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Abstract

Bayesian optimization with Gaussian processes
(GP) is commonly used to optimize black-box func-
tions. The Matérn and the Radial Basis Function
(RBF) covariance functions are used frequently,
but they do not make any assumptions about the
domain of the function, which may limit their ap-
plicability in bounded domains. To address the
limitation, we introduce the Beta kernel, a non-
stationary kernel induced by a product of Beta
distribution density functions. Such a formulation
allows our kernel to naturally model functions
on bounded domains. We present statistical evi-
dence supporting the hypothesis that the kernel
exhibits an exponential eigendecay rate, based
on empirical analyses of its spectral properties
across different settings. Our experimental results
demonstrate the robustness of the Beta kernel in
modeling functions with optima located near the
faces or vertices of the unit hypercube. The ex-
periments show that our kernel consistently out-
performs a wide range of kernels, including the
well-known Matérn and RBF, in different prob-
lems, including synthetic function optimization
and the compression of vision and language mod-
els. Our implementation is available at https:
//github.com/imedslab/BetaKernel.

1 INTRODUCTION

Bayesian optimization (BO) is a well-founded approach for
global optimization of noisy black-box functions, which
are often expensive to evaluate. At its core, BO relies on
a surrogate model to approximate the objective function
and guide the search process efficiently. A Gaussian process
(GP) is commonly used as this surrogate due to its flexibility,
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Figure 1: Covariance matrices of the Matérn kernel and our Beta
kernel in the unit 1D domain. Different from the Matérn kernel,
the variation along the diagonal indicates the non-stationarity of
our kernel.

ability to quantify uncertainty, and capability to incorporate
prior knowledge through covariance functions (also called
kernels).

A GP is defined by its mean and covariance function. The
choice of kernel is critical in encoding prior knowledge
about the target function’s behavior. Among many available
kernels [Oh et al., 2018, Wilson and Adams, 2013, Duve-
naud et al., 2011, Jebara et al., 2004], the Matérn and Radial
Basis Function (RBF) kernels have been the most exten-
sively studied [Stein, 2012, Williams and Rasmussen, 2006,
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Srinivas et al., 2009, Santin and Schaback, 2016, Vakili
et al., 2021] and are widely adopted in practical applica-
tions [Pedregosa et al., 2011, Head et al., 2018, Gardner
et al., 2018] 1 due to their flexibility and smoothness proper-
ties. The RBF kernel, with its infinitely differentiable form,
is ideal for modeling smooth functions, while the Matérn
kernel provides adjustable smoothness through the ν param-
eter. Formally, the Matérn kernel is defined as [Rasmussen,
2003, Myers, 1994]

KMatérn(r) =
21−ν

Γ(ν)

(√
2ν

r

ℓ

)ν

Kν

(√
2ν

r

ℓ

)
, (1)

where r = ∥x− x′∥2, ν > 0 is a smoothness parameter, ℓ
is a positive length scale, Γ(·) is the Gamma function, and
Kν is a modified Bessel function [Abramowitz and Stegun,
1968]. When ν → ∞, the Matérn kernel is equivalent to the
RBF kernel, formulated as

KRBF(r) = exp

(
− r2

2ℓ2

)
. (2)

RBF and Matérn are defined on unbounded domains. How-
ever, in most practical applications, the objective function is
specified on bounded ones. The unawareness of the bound-
ary of these kernels may result in either over-exploration
(see Figure 3c) or neglecting boundary regions (see Fig-
ure 3d).

Both the kernels, together with the Newton-Girard Ad-
ditive (NGA) [Duvenaud et al., 2011] and Spectral Mix-
ture (SM) [Wilson and Adams, 2013] kernels, are isotropic
and stationary since they can be expressed as K(x,x′) =
K(∥x − x′∥),∀x,x′. However, it has been noted by Oh
et al. [2018] that such stationary kernels face challenges
with the boundary issue introduced by Swersky [2017], pri-
marily due to their lack of awareness regarding absolute
locations. To address this limitation, they proposed BOCK
with a cylindrical (CYL) kernel defined in a hypersphere.
Nevertheless, besides the CYL kernel, the high performance
of BOCK is also attributed to the input wrapping proposed
by Snoek et al. [2014], which is based on the cumulative
density function (CDF) of the Beta distribution.

In this study, we propose a non-stationary Beta distribution-
based kernel, thus the name Beta kernel, specifically de-
fined on unit hypercubes. Our kernel is induced from prod-
ucts of multiple Beta distribution density functions, each of
which naturally represents a wide range of functions defined
on [0, 1]. We empirically show that the eigenvalue decay
rate of our kernel is exponential, which is similar to RBF’s.

We argue that the GP benchmarks are typically performed
on synthetic test functions with optima located near the cen-
ter of the search space [Laguna and Marti, 2005, Molga
and Smutnicki, 2005, Back, 1996, Dixon, 1978, Hvarfner

1The Matérn kernel is the default choice in various GP libraries
such as Scikit-optimize, GPyTorch, and GPyOpt.

et al., 2024]. In a high-dimensional unit hypercube, while
the boundary volume becomes significantly larger than the
central volume, the volumes near the vertices are signifi-
cantly small (see the example in Sec. 3.2). Consequently,
while locating optima near the boundary is more challeng-
ing than in the central region, it is unlikely to sample data
points near the vertices. To evaluate this, we modify the test
function domains so that the optima are positioned near a
face or vertex of the unit hypercube. Our results demonstrate
that the proposed kernel is more robust than a wide range
of baselines – including RBF and Matérn – under these
boundary-focused settings across different test functions.

In addition, we conduct experiments on model compres-
sion tasks for deep vision and language models, including
Vision Transformer (ViT), Bidirectional encoder represen-
tations from transformer (BERT), Generative Pre-trained
Transformer 2 (GPT-2), and Decoding-enhanced BERT with
disentangled attention (DeBERTa). The results show that
our kernel substantially outperforms the baselines across
the compression tasks. Furthermore, our experiments also
demonstrate that the Beta kernel consistently surpasses the
Matérn kernel – the most competitive baseline – when com-
bined with various acquisition functions.

2 BETA KERNEL

2.1 PRELIMINARIES

Gaussian Process. A GP is defined as f ∼
GP(µ(x),K(x,x′)), with its mean function
µ(x) = E[f(x)], and covariance (kernel) function
K(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))]. Consider
a setting in which we are given a set of observations
Xt = (x1, . . . ,xt) and corresponding noisy outputs
yt = (y1, . . . , yt)

⊤, where yt = f(xt) + εt, and
εt ∼ N (0, σ2) are i.i.d. Gaussian noise. Then, the posterior
over f conditioned on the observations is also a GP whose
mean µt(x), covariance Kt(x,x

′), and variance σ2
t (x) are

formulated as

µt(x) = Kt(x)
⊤(K∗

t + σ2I)−1yt,

Kt(x,x
′) = K(x,x′)−Kt(x)

⊤(K∗
t + σ2I)−1Kt(x

′),

σ2
t (x) = Kt(x,x), (3)

where Kt(x) = [K(x1,x), . . . ,K(xt,x)]
⊤, and K∗

t =
[K(xi,xj)]

t
i,j=1 is the positive definite covariance matrix.

Beta Distribution. The probability density function of the
Beta distribution Beta(α, β) is defined on [0, 1] as

1

B(α, β)
xα−1(1− x)β−1, (4)



where x ∈ [0, 1], α, β > 0 and

B(α, β) =

∫ 1

0

sα−1(1− s)β−1ds =
Γ(α)Γ(β)

Γ(α+ β)
, (5)

is the beta function with Γ(·) denoting the gamma function.
In this work, we are interested in the case where α, β > 1,
which allows the mode to be well-defined as α−1

α+β−2 .

Probability product kernels. Let p and p′ denote prob-
ability distributions on a space S, and let ρ be a positive
constant. Assuming that pρ, p′ρ ∈ L2(S), the probability
product kernel between p and p′ is defined by Jebara et al.
[2004] as

Kprob(p, p′) =

∫
S
p(s)ρp′(s)ρds. (6)

When ρ = 1, the kernel simplifies to the expectation of
one distribution with respect to the other. In this case, it
becomes equivalent to a kernel defined over two correspond-
ing samples x and x′ drawn from the distributions p and p′,
respectively:

K(x,x′) =

∫
p(s)p′(s)ds = Ep[p

′(s)] = Ep′ [p(s)]. (7)

2.2 KERNEL DERIVATION

Let us first consider the one-dimensional case. Specifically,
∀x, x′ ∈ [0, 1], the Beta product kernel (or simply, Beta ker-
nel), is constructed as a probability product kernel [Jebara
et al., 2004] with respect to the Beta distribution as follows

Kβ(x, x
′) = Kβ((α, β), (α

′, β′))

= C

∫ 1

0

sα−1(1− s)β−1sα
′−1(1− s)β

′−1ds

= C

∫ 1

0

sα+α′−2(1− s)β+β′−2ds,

where x and x′ represent the modes of the two Beta dis-
tributions, respectively, and the normalization term C =

1
B(α,β) · 1

B(α′,β′) . The shape parameters α and β are con-
nected to the modes via a common smoothing parameter h,
such that α = 1+ x

h and β = 1+ 1−x
h . To ensure the unique

existence of the modes x and x′, we require that α, β > 1,
which implies h > 0.

Based on the definition of the Beta function in Eq. (5) and
given that α+ β = α′ + β′ = 2 + 1

h , it follows that

Kβ(x, x
′) =

B(α+ α′ − 1, β + β′ − 1)

B(α, β)B(α′, β′)

=
Γ(α+ β)Γ(α′ + β′)Γ(α+ α′ − 1)Γ(β + β′ − 1)

Γ(α)Γ(β)Γ(α′)Γ(β′)Γ(α+ α′ + β + β′ − 2)

=
Γ2( 1h + 2)

Γ( 2h + 2)

Γ(α+ α′ − 1)Γ(β + β′ − 1)

Γ(α)Γ(β)Γ(α′)Γ(β′)
.

By assuming that all dimensions are independent of each
other, the definition of the Beta kernel in the d-dimensional
space can be easily extended as the product over d dimen-
sions. Specifically, ∀x,x′ ∈ [0, 1]d, we define the Beta
kernel as

Kβ(x,x
′) = C̃

d∏
i=1

Γ(αi + α′
i − 1)Γ(βi + β′

i − 1)

Γ(αi)Γ(βi)Γ(α′
i)Γ(β

′
i)

, (8)

where

C̃ =

d∏
i=1

Γ2
(

1
hi

+ 2
)

Γ
(

2
hi

+ 2
) . (9)

2.3 PROPERTIES

Validity of Beta product kernel To ensure that the Beta
product kernel is a valid kernel function, it must be positive
semidefinite. This property guarantees that the resulting
covariance matrix is symmetric and all its eigenvalues are
non-negative, which is essential for its use in kernel-based
methods such as support vector machines and Gaussian
processes. Fortunately, this property follows from a more
general result concerning probability product kernels. In
particular, Theorem 1 guarantees the validity of any kernel
constructed as a probability product kernel, including the
Beta product kernel.

Theorem 1. K(x,x′) =
∫
S p(s | x)ρp(s | x′)ρds is posi-

tive semidefinite for ρ > 0.

Proof. We follow the definition of a Mercer kernel and con-
sider all possible x1, . . . ,xm and real numbers c1, . . . , cm.
To show that K(x,x′) is a valid kernel, we need to prove
that

∑m
i=1

∑m
j=1 cicjK(xi,xj) ≥ 0. We can see that

m∑
i=1

m∑
j=1

cicjK(xi,xj) (10)

=

m∑
i=1

m∑
j=1

cicj

∫
S
p(s | xi)

ρp(s | xj)
ρds (11)

=

∫
S


m∑
i=1

m∑
j=1

cicjp(s | xi)
ρp(s | xj)

ρ

 ds. (12)

Now, we focus on the inner sums under the integral, and
express that

m∑
i=1

m∑
j=1

cicjp(s | xi)
ρp(s | xj)

ρ (13)

=

m∑
i=1

[cip(s | xi)
ρ]2 + 2

m∑
i̸=j

[cip(s | xi)
ρ][cjp(s | xj)

ρ]

(14)

=

[
m∑
i=1

cip(s | xi)
ρ

]2

≥ 0. (15)



The last equation (14)–(15) holds due to the identity
(
∑m

i=1 ai)
2
=

∑m
i=1 a

2
i + 2

∑m
i ̸=j aiaj , with ai = cip(s |

xi)
ρ. Since the integrand is non-negative for all s, the entire

integral is non-negative, which completes the proof.

Non-stationarity. Due to the formulation in (8), the pro-
posed kernel Kβ(x,x

′) cannot be expressed solely as a
function of x− x′, which indicates its non-stationarity. To
illustrate this, we compare the Beta kernel to the Matérn
kernel on the unit 1D domain in Figure 1. Whereas RBF and
Matérn have constant diagonals, our Beta kernel’s diagonal
varies depending on h.

Diagonal. The diagonal of the covariance matrix w.r.t. the
Beta kernel is characterized as

Kβ(x,x) = C̃

d∏
i=1

Γ(2xi

hi
+ 1)Γ(2 1−xi

hi
+ 1)

Γ2(xi

hi
+ 1)Γ2( 1−xi

hi
+ 1)

. (16)

We derive an upper bound of Kβ(x,x) in Proposition 2.

Proposition 2. Assume that hi = h ∀i ∈ [d], ∀x ∈ [0, 1]d,
we can bound Kβ(x,x) as follows

Kβ(x,x) ≤ 23d−
2d
h

(
1

h
+ 1

)d (
1

hπ
+

3

2π

) d
2

. (17)

Proof. The full proof is provided in Appendix A.

2.4 NUMERICAL ANALYSES OF EIGENVALUE
DECAY
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Figure 2: Spectral decay for the RBF (ℓ = 1), Matérn (ν = 2.5),
and Beta kernels on 3D unit hypercube.

In this section, we present numerical analyses to examine the
eigenvalue decay rate of the Beta kernel, which is associated
with the smoothness of the functions that the GP can model.
In addition, the eigendecay rate is linked to the regret bound
of the kernel [Srinivas et al., 2009, Vakili et al., 2021]. Our
analysis is conducted with reference to the well-established

Table 1: P-values from the statistical analysis of the exponential
eigendecay rate of the proposed kernel across different dimensions
and bandwidths.

h d = 5 d = 10 d = 20 d = 50

0.1 7.7×10−36 1.4×10−31 3.6×10−32 1.0×10−32

0.25 1.9×10−43 5.6×10−36 2.4×10−33 5.6×10−34

0.5 1.3×10−40 1.1×10−31 1.0×10−33 9.7×10−35

0.75 2.3×10−37 9.7×10−28 1.1×10−25 5.0×10−35

1 2.5×10−35 2.9×10−26 1.5×10−21 2.4×10−33

1.5 7.1×10−33 5.0×10−25 1.4×10−19 2.3×10−17

eigendecay rates of the Matérn and RBF kernels, which are
O(m− 2ν+d

d ) and O(exp(−m1/d)), respectively [Santin and
Schaback, 2016, Belkin, 2018].

We compute the expected spectrum decay using the follow-
ing procedure:

1. We generated 300 random data matrices Xi of size
100× d .

2. For every Xi, we generated the corresponding kernel
matrix Ki ∈ Rd×d by computing kℓ(·, ·) between all
the rows of Xi.

3. We computed the sorted sets of eigenvalues for all Ki

and then averaged them, resulting in the corresponding
expected spectrum for the most important kernels, sev-
eral hyperparameter settings, and problem dimensions.

In Figure 2, we analyze the spectral decay of the RBF,
Matérn, and Beta kernels on the 3D unit hypercube. Ac-
cordingly, there is a strong correlation between the band-
width parameter h and the eigenvalue decay rate of the Beta
kernel. With h ≤ 0.25, the Beta kernel shows a slower
eigenvalue decay rate compared to the Matérn kernel with
ν = 2.5. Additionally, in the logarithmic scale of Figure 2,
the eigendecay of the Beta kernel appears approximately lin-
ear, which suggests a potential exponential decay rate. When
h = 1.5, its eigendecay closely matches the exponential rate
of the RBF kernel.

We further conduct statistical analyses to assess whether
the eigendecay of the Beta kernel follows an expo-
nential trend. Specifically, we consider various set-
tings with d ∈ {5, 10, 20, 50} and bandwidth h ∈
{0.1, 0.25, 0.5, 0.75, 1, 1.5}. After computing the expected
spectrum for each setting, we fit a linear regression model
to examine the relationship between log λj and j, where λj

denotes the eigenvalue and j is its index. If the eigendecay
is exponential, this relationship should be statistically sig-
nificant. As shown in Table 1, the p-values across various
settings are significantly low, providing strong evidence in
support of our hypothesis.



Table 2: Models and datasets for the compression task.

Dataset Task Description Model Params d

ImageNet Visual object classification ViT 87M 72
SQuAD Question-answering GPT-2 124M 48
SQuAD Question-answering BERT 109M 72
MNLI/ RTE Natural language inference

DeBERTa 184M 14
QNLI Sentence pair classification
MRPC Similarity and paraphrase

3 EXPERIMENTS

Our main focus of this section is to demonstrate fair and di-
rect comparisons between the proposed Beta kernel and two
widely-used stationary kernels – RBF and Matérn – in BO
using GP. For that purpose, we conducted our experiments
on both synthetic data and real-world vision and natural lan-
guage data. Additionally, we investigated the compatibility
of the mentioned kernels with a wide range of acquisition
functions such as UCB, PI [Kushner, 1964], EI [Jones et al.,
1998], corrected PI (PI_C) [Ma et al., 2019], and corrected
EI (EI_C) [Zhou et al., 2024]. Furthermore, we intuitively
illustrated behavioral differences of our kernel compared to
RBF and Matérn.

3.1 EXPERIMENTAL SETUP

Optimization Tasks. For synthetic data, we performed
the global optimization on the Levy test function with
d ∈ {2, 4, 8} [Laguna and Marti, 2005]. For vision model
compression, we aimed to compress the Vision Transformer
(ViT) architecture [Dosovitskiy, 2020] on the 1k-ImageNet
dataset [Deng et al., 2009]. For language model com-
pression, we performed compression on the BERT (large)
model [Devlin, 2018], and the GPT-2 model [Radford et al.,
2019] on the SQuAD v1 dataset [Rajpurkar et al., 2016]. In
addition, we compressed on DeBERTa-v3 [He et al., 2020]
on four datasets – namely MNLI [Williams et al., 2017],
RTE [Dagan et al., 2005, Bar-Haim et al., 2006, Giampic-
colo et al., 2007, Bentivogli et al., 2009], QNLI [Rajpurkar
et al., 2016, Wang, 2018], and MRPC [Dolan and Brock-
ett, 2005] – in the GLUE benchmark [Wang, 2018]. The
detailed description is presented in Table 2.

Implementation Details. Our implementation was based
on the following open-source libraries: PyTorch [Paszke
et al., 2019], HuggingFace, BoTorch [Balandat et al., 2020],
and GPyTorch [Gardner et al., 2018]. The training processes
were run on NVIDIA V100 GPUs. Each experiment was
repeated 10 times with different random seeds, then its mean
and standard error were reported. The lengthscales of the
RBF and Matérn kernels, along with the bandwidth of the
Beta kernel, were learned through maximum marginal like-
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Figure 3: Global optimization on the 2D Levy test function, where
the global minimum is located at (1, 1). (b) The colored numbers
represent optimization iterations corresponding to different kernel
functions. (c-e) Convergence behavior over 300 iterations: (c) The
RBF kernel shows over-exploration, (d) the Matérn kernel tends to
neglect boundary regions, and (e) our Beta kernel achieves a more
balanced trade-off between exploration and exploitation.

lihood during training.

Baselines. Besides the two well-known kernels RBF
and Matérn, we compared our kernel to Spectral Mixture
(SM) [Wilson and Adams, 2013], Newton-Girard Additive
(NGA) [Duvenaud et al., 2011], and Cylindrical (CYL) [Oh
et al., 2018] kernels.

3.2 GLOBAL OPTIMIZATION ON SYNTHETIC
TEST FUNCTIONS

Behavioral Intuition on Levy Function. We utilized the
GP-UCB algorithm for the minimization. We initially se-
lected 3 · d data points using the Sobol’s algorithm [Sobol’,
1967, Owen, 1998], and performed the optimization in 300
iterations.

We graphically depict the 2-dimensional Levy test func-
tion with the global minimum at (1, 1) in Figure 3. The
convergence behaviors for different kernels are shown in
Figure 3b. Due to the Beta kernel’s characteristic as shown
in Figure 1, our kernel prioritized exploring the two corner
points (−10,−10) and (10, 10) as well as the boundaries of
the domain. Detailed convergence trajectories are further il-
lustrated in Figures 3c, 3d, and 3e. Whereas the RBF kernel
exhibited a tendency for over-exploration across the entire
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Figure 5: Comparison between GP using the Matérn kernel (ν =
2.5), and our Beta kernel on the Levy test function.

domain, the Matérn kernel favored the central region, albeit
largely neglecting the domain boundaries. Different from
the two references, our kernel with its awareness of domain
boundaries maintained a reasonable ratio of exploration and
exploitation. In Figure 4, we illustrate the convergence of
the smoothing parameters h1 and h2. By maximizing the
marginal likelihood, these parameters were automatically
learned, converging to distinct values.

In Figure 5, we investigated the convergences of the Beta
and Matérn kernels on d-dimensional Levy test function
with d ∈ {4, 8}. To demonstrate the awareness of boundary
regions, we computed the L∞-based normalized distance to
the boundary, formulated as ∆boundary = 1− 2∥x̃− c∥∞,

where x̃ =
(

x1−m1

M1−m1
, . . . , xd−md

Md−md

)
is a normalized ver-

sion of x, mi and Mi represent the lower and upper bounds
of the i-th dimension, and c = ( 12 , · · · , 1

2 ) is the center
of the unit hypercube. Since the optimal solution of the
Levy function lies at (1, 1, . . . , 1)⊤, near the domain center,
Matérn demonstrated an advantage in the early iterations.

Table 3: Performance comparison across different settings (d =
20). Setting 1: global solutions near the center. Setting 2: first
global solution near the margin. Setting 3: first global solution
near a vertex. † denotes experiments performed with data warping
technique from [Snoek et al., 2014].

Kernel Griewank Ackley Branin Hartmann Levy

Setting 1: Global optimum near the center

RBF 342.0±22.1 20.4±0.1 31.5±0.0 -0.8±0.0 141.0±15.0

SM 277.0±10.3 19.8±0.1 16.5±1.1 -1.4±0.1 79.4±8.8

NGA 216.7±59.3 20.2±0.2 18.0±1.5 -0.9±0.1 55.1±6.6

CYL 296.3±33.8 19.2±1.2 24.2±1.7 -1.2±0.0 131.0±11.8

Matérn 22.7±1.6 17.4±0.3 5.5±0.3 -2.4±0.1 10.6±1.4

Beta 122.3±11.1 20.7±0.0 7.0±0.6 -2.2±0.1 9.2±0.3

Setting 2: Global optimum near a face

RBF 326.5±14.9 20.3±0.1 22.3±2.0 -1.1±0.0 104.9±8.0

SM 279.2±7.7 19.5±0.2 18.3±1.1 -1.4±0.1 81.6±5.6

NGA 216.0±36.5 19.4±0.4 24.4±3.9 -1.2±0.1 70.6±10.6

CYL 275.9±28.0 20.3±0.1 26.2±3.0 -1.1±0.1 101.8±6.7

Matérn 24.7±2.3 17.3±0.3 4.1±0.3 -1.6±0.0 11.2±1.7

Beta 20.4±0.2 10.1±0.0 15.0±1.1 -2.0±0.1 2.2±0.1

Setting 3: Global optimum near a vertex

RBF 309.9±16.5 19.9±0.2 58.6±5.5 -0.8±0.1 87.2±12.0

RBF† 289.5±27.7 19.9±0.1 52.1±6.2 -0.8±0.1 83.2 ±8.4

SM 189.1±36.5 20.0±0.1 48.9±6.0 -0.9±0.0 69.4±3.6

NGA 112.3±34.7 19.6±0.3 8.5±1.7 -1.2±0.1 68.4±9.6

CYL 278.5±29.2 20.3±0.1 64.0±5.4 - 69.3±3.3

Matérn 21.1±1.8 17.0±0.3 5.9±0.9 -2.1±0.0 24.6±3.6

Matérn† 44.2±4.2 16.9±0.2 10.1±1.2 -2.1±0.1 19.5±2.3

Beta 20.3±6.4 13.9±0.7 5.4±1.6 -2.2±0.1 6.9±0.8

The changes of ∆boundary during the training shown in Fig-
ure 5b quantitatively indicate the awareness of the boundary
regions of our kernel, which is consistent with the observa-
tion in Figure 3 and Table 3. The higher dimensional the
domain was, the more iterations were needed to explore the
domain boundaries. After exploring the hypercube’s bound-
aries the Beta kernel regained its performance in the later
stages.

Impact of Optima Location on GP Performance. We
considered the unit hypercube with d = 20. Let ε be a mar-
gin, we could split the unit hypercube into three partitions:
(i) central volume, denoted by Vc with |Vc| = (1 − 2ε)d,
(ii) ε-size 2d sub-hypercubes near vertices, represented by
Vv with |Vv| = (2ε)d, (iii) the remaining volumes near the
faces, denoted by Vf with |Vf | = 1− (1−2ε)d− (2ε)d. By
fixing ε = 0.05, for instance, then we had |Vc| ≈ 0.1216,
|Vv| = 10−20, and |Vf | ≈ 0.8784. Originally, the syn-
thetic test functions – Griewank, Ackley, repeated Branin,
repeated Hartmann6, and Levy – have optimal solutions
near the center of the unit hypercube (setting 1). To vali-
date the impact of optima location on the optimization, we
cropped the domains of those functions to enforce one of
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Figure 6: Model compression comparisons between GP using the
RBF, Matérn (ν = 2.5), and Beta kernels on the ImageNet and
SQuAD datasets. The common acquisition function is UCB.

Table 4: Objective comparison of different kernels across the
model compression tasks. Each value represents the combined
error rate and compression rate (w = 1), as defined in Eq. (18).

Kernel
ViT BERT GPT-2 DeBERTa

ImageNet SQuAD SQuAD MNLI

RBF 0.671±0.005 0.468±0.005 0.571±0.004 0.257±0.006

SM 0.665±0.004 0.496±0.005 0.560±0.003 0.294±0.004

NGA 0.680±0.002 0.483±0.006 0.581±0.001 –

CYL 0.684±0.008 0.515±0.012 0.570±0.005 0.304±0.004

Matérn 0.651±0.005 0.461±0.002 0.582±0.003 0.246±0.008

Beta 0.478±0.006 0.319±0.007 0.401±0.008 0.124±0.001

the optima close to a face (setting 2) or a vertex (setting
3) of the unit hypercube. Specifically, we shifted xmin

1 such
that x∗

1 − xmin
1 = ε(xmax

1 − xmin
1 )x∗ for setting 2. For setting

3, we ensured that x∗
i − xmin

i = ε(xmax
i − xmin

i ),∀i ∈ [d],
where x∗ is the first optimum.

We present the results of the three settings in Table 3. Of
all settings, the Matérn kernel was the most competitive
baseline. In setting 1, Matérn achieved the highest objec-
tive values in 4 out of 5 test functions, while our kernel
was the second-best in most of the cases. The proposed
kernel notably showed its strength in settings 2 and 3 by
outperforming all the baselines in 9 out of 10 test functions.

3.3 VISION AND LANGUAGE MODEL
COMPRESSION

Compression Task Description. We utilized the
LoSparse method [Li et al., 2023], which was originally
designed to compress linear layers in transformer-based lan-
guage models using low-rank and sparse approximation. A
linear layer is expressed as Y = XW where W ∈ Rd1×d2

is learnable parameters, X ∈ R1×d1 is input and output
features, and Y ∈ R1×d2 is the output. LoSparse performs
both low-rank decomposition and sparse approximation
on W, formulated as W = UV + S with U ∈ Rd1×r,

Table 5: Performance of different kernels in terms of FLOPs,
F1 score, and accuracy. FLOPs saving is calculated as (original
FLOPs - compressed FLOPs) / original FLOPs.

(a) FLOPs and F1 score comparison

Kernel FLOPs FLOPs saving (%) F1 (%)

Original 1.5T 0
RBF 638G 57.5 86.06
Matern 626G 58.3 86.47
Beta 349G 76.7 86.44

(b) FLOPs and accuracy comparison

Kernel FLOPs FLOPs saving (%) Accuracy (%)

Original 1.08T 0
RBF 450G 58.4 74.26
Matern 444G 58.9 74.34
Beta 261G 75.8 74.29
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Figure 7: DeBERTa-v3 compression comparison between GP
using the RBF kernel, the Matérn kernel (ν = 2.5), and our Beta
kernel on different tasks in the GLUE benchmark (d = 14). The
common acquisition function is UCB.

V ∈ Rr×d2 , and S ∈ Rd1×d2 . In [Li et al., 2023], the low
ranks r of all linear layers were identical and independent
of layer indices. In our work, we utilized BO with GP to
search for the global optimal set of ranks for all linear
layers. Precisely, the model compression is formulated as a
multiple objective optimization as follows

x∗ = argmin
x∈[0,1]d

[w · R(x) + L(x)] , (18)

where x represents the d-dimensional vector of low ranks,
R(·) is the compression rate compared to the original model,
L(·) is the error rate of the compressed model, and w is a
positive coefficient.

In practice, we constrained xi ∈ [0.05, 0.95],∀i ∈ [d], and
set w = 1. We initially sampled 5 data points using the
Sobol’s algorithm [Sobol’, 1967, Owen, 1998], and per-
formed the optimization in 30 iterations. After obtaining
each compressed version of a model, we fine-tuned it for a
varying number of iterations based on the evaluation cost
(see Table S1).
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Figure 8: DeBERTa-v3 compression (d = 14) comparison be-
tween GP using the Matérn kernel (ν = 2.5) and our Beta kernel
on the MNLI task of GLUE.

ViT, GPT-2, and BERT Compression. For this set of
experiments, we employed UCB as the common acquisition
function. In Figure 6 and Table 4, we present the compres-
sion results on the ViT, GPT-2, and BERT models. Overall,
Matérn was the most competitive baseline across the tasks
(see Table 4). In Figure 6, while the difference between
RBF and Matérn was insignificant, the Beta kernel enabled
BO with GP to achieve substantially better compression
objectives compared to the two well-known baselines across
the three settings. Specifically, when compressing ViT on
ImageNet, utilizing the Beta kernel yielded an objective
of 0.478 ± 0.006, which was 0.193 and 0.172 better than
RBF and Matérn, respectively. For the GPT-2 compression
task, our Beta kernel achieved an objective of 0.401±0.008,
outperforming RBF and Matérn with margins of 0.170 and
0.181, respectively. For BERT compression, our method
reached an objective of 0.319±0.007, substantially surpass-
ing RBF and Matérn by 0.147 and 0.142, respectively.

In Table 5, we further analyzed individual metrics in the op-
timization objective. In both tasks, the advantage of the Beta
kernel primarily came from the compression rate improve-
ment. Compared to Matérn, our kernel maintained insignifi-
cant trade-offs of performance for the gains of 17.3% and
14.09% in compression rate on ViT and BERT, respectively.
Our compressed models were 14.79 and 43.68 times more
computationally efficient than the original ViT and BERT,
respectively.

DeBERTa-v3 Compression. The results of compressing
DeBERTa-v3 on the four tasks from the GLUE bench-
mark are presented in Figure 7 and part of Table 4. On the
MNLI dataset, the Matérn kernel was the strongest baseline
competitor. The proposed Beta kernel achieved objective
scores of 0.124 ± 0.001, 0.198 ± 0.007, 0.087 ± 0.000,
and 0.133± 0.001 on MNLI, RTE, QNLI, and MRPC, re-
spectively, which consistently outperformed both RBF and
Matérn kernels. The objective gaps between our kernel and
the Matérn kernel were 0.08, 0.127, 0.075, and 0.123 on
MNLI, RTE, QNLI, and MRPC, respectively.

We further examined the combinations of the Matérn and

Beta kernels against various acquisition functions in the
MNLI task (see Figure 8). Overall, the Beta kernel achieved
substantially better objective scores than the baseline across
all five acquisition functions. While UCB and corrected
EI were the most compatible acquisition functions for the
Matérn kernel, our kernel demonstrated a clear advantage
when paired with UCB. Specifically, the Beta kernel with
UCB obtained an objective score of 0.133, outperforming
its combinations with PI, corrected PI, EI, and corrected
PI by 0.021, 0.023, 0.033, and 0.038, respectively. When
using UCB, the Beta kernel outperformed the Matérn kernel
by 0.08.

Learned Compression Strategy Analysis. In Figure 9,
we graphically demonstrate the kernel density estimates
(KDEs) of {xi}i∈[d] during training. To properly address
the boundary issue of KDE on these bounded domains, we
employed the Beta KDE [Chen, 1999]. On both the vision
and language models, we observed that the two reference
kernels tended to moderately compress all linear layers.
As a result, the mean of each estimated density was cen-
tered around 0.5. In contrast, the Beta kernel selected a
small set of relevant layers, applying slight compression
to them while strongly suppressing the irrelevant ones (see
Figures 9g and 9h). Given that our kernel’s compression
outperformed the two baseline kernels in Table 5, it implies
that the optimal solution to model compression may lie near
the boundaries of the unit hypercube, which played to the
strengths of the Beta kernel.

4 RELATED WORK

RBF and Matérn Kernels. Various studies have been con-
ducted to derive the regret bounds of the RBF and Matérn
kernels [Srinivas et al., 2009, Scarlett et al., 2017, Scar-
lett, 2018, Belkin, 2018, Santin and Schaback, 2016, Cai
and Scarlett, 2021, Vakili et al., 2021]. The key distinction
between the two kernels lies in their rates of eigenvalue
decay (termed eigendecay). The RBF kernel exhibits an
exponential decay of eigenvalues, while the Matérn ker-
nel’s eigenvalues decay at a polynomial rate [Vakili et al.,
2021] (see Figure 2). In this work, we numerically show that
the proposed Beta kernel’s eigendecay rate is exponential,
which is similar to RBF’s.

Non-stationary Kernels. Higdon et al. [1999] introduced
a spatially evolving family of smoothing kernels on R2. Pa-
ciorek and Schervish [2003] extended the Matérn kernel
into a non-stationary version on Rd. Remes et al. [2017]
proposed the non-stationary generalized spectral mixture
kernel with input-dependent GP frequency surfaces. A com-
mon characteristic of these non-stationary kernels is that
they are all defined on unbounded domains. In contrast, our
Beta kernel is constructed from products of Beta distribu-
tions, which allows it to naturally capture a wide variety of
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Figure 9: (a-f) Convergence comparison between different kernels. The rows (a-c) and (d-f) correspond to the ViT, and BERT compression
tasks, respectively. The blue, green, orange, and red curves indicate the density estimates at iterations 1, 10, 20, and 30, respectively. ∗
represents argmint∈[T ] f(xt) with T = 30, and the dashed curves are the corresponding density estimates. (g-h) Detailed compression
results using the Beta kernel. Q, K, V, and FC indicate “query”, “key”, “value”, and fully connected layers, respectively.

smooth functions within bounded unit hypercubes. Such a
formulation gives the Beta kernel a distinct advantage in
being more sensitive to boundary regions.

5 CONCLUSION

We present a novel non-stationary kernel constructed from
products of Beta probability density functions, whose close
form is a product of Gamma functions. We provide empirical
evidence indicating that the proposed kernel’s eigendecay
rate is exponential. Such an eigendecay rate is similar to
RBF’s, which was proved to have sub-linear regret bound
by Vakili et al. [2021]. However, a primary limitation of
our study is the absence of a formal regret bound for the
proposed kernel. Future work should prioritize deriving
these theoretical guarantees to deepen our understanding
of the algorithm’s performance and enhance its robustness.
Our experiments indicate that the Beta kernel is robust in
modeling functions with optima near faces or vertices of
the unit hypercube. We show that our kernel substantially
outperforms the two well-known kernels – RBF and Matern
– on synthetic data as well as the model compression tasks.
Our codebase is made publically available at https://
github.com/imedslab/BetaKernel.
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Table S1: Training details of different models.

Model Training Steps Batch Size Time per Evaluation Num of Training Samples
GPT-2 512 25 55 mins 12,800
BERT 256 100 40 mins 25,600
DeBERTa-v3 256 100 30 mins 25,600
ViT 1 epoch 200 7 mins Full training set

A PROOF OF UPPER BOUND OF Kβ(x,x)

A.1 PROOF OF LEMMA 1

Lemma 1. For gamma function Γ(·), we have that

Γ(2x+ 1)

Γ2(x+ 1)
=

22xΓ(x+ 1
2
)

√
πΓ(x+ 1)

(1)

Proof. We start by utilizing the duplication formula for the Gamma function, which states:

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z)

Applying the duplication formula to our specific case by setting z = x+ 1
2 , we get:

Γ

(
x+

1

2

)
Γ(x+ 1) = 2−2x

√
πΓ(2x+ 1).

Dividing both sides by Γ2(x+ 1), we obtain:

Γ(2x+ 1)

Γ2(x+ 1)
=

22xΓ
(
x+ 1

2

)
√
πΓ(x+ 1)

.

which completes the proof.

*Equal last author
†Equal last author
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A.2 PROOF OF LEMMA 2

Lemma 2. For x ≥ 0 and 0 < s < 1, it holds that:(
2

2x+ 1

) 1
2

≤ Γ(x+ 1
2 )

Γ(x+ 1)
≤ 2.

Proof. The Wendel’s inequality is stated as(
z

z + s

)1−s

≤ 1

zs
· Γ(z + s)

Γ(z)
≤ 1, (2)

where z > 0 and s ∈ (0, 1). When s = 1
2 , it is equivalent to

1 ≤ z
1
2

Γ(z)

Γ(z + 1
2 )

≤
(
z + 1

2

z

) 1
2

(3)

z−
1
2 ≤ Γ(z)

Γ(z + 1
2 )

≤ z−
1
2

(
1

2z
+ 1

) 1
2

. (4)

Apply the inequality with z = x+ 1
2 and s = 1

2 , we have that(
2

2x+ 1

) 1
2

≤ Γ
(
x+ 1

2

)
Γ (x+ 1)

≤
(
x+

1

2

)− 1
2
(

1

2x+ 1
+ 1

) 1
2

(5)

=

[
2

2x+ 1

(
1

2x+ 1
+ 1

)] 1
2

=: g(x). (6)

As g(x) is a decreasing function on [0,∞), thus g(0) = maxx≥0 g(x) = 2, which concludes the proof.

A.3 PROOF OF PROPOSITION 1

Proposition 3. Kβ(x,x) = O(22d−
2d
h h− 3d

2 ),∀x ∈ [0, 1]d.

Proof. For any x = (x1, . . . , xd) ∈ [0, 1]d, Kβ(x,x) is expressed as

Kβ(x,x) = C

d∏
i=1

Γ(2xi

hi
+ 1)Γ(2 1−xi

hi
+ 1)

Γ2(xi

hi
+ 1)Γ2( 1−xi

hi
+ 1)

,

where

C =
Γ2( 1

hi
+ 2)

Γ( 2
hi

+ 2)
. (7)

By utilizing Lemma 1 with xi

hi
and 1−xi

hi
, we have that

Kβ(x,x) = C

d∏
i=1

2
2

xi
hi

+2(1− xi
hi

)
Γ(xi

hi
+ 1

2 )Γ(
1−xi

hi
+ 1

2 )

πΓ(xi

hi
+ 1)Γ( 1−xi

hi
+ 1)

(8)

= C

d∏
i=1

4

π

Γ(xi

hi
+ 1

2 )Γ(
1−xi

hi
+ 1

2 )

Γ(xi

hi
+ 1)Γ( 1−xi

hi
+ 1)

(9)

When applying Lemma 2, we have that
Γ(xi

hi
+ 1

2 )Γ(
1−xi

hi
+ 1

2 )

Γ(xi

hi
+ 1)Γ( 1−xi

hi
+ 1)

≤ 4 (10)



Therefore, we can derive that

Kβ(x,x) ≤
16d

πd

d∏
i=1

Γ2( 1
hi

+ 2)

Γ( 2
hi

+ 2)
(11)

=
16d

πd

d∏
i=1

( 2
hi

+ 2)Γ2( 1
hi

+ 2)

Γ( 2
hi

+ 2 + 1)
by Γ(x+ 1) = xΓ(x) (12)

=
16d

πd

d∏
i=1

( 2
hi

+ 2)
√
πΓ( 1

hi
+ 2)

2
2( 1

hi
+1)

Γ( 1
hi

+ 3
2 )

by Lemma 1 with x =
1

hi
+ 1 (13)

=
22d

π
d
2

d∏
i=1

( 2
hi

+ 2)Γ( 1
hi

+ 2)

2
2
hi Γ( 1

hi
+ 3

2 )
(14)

≤ 23d

π
d
2

d∏
i=1

( 1
hi

+ 1)( 1
hi

+ 3
2 )

1
2

2
2
hi

by Lemma 2
Γ( 1

hi
+ 2)

Γ( 1
hi

+ 3
2 )

≤
(

1

hi
+

3

2

) 1
2

(15)

= 23d−
2d
h

(
1

h
+ 1

)d (
1

hπ
+

3

2π

) d
2

(16)

Therefore, we conclude the proof.
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