ui)

2)/n and variance σ2 =
(
∑n

i=1((vi − ui)
2 − µ)2)/n. After performing the sampling operator S(·) of size m, v and u are

transformed into ṽ = S(v) and ũ = S(u), and the squared distance of (ṽ, ũ) is s̃2 =
∑m

i=1(ṽi−ũi)2.
By Central Limit Theorem, we have the following lemma:
Lemma 4.1. If m is sufficiently large, then the sum s̃2 of m i.i.d. random samples (ṽi − ũi)

2

(i ∈ 1, 2, . . . ,m) converges asymptotically to the normal distribution with mean mµ and variance
mσ2, i.e., s̃2 ∼ N (mµ,mσ2).

Lemma 4.1 states that the squared distance between ṽ and ũ follows a normal distribution for large
m. Practically, a small m (say 30) often suffices to make the sampling distribution of the sample
mean approaches the normal in real-life applications Islam (2018); Feller (1991).

Recall that a is a projection vector with entries being i.i.d samples drawn from N (0, 1). It follows
from the p-stability that the distance between projections (aT v − aT u) for two vectors v and u is
distributed as ∥v − u∥2X , i.e., sX , where X ∼ N (0, 1) Zolotarev (1986); Datar et al. (2004).
Similarly, the projection distance between ṽ and ũ under ã (ãT ṽ− ãT ũ) follows the distribution s̃X .
Note that the PDF of sX , i.e., fsX(x) = 1

sϕ(
x
s ), is an important factor in calculating the probability

of collision in Eqn. 2. Hence, if we know the PDF of s̃X we can derive easily the probability of
collision for vector pair (v,u) under the proposed LSH function.

Let f|s̃X|(t) represent the PDF of the absolute value of s̃X . By replacing f|sX|(t) in Eqn. 2 with
f|s̃X|(t), we have the collision probability p(s, σ) for FastLSH as follows.
Theorem 4.2.

p(s, σ) = Pr[hã,b̃(v) = hã,b̃(u)] =
∫ w̃

0

f|s̃X|(t)(1−
t

w̃
)dt (6)

Proof. See Appendix A.3

Next we will show how to compute f|s̃X|(t). Note that random variable s̃2 does not follow exactly
the normal distribution since s̃2 ≥ 0 whereas the range of definition of the normal distribution is
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(−∞,+∞). A mathematically defensible way to preserve the main features of the normal distribu-
tion while avoiding negative values involves the truncated normal distribution, in which the range
of definition is made finite at one or both ends of the interval.

Particularly, s̃2 can be modeled by normal distribution s̃2 ∼ N (mµ,mσ2) over the truncation
interval [0,+∞), that is, the singly-truncated normal distribution ψ(x; µ̃, σ̃2, 0,+∞). Considering
the fact that s̃ ≥ 0, we have Pr[s̃ < t] = Pr[s̃2 < t2] for any t > 0. Therefore, the CDF of s̃,
denoted by Fs̃, can be computed as follows:

Fs̃(t) = Pr[s̃ < t] = Pr[s̃2 < t2] =

∫ t2

0

ψ(x; µ̃, σ̃2, 0,∞)dx (7)

where µ̃ = mµ and σ̃2 = mσ2. Due to the fact that the PDF is the derivative of the CDF, the PDF
of s̃, denoted by fs̃, is derived as follows:

fs̃(t) =
d

dt
[Fs̃(t)] = 2tψ(t2; µ̃, σ̃2, 0,∞) (8)

Although we know the distribution functions of both s̃ and X , it is not straight-forward to figure
out the distribution of their product s̃X . Fortunately, Lemma 4.3 gives the characteristic function of
random variable W = XY , where X and Y are two independent random variables, one following
a standard normal distribution and the other following a distribution with mean µ and variance σ2.
Lemma 4.3. The characteristic function of the product of two independent random variables W =
XY is

φW (x) = EY {exp(−
x2Y 2

2
)}

where X is a standard normal random variable and Y is an independent random variable with
mean µ and variance σ2.

Proof. See Appendix A.1

Note that the distribution of a random variable is determined uniquely by its characteristic function.
As a result, the characteristic function of s̃X can be obtained by Lemma 4.3 since X follows the
standard normal.
Lemma 4.4. The characteristic function of s̃X is

φs̃X(x) =
1

2(1− Φ(−µ̃
σ̃ ))

exp(
1

8
x4σ̃2 − 1

2
µ̃x2) erfc(

1
2x

2σ̃2 − µ̃
√
2σ̃

) (−∞ < x < +∞)

where erfc(t) = 2√
π

∫ +∞
t

exp(−x2)dx (−∞ < t < +∞) is the complementary error function.

Proof. See Appendix A.2

Given the characteristic function, the probability density function of s̃X (denoted by fs̃X(t)) can be
obtained through the inverse Fourier transformation.

fs̃X(t) =
1

2π

∫ +∞

−∞
exp(−itx)φs̃X(x)dx (9)

where the symbol i =
√
−1 represents the imaginary unit.

4.2 THE ASYMPTOTIC BEHAVIOR OF FASTLSH

We can see that, unlike E2LSH, the probability of collision p(s, σ) depends on both s and σ. From
this point of view, FastLSH can be regarded as a generalized version of E2LSH by considering one
additional impact factor, i.e., the variation in the squared distance of each dimension for vector pair
(v,u), making it more difficult to prove the LSH property.

From Eqn. 2 and Eqn. 6, one can see that the expressions of the probability of collision for E2LSH
and FastLSH are quite similar. Actually, if fs̃X(t) follows normal distribution N (0, ms2

n ), we can
always make pw(s) = pw̃(s, σ) by scaling w̃ to mw

n based on Fact 4.5.
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Figure 1: Comparison of probability density curves of N (0, ms2

n ) (ND) and s̃X under different m
over Trevi.

Fact 4.5 (Datar et al. (2004)). For E2LSH, fsX(t) follows the normal distribution N (0, s2) and the
collision probability p(s) with bucket width w is equal to p(αs) under the bucket width αw, i.e.,
pw(s) = pαw(αs) where α > 0.

Proving the equivalence between fs̃X(t) and N (0, ms2

n ) directly is not easy. To get around, the
following theorem gives the asymptotic behavior of the characteristic function of s̃X .
Theorem 4.6.

lim
m→+∞

φs̃X(x)

exp(−ms2x2

2n )
= 1

where exp(−ms2x2

2n ) is the characteristic function of N (0, ms2

n ).

Proof. See Appendix A.4.

Note that exp(−ms2x2

2n ) is the characteristic function of N (0, ms2

n ). As a result, Theorem 4.6 implies
that fs̃X(t) is asymptotically identical to N (0, ms2

n ) because a probability distribution is uniquely
determined by its characteristic function, which immediately gives the following Corollary

Corollary 4.7. fs̃X(t) ∼ the PDF of N (0, ms2

n ) as m approaches infinity.

By Corollary 4.7 and Fact 4.5, p(s) = p(s, σ) asymptotically if w̃ = m
n w, meaning that σ has no

effect on the probability of collision, and FastLSH is equivalent to E2LSH in this case.

4.3 THE LSH PROPERTY FOR LIMITED m

In practical scenarios, the number of sampled dimensions (m) is often limited. Next, we study the
relation between FastLSH and E2LSH in this case by examining the similarity in fs̃X(t) and the
PDF of N (0, ms2

n ). Note that the similarity between fs̃X(t) and N (0, ms2

n ) directly translates to
the equivalence between p(s) and p(s, σ).

Since distributions near the normal can be decided very well given the first four moments Leslie
(1959); Johnson (1949); Ramberg et al. (1979), we conduct the analysis by comparing the first four
moments of corresponding distributions. The first four moments of s̃X and N (0, ms2

n ) are given in
Lemma 4.8 and Fact 4.9, respectively.
Lemma 4.8. 

E(s̃X) = 0

E((s̃X)2) = ms2

n (1 + ϵ)

E((s̃X)3) = 0

E((s̃X)4) = 3m2s4

n2 (1 + λ)

where ϵ =
σ̃ exp(−µ̃2

2σ̃2 )
√
2πµ̃(1−Φ(−µ̃

σ̃ ))
and λ = σ̃2

µ̃2 + ϵ.

Proof. See Appendix A.5
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Fact 4.9. Hoel et al. (1971) The first four moments of N (0, ms2

n ) are:
E(sX) = 0

E((sX)2) = ms2

n

E((sX)3) = 0

E((sX)4) = 3m2s4

n2

Lemma 4.8 and Fact 4.9 indicate that the first and third moments of s̃X are equal to those of
N (0, ms2

n ), and s̃X differ with N (0, ms2

n ) in the second and fourth moments by only factors of
1 + ϵ and 1 + λ, respectively. It is easy to see that the smaller ϵ and λ are, the closer s̃X is to
N (0, ms2

n ).

Note that ϵ and λ are monotonously decreasing (increasing) functions of m (σ) since σ̃
ũ = σn√

ms2
.

As a result, the first four moments of s̃X and N (0, ms2

n ) are equal with each other as m approaches
infinity because ϵ = λ = 0 in this case. This analytical result is consistent with Corollary 4.7.

For limited m < n, the impact of σ is not negligible. However, we can always adjust m to control
the impact of σ (the data-dependent factor) on fs̃X(t) within a reasonable range. In this sense,
Lemma 4.8 and Fact 4.9 provide a principled approach to quantitatively analyze how m affects the
difference between FastLSH and the classic LSH in terms of ϵ and λ. By using this analytical tool,
it is easy for practitioners to determine the trade-off between hashing time (how much m is) and
desired performance level (how close FastLSH is to the standard LSH).

To visualize the similarity, we plot fs̃X(t) for different m under the maximum and minimum σ, and
the PDF of N (0, ms2

n ) in Figure 1 on Trevi. More plots for other datasets are shown in Figure 7 in
Appendix C.6 due to space limitation. Three observations can be made from these figures: (1) the
distribution of s̃X matches very well with N (0, ms2

n ) for small σ; (2) for large σ, fs̃X(t) differs only
slightly from N (0, ms2

n ) for all m, implying that s is the dominating factor in p(s, σ); (3) greater m
results in higher similarity between fs̃X(t) and N (0, ms2

n ), demonstrating that FastLSH can always
achieve the same performance as E2LSH by choosing m appropriately. The comparison of ρ, an
important performance indicator for locality sensitive hashing, is reported in Appendix C.7 due to
space limitation. Likewise, the comparison of ρ suggests that FastLSH is equivalent to E2LSH even
if in the case of limited m.

We further list the values of ϵ and λ for different m over 12 datasets in Table 10 in Appendix C.8
due to space constraints, where ϵ and λ are calculated using the maximum, mean and minimum σ,
respectively. As shown in Table 10, ϵ and λ decrease as m increases. Take Trevi as an example, ϵ
is equal to 0 and λ is very tiny (0.0001-0.000729), manifesting the equivalence between fs̃X(t) and
N (0, ms2

n ) for limited m.

5 EXTENSION TO OTHER SIMILARITY METRICS

In this section, we sketch how to extend FastLSH to other similarity measures. Since the angular
similarity can be well approximated by the Euclidean distance if the norms of data item are iden-
tical, one can use FastLSH for the angular similarity directly after data normalization. In addition,
FastLSH can solve the maximum inner product search problem by utilizing two transformation func-
tions Bachrach et al. (2014). The detailed discussion is given in Appendix B.1. The extension of
FastLSH to support lp norm for p ∈ (0, 2) is worked, when we vary l2 norm in Section 4 to lp norm
and then with similar analysis, see Appendix B.2.

6 EXPERIMENTS

In this section, we conduct comprehensive experiments for three machine learning tasks, i.e., outlier
detection, neural network training and nearest neighbor search to demonstrate the efficiency of our
proposal. Due to space limitation, we only report the main results here and defer more information
about datasets, parameter settings and additional experiments to Appendix C.1, C.2, C.3 and C.4.
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6.1 HASH FUNCTIONS, BASELINES AND EVALUATION METRICS

Hash Functions: Three hash functions, i.e., E2LSH Datar et al. (2004), ACHash Dasgupta et al.
(2011) and FastLSH, are compared. E2LSH is the classic LSH scheme for l2 norm. ACHash is
proposed to speedup the hash function evaluation by using Hadamard transform and sparse random
projection1. It is worth noting that FastLSH can be easily plugged into any existing LSH applications
considering its simplicity.

Baselines: For outlier detection, Arrays of (locality-sensitive) Count Estimators (ACE) Luo & Shri-
vastava (2018) is considered, which uses multiple LSH tables to estimate counts of collision and
detect anomalies by performing lookup in hash tables. For neural network training, we examine
SLIDE (Sub-LInear Deep learning Engine) Chen et al. (2020), a novel deep learning engine that
combines smart randomized algorithms (LSH) and multi-core parallelism to achieve fast network
training solely using CPU. For nearest neighbor search, two popular algorithms, i.e., E2LSH Datar
et al. (2004); Andoni (2005) and MPLSH Lv et al. (2007) are evaluated. MPLSH is a variant of
vanilla LSH (E2LSH), which provides better space and time efficiency. More information of these
baselines are described in Appendix C.1, C.2, C.3 and C.4 respectively.

Metrics: For outlier detection, five performance measures i.e., outliers detected, correctly reported
outliers, outlier missed, execution time and speedup, are listed. For neural network training task,
we report the classification accuracy, the end-to-end training time and the number of iterations. For
nearest neighbor search, we report the recall, i.e., the fraction of near neighbors that are correctly
returned, the average query time, hashing cost and the index construction time.

6.2 DATASETS AND PARAMETER SETTINGS

Outlier Detection: For anomaly detection, we choose three real-world benchmark datasets, 1) Stat-
log Shuttle, 2) a9a and 3) Musk. The details of datasets for the anomaly detection task are described
in AppendixC.1.

Neural Network Training: We employ two large real datasets, Delicious-200K and Amazon-670K,
from the Extreme Classification Repository as in Bhatia et al. (2016). The statistics of datasets for
neural network training are shown in AppendixC.2.

Nearest Neighbor Search: 11 publicly available high-dimensional real datasets and one synthetic
dataset, i.e., Sun, Cifar, Audio, Trevi, Notre, Sift, Gist, Deep, Ukbench, Glove, ImageNet, Ran-
dom, are experimented with Li et al. (2019). The details and statistics of which are presented in
Appendix C.3.

Due to space limitation, please refer to Appendix C.1, C.2, C.3 and C.4 for more information about
parameter settings.

6.3 RESULTS AND DISCUSSION

For three machine learning tasks, i.e., outlier detection, neural network training and nearest neighbor
search, FastLSH can reduce the index construction time significantly and achieve almost the same
or better recall and query time as LSH-based algorithms. Below, we present the experimental results
for each task to validate this claim.

Outlier Detection: FastLSH can significantly reduce the end-to-end anomaly detection latency. The
results for Musk are shown in Table 1. We can see that FastACE (FastLSH + ACE) offers around the
same performance as ACE in terms of the numbers of correctly reported outliers and missed ones,
whereas it needs much lower end-to-end execution time, achieving 6.1x and 2.6x speedup over ACE
and ACHashACE (ACHash + ACE) thanks to the efficiency of FastLSH. ACHashACE missed more
true anomaly because of the lack of theoretical guarantee.

Likewise, the results for a9a and Statlog Shuttle, as shown in Table 2 and Table 3, verify the superior
performance of FastACE. One can see that FastACE delivers 4x and 1.2x speedup in the outlier

1Note that ACHash is actually not an eligible LSH method because no expression of the probability of
collision exists for ACHash, not mentioning the desirable LSH property. We choose ACHash for the sake of
completeness.
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detection latency. For both a9a and Statlog Shuttle, FastACE detects even more correctly reported
outliers than ACE. While ACHashACE can also report more correctly reported outliers than ACE,
the number of outliers reported is much higher than the rest, indicating a lower precision. In addition,
the detection latency of ACHashACE is inferior to FastACE.

To sum up, FastLSH can be applied to anomaly detection task. It significantly decreases the end-to-
end detection latency and offers the same or even better performance than the state-of-the-art. More
description and discussion about this set of experiments are presented in Appendix C.1.

Table 1: Results on Musk

Methods Outliers Reported Correctly Reported Outliers Missed Execution Time (s) Speedup

ACE 310 73 14 0.2794 1x
ACHashACE 292 51 46 0.1168 2.4x

FastACE 304 74 13 0.04523 6.1x

Table 2: Results on a9a

Methods Outliers Reported Correctly Reported Outliers Missed Execution Time (s) Speed-up

ACE 13850 4748 3093 2.079 1x
ACHashACE 16877 5468 2373 0.9224 2.3x

FastACE 15753 5469 2372 0.5138 4x

Table 3: Results on Statlog Shuttle

Methods Outliers Reported Correctly Reported Outliers Missed Execution Time (s) Speedup

ACE 1931 472 407 0.3297 1x
ACHashACE 2226 531 348 0.2924 1.1x

FastACE 1822 520 359 0.2589 1.2x

Neural Network Training: For this task, we show the training time and the number of iterations for
SLIDE, FastSLIDE (FastLSH + SLIDE) and ACHashSLIDE (ACHash + SILDE) in Figure 2. Note
that the x-axis is in log-scale, and all the curves have a long flat converged portion when plotted
on a linear scale indicating clear convergence behavior. We can see from the plots that FastSLIDE
achieves around the same or even better classification accuracy compared with SLIDE, while enjoy-
ing 1.7x and 1.4x speedup over Delicious-200K and Amazon-670K in training, respectively. The
performance gain comes from the efficiency of FastLSH – hash tables have to be constructed every
N0 iterations and FastLSH reduces such hashing cost significantly. In addition, although the perfor-
mance of ACHashSLIDE is comparable or slightly better than SLIDE, it is inferior to FastSLIDE due
to the lack of theoretical guarantee. Thus, FastLSH is well-suited for accelerating neural network
training. More description and discussion about this set of experiments are given in Appendix C.2.

Nearest Neighbor Search: Next, we validate through the ANN search task why FastLSH reduces
the end-to-end execution time for the two aforementioned tasks. The reason is that FastLSH can
significantly reduce the end-to-end latency in index construction while achieving comparable query
performance 2 to E2LSH. Hence, for many LSH-based applications, if the end-to-end execution time
is more important than query time, the acceleration of FastLSH becomes particularly significant.

We first compare the performance among E2LSH, ACHash and FastLSH for 0.9 target recall 3. The
recall, average query time, LSH computation time and index construction time for ImageNet, Trevi,
Deep, Random, Glove and Ukbench are illustrated in Figure 3 (a), (b), (c) and (d), respectively. As
plotted in Figure 3 (a) and (b), FastLSH and E2LSH achieve comparable query performance and
answer quality. Due to lack of theoretical guarantee, ACHash performs slightly worse than FastLSH
and E2LSH in most cases w.r.t query efficiency.

2Note that FastLSH does not decrease the query time in the ANN search task because the cost in query
processing is dominated by the exact evaluation of distances between candidates and the query.

3The actual recall may vary around 0.9 slightly
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Figure 2: Comparison of SLIDE, FastSLIDE and ACHashSLIDE. The x-axis is plotted in log scale.

Image
Trevi

Deep
Rand

Glove
Ukben

0

0.5

1

re
ca

ll

E2LSH
ACHash
FastLSH

(a) Recall

Image
Trevi

Deep
Rand

Glove
Ukben

0

0.1

0.2
tim

e 
(s

)
E2LSH
ACHash
FastLSH

(b) Query Time

Image
Trevi

Deep
Rand

Glove
Ukben

0

200

400

600

L
SH

 c
om

pu
ta

tio
n 

(s
)

E2LSH
ACHash
FastLSH

(c) Hashing Cost

Image
Trevi

Deep
Rand

Glove
Ukben

0

200

400

600

in
de

x 
co

ns
tr

uc
tio

n 
(s

)

E2LSH
ACHash
FastLSH

(d) Indexing Time

Image
Trevi

Deep
Rand

Glove
Ukben

0

0.5

1

re
ca

ll

MPLSH
ACHash
FastLSH

(e) Recall

Image
Trevi

Deep
Rand

Glove
Ukben

0

0.05

0.1

tim
e 

(s
)

MPLSH
ACHash
FastLSH

(f) Query Time
Image

Trevi
Deep

Rand
Glove

Ukben
0

50

100
L

SH
 c

om
pu

ta
tio

n 
(s

)
MPLSH
ACHash
FastLSH

(g) Hashing Cost

Image
Trevi

Deep
Rand

Glove
Ukben

0

100

200

in
de

x 
co

ns
tr

uc
tio

n 
(s

)

MPLSH
ACHash
FastLSH

(h) Indexing Time

Figure 3: (a-d) Comparison with E2LSH and ACHash. (e-h) Comparison with MPLSH and
ACHash.

The performance of the three methods differs dramatically when it turns to the cost of hashing and
indexing time. As shown in Figure 3 (c), the LSH computation time of FastLSH is significantly
superior to E2LSH and ACHash. For example, FastLSH obtains around 80 times speedup over
E2LSH and runs 60 times faster than ACHash on Trevi. For ACHash, the fixed sampling ratio and
overhead in Hadamard transform make it inferior to FastLSH. Similar trends can be found with
MPLSH in Figure 3 (e), (f), (g) and (h).

The end-to-end speedup in the index construction time is illustrated in Figure 3 (d) and (h). Thanks
to the significant drop in hashing cost, the time spent in building the index decreases by up to a
factor of 20. Besides hashing, the procedure of index construction consists of other operations such
as hash table initialization and linked list maintainance, which cannot be accelarated. Thus, the
end-to-end latency in index construction decreases not as much as the hashing cost. More results on
other datasets are deferred to Figure 4 in Appendix C.3 and Figure 6 in Appendix C.4.

We also plot the recall v.s. average query time curves by varying target recalls to obtain a complete
picture of FastLSH. Please refer to Figure 5 in Appendix C.3 for more information. In addition,
to make more comprehensive analysis of FastLSH, we explore its effectiveness in handling sparse
data. The reasons and empirical evidence are presented in Appendix C.5.

7 CONCLUSION

In this paper, we develop FastLSH to accelerate hash function evaluation, which maintains the same
theoretical guarantee and empirical performance as the classic E2LSH. Rigid analysis shows that the
probability of collision of FastLSH is asymptotically equal to that of E2LSH. In the case of limited
m, we quantitatively analyze the impact of σ andm on the probability of collision. Extensive exper-
iments on a number of machine learning tasks demonstrate that FastLSH is a promising alternative
to the classic LSH scheme.
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APPENDIX

A PROOFS

Lemma A.1. The characteristic function of the product of two independent random variables W =
XY is as follows:

φW (x) = EY {exp(−
x2Y 2

2
)}

where X is a standard normal random variable and Y is an independent random variable with
mean µ and variance σ2.

Proof. For the characteristic function of W , we can write:

φW (x) = EW {exp(ixW )}
= EXY {exp(ixXY )}
= EY {EX|Y {exp(ixXY )|Y }}

=

∫ +∞

−∞
EX|Y {exp(−ixXY )|Y }f(Y )dY

=

∫ +∞

−∞
(

∫ +∞

−∞
exp(−ixXY )f(X|Y )dX)f(Y )dY

=

∫ +∞

−∞
exp(−x

2Y 2

2
)f(Y )dY

= EY {exp(−
x2Y 2

2
)}

where standard normal random variableX is eliminated by its characteristic function. We prove this
Lemma.

Lemma A.2. The characteristic function of s̃X is as follows:

φs̃X(x) =
1

2(1− Φ(−µ̃
σ̃ ))

exp(
1

8
x4σ̃2 − 1

2
µ̃x2) erfc(

1
2x

2σ̃2 − µ̃
√
2σ̃

) (−∞ < x < +∞)

where erfc(t) = 2√
π

∫ +∞
t

exp(−x2)dx (−∞ < t < +∞) is the complementary error function.

Proof. According to Eqn. 8, we know the PDF of s̃. By applying Lemma A.1, we have the following
result:

φs̃X(x) =
1√
2πσ̃

∫ +∞

0

2y

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
exp(

−x2y2

2
− (y2 − µ̃)2

2σ̃2
)dy

=
1√
2πσ̃

∫ +∞

0

1

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
exp(−x

2y2

2
− (y2 − µ̃)2

2σ̃2
)dy2

=
1√
2πσ̃

∫ +∞

0

1

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
exp(

−(y2 − (µ̃− 1
2x

2σ̃2))2 − µ̃x2σ̃2 + 1
4x

4σ̃4)

2σ̃2
)dy2

=
1√
2πσ̃

∫ +∞

0

1

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
exp(

1

8
x4σ̃2 − 1

2
µ̃x2) exp(

−(y2 − (µ̃− 1
2x

2σ̃2))2)

2σ̃2
)dy2

=
1

2(Φ(a2−µ̃
σ̃ )− Φ(a1−µ̃

σ̃ ))
exp(

1

8
x4σ̃2 − 1

2
µ̃x2) erfc(

1
2x

2σ̃2 − µ̃
√
2σ̃

)

=
1

2(1− Φ(−µ̃
σ̃ ))

exp(
1

8
x4σ̃2 − 1

2
µ̃x2) erfc(

1
2x

2σ̃2 − µ̃
√
2σ̃

)

where µ̃ = ms2

n , σ̃2 = mσ2, a2 = ∞ and a1 = 0. Hence we prove this Lemma.
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Theorem A.3. The collision probability of FastLSH is as follows:

p(s, σ) = Pr[hã,b̃(v) = hã,b̃(u)] =
∫ w̃

0

f|s̃X|(t)(1−
t

w̃
)dt

Proof. Let f|s̃X|(t) represent the PDF of the absolute value of s̃X . For given bucket width w̃, the
probability p(|s̃X| < t) for any pair (v,u) is computed as p(|s̃X| < t) =

∫ w̃

0
f|s̃X|(t)dt, where

t ∈ [0, w̃]. Recall that b̃ follows the uniform distribution U(0, w̃), the probability p(b̃ < w̃ − t) is
thus (1 − t

w̃ ). This means that after random projection, (|s̃X| + b̃) is also within the same bucket,
and the collision probability p(s, σ) is the product of p(|s̃X| < t) and p(b̃ < w̃ − t). Hence we
prove this Theorem.

Theorem A.4.

lim
m→+∞

φs̃X(x)

exp(−ms2x2

2n )
= 1

where exp(−ms2x2

2n ) is the characteristic function of N (0, ms2

n ).

Proof. Recall that µ̃ = ms2

n and σ̃ = mσ2. φs̃X(x) can be written as follows:

φs̃X(x) =
1

2(1− Φ(−
√
ms2

nσ ))
exp(

mx4σ2

8
−ms

2x2

2n
) erfc(

√
m(nx2σ2 − 2s2)

2
√
2nσ

) (−∞ < x < +∞)

Let a = s2√
2nσ

> 0 and b = σ
2
√
2
> 0 ⇒ b2 = σ2

8 . According to the fact Φ(x) = 1
2 erfc(−

x√
2
),

φs̃X(x) is simplified as:

φs̃X(x) = exp(b2mx4 − 1

2
mµx2) · erfc(b

√
mx2 − a

√
m)

2− erfc(a
√
m)

Let g(x) = φs̃X(x)
φsX(x) , where φsX(x) = exp(−ms2x2

2n ) is the characteristic function of N (0, ms2

n ).
Then g(x) is denoted as:

g(x) = exp(b2mx4) · erfc(b
√
mx2 − a

√
m)

2− erfc(a
√
m)

To prove φs̃X(x) = φsX(x), we convert to prove whether g(x) = 1 as m → ∞. Obviously
x2 ≤ O(m−1). Then

√
mx2 ≤ O(m−1/2) and mx4 ≤ O(m−1). It is easy to derive:

lim
m→+∞

exp(b2mx4) = 1

It holds for any fixed b ∈ R+. On the other hand, we have:

erfc(b
√
mx2 − a

√
m) ∼ erfc(−a

√
m), m→ +∞

Actually using the fact b
√
mx2 − a

√
m ∼ −a

√
m as m → +∞ and erfc(−x) = 2 − exp(−x2)√

πx
as

x→ +∞, we have:

lim
m→+∞

erfc(b
√
mx2 − a

√
m)

2− erfc(a
√
m)

=
limm→+∞ erfc(b

√
mx2 − a

√
m)

limm→+∞ erfc(−a
√
m)

= 1

Hence we have:

g(x) = lim
m→+∞

exp(b2mx4) · lim
m→+∞

erfc(b
√
mx2 − a

√
m)

erfc(−a
√
m)

= 1.

We prove this Theorem.
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If the characteristic function of a random variable Z exists, it provides a way to compute its various
moments. Specifically, the r-th moment of Z denoted by E(Zr) can be expressed as the r-th
derivative of the characteristic function evaluated at zero Hoel et al. (1971), i.e.,

E(Zr) = (i)−r d
r

dtr
φZ(t) |t=0 (10)

where φZ(t) denotes the characteristic function of Z. If we know the characteristic function, then
all of the moments of the random variable Z can be obtained.
Lemma A.5. 

E(s̃X) = 0

E((s̃X)2) = ms2

n (1 + ϵ)

E((s̃X)3) = 0

E((s̃X)4) = 3m2s4

n2 (1 + λ)

where ϵ =
σ̃ exp(−µ̃2

2σ̃2 )
√
2πµ̃(1−Φ(−µ̃

σ̃ ))
and λ = σ̃2

µ̃2 + ϵ.

Proof. From Lemma A.2, we can easily compute the first-order derivative of characteristic function
with respect to x, which is as follows:

φ′
s̃X(x) =

exp( 18x
4σ̃2 − 1

2 µ̃x
2)

2(1− Φ(−µ̃
σ̃ ))

[
(
1

2
x3σ̃2 − µ̃x) erfc(

1
2x

2σ̃2 − µ̃
√
2σ̃

)− 2σ̃x√
2π

exp(−(
1
2x

2σ̃2 − µ̃
√
2σ̃

)2)

]
(11)

Then the second-order derivative is

φ′′
s̃X(x) =

exp( 18x
4σ̃2 − 1

2 µ̃x
2)

2(1− Φ(−µ̃
σ̃ ))

[
((
1

2
x3σ̃2 − ux)2 +

3

2
x2σ̃2 − µ̃) erfc(

1
2x

2σ̃2 − µ̃
√
2σ̃

)

− 2√
2π

(σ̃ +
3

2
x4σ̃3 − 3

2
µ̃σ̃x2) exp(−(

1
2x

2σ̃2 − µ̃
√
2σ̃

)2)

] (12)

The third-order derivative is

φ′′′(x) =
exp( 18x

4σ̃2 − 1
2 µ̃x

2)

2(1− Φ(−µ̃
σ̃ ))

[
(
1

8
σ̃6x9 − 3

4
µ̃σ̃4x7 + (

2

3
µ̃2σ̃2 +

9

4
σ̃4)x5 − (6µ̃σ̃2 + µ̃3)x3 + 3(µ̃2 + σ̃2)x)

erfc(
1
2 σ̃

2x2 − µ̃
√
2σ̃

)− 2√
2π

(
1

4
σ̃5x7 − µ̃σ̃3x5 + (µ̃2σ̃ +

7

2
σ̃3)x3 − 3µ̃σ̃x) exp(−(

1
2 σ̃

2x2 − µ̃
√
2σ̃

)2)

]
(13)

The fourth-order derivative is

φ′′′′(x) =
exp( 18x

4σ̃2 − 1
2 µ̃x

2)

2(1− Φ(−µ̃
σ̃ ))

[
(
1

16
σ̃8x12 − 1

2
µ̃σ̃6x10 + (

3

2
µ̃2σ̃4 +

9

4
σ̃4)x8 − (2µ̃3σ̃2 +

21

2
µ̃σ̃4)x6

+(µ̃4 +
51

4
σ̃4 + 9µ̃2σ̃2)x4 − (6µ̃3 + 21µ̃σ̃2)x2 + 3(µ̃2 + σ̃2)) erfc(

1
2 σ̃

2x2 − µ̃
√
2σ̃

)

− 2√
2π

(
1

8
σ̃7x10 − 3

4
µ̃σ̃5x8 + (

3

2
µ̃2σ̃3 + 4σ̃5)x6 − (6µ̃2σ̃ +

13

2
σ̃3)x2 − 3µ̃σ̃) exp(−(

1
2 σ̃

2x2 − µ̃
√
2σ̃

)2)

]
(14)

Let E(s̃X − E(s̃X))i for i ∈ {1, 2, 3, 4} denote the first four central moments. According to
Eqn. 10, we know thatE(s̃X) = φ′(0)

i = 0, then it is easy to deriveE(s̃X−E(s̃X))i = E((s̃X)i).
To this end, by Eqn. 11 - 14, we have the following results:

E(s̃X) = 0

E((s̃X)2) =
µ̃ erfc( −µ̃√

2σ̃
)+ 2σ̃√

2π
exp(−µ̃2

2σ̃2 )

2(1−Φ(−µ̃
σ̃ ))

E((s̃X)3) = 0

E((s̃X)4) =
3(µ̃2+σ̃2) erfc( −µ̃√

2σ̃
)+ 6µ̃σ̃√

2π
exp(−µ̃2

2σ̃2 )

2(1−Φ(−µ̃
σ̃ ))

(15)
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where E(s̃X) is the expectation; E((s̃X)2) is the variance; E((s̃X)3)

(E((s̃X)2))
3
2

is the skewness;

E((s̃X)4)
(E((s̃X)2))2 is the kurtosis. Since

erfc( −µ̃√
2σ̃

)

2(1− Φ(−µ̃
σ̃ ))

=

2√
π

∫ +∞
−µ̃√
2σ̃

exp(−t21)dt1

2(1− 1√
2π

∫ −µ̃
σ̃

−∞ exp(
−t22
2 )dt2)

=

∫ +∞
−µ̃√
2σ̃

exp(−t21)dt1
√
2
∫ +∞

−µ̃
σ̃

exp(
−t22
2 )dt2

=

∫ +∞
−µ̃√
2σ̃

exp(−t21)dt1∫ +∞
−µ̃√
2σ̃

exp(−t2)dt
= 1

Therefore, Eqn. 15 can be rewritten as below


E(s̃X) = 0

E((s̃X)2) = µ̃(1 + ϵ)

E((s̃X)3) = 0

E((s̃X)4) = 3µ̃2(1 + λ)

where ϵ =
σ̃ exp(−µ̃2

2σ̃2 )
√
2πµ̃(1−Φ(−µ̃

σ̃ ))
, λ = σ̃2

µ̃2 + ϵ, µ̃ = ms2

n and σ̃2 = mσ2. We prove this Lemma.

B EXTENSION OF FASTLSH

B.1 EXTENSION TO MAXIMUM INNER PRODUCT

Bachrach et al. (2014); Shrivastava & Li (2014) shows that there exists two transformation
functions, by which the maximum inner product search (MIPS) problem can be converted into
solve the near neighbor search problem. More specifically, the two transformation functions are
P (v) = (

√
κ2 − ∥v∥22, v) for data processing and Q(u) = (0,u) for query processing respec-

tively, where κ = max(∥vi∥2) (i ∈ {1, 2, . . . , N}). Then the relationship between maximum
inner product and l2 norm for any vector pair (vi,u) is denoted as argmax

i
( P (vi)Q(u)
∥P (vi)∥2∥Q(u)∥2

) =

argmin
i

(∥P (vi) − Q(u)∥2) for ∥u∥2 = 1. To make FastLSH applicable for MIPS, we first apply

the sample operator S(·) defined earlier to vector pairs (vi,u) for yielding ṽi = S(vi) and ũ = S(u),
and then obtain P̃ (v) = (

√
κ̃2 − ∥S(v)∥22, S(v)) and Q̃(u) = (0, S(u)), where κ̃ = max(∥S(vi)∥2)

is a constant. Then argmax
i

( P̃ (vi)Q̃(u)
∥P̃ (vi)∥2∥Q̃(u)∥2

) = argmin
i

(∥P̃ (vi)− Q̃(u)∥2) for ∥S(u)∥2 = 1. Let

△ = κ̃2 − ∥S(v)∥22. After random projection, aT P̃ (v) − aT Q̃(u) is distributed as (
√
s̃2 +△)X .

Since s̃2 ∼ N (mµ,mσ2), then (s̃2 + △) ∼ N (mµ + △,mσ2). Let
√
s̃2 +△ be the random

variable I. Similar to Eqn. 8, the PDF of I represented by fI is yielded as follow:

fI(t) = 2tψ(t2;mµ+△,mσ2, 0,+∞) (16)

By applying Lemma A.1, the characteristic function of IX is as follows:

φIX(x) =
1

2(1− Φ(−ms2−n△√
mσ△ ))

exp(
mx4σ2

8
− (ms2 + n△)x2

2n
) erfc(

mnx2σ2 − 2(ms2 + n△)

2
√
2mnσ

)(−∞ < x < +∞)

(17)
Then the PDF of IX is obtained by φIX(x):

fIX(t) =
1

2π

∫ ∞

−∞
φIX(x)exp(−itx)dx (18)

It is easy to derive the collision probability of any pair (v,u) by fIX(t), which is as follows:

p(s) =

∫ w̃′

0

f|IX|(t)(1−
t

w̃′ )dx (19)

where f|IX|(t) denotes the PDF of the absolute value of IX . w̃′ is the bucket width.

17



Under review as a conference paper at ICLR 2024

B.2 EXTENSION TO lp NORM FOR p ∈ (0, 2)

The analysis of FastLSH extended to lp norm (p ∈ (0, 2)) is similar to that of l2 norm, it is given as
follows:

For given vector pair (v,u), let s = ∥v − u∥p, where p ∈ (0, 2). The collection of n entries (vi−ui)p
{i = 1, 2, . . . , n} follows an unknown distribution with a finite mean µp = (

∑n
i=1(vi − ui)

p)/n
and variance σ2

p = (
∑n

i=1((vi − ui)
p − µp)

2)/n. After performing the sampling operator S(·)
of size m, v and u are transformed into ṽ = S(v) and ũ = S(u), and the lp distance of (ṽ, ũ) is
s̃p =

∑m
i=1(ṽi − ũi)

p. By Central Limit Theorem, we have the following lemma:

Lemma B.1. If m is sufficiently large, then the sum s̃p of m i.i.d. random samples (ṽi − ũi)
p

(i ∈ 1, 2, . . . ,m) converges asymptotically to the normal distribution with mean mµp and variance
mσ2

p, i.e., s̃p ∼ N (mµp,mσ
2
p), where p ∈ (0, 2).

Since s̃p ≥ 0, s̃p can be modeled by normal distribution s̃p ∼ N (mµp,mσ
2
p) over the truncation

interval [0,+∞), that is, the singly-truncated normal distribution ψ(x; µ̃p, σ̃
2
p, 0,+∞). Considering

the fact that s̃ ≥ 0, we have Pr[s̃ < t] = Pr[s̃p < tp] for any t > 0. Therefore, the CDF of s̃ for
p ∈ (0, 2), denoted by F p

s̃ , can be computed as follows:

F p
s̃ (t) = Pr[s̃ < t] = Pr[s̃p < tp]

=

∫ tp

0

ψ(x; µ̃p, σ̃
2
p, 0,∞)dx

(20)

where µ̃p = mµp and σ̃2
p = mσ2

p. Due to the fact that the PDF is the derivative of the CDF, the PDF
of s̃ for p ∈ (0, 2), denoted by fps̃ , is derived as follows:

fps̃ (t) =
d

dt
[F p

s̃ (t)] = ptp−1ψ(tp; µ̃p, σ̃
2
p, 0,∞) (21)

If a is a projection vector with entries drawn from a p-stable distribution, the distance between
projections, (aT v − aT u), for two vectors v and u, is distributed as ∥v − u∥pX , i.e., sX , where X
follows a p-stable distribution for p ∈ (0, 2). Similarly, the projection distance between ṽ and ũ
under the projection vector ã is given by (ãT ṽ − ãT ũ), which follows the distribution s̃X . Thus, if
we know the PDF of s̃X , we can easily derive the collision probability under the lp norm for the
vector pair (v,u). However, for p-stable distributions where p is not equal to 1/2, 1, or 2, there
is no closed-form expression for the PDF, making it intractable to derive the collision probability
analytically for both classic LSH (E2LSH) and FastLSH Datar et al. (2004). Next, we focus on
p = 1/2 and p = 1 to determine the distribution of s̃X and analyze the asymptotic behavior
of E2LSH and FastLSH, thereby indicates that FastLSH is asymptotically equivalent with E2LSH
under the lp norm for p ∈ (0, 2).

B.2.1 l1 NORM

We first need to use the following Lemma B.2 to obtain the characteristic function of s̃X under l1
norm, as the distribution of a random variable is determined uniquely by its characteristic function.

Lemma B.2. The characteristic function of the product of two independent random variables W =
XY is as follows:

φW (x) = EY {exp(− |xY |)}
where X is a standard Cauchy random variable and Y is an independent random variable with
mean µ and variance σ2.

Proof. This proof is similar to Lemma A.1.

By Lemma B.2, we derive the characteristic function of s̃X , as shown in Lemma B.3. In the follow-
ing derivation, we will slightly abuse the notation by using µ̃ and σ̃2, i.e., µ̃ = µ̃1 and σ̃2 = σ̃2

1 .
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Lemma B.3. The characteristic function of s̃X under l1 norm is as follows:

φs̃X(x) =
1

2(1− Φ(−µ̃
σ̃ ))

exp(
−µ̃2 + (µ̃− σ̃2|x|)2

2σ̃2
) erfc(

σ̃2|x| − µ̃√
2σ̃

) (−∞ < x < +∞)

where µ̃ = ms
n and σ̃2 = mσ2

1; erfc(t) = 2√
π

∫ +∞
t

exp(−x2)dx (−∞ < t < +∞) is the
complementary error function.

Proof. According to Eqn. 21, we know the PDF of s̃ under l1 norm. By applying Lemma B.3, we
have:

φs̃X(x) =
1√
2πσ̃

∫ +∞

0

exp(− |x| y − (y−µ̃)2

2σ̃2 )

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
dy

=
1√
2πσ̃

∫ +∞

0

exp(− (y2−2µ̃y+2|x|σ̃2y+µ̃2)
2σ̃2 )

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
dy

=
1√
2πσ̃

∫ +∞

0

exp(−µ̃+(µ̃−|x|σ̃2)2

2σ2 ) · exp(− (y−(µ̃−|x|σ̃2))2

2σ̃2 )

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
dy

=
1

2(1− Φ(−µ̃
σ̃ ))

· exp(−µ̃+ (µ̃− |x| σ̃2)2

2σ2
) · erfc( |x| σ̃

2 − µ̃√
2σ̃

)

where µ̃ = ms
n , σ̃2 = mσ2

1 , a2 = ∞ and a1 = 0. Hence we prove this Lemma

Given the characteristic function φs̃X(x) under the l1 norm, the probability density function (de-
noted by cs̃X(t)) of s̃X can be obtained by Eqn. 9. As a result, the collision probability for a pair
(v,u) is computed as that of Theorem A.3, in which f|s̃X|(t) is replaced with c|s̃X|(t).

Similar to Theorem A.4, the following theorem gives the asymptotic behavior of the characteristic
function of s̃X under the l1 norm, that is:

Theorem B.4.
lim

m→+∞

φs̃X(x)

exp(−ms|x|
n )

= 1

where exp(−ms|x|
n ) is the characteristic function of Cauchy distribution C(0, ms

n ).

Proof. Given that µ̃ = µ̃1 = ms
n and σ̃2 = mσ2

1 . Let σ2 = σ2
1 . According to Lemma B.3, we can

express φs̃X(x) in the following form:

φs̃X(x) =
1

2(1− Φ(−
√
ms

nσ ))
exp(

1

2
mσ2x2 − ms|x|

n
)erfc(

mσ2|x| −ms/n√
2mσ

)

Let a = s√
2nσ

> 0 and b = σ√
2
> 0 ⇒ b2 = 1

2σ
2. Using the known fact that Φ(x) = 1

2erfc
(

−x√
2

)
,

we can simplify φs̃X(x) as follows:

φs̃X(x) = exp(b2mx2 − ms|x|
n

) · erfc(b
√
m|x| − a

√
m)

2− erfc(a
√
m)

Next, we define g(x) = φs̃X(x)
φsX(x) , where φsX(x) = exp(−ms|x|

n ) represents the characteristic func-
tion of the Cauchy distribution C(0, ms

n ). Therefore, g(x) can be written as:

g(x) = exp(b2mx2) · erfc(b
√
m|x| − a

√
m)

2− erfc(a
√
m)

To prove φs̃X(x) = φsX(x), we aim to show that as m → +∞, g(x) → 1. Obviously x ≤
O(m−1), we have

√
m|x| ≤ O(m−1/2) and mx2 ≤ O(m−1). Thus, for any constant b ∈ R+, the

following holds:
lim

m→+∞
exp(b2mx2) = 1
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On the other hand, we have:
erfc(b

√
m|x| − a

√
m) ∼ erfc(−a

√
m) m→ +∞

Since b
√
m|x| − a

√
m ∼ −a

√
m as m → +∞, and knowing that erfc(−x) ∼ 2 − exp(−x2)√

πx
as

x→ +∞, we obtain:

lim
m→+∞

erfc(b
√
m|x| − a

√
m)

2− erfc(a
√
m)

=
limm→+∞ erfc(b

√
m|x| − a

√
m)

limm→+∞ erfc(−a
√
m)

= 1

Then, we have:

g(x) = lim
m→+∞

exp(b2mx2) · lim
m→+∞

erfc(b
√
m|x| − a

√
m)

erfc(−a
√
m)

= 1

Hence, we prove this Theorem.

Theorem B.4 means that cs̃X(t) is asymptotically equivalent to C(0, ms
n ). Then the following Corol-

lary is naturally yielded:
Corollary B.5. cs̃X(t) ∼ the PDF of C(0, ms

n ) as m tends to infinity.

B.2.2 l1/2 NORM

Similar to that of l1 norm, we use the following Lemma B.6 to derive the characteristic function of
s̃X under l1/2 norm, that is:
Lemma B.6. The characteristic function of the product of two independent random variables W =
XY is as follows:

φW (x) = EY {exp(−
√
2ixY )}

where X is a standard Lévy random variable and Y is an independent random variable with mean
µ and variance σ2, and the symbol i =

√
−1 represents the imaginary unit.

Proof. This proof is similar to Lemma A.1.

By Lemma B.6, we derive the characteristic function of s̃X , as shown in Lemma B.7. In the follow-
ing derivation, we will slightly abuse the notation by using µ̃ and σ̃2, i.e., µ̃ = µ̃1/2 and σ̃2 = σ̃2

1/2.

Lemma B.7. The characteristic function of s̃X under l1/2 norm is as follows:

φs̃X(x) =
1

2(1− Φ(−µ̃
σ̃ ))

exp(
−µ̃2 + (µ̃−

√
−2ixσ̃2)2

2σ̃2
) erfc(

√
−2ixσ̃2 − µ̃√

2σ̃
) (−∞ < x < +∞)

where µ̃ = ms1/2

n and σ̃2 = mσ2
1/2; erfc(t) = 2√

π

∫ +∞
t

exp(−x2)dx (−∞ < t < +∞) is the
complementary error function.

Proof. According to Eqn. 21, we know the PDF of s̃ under l1/2 norm. By applying Lemma B.7, we
have:

φs̃X(x) =
1√
2πσ̃

∫ +∞

0

exp(−
√
−2ixy − (

√
y−µ̃)2

2σ̃2 )

2
√
y(Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2))

dy

=
1√
2πσ̃

∫ +∞

0

exp(−
√

−2ixy2 − (y−µ̃)2

2σ̃2 )

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
dy

=
1√
2πσ̃

∫ +∞

0

exp(− (y2−2µ̃y+2
√
−2ixσ̃2y+µ̃2)

2σ̃2 )

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
dy

=
1√
2πσ̃

∫ +∞

0

exp(−µ̃+(µ̃−
√
−2ixσ̃2)2

2σ2 ) · exp(− (y−(µ̃−
√
−2ixσ̃2))2

2σ̃2 )

Φ(a2; µ̃, σ̃2)− Φ(a1; µ̃, σ̃2)
dy

=
1

2(1− Φ(−µ̃
σ̃ ))

· exp(−µ̃+ (µ̃−
√
−2ixσ̃2)2

2σ2
) · erfc(

√
−2ixσ̃2 − µ̃√

2σ̃
)

where µ̃ = ms1/2

n , σ̃2 = mσ2
1/2, a2 = ∞ and a1 = 0. Hence we prove this Lemma
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Given the characteristic function φs̃X(x) under the l1/2 norm, the probability density function (de-
noted by ls̃X(t)) of s̃X can be obtained by Eqn. 9. As a result, the collision probability for a pair
(v,u) is computed as that of Theorem A.3, in which f|s̃X|(t) is replaced with l|s̃X|(t).

Similar to Theorem A.4, the following theorem gives the asymptotic behavior of the characteristic
function of s̃X under the l1/2 norm, that is:

Theorem B.8.

lim
m→+∞

φs̃X(x)

exp(−
√

−2im2sx
n2 )

= 1

where exp(−
√
−2im2sx/n2) is the characteristic function of Lévy distribution L(0, ms1/2

n ).

Proof. Given that µ̃ = µ̃1/2 = ms1/2

n and σ̃2 = mσ2
1/2. Let σ2 = σ2

1/2. According to Lemma B.7,
the characteristic function φs̃X(x) can be written as:

φs̃X(x) =
1

2(1− Φ(−
√
ms1/2

nσ ))
exp(−imσ2x−

√
−2im2sx/n2)erfc(

√
−2ixmσ2 −ms1/2/n√

2mσ
)

Let a = s1/2√
2nσ

> 0 and b =
√
−iσ > 0 ⇒ b2 = −iσ2, where we focus on the real part of b. Using

the known fact that Φ(x) = 1
2erfc(− x√

2
), we can simplify φs̃X(x) as follows:

φs̃X(x) = exp(b2mx−
√

−2im2sx/n2) · erfc(b
√
mx− a

√
m)

2− erfc(a
√
m)

Next, we define g(x) = φs̃X(x)
φsX(x) , where φsX(x) = exp(−

√
−2im2sx/n2), which is the character-

istic function of the Lévy distribution L(0, ms1/2

n ). Thus, g(x) can be written as:

g(x) = exp(b2mx) · erfc(b
√
mx− a

√
m)

2− erfc(a
√
m)

To prove φs̃X(x) = φsX(x), we need to show that as m → +∞, g(x) = 1. Obviously, x ≤
O(m−2), we have

√
mx ≤ O(m−1/2) and mx ≤ O(m−1). Thus, for any constant b ∈ R+, the

following holds:
lim

m→+∞
exp(b2mx) = 1

On the other hand, we have:

erfc(b
√
mx− a

√
m) ∼ erfc(−a

√
m) m→ +∞

Since b
√
mx − a

√
m ∼ −a

√
m as m → +∞ and erfc(−x) ∼ 2 − exp(−x2)√

πx
as x → +∞, we

obtain:

lim
m→+∞

erfc(b
√
mx− a

√
m)

2− erfc(a
√
m)

=
limm→+∞ erfc(b

√
mx− a

√
m)

limm→+∞ erfc(−a
√
m)

= 1

Then, we have:

g(x) = lim
m→+∞

exp(b2mx) · lim
m→+∞

erfc(b
√
mx− a

√
m)

erfc(−a
√
m)

= 1

Hence, we prove this Theorem.

Theorem B.8 means that ls̃X(t) is asymptotically equivalent to L(0, ms1/2

n ). Then the following
Corollary is naturally yielded:

Corollary B.9. ls̃X(t) ∼ the PDF of L(0, ms1/2

n ) as m tends to infinity.
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C ADDITIONAL EXPERIMENTS

In this section we present more description about datasets, parameter setting and additional exper-
iments for three machine learning tasks. All experiments for nearest neighbor search and outlier
detection are carried out on a server with six-cores Intel(R), i7-8750H @ 2.20GHz CPU and 32 GB
RAM, in Ubuntu 20.04. Experiments for neural network training are carried out on a server with
fourteen-cores Intel(R), i7-12700H @ 2.30GHz CPU and 64 GB RAM, in Ubuntu 20.04.

C.1 OUTLIER DETECTION

Baseline: Anomaly detection is a critical task in data analysis, which aims to identify instances or
patterns that deviate from expected behavior. For anomaly detection task, there are two kinds of
methods, i.e., supervised and unsupervised methods. Unsupervised methods are more preferred in
practice due to their ability to adapt to changing data distributions without requiring label informa-
tion. Existing unsupervised anomaly detection approaches often require storing the entire dataset,
leading to poor computational and memory requirements, particularly as data volume increases.
To overcome these limitations, researchers propose Arrays of (locality-sensitive) Count Estimators
(ACE) in Luo & Shrivastava (2018), a novel anomaly detection algorithm, for high-speed streaming
data and constrained memory environments.

ACE is an efficient anomaly detection data structure, which is composed of multiple locality-
sensitive hash tables. These hash tables are used to estimate counts of collision and detect anoma-
lies by performing hash lookup. Specifically, a hash code H(v) = (h1(v), h2(v), . . . , hk(v)
of k bits is computed using k independent LSH functions. Then L groups of hash functions
Hi(·), i = {1, · · · , L} are drawn independently and uniformly at random from the LSH family.
Instead of constructing L hash tables, ACE constructs L short arrays, Ai, of size 2k each initialized
with zeros. Given any observed element v ∈ D, ACE increments the count of the corresponding
counter Hi(v) in array Ai for all i.

To decide if u is an outlier, ACE computes the average of all the counters for ∀i ∈ {1, 2, . . . L}, i.e.,
Ŝ(u,D) = 1

L

∑L
i=1Ai[Hi(u)]. u is reported as anomaly if the estimated score Ŝ(u,D) is less than

µ − σ, where µ = 1
N

∑N
i=1Ŝ(vi,D) is the mean of the scores over all v ∈ D and σ is the standard

deviation. To evalute FastLSH and ACHash in the outlier detection task, we only need to replace the
hash functions used in ACE with FastLSH and ACHash. The corresponding methods are termed as
FastACE (FastLSH + ACE) and ACHashACE (ACHash +ACE), respectively.

Evaluation Metrics: Similar to Luo & Shrivastava (2018), the following five performance measures
are used: 1) outliers reported, i.e., the number of outliers detected by the algorithm. 2) correctly re-
ported, i.e., the number of truth outliers in the outliers reported. 3) outlier missed, i.e., the remaining
number of truth outliers in all truth outliers after outliers reported having been detected. 4) the
execution time taken to report the outliers. 5) the speedup over ACE.

Datasets: We choose three widely used real-world benchmark datasets for anomaly detection, the
statistics of which are presented in Table 4.

Table 4: Statistics of the datasets

Datasets # of Instances # of Outliers Dimension
Statlog Shuttle 34,987 879 9

a9a 48,842 7841 123
Musk 6,598 97 166

Statlog Shuttle4: It is the dataset of radiator positions in a NASA space shuttle with 9 attributes de-
signed for supervised anomaly detection. The dataset includes 34987 instances with 879 anomalies.

a9a5: It is obtained from UCI Adult dataset, which predicts whether income exceeds 50K dollars
per year. The dataset contains 48842 instances with each having 123 features. There are two classes

4https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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Table 5: Statistics of Datasets

Datasets Feature Dim Feature Sparsity Label Dim Training Size Testing Size
Delicious-200K 782,585 0.038% 205,443 196,606 100,095
Amazon-670K 135,909 0.055% 670,091 490,449 153,025

of labels denoted as -1 and 1, where 1 is the income exceeding 50K, while the other is lower than
50K.

Musk6: It is the set of 102 molecules of which 39 molecules are judged by human experts to be
musks and the remaining 93 molecules are non-musks. These molecules are to generate 6598 con-
formations with each conformation contains 166 features.

Parameter Settings: We use k = 15 and L = 50 for ACE, ACHashACE and FastACE as in Luo
& Shrivastava (2018). For FastACE, m is set to 3 for Statlog Shuttle, and m = 30 for the other two
datasets. For ACHashACE, the sampling ratio is set to the default 0.25 Dasgupta et al. (2011).

C.2 NEURAL NETWORK TRAINING

Baseline: Deep Learning (DL) has drawn a lot of attention in recent years, transforming fields such
as computer vision, natural language processing and speech recognition. Training a DL mode from
scratch demands massive computing resources. While dedicated hardware offers accelerated perfor-
mance in matrix multiplication, it comes with risks and limitations, including substantial investment
requirements and the possibility of becoming obsolete with advancements in algorithms. To this
end, SLIDE (Sub-LInear Deep learning Engine) Chen et al. (2020) is proposed to train DL models
using only commodity CPUs by exploiting adaptive sparsity in neural networks, especially in large
fully connected neural networks.

SLIDE is a novel deep learning engine that integrates randomized algorithms (LSH) and multi-core
parallelism. It achieves training speeds faster than using Tensorflow on GPU, exclusively utilizing
a CPU on large-scale recommendation datasets Bhatia et al. (2016); Mittal et al. (2022; 2021).
Briefly SLIDE works as follows. In a fully connected neural network, each layer consists of a list
of neurons and a set of LSH sampling hash tables. During network initialization, the weights are
randomly initialized, and k × L LSH hash functions are set up along with L hash tables for each
layer. These hash functions compute hash codes hl(wa

l ) for the weight vectors of neurons in each
layer, where hl represents the hash function in layer l and wa

l is the weights for the ath neuron in
layer l. The neuron’s id a is stored in the hash buckets determined by the LSH function hl(wa

l ).
In SLIDE, rather than calculating all activations in each layer, the input to each layer vl is passed
through hash functions to compute hl(vl). These hash codes act as queries to retrieve the ids of
active (or sampled) neurons from corresponding buckets in the hash tables. For each training data
instance, the neuron backpropagates partial gradients (using error propagation) exclusively to active
neurons in previous layers through the connected weights.

Evaluation Metrics: We report the classification accuracy, the end-to-end training time and the
number of iterations as in Chen et al. (2020).

Datasets: We employ two large real datasets, Delicious-200K and Amazon-670K, from the Extreme
Classification Repository Bhatia et al. (2016), and the statistics of the two datasets are presented in
Table 5. Delicious-200K dataset is a subsampled dataset generated from a vast corpus of almost
150 million bookmarks from Social Bookmarking Systems. Amazon-670K dataset is a product to
product recommendation dataset with 670K labels.

Parameter Settings: For both datasets, a standard fully connected neural network with one hidden
layer of size 128 and a batch size of 128 is employed. All algorithms are executed until conver-
gence. To evaluate the performance of SLIDE, FastSLIDE (FastLSH + SLIDE) and ACHashSLIDE
(ACHash + SLIDE), we utilize the same optimizer, Adam, while adjusting the initial step size from
1e−5 to 1e−3 to ensure better convergence across all experiments. In SLIDE, we particularly fo-
cus on maintaining hash tables for the last layer, which is often a computational bottleneck in the

6https://archive.ics.uci.edu/dataset/75/musk+version+2
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Table 6: Statistics of Datasets

Datasets # of Points # of Queries Dimension
Sun 69106 200 512
Cifar 50000 200 512
Audio 53387 200 192
Trevi 99000 200 4096
Notre 333000 200 128
Sift 1000000 200 128
Gist 1000000 200 960
Deep 1000000 200 256

Ukbench 1000000 200 128
Glove 1192514 200 100

ImageNet 2340000 200 150
Random 1000000 200 100

models. In terms of LSH settings, we set k = 9 and L = 50 for Decilious-200K and k = 8 and
L = 50 for Amazon-670K. The hash tables are updated initially every N0 = 50 iterations and then
exponentially decayed. The sampling ratio of FastSLIDE is set to 0.15 and 0.07 for Delicious and
Amazon, respectively. For ACHashSLIDE, the sampling ratio is set to the default 0.25 Dasgupta
et al. (2011).

C.3 FASTLSH VS. E2LSH FOR NEAREST NEIGHBOR SEARCH

Baseline: Nearest neighbor search (NNS) is an essential problem in machine learning, which has
numerous applications such as face recognition, information retrieval and duplicate detection. The
purpose of nearest neighbor search is to find the point in the dataset D = {v1, v2, . . . , vN} that is
most similar (has minimal distance) to the given query u. For low dimensional spaces (<10), popular
tree-based index structures such as KD-tree Bentley (1975), SR-tree Katayama & Satoh (1997), etc.
deliver exact answers and provide satisfactory performance. For high dimensional spaces, however,
these index structures suffer from the well-known curse of dimensionality, that is, their performance
is even worse than that of linear scans Samet (2006). To address this issue, one feasible way is to
use approximate nearest neighbor (ANN) search by trading accuracy for efficiency Kushilevitz et al.
(1998).

The canonical LSH index structure (E2LSH) for ANN search is built as follows. A hash code
H(v) = (h1(v), h2(v), . . . , hk(v) is computed using k independent LSH functions (i.e., H(v) is the
concatenation of k elementary LSH codes). Then a hash table is constructed by adding the 2-tuple
⟨H(v), id of v⟩ into corresponding bucket. To boost accuracy, L groups of hash functions Hi(·), i =
1, · · · , L are drawn independently and uniformly at random from the LSH family, resulting in L
hash tables.

To answer a query u, one need to first compute H1(u), · · · , HL(u) and then search all these L
buckets to obtain the combined set of candidates. Then, all points in the candidate set are evaluated
against the query and the most similar points are returned. There exists two ways (approximate
and exact) to process these candidates. In the approximate version, no more than 3L points in the
candidate set are evaluated. The LSH theory ensures that the (c,R)-NN is found with a constant
probability. In practice, however, the exact one is widely used since it offers better accuracy at the
cost of evaluating all points in the candidate set Datar et al. (2004). The search time consists of both
the hashing time and the time taken to prune the candidate set Datar et al. (2004); Andoni (2005).
In many cases, nearest neighbor search is just one component of a larger application that involves
other approximations. As a result, using approximate neighbors instead of exact ones often leads to
minimal performance loss. Therefore, we use the exact method to process a query similar to Datar
et al. (2004); Andoni (2005).

Evaluation Metrics: To evaluate the performance of FastLSH and baselines, we present the follow-
ing metrics: 1) recall, i.e., the fraction of near neighbors that are actually returned; 2) the average
running time to report the near neighbors for each query; 3) the time taken to compute hash func-
tions; 4) the end-to-end index construction time.
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Figure 4: Comparison of recall, average query time, LSH computation and index construction time.

Datasets: 11 publicly available high-dimensional real datasets and one synthetic dataset are experi-
mented with Li et al. (2019), the statistics of which are listed in Table 6. Sun7 is the set of containing
about 70k GIST features of images. Cifar8 is denoted as the set of 50k vectors extracted from Tiny-
Image. Audio9 is the set of about 50k vectors extracted from DARPA TIMIT. Trevi10 is the set
of containing around 100k features of bitmap images. Notre11 is the set of features that are Flickr
images. Sift12 is the set of containing 1 million SIFT vectors. Gist13 is the set that is consist of 1
million image vectors. Deep14 is the set of 1 million vectors that are deep neural codes of natural im-
ages obtained by convolutional neural network. Ukbench15 is the set of vectors containing 1 million
features of images. Glove16 is the set of about 1.2 million feature vectors extracted from Tweets.
ImageNet17 is the set of data points containing about 2.4 million dense SIFT features. Random is
the synthetic dataset containing 1 million randomly selected vectors in a unit hypersphere.

Parameter Settings: For the same dataset and target recall, we use identical k (number of hash
functions per table) and L (number of hash tables) for fairness. Thus, three algorithms take the
same space occupations. m is set to 30 throughout all experiments for FastLSH. To achieve optimal
performance, the sampling ratio for ACHash is set to the defaulst 0.25 Dasgupta et al. (2011). Table 7
reports the parameters (k, L and bucket width w) for different target recall illustrated in Figure 5,
where w is the bucket width of E2LSH, w̃ and w′ are those of FastLSH and ACHash respectively.

Results and Discussion: In this set of experiments, we are intended to show that FastLSH can
reduce the index construction time significantly and achieve almost the same recall and query time
as other LSH-based algorithms in the meantime.

We first compare the performance among E2LSH, ACHash and FastLSH for target recall around
0.9. The recall, average query time and LSH computation time for Gist, Sift, Cifar, Sun, Notre
and Audio are illustrated in Figure 4 (a), (b) and (c). It is easy to see that FastLSH and E2LSH
achieve comparable query performance and answer accuracy as plotted in Figure 4 (a) and (b). Due
to lack of theoretical guarantee, ACHash performs slightly worse than FastLSH and E2LSH in most
cases w.r.t query efficiency. As shown in Figure 4 (c), the LSH computation time of FastLSH is
significantly superior to E2LSH and ACHash. For example, FastLSH obtains around 24x speedup
over E2LSH and runs 11x times faster than ACHash on Gist. For ACHash, the fixed sampling ratio
and overhead in Hadamard transform make it inferior to FastLSH. Note that because the query time,
hashing cost and index construction time for different datasets varies greatly among datasets, we use
40x and etc. in the plots to indicate that the actual time is 40 times as much as the one shown in the
plots.

7http://groups.csail.mit.edu/vision/SUN/
8http://www.cs.toronto.edu/ kriz/cifar.html
9http://www.cs.princeton.edu/cass/audio.tar.gz

10http://phototour.cs.washington.edu/patches/default.htm
11http://phototour.cs.washington.edu/datasets/
12http://corpus-texmex.irisa.fr
13https://github.com/aaalgo/kgraph
14https://yadi.sk/d/I yaFVqchJmoc
15http://vis.uky.edu/ stewe/ukbench/
16http://nlp.stanford.edu/projects/glove/
17http://cloudcv.org/objdetect/
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Table 7: Parameters of E2LSH, FastLSH and ACHash

Datasets recall k L w w̃ w′

Cifar
lowest 10 40 0.0175 0.0041 0.138
median 10 40 0.0185 0.0042 0.15
highest 10 40 0.0195 0.00428 0.156

Sun
lowest 8 45 4200 980 34000
median 8 45 4550 1050 36000
highest 8 45 5050 1120 39000

Gist
lowest 10 105 2.5 0.435 0.45
median 10 105 2.75 0.45 0.48
highest 10 105 2.9 0.5 0.52

Trevi
lowest 8 105 11.8 1 370
median 8 105 12.8 1.1 400
highest 8 105 14 1.2 435

Audio
lowest 6 25 7000 2680 47500
median 6 25 7700 2900 50000
highest 6 25 8700 3398 61000

Notre
lowest 6 35 29 13.8 116
median 6 35 31.5 15 125
highest 6 35 35 16.6 134

Glove
lowest 8 79 0.84 0.455 3
median 8 105 0.84 0.455 3
highest 9 150 0.91 0.495 3

Sift
lowest 8 45 36 17 145
median 8 45 39.5 19 160
highest 8 45 42 20 165

Deep
lowest 8 60 0.0565 0.0189 0.45
median 8 80 0.0565 0.0189 0.45
highest 8 105 0.0565 0.0189 0.45

Random
lowest 10 108 0.5 0.275 1.85
median 10 108 0.54 0.285 2
highest 10 108 0.6 0.295 2.2

Ukbench
lowest 8 55 20.5 9.5 72
median 8 75 20.5 9.5 72
highest 8 105 20.5 9.5 80

ImageNet
lowest 8 105 0.36 0.162 0.159
median 8 105 0.4 0.175 0.17
highest 8 105 0.465 0.203 0.2

We also plot the recall v.s. average query time curves by varying target recalls to obtain a complete
picture of FastLSH in Figure 5. The empirical results demonstrate that FastLSH performs almost
the same in terms of answer accuracy, query efficiency and space occupation as E2LSH. Again,
ACHash is slightly inferior to the others in most cases.

The end-to-end speedup in the index construction time is shown in Figure 4 (d). Thanks to the
significant reduction in hashing cost, the time spent in building the index decreases by up to a factor
of 20. Besides hashing, the procedure of index construction consists of some other operations such
as hash table initialization and linked list maintainance, which cannot be accelarated. Thus, the
end-to-end latency in index construction decreases not as much as the hashing cost.

In sum, FastLSH is on par with E2LSH (with provable LSH property) in terms of answer accuracy
and query efficiency and marginally superior to ACHash (without provable LSH property), while
significantly reducing the cost of hashing.
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Figure 5: Recall vs. Average query time

C.4 FASTLSH VS. MULTI-PROBE LSH IN NEAREST NEIGHBOR SEARCH

Baseline: MPLSH18 Lv et al. (2007) is a variant of vanilla LSH (E2LSH) designed for ANN search,
which uses a heuristic probe sequence to search multiple buckets that contain the NNs of given query
with high probability. Compared with E2LSH, MPLSH provides better space and time efficiency,
i.e., it achieves the reduction in memory usage by using less hash functions (k × L) and the same
recall with lower query response time.

Metrics and Datasets: The same as those in evaluating FastLSH and E2LSH.

Parameter Settings: For fairness, we set the same parameters k, L and probe sequence for FastLSH
and MPLSH to obtain the target recall. The parameters are presented in Table 8, where w is the
bucket width of MPLSH, w̃ and w′ are that of FastLSH and ACHash respectively; m is the number
of sampled dimensions for FastLSH and the sampling ratio for ACHash is set to the defaulst 0.25 as
in Dasgupta et al. (2011).

Results and Discussion: In this set of experiments, we achieve around 0.9 target recall for MPLSH,
ACHash and FastLSH over all tested datasets. The actual recall, query time, hashing time and
speedup in hashing are shown in Figure 6. We can observe the same trend for MPLSH as with

18https://lshkit.sourceforge.net/index.html
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Table 8: Parameters of MPLSH, FastLSH and ACHash

Datasets recall k L w w̃ w′ m

Cifar 0.85 10 5 0.65 0.15 0.16 30
Sun 0.8 6 15 99370 19500 18000 30
Gist 0.9 15 25 3.9 1.07 0.355 90
Trevi 0.9 10 25 3500 1100 225 512
Audio 0.88 10 5 166000 80000 37000 60
Notre 0.88 6 10 420 110 93 30
Glove 0.88 15 25 16 8.1 5.2 50
Sift 0.9 15 25 1000 256 230 30

Deep 0.9 15 25 2.5 0.57 0.375 30
Random 0.9 15 25 8 4.5 4.3 50
Ukbench 0.87 6 10 220 60 52 30
ImageNet 0.9 10 25 0.65 0.28 0.18 75

E2LSH, as shown in Figure 4. Particularly, FastLSH achieves around the same recall for each
dataset with the same or even much better query time than MPLSH and ACHash. For half of the
datasets, m = 30 offers nice performance for FastLSH, whereas the others need much larger m
to obtain the target recall. This might be attributed to the data-dependent nature of FastLSH and
the probing heuristics used by MPLSH. The performance of ACHash is inferior to FastLSH due to
lack of provable LSH property. The experimental results indicate that FastLSH performs well for all
datasets and obtains up to 12x and 3x speedup in hashing over MPLSH and ACHash, respectively.
The end-to-end index construction time is presented in Figure 6 (d). Likewise, efficient hashing
translates to reduced indexing construction time, leading to up to 10x speedup in building the index.
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Figure 6: Comparison of recall, average query time, LSH computation and index construction time.

C.5 FASTLSH HANDLES SPARSE DATA

Actually, FastLSH does work on sparse vector. The reasons and empirical evidence are as follows.

Recall that FastLSH consists of random sampling and random projection. FastLSH first performs m
random sampling operations. The probability of selecting at least one non-zero (significant) element
during the process of random sampling is p1 = 1 − (1 − p)m, where p is the proportion of non-
zero elements in the n-dimensional vector. And then FastLSH performs random projection. Since
the hash code of FastLSH is a fingerprint concatenated from k hashes, the probability of selecting
at least one non-zero (significant) element under k hashes is pr = 1 − (1 − p1)

k. As a quick
example, if p = 0.01, m = 30 and k = 8, then pr = 0.95, meaning that the hash code contains
the information of the significant elements with a high probability of 0.95. Therefore, FastLSH
can effectively handle sparse data and is also well-suited for dense data, particularly in cases where
many coordinate values are nearly identical.

We chose the MNIST19 dataset to verify this claim. The dimension of MNIST is 784, with only
around 2.6% non-zero elements. When we set m = 30 for FastLSH, the experimental results of
FastLSH, E2LSH and ACHash under different k and L are shown in Table 9. From the table, it can

19http://yann.lecun.com/exdb/mnist/
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Table 9: Results of E2LSH, FastLSH and ACHash over MNIST under different parameters

Methods Recall Time (s) Hashing (s) Indexing (s) k L w

E2LSH 0.844 0.00541 9.818 11.302 8 50 0.18
ACHash 0.853 0.00547 5.151 6.683 8 50 92.5
FastLSH 0.8545 0.00482 0.671 2.301 8 50 0.0325
E2LSH 0.799 0.00460 7.703 8.875 8 40 0.18
ACHash 0.809 0.00465 3.911 5.063 8 40 92.5
FastLSH 0.816 0.00439 0.542 1.828 8 40 0.0325
E2LSH 0.741 0.00352 6.365 7.307 8 30 0.18
ACHash 0.750 0.00360 3.328 4.339 8 30 92.5
FastLSH 0.748 0.00315 0.417 1.369 8 30 0.0325

be seen that FastLSH and E2LSH obtain comparable query accuracy, meaning it works very well for
sparse datasets. While for ACHash, the fixed sampling ratio and overhead in Hadamard transform
make it inferior to FastLSH. At the mean time, FastLSH can achieve up to 14.6 and 7.7 times faster
LSH computation compared with E2LSH and ACHash, respectively. As a result, FastLSH can
significantly reduce the end-to-end index construction time.

Note that for E2LSH package that we used Andoni (2005), ultrahigh-dimensional vectors are as-
sumed dense by default and all elements, regardless of whether it is zero or not, have to be com-
puted. That is why such high speedup in hashing was achieved for FastLSH. In addition, for sparse
ultrahigh-dimensional vectors, if the number of non-zero elements is still high after data preprocess-
ing, FastLSH can be used to handle these non-zero elements; otherwise, we use the following Fast
Johnson-Lindenstrauss (JL) transform.

Actually, for most practical applications, FastLSH is sufficient to handle sparse data as we have
shown with the MINIST dataset. However, in the case of datasets being pathologically sparse, we
can first apply the Fast JL transform to make the data dense similar to ACHash Dasgupta et al.
(2011). Here the Fast JL transform refers to the Hadamard transform, which is a unitary transforma-
tion, meaning that it preserves the nearest neighbor relationships of data points after transformation.
Then FastLSH performs random sampling and random projection for the dense data. Although these
operations are similar to ACHash, FastLSH retains the provable LSH property, which ACHash does
not.

C.6 MORE RESULTS FOR COMPARISON OF PROBABILITY DENSITY CURVES

Lemma 4.8 and Fact 4.9 provide a principled approach to quantitatively analyze how m affects the
difference between FastLSH and the classic LSH in terms of ϵ and λ, given the dataset characteristics
(the variance in the squared distances of coordinates for a pair of data items). By using this analytical
tool, it is easy for practitioners to determine the trade-off between hashing time (how much m is)
and desired performance level (how close FastLSH is to the standard LSH).

To visualize the similarity, we plot fs̃X(t) for different m under the maximum and minimum σ,
and the PDF of N (0, ms2

n ) in Figure 7 for all 12 datasets. The observations can be made from
these figures: (1) the distribution of s̃X matches very well with N (0, ms2

n ) for small σ; (2) for
large σ, fs̃X(t) differs only slightly from the PDF of N (0, ms2

n ) for all m, indicating that s is
the dominating factor in p(s, σ); (3) greater m results in higher similarity between fs̃X(t) and
N (0, ms2

n ), implying that FastLSH can always achieve almost the same performance as E2LSH by
choosing m appropriately.

C.7 COMPARISON OF ρ CURVES

To further validate the LSH property of FastLSH, we compare the important parameter ρ for
FastLSH and E2LSH in the case of m = 30. ρ is defined as the function of the approximation
ratio c, i.e., ρ(c) = log(1/p(s1))/log(1/p(s2)), where s1 = 1 and s2 = c. Note that ρ affects
both the space and time efficiency of LSH algorithms. For c in the range [1, 20] (with increments
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of 0.1), we calculate ρ using Matlab, where the minimal and maximal σ are collected for different
c (s). Plots of ρ(c) under different bucket widths for 12 datesets are given in Figure 8 and Figure 9.
Clearly, the ρ(c) curve of FastLSH matches very well with that of E2LSH, verifying that FastLSH
maintains almost the same LSH property with E2LSH even when m is relatively small.

C.8 EFFECTS OF ϵ AND λ

We list the values of ϵ and λ for differentm over 12 datasets in Table 10, where ϵ and λ are calculated
using the maximum, mean and minimum σ, respectively. Recall that smaller ϵ and λ are, FastLSH
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Figure 7: Comparison of probability density curves of N (0, ms2

n ) (ND) and s̃X under different m.

is more similar to E2LSH. As shown in Table 10, ϵ and λ decrease as m increases. Take Trevi as an
example, ϵ is equal to 0 and λ is very tiny (0.0001-0.000729), manifesting the equivalence between
fs̃X(t) and the PDF of N (0, ms2

n ).
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Table 10: ϵ and λ for different m

Datasets m = 15 m = 30 m = 45/60 m = n
ϵ λ ϵ λ ϵ λ ϵ λ

Cifar
max 0.567575 2.527575 0.287600 1.287600 0.114125 0.618225 0.000064 0.067664
mean 0.102716 0.575372 0.027539 0.277239 0.001994 0.120123 0 0.014617
min 0.019616 0.239671 0.001702 0.116014 0.000011 0.055001 0 0.006691

Sun
max 0.502360 2.218460 0.236626 1.084867 0.095099 0.546683 0.000006 0.051535
mean 0.022783 0.255107 0.001849 0.118130 0.000018 0.058099 0 0.006724
min 0 0.040401 0 0.020736 0 0.010000 0 0.001156

Gist
max 0.633640 2.853740 0.274502 1.234902 0.129940 0.677540 0 0.032400
mean 0.042122 0.340238 0.005183 0.152639 0.000133 0.074662 0 0.004624
min 0.000064 0.067664 0 0.038025 0 0.016926 0 0.001089

Trevi
max 0.013420 0.207020 0.001105 0.106081 0.000003 0.049287 0 0.000729
mean 0.000011 0.055236 0 0.029241 0 0.013924 0 0.000196
min 0 0.015876 0 0.008100 0 0.003969 0 0.000100

Audio
max 0.268000 1.208900 0.099004 0.561404 0.043520 0.346020 0.000033 0.062533
mean 0.033344 0.303017 0.003637 0.138767 0.000480 0.091021 0 0.020967
min 0.000022 0.059705 0 0.030765 0 0.021874 0 0.005329

Notre
max 0.341109 1.507509 0.143598 0.728823 0.074226 0.467355 0.004017 0.142401
mean 0.022783 0.255107 0.001902 0.118866 0.000172 0.077456 0 0.027225
min 0.000101 0.071925 0 0.036481 0 0.023716 0 0.008281

Glove
max 0.261530 1.183130 0.094131 0.543031 0.040065 0.331665 0.002362 0.124862
mean 0.003190 0.134234 0.000047 0.065072 0.000001 0.043265 0 0.019853
min 0.000025 0.060541 0 0.029929 0 0.020335 0 0.009409

Sift
max 0.294194 1.314294 0.098513 0.559554 0.057014 0.400410 0.001296 0.109537
mean 0.054265 0.389506 0.007185 0.167986 0.001509 0.113065 0 0.036864
min 0.003755 0.139916 0.000107 0.072468 0.000001 0.045370 0 0.016129

Deep
max 0.036744 0.317644 0.003841 0.140741 0.000463 0.090463 0 0.014400
mean 0.003047 0.132719 0.000044 0.064560 0.000001 0.043306 0 0.007569
min 0.000199 0.079160 0 0.039204 0 0.026374 0 0.004638

Random
max 0.077344 0.479300 0.015195 0.216796 0.003505 0.137461 0.000041 0.064050
mean 0.002824 0.130273 0.000038 0.063542 0.000001 0.042437 0 0.019044
min 0.000024 0.060049 0 0.029929 0. 0.019881 0 0.008649

Ukbench
max 0.692955 3.157855 0.361581 1.593681 0.217238 1.009338 0.039727 0.330248
mean 0.139183 0.712232 0.034502 0.308031 0.012672 0.202768 0.000056 0.066620
min 0.002895 0.131059 0.000041 0.064050 0.000001 0.042437 0 0.015376

ImageNet
max 0.466568 2.054168 0.217238 1.009338 0.119323 0.637723 0.004773 0.149173
mean 0.019125 0.237214 0.001336 0.110236 0.000107 0.072468 0 0.022201
min 0 0.033489 0 0.016641 0 0.011025 0 0.003481
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Figure 8: ρ curves under different bucket widths over datasets Random, Audio and Cifar, Deep,
Glove and Trevi.
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Figure 9: ρ curves under different bucket widths over datasets ImageNet, Notre, Sift, Sun, Ukbench
and Gist.
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