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ABSTRACT

Adversarial training (AT) is proved to reliably improve network’s robustness
against adversarial data. However, current AT with a pre-specified perturbation
budget has limitations in learning a robust network. Firstly, applying a pre-
specified perturbation budget on networks of various model capacities will yield
divergent degree of robustness disparity between natural and robust accuracies,
which deviates from robust network’s desideratum. Secondly, the attack strength
of adversarial training data constrained by the pre-specified perturbation budget
fails to upgrade as the growth of network robustness, which leads to robust over-
fitting and further degrades the adversarial robustness. To overcome these limita-
tions, we propose Strength-Adaptive Adversarial Training (SAAT). Specifically,
the adversary employs an adversarial loss constraint to generate adversarial train-
ing data. Under this constraint, the perturbation budget will be adaptively adjusted
according to the training state of adversarial data, which can effectively avoid ro-
bust overfitting. Besides, SAAT explicitly constrains the attack strength of training
data through the adversarial loss, which manipulates model capacity scheduling
during training, and thereby can flexibly control the degree of robustness dispar-
ity and adjust the tradeoff between natural accuracy and robustness. Extensive
experiments show that our proposal boosts the robustness of adversarial training.

1 INTRODUCTION

Current deep neural networks (DNNs) achieve impressive breakthroughs on a variety of fields such
as computer vision (He et al., 2016), speech recognition (Wang et al., 2017), and NLP (Devlin et al.,
2018), but it is well-known that DNNs are vulnerable to adversarial data: small perturbations of the
input which are imperceptible to humans will cause wrong outputs (Szegedy et al., 2013; Goodfellow
et al., 2014). As countermeasures against adversarial data, adversarial training (AT) is a method for
hardening networks against adversarial attacks (Madry et al., 2017). AT trains the network using
adversarial data that are constrained by a pre-specified perturbation budget, which aims to obtain the
output network with the minimum adversarial risk of an sample to be wrongly classified under the
same perturbation budget. Across existing defense techniques, AT has been proved to be one of the
most effective and reliable methods against adversarial attacks (Athalye et al., 2018).

Although promising to improve the network’s robustness, AT with a pre-specified perturbation bud-
get still has limitations in learning a robust network. Firstly, the pre-specified perturbation budget is
inadaptable for networks of various model capacities, yielding divergent degree of robustness dis-
parity between natural and robust accuracies, which deviates from robust network’s desideratum.
Ideally, for a robust network, perturbing the attack budget within a small range should not cause
signifcant accuracy degradation. Unfortunately, the degree of robustness disparity is intractable for
AT with a pre-specified perturbation budget. In standard AT, there could be a prominent degree of
robustness disparity in output networks. For instance, a standard PGD adversarially-trained PreAct
ResNet18 network has 84% natural accuracy and only 46% robust accuracy on CIFAR10 under ℓ∞
threat model, as shown in Figure 1(a). Empirically, we have to increase the pre-specified perturba-
tion budget to allocate more model capacity for defense against adversarial attacks to mitigate the
degree of robustness disparity, as shown in Figure 1(b). However, the feasible range of perturbation
budget is different for networks with different model capacities. For example, AT with perturbation
budget ϵ = 40/255 will make PreAct ResNet-18 optimization collapse, while wide ResNet-34-10
can learn normally. In order to maintain a steady degree of robustness disparity, we have to find
separate perturbation budgets for each network with different model capacities. Therefore, it may
be pessimistic to use AT with a pre-specified perturbation budget to learn a robust network.
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Figure 1: Robustness evaluation on different test perturbation budgets of (a) standard AT; (b) AT
with different training pre-specified perturbation budgets. (c) The learning curve of standard AT
with pre-specified perturbation ϵ = 8/255 on PreAct ResNet-18 under ℓ∞ threat model and the
robustness evaluation of its “best” and “last” checkpoints.

Secondly, the attack strength of adversarial training data constrained by the pre-specified pertur-
bation budget is gradually weakened as the growth of network robustness. During the training
process, adversarial training data are generated on the fly and are changed based on the updating of
the network. As the the network’s adversarial robustness continues to increase, the attack strength
of adversarial training data with the pre-specified perturbation budget is getting relatively weaker.
Given the limited network capacity, a degenerate or stagnant adversary accompanied by an evolving
network will easily cause training bias: adversarial training is more inclined to the defense against
weak strength attacks, and thereby erodes defenses on strong strength attacks, leading to the unde-
sirable robust overfitting, as shown in Figure 1(c). Moreover, compared with the “best” checkpoint
in AT with robust overfitting, the “last” checkpoint’s defense advantage in weak strength attack is
slight, while its defense disadvantage in strong strength attack is significant, which indicates that
robust overfitting not only exacerbates the degree of robustness disparity, but also further degrades
the adversarial robustness. Thus, it may be deficient to use adversarial data with a pre-specified
perturbation budget to train a robust network.

To overcome these limitations, we propose strength-adaptive adversarial training (SAAT), which
employs an adversarial loss constraint to generate adversarial training data. The adversarial pertur-
bation generated under this constraint is adaptive to the dynamic training schedule and networks
of various model capacities. Specifically, as adversarial training progresses, a larger perturbation
budget is required to satisfy the adversarial loss constraint since the network becomes more robust.
Thus, the perturbation budgets in our SAAT is adaptively adjusted according to the training state of
adversarial data, which restrains the training bias and effectively avoids robust overfitting. Besides,
SAAT explicitly constrains the attack strength of training data by the adversarial loss constraint,
which guides model capacity scheduling in adversarial training, and thereby can flexibly adjust the
tradeoff between natural accuracy and robustness, ensuring that the output network maintains a
steady degree of robustness disparity even under networks with different model capacities.

Our contributions are as follows. (a) In standard AT, we characterize the pessimism of adversary
with a pre-specified perturbation budget, which is due to the intractable robustness disparity and
undesirable robust overfitting (in Section 3.1). (b) We propose a new adversarial training method,
i.e., SAAT (its learning objective in Section 3.2 and its realization in Section 3.3). SAAT is a
general adversarial training method that can be easily converted to natural training or standard AT.
(c) Empirically, we find that adversarial training loss is well-correlated with the degree of robustness
disparity and robust generalization gap (in Section 4.2), which enables our SAAT to overcome the
issue of robust overfitting and flexibly adjust the tradeoff of adversarial training, leading to the
improved natural accuracy and robustness (in Section 4.3).

2 PRELIMINARY AND RELATED WORK

In this section, we review the adversarial training method and related works.

2.1 ADVERSARIAL TRAINING

Learning objective. Let fθ, X and ℓ be the network f with trainable model parameter θ, input
feature space, and loss function, respectively. Given a C-class dataset S = {(xi, yi)}ni=1, where
xi ∈ X and yi ∈ Y = {0, 1, ..., C − 1} as its associated label. In natural training, most machine
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learning tasks could be formulated as solving the following optimization problem:

min
θ

1

n

n∑
i=1

ℓ(fθ(xi), yi). (1)

The learning objective of natural training is to obtain the networks that have the minimum empirical
risk of a natural input to be wrongly classified. In adversarial training, the adversary adds the
adversarial perturbation to each sample, i.e., transform S = {(xi, yi)}ni=1 to S ′ = {(x′

i = xi +
δi, yi)}ni=1. The adversarial perturbation {δi}ni=1 are constrained by a pre-specified budget, i.e.
{δ ∈ ∆ : ||δ||p ≤ ϵ}, where p can be 1, 2,∞, etc. In order to defend such attack, standard
adversarial training (AT) (Madry et al., 2017) resort to solve the following objective function:

min
θ

1

n

n∑
i=1

max
δi∈∆

ℓ(fθ(xi + δi), yi). (2)

Note that the outer minimization remains the same as Eq.(1), and the inner maximization operator
can also be re-written as

δi = argmax
δi∈∆

ℓ(fθ(xi + δi), yi), (3)

where x′
i = xi + δi is the most adversarial data within the perturbation budget ∆. Standard AT

employs the most adversarial data generated according to Eq.(3) for updating the current model.
The learning objective of standard AT is to obtain the networks that have the minimum adversarial
risk of a input to be wrongly classified under the pre-specified perturbation budget.

Realizations. The objective functions of standard AT (Eq.(2)) is a composition of an inner maxi-
mization problem and an outer minimization problem, with one step generating adversarial data and
one step minimizing loss on the generated adversarial data w.r.t. the model parameters θ. For the
outer minimization problem, Stochastic Gradient Descent (SGD) (Bottou, 1999) and its variants are
widely used to optimize the model parameters (Rice et al., 2020). For the inner maximization prob-
lem, the Projected Gradient Descent (PGD) (Madry et al., 2017) is the most common approximation
method for generating adversarial perturbation, which can be viewed as a multi-step variant of Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014). Given normal example x ∈ X and step
size α > 0, PGD works as follows:

δk+1 = Π∆(α · sign∇xℓ(f(x+ δk), y) + δk), k ∈ N, (4)

where δk is adversarial perturbation at step k; and Π∆ is the projection function that project the
adversarial perturbation back into the pre-specified budget ∆ if necessary.

2.2 RELATED WORK

Stopping criteria. There are different stopping criteria for PGD-based adversarial training. For
example, standard AT (Madry et al., 2017) employs a fixed number of iterations K, namely PGD-K,
which is commonly used in many outstanding adversarial training variants, such as TRADES (Zhang
et al., 2019), MART (Wang et al., 2019b), and RST (Carmon et al., 2019). Besides, some works
have further enhanced the PGD-K method by incorporating additional optimization mechanisms,
such as curriculum learning (Cai et al., 2018), FOSC (Wang et al., 2019a), and geometry reweight-
ing (Zhang et al., 2020b). On the other hand, some works adopt different PGD stopping criterion,
i.e., misclassification-aware criterion, which stops the iterations once the network misclassifies the
adversarial data. This misclassification-aware criterion is widely used in the emerging adversarial
training variants, such as FAT (Zhang et al., 2020a), MMA (Ding et al., 2018), IAAT (Balaji et al.,
2019), ATES (Sitawarin et al., 2020), and Customized AT (Cheng et al., 2020). Different from these
works, we propose strength-adaptive PGD (SA-PGD) that uses the minimum adversarial loss as the
stopping criterion to generate efficient adversarial data for adversarial training.

Relationship between accuracy and robustness. Also relevant to this work are works that study the
relationship between natural accuracy and robustness. PGD-based AT can enhance the robustness
against adversarial data, but degrades the accuracy on the natural data significantly. One popular
point is the inevitable tradeoff between robustness and natural accuracy. For example, Tsipras et al.
(2018) claimed robustness and natural accuracy might at odds. Su et al. (2018) concluded a lin-
early negative correlation between the logarithm of natural accuracy and robustness. Zhang et al.

3



Under review as a conference paper at ICLR 2023

(2019) theoretically characterized the tradeoff. However, human is a network that is both robust
and accurate with no tradeoff according to the definition of adversarial perturbation. Some other
works also provide evidence that robustness and natural accuracy are not opposing. For example,
Stutz et al. (2019) confirmed the existence of adversarial data on the manifold of natural data. Yang
et al. (2020) showed benchmark datasets with adversarial perturbation are distributionally separated.
Raghunathan et al. (2020) stated that additional unlabeled data help mitigate the tradeoff. Nakki-
ran (2019) proved that the tradeoff is due to the insufficient network expression ability. A separate
but related line of works also has challenged the tradeoff by improving the natural accuracy while
maintaining the robustness (Zhang et al., 2020a) or retaining the natural accuracy while improving
the robustness (Zhang et al., 2020b). However, these works use PGD as the robustness evaluation,
which is not always successful since these networks can be defeated by stronger attacks (Liu et al.,
2021). In this work, we combine AutoAttack (Croce & Hein, 2020b), a stronger and more reliable
robustness evaluation method, to conduct a more comprehensive evaluation of AT’s tradeoff.

3 STRENGTH-ADAPTIVE ADVERSARIAL TRAINING

In this section, we introduce the proposed strength-adaptive adversarial training (SAAT) and its
learning objective as well as algorithmic realization.

3.1 MOTIVATIONS OF SAAT

Robustness disparity is intractable for AT with a pre-specified perturbation budget. For
adversarially-trained networks, it is widely recognized that robust accuracy should be lower than
the natural accuracy. Nevertheless, the degree of robustness disparity between natural and robust
accuracy is often overlooked. Ideally, for a fully robust network, the robust accuracy and natural
accuracy should be very close. The technique of maintaining a steady degree of robustness disparity
is therefore critical for learning a robust network. However, current AT methods typically employ
a pre-specified perturbation budget to generate adversarial data, whose attack strength is relative to
the network’s model capacity, which fails to yield a steady degree of robustness disparity across dif-
ferent networks, as shown in Figure 2(a). For each network, we further numerically compute their
degree of robustness disparity (RD): RD = 1

n

∑n
i=1

A0−Ai

ϵi
, where Ai represents the accuracy on

the perturbation budget ϵi. As shown by the statistical results in Figure 2(b), when the perturbation
budget is fixed, the degree of robustness disparity becomes more prominent as the model capacity
increases, which is not robust network’s desideratum. Thus, to maintain a steady degree of robust-
ness disparity in adversarial training, we should open up perturbation budget constraints and flexibly
adjust the attack strength of training data according to the network’s model capacity.

Robust overfitting degrades the network’s adversarial robustness. AT employs the most adver-
sarial data to reduce the sensitivity of the network’s output w.r.t. adversarial perturbation of the
natural data. However, during the training process, adversarial training data is generated on the fly
and is getting weaker for networks with increasing adversarial robustness. Given a certain amount
of allocatable model capacity, the adversarial training data with a pre-specified perturbation budget
will inevitably induce training bias, which eventually leads to the robust overfitting. As shown in
Figure 2(c), it is observed that when the perturbation budget is fixed, robust overfitting occurs as
the network’s model capacity increases. We further compare the adversarial robustness between the
“best” and “last” checkpoints in AT without robust overfitting and with robust overfitting. As shown
in Figure 2(d), it can be seen that robust overfitting significantly degrades the network’s adversarial
robustness. Therefore, to avoid robust overfitting in adversarial training, we should flexibly adjust
the attack strength of adversarial training data to adapt to the dynamic training schedule.

3.2 LEARNING OBJECTIVE OF SAAT

Let ρ be the specified minimum adversarial loss constraint to adversarial training data. In the learn-
ing objective of SAAT, the outer minimization for optimizing model parameters still follows Eq.(2)
or Eq.(1). However, instead of generating adversarial perturbation δ via inner maximization, we
generate δ as follows:

δi = argmin
δi

ℓ(fθ(xi + δi), yi) s.t. ℓ(fθ(xi + δi), yi) ≥ ρ. (5)
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Figure 2: (a) Robustness evaluation, (b) robustness disparity and (c) testing curves of AT with
perturbation budget ϵ = 8/255 under ℓ∞ threat model on networks with different model capacities;
(d) robustness differences between the “best” and “last” checkpoints in AT without robust overfitting
(WRN-34-1) and with robust overfitting (WRN-34-7).

Note that the operator argmax in Eq.(3) is replaced with argmin here, and there is no explicit
perturbation budget constraint for δ. Instead, we adopt the magnitude of adversarial loss to constrain
the generation of adversarial perturbation. The constraint ensures that the loss of adversarial training
data is greater than the specified minimum adversarial loss ρ. Among all such δ satisfying the
constraint, we select the one minimizing ℓ(fθ(xi + δi), yi). In terms of the process of generating
adversarial perturbations, Eq.(5) could be regarded as an adaptive adversary, since adversarial loss
is related to the training schedule and network’s model capacity. For example, in the early stages of
training, adversarial attack may be needless to generate qualified adversarial training data. However,
in the later stages of training, more effort is required to generate the corresponding adversarial
training data because the network is more robust. On the other hand, in terms of attack strength
of training data, Eq.(5) is actually an attack strength-fixed adversary, since the adversarial loss of
training data is constrained by a fixed ρ.

The learning objective of SAAT is to obtain the networks with a steady degree of robustness dis-
parity, which is achieved by optimizing model using adversarial training data with a fixed attack
strength (in terms of the adversarial loss ρ). ρ is used to guide model capacity scheduling during
adversarial training, so as to ensure that the output network maintains a steady degree of robustness
disparity.

Relation with natural training and standard AT. Notice that the learning objective of SAAT is
extremely general. When ρ ≤ 0, SAAT is equivalent to natural training (refer to Eq.(1), then all
training data does not need adversarial perturbations, so that most of the model capacity will be
used to learn natural data. When ρ → ∞, SAAT is equivalent to standard AT (refer to Eq.(2),
then all training data is the most adversarial data, so that a large amount of model capacity will be
used for enhancing adversarial robustness (depending on the maximal perturbation budget). When
0 < ρ < ∞, SAAT lies in the middle of natural training and standard AT, which can manipulate
the model capacity scheduling during the training phase, so as to obtain the output network with
multiple alternative forms of adversarial robustness for various practical needs. Eq.(5) recovers both
natural training and standard AT, thus it is a more general learning objective of adversarial training.

3.3 REALIZATION OF SAAT

The learning objective of SAAT implies the optimization of an adversarially robust networks with
a steady degree of robustness disparity, with one step generating qualified adversarial training data
and one step minimizing the adversarial loss w.r.t. the model parameters. Specifically, we search
for qualified adversarial training data by adjusting the perturbation budget and attack step. For
instance, given a perturbation budget, we perform sufficient PGD attacks within this budget. If the
most adversarial data still does not satisfy the constraint of Eq.(5), we will increase the perturbation
budget and conduct further PGD attacks until we find adversarial data that satisfies the minimum
adversarial loss criterion.

How to estimate the optimal perturbation budget is an open question. Here we heuristically design
a simple implementation: progressive search. Specifically, the perturbation budgets of training data
are initially set to 0, and then their perturbation budgets are increased stepwise (e.g., increments
of step size τ ). Each time the perturbation budgets are updated, it is followed by K iterations of
PGD attacks until the generated adversarial data satisfies the minimum adversarial loss criterion.
The limitation of this implementation is that setting the initial perturbation budget to 0 increases the

5



Under review as a conference paper at ICLR 2023

Algorithm 1 Strength-Adaptive PGD (SA-PGD)
1: Input: data x ∈ X , label y ∈ Y , model f , loss function ℓ, maximum perturbation budget ϵmax, minimum

adversarial loss ρ, perturbation budget ϵ, perturbation budget step size τ , SA-PGD step K, SA-PGD step
size α

2: Output: x′

3: x′ ← x; ϵ← 0
4: if ℓ(f(x′), y) ≥ ρ then
5: break
6: else
7: while ϵ < ϵmax do
8: ϵ← ϵ+ τ
9: for k = 1, ...,K do

10: x′ ← Πϵ(α · sign(∇x′ℓ(f(x′), y)) + x′)
11: if ℓ(f(x′), y) ≥ ρ then
12: return x′

13: end if
14: end for
15: end while
16: end if

Algorithm 2 Strength-Adaptive Adversarial Training (SAAT)
1: Input: network fθ , training dataset S = {(xi, yi)}ni=1, learning rate η, number of epochs T , batch size

m, number of batches M
2: Output: adversarially robust network fθ with a target degree of robustness disparity
3: for epoch = 1, ..., T do
4: for mini-batch = 1, ...,M do
5: Sample a mini-batch {(xi, yi)}mi=1 from S
6: for i = 1, ...,m (in parallel) do
7: Obtain adversarial data x′

i of xi by Algorithm 1
8: end for
9: θ ← θ − η 1

m

∑m
i=1∇θℓ(fθ(x

′
i), yi)

10: end for
11: end for

computational cost and slows the speed, even though it ensures that the optimal perturbation budget
will be estimated.

A maximally allowed perturbation budget (ϵmax) is introduced: we observe that even with the
largest perturbation (e.g., ϵ = 255/255), there are still some examples (outliers) that fail to sat-
isfy the minimum adversarial loss constraint. Considering that the pixel values are strictly sampled
in [0, 255/255], it is necessary to introduce a maximum perturbation budget to avoid infinite loops.

Algorithm 1 is our strength-adaptive PGD method (SA-PGD), which returns the generated adversar-
ial training data. Algorithm 2 is the proposed strength-adaptive adversarial training (SAAT). SAAT
leverages Algorithm 1 for obtaining the qualified adversarial data to optimize the model parameters.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the effectiveness of SAAT includ-
ing its experimental setup (in Section 4.1), algorithm analysis (in Section 4.2), robustness evaluation
(in Section 4.3), and the performance under different model capacities (in Section 4.4).

4.1 EXPERIMENTAL SETUP

Our code is implemented on the open source PyTorch framework with a single NVIDIA A100-
SXM4-40GB GPU. The code as well as related models will be released for public use and veri-
fication. We conduct experiments on ℓ∞ threat model and follow the hyper-parameter setting of
Rice et al. (2020) for a fair comparison with the state-of-the-art AT methods. For training, the net-
work is trained for 200 epochs using SGD with momentum 0.9, weight decay 5 × 10−4, and an
initial learning rate of 0.1. The learning rate is divided by 10 at the 100-th and 150-th epoch, re-
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spectively. Conventional data augmentation including random crops with 4 pixels of padding and
random horizontal flips are applied. For adversary, we use SA-PGD (Algorithm 1) to generate ad-
versarial training data. The step size α = 2/255 is used following standard PGD (Madry et al.,
2017). We adopt the perturbation budget step size τ consistent with the SA-PGD step size α, such
as τ = 2/255, and SA-PGD step K = 3, which is to make the adversarial data sufficiently attacked
under the updated perturbation budget. For robustness evaluation, the output model is tested under
a series of adversaries, including natural data, PGD (Madry et al., 2017), and Auto Attack (Croce
& Hein, 2020b). Among them, natural accuracy and PGD accuracy can intuitively reflect the net-
work’s robustness disparity. And AA is an ensemble of complementary attacks, consisting of three
white-box attacks (APGD-CE (Croce & Hein, 2020b), APGD-DLR (Croce & Hein, 2020b), and
FAB (Croce & Hein, 2020a)) and a black-box attack (Square Attack (Andriushchenko et al., 2020)).
AA regards networks to be robust only if the model correctly classify adversarial data with all types
of attacks, which is among the most reliable evaluation of adversarial robustness to date.

4.2 ANALYSIS OF THE PROPOSED ALGORITHM

We delve into SAAT to investigate its each component, including the role of minimum adversarial
loss ρ and the impact of maximum perturbation budget ϵmax. All analysis experiments are conducted
using PreAct ResNet-18 (He et al., 2016) on CIFAR10 dataset (Krizhevsky et al., 2009).

The role of minimum adversarial loss ρ. We empirically investigate the role of minimum ad-
versarial loss by using different ρ to generate adversarial training data, where ϵmax is assigned a
sufficiently large value, such as ϵmax = 128/255. The minimum adversarial loss ρ for SAAT varies
from 0 to 2.2, and the evaluation results are summarized in Figure 3 (a). It is observed that the
model’s degree of robustness disparity is well-correlated with the adversarial training loss ρ. When
ρ = 0, there is a large performance gap between the natural accuracy and robust accuracy. This
performance gap keeps decreasing as ρ increases. And when ρ = 2.2, the robust accuracy is al-
most the same as the natural accuracy. Note that SAAT fails to converge when ρ > 2.2, which
might be explained by the fact that robust accuracy should be lower than natural accuracy for any
adversarially-trained networks. The clear correlation between the minimum training loss and de-
gree of robustness disparity enables our SAAT to flexibly control the performance gap in output
networks. Moreover, we observed that ρ is also closely related to the robust generalization gap. The
learning cruves of SAAT with different ρ is shown in Figure 3 (c), and their robust generalization
gap is summarized in Figure 3 (d). It can be seen that the robust accuracy is always in sync with the
natural accuracy during the training phase and there is no significant robustness degradation as in
Figure 1(c). When ρ = 1.5, the robust generalization gap is already very small.

The impact of maximum perturbation budget ϵmax. We further investigate the impact of intro-
duced maximum perturbation budget, by comparing the robustness performance of models trained
using different ϵmax. Given a fixed ρ, such as ρ = 1.5, the value of ϵmax varies from 0 to 128/255,
and the evaluation results are summarized in Figure 3 (b). It can be observed that when ϵmax is
small, increasing ϵmax leads to a flatter degree of robustness disparity, which indicates that more
model capacity is allocated to defend against adversarial attacks. As expected, when ϵmax is greater
than a certain value, the degree of robustness disparity begins to maintain a plateau, which infers
that most of the adversarial training data already met the minimum adversarial loss constraint, so the
network tends to maintain steady robustness disparity bound by ρ. ϵmax adjusts the robustness dis-
parity within the plateau constrained by ρ, which reflects a tradeoff between the natural accuracy and
adversarial robustness and suggests that our ϵmax helps adjust this tradeoff. Notably, the observed
tradeoff is not inherent in adversarial training but a consequence of model capacity scheduling. Note
that the size of ϵmax is also influenced by minimum adversarial loss ρ. In the following section, we
fine-tune both ϵmax and ρ for the robustness evaluation of SAAT.

4.3 ROBUSTNESS EVALUATION

Compared with the standard AT, the difference of SAAT mainly lies in weakening the easy-to-attack
samples (the adversarial loss is higher than the minimal adversarial loss) and enhancing the hard-
to-attack samples (the adversarial loss is lower than the minimal adversarial loss). In this part, we
investigate their respective effects on network adversarial robustness on two classic baselines: AT
and AWP, where AWP can suppress robust overfitting and achieve state-of-the-art adversarial robust-
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(b) Impact of maximum perturbation budget
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(c) Learning curves of SAAT with ρ of 0.5, 1.0, 1.5 and 2.0 (from left to right)
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(d) Robust generalization gap
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(e) SAAT under different model capacities

Figure 3: Robustness evaluation of SAAT with (a) varied ρ and (b) varied ϵmax; The (c) learning
curve and (d) robust generalization gap with different ρ; (e) robustness disparity on networks with
different model capacities.

ness. Specifically, we process the easy-to-attack samples and the hard-to-attack samples separately,
denoted as SAATdown and SAATup, respectively. For SAATdown, the maximum adversarial budget
remains the same as the standard AT, e.g., ϵmax = 8, and the minimal adversarial loss is set to 1.5.
The evaluation results are shown in Table 1. As expected, weakening the easy-to-attack samples
will make adversarial training inclined to the weak attack defense, which significantly increase the
natural accuracy and can maintain the PGD accuracy, but it essentially not only aggravates the ro-
bustness disparity, but also degrades the model adversarial robustness (in term of AA). For SAATup,
by increasing the maximum adversarial budget and minimal adversarial loss, more model capacity
is used to defend against adversarial attacks, which significantly alleviates the robustness disparity
of the output network and further enhances the model adversarial robustness. The performance eval-
uation of SAATup across different datasets, different model structures and different AT methods is
provided in Appendix A, where SAATup boosts adversarial robustness under all settings, demon-
strating the effectiveness of the proposed method. Note that the robust accuracy of SAATup at ϵ = 8
first increases and then decreases. This is defensible because as ϵ and ρ increase, the robustness
disparity of the output model is getting flatter, and the adversarial robustness will also be migrated
to a relatively larger perturbation budget. In addition, it can be observed that the performance gap
between the last checkpoint and the best checkpoint of SAATup is shrinking, which illustrates that
enhancing the hard-to-attack samples can also effectively alleviate robust overfitting.

4.4 PERFORMANCE UNDER DIFFERENT MODEL CAPACITIES

We extend SAAT to networks with different model capacities. Specifically, we perform SAAT
on a series of Wide ResNet-34-x networks, where x is 1, 3, 5, and 7 respectively. Note that the
larger the x, the larger the model capacity. ρ is fixed at 1.5 and ϵmax is sufficiently large, such
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Table 1: Robustness evaluation of SAATdown and SAATup under adversarial budget ϵ = 8. We
omit the standard deviations of 3 runs as they are very small (the Natural is < 0.8%, the PGD-20 is
< 0.5%, and the AA is < 0.15%).

Method Best Last

Natural PGD-20 AA Natural PGD-20 AA

AT 82.02 52.59 48.23 83.89 45.28 42.88

SAATdown (ϵmax = 8, ρ = 1.5) 82.97 52.87 45.54 85.31 47.06 42.77

SAATup (ϵmax = 9, ρ = 1.5) 81.04 53.00 47.72 82.82 46.49 43.66
SAATup (ϵmax = 10, ρ = 1.5) 80.81 53.63 47.83 82.14 48.14 44.67
SAATup (ϵmax = 11, ρ = 1.5) 77.99 54.38 47.90 80.55 48.86 44.85
SAATup (ϵmax = 12, ρ = 1.5) 77.50 54.78 48.04 79.44 50.03 45.42
SAATup (ϵmax = 13, ρ = 1.5) 77.40 55.21 48.26 78.48 51.68 45.55
SAATup (ϵmax = 14, ρ = 1.5) 76.80 55.59 48.61 77.44 52.80 46.46
SAATup (ϵmax = 15, ρ = 1.5) 76.62 56.18 48.45 76.36 53.62 46.12
SAATup (ϵmax = 16, ρ = 1.5) 75.54 56.22 48.12 75.52 54.17 46.07
SAATup (ϵmax = 17, ρ = 1.5) 74.21 56.35 47.95 74.49 54.33 45.73
SAATup (ϵmax = 18, ρ = 1.5) 73.89 56.49 47.64 73.55 54.79 45.66
SAATup (ϵmax = 19, ρ = 1.5) 73.68 56.12 46.63 72.67 54.72 45.46
SAATup (ϵmax = 20, ρ = 1.5) 71.89 56.11 45.96 72.15 54.62 44.94

SAATup (ϵmax = 14, ρ = 1.3) 78.40 54.87 48.08 78.49 51.68 45.77
SAATup (ϵmax = 14, ρ = 1.4) 77.45 55.04 48.23 78.20 52.40 45.79
SAATup (ϵmax = 14, ρ = 1.5) 76.80 55.59 48.61 77.44 52.80 46.46
SAATup (ϵmax = 14, ρ = 1.6) 76.48 56.08 48.76 77.16 53.11 46.57
SAATup (ϵmax = 14, ρ = 1.7) 76.37 56.31 48.86 76.38 53.86 47.17
SAATup (ϵmax = 14, ρ = 1.8) 75.51 56.18 48.85 76.11 53.42 46.73
SAATup (ϵmax = 14, ρ = 1.9) 75.10 55.58 48.59 75.46 53.20 46.53
SAATup (ϵmax = 14, ρ = 2.0) 74.63 55.62 48.36 75.06 53.12 46.29

AWP-AT 81.47 55.54 49.96 80.20 54.88 49.28

AWP-SAATdown (ϵmax = 8, ρ = 1.5) 83.74 56.97 48.38 82.85 55.16 46.99

AWP-SAATup (ϵmax = 9, ρ = 1.5) 79.55 55.95 50.32 78.08 54.93 49.36
AWP-SAATup (ϵmax = 10, ρ = 1.5) 78.14 56.20 49.98 76.66 55.12 48.89
AWP-SAATup (ϵmax = 11, ρ = 1.5) 77.17 56.43 49.87 74.98 55.26 48.74
AWP-SAATup (ϵmax = 12, ρ = 1.5) 76.00 56.76 49.43 73.49 55.33 48.22

AWP-SAATup (ϵmax = 9, ρ = 1.6) 79.52 56.00 50.35 78.06 54.97 49.12
AWP-SAATup (ϵmax = 9, ρ = 1.7) 79.49 56.25 50.67 77.91 55.22 49.29
AWP-SAATup (ϵmax = 9, ρ = 1.8) 79.32 56.05 50.26 77.88 54.98 49.18
AWP-SAATup (ϵmax = 9, ρ = 1.9) 78.96 55.97 50.20 77.81 54.69 48.92

as ϵmax = 128/255. The evaluation results are summarized in Figure 3 (e). It can be observed
that the output network can maintain a steady degree of robustness disparity across different model
capacities. Such observations exactly reflect the nature of our approach that SAAT is able to adapt
to networks of various model capacities.

5 CONCLUSION

We present a strength-adaptive adversarial training (SSAT) method in this paper. The proposed ap-
proach distinguish itself from others by using the minimum adversarial loss constraint for generating
adversarial training data, which is adaptive to the dynamic training schedule and networks of various
model capacities. We show that adversarial training loss is well-correlated with the degree of robust-
ness disparity and robust generalization gap, empirically verify that SAAT can effectively alleviate
robustness overfitting, mitigate the robustness disparity of output networks and further enhance the
model adversarial robustness by adjusting the tradeoff of adversarial training, demonstrating the ef-
fectiveness of the proposed approach. We hope that the robustness disparity we offer can further
improve the completeness of adversarial robustness evaluation methods (Carlini et al., 2019) and
expect more new techniques to be proposed to achieve learning a fully robust network.
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A APPENDIX

In this part, we conduct extended comparative experiments. Specifically, we conduct experiments
under different datasets, different model structures and different AT methods. The results are sum-
marized in Table 2 and Table 3. Experimental results show that the proposed method can achieve
higher adversarial robustness under all settings, demonstrating the effectiveness of the proposed
approach.

11



Under review as a conference paper at ICLR 2023

Table 2: Robustness evaluation of SAATup (best checkpoint) under adversarial budget ϵ = 8 across
different datasets, different network structures and different AT methods, where PR-18 indicates
PreAct ResNet-18 and WRN-34-10 indicates Wide ResNet-34-10.

Dataset Network Basic AT Method Best

Natural PGD-20 AA

CIFAR10 PR-18 AT AT 82.02 52.59 48.23
CIFAR10 PR-18 AT SAATup 76.37 56.31 48.86
CIFAR10 PR-18 AT AWP-AT 81.47 55.54 49.96
CIFAR10 PR-18 AT AWP-SAATup 79.49 56.25 50.67
CIFAR100 PR-18 AT AT 55.95 28.84 24.71
CIFAR100 PR-18 AT SAATup 53.20 29.29 25.25
CIFAR100 PR-18 AT AWP-AT 56.64 32.02 26.43
CIFAR100 PR-18 AT AWP-SAATup 54.36 32.09 26.98
CIFAR10 PR-18 TRADES TRADES 81.09 52.70 48.91
CIFAR10 PR-18 TRADES SATRADESup 81.76 53.44 50.04
CIFAR10 PR-18 TRADES AWP-TRADES 81.64 55.52 51.38
CIFAR10 PR-18 TRADES AWP-SATRADESup 80.76 55.98 51.72
CIFAR10 WRN-34-10 AT AT 85.47 54.87 51.70
CIFAR10 WRN-34-10 AT SAATup 79.94 58.52 52.36
CIFAR10 WRN-34-10 AT AWP-AT 86.00 58.78 54.06
CIFAR10 WRN-34-10 AT AWP-SAATup 83.55 59.20 54.64

Table 3: Robustness evaluation of SAATup (last checkpoint) under adversarial budget ϵ = 8 across
different datasets, different network structures and different AT methods, where PR-18 indicates
PreAct ResNet-18 and WRN-34-10 indicates Wide ResNet-34-10.

Dataset Network Basic AT Method Last

Natural PGD-20 AA

CIFAR10 PR-18 AT AT 83.89 45.28 42.88
CIFAR10 PR-18 AT SAATup 76.38 53.86 47.17
CIFAR10 PR-18 AT AWP-AT 80.20 54.88 49.28
CIFAR10 PR-18 AT AWP-SAATup 77.91 55.22 49.29
CIFAR100 PR-18 AT AT 56.75 21.12 19.35
CIFAR100 PR-18 AT SAATup 54.52 22.32 20.12
CIFAR100 PR-18 AT AWP-AT 57.18 31.64 26.45
CIFAR100 PR-18 AT AWP-SAATup 55.08 31.72 27.04
CIFAR10 PR-18 TRADES TRADES 82.40 49.98 47.02
CIFAR10 PR-18 TRADES SATRADESup 81.30 51.13 47.99
CIFAR10 PR-18 TRADES AWP-TRADES 81.87 55.41 51.27
CIFAR10 PR-18 TRADES AWP-SATRADESup 80.64 55.62 51.60
CIFAR10 WRN-34-10 AT AT 86.16 46.94 45.68
CIFAR10 WRN-34-10 AT SAATup 80.19 55.47 49.98
CIFAR10 WRN-34-10 AT AWP-AT 87.08 57.96 53.41
CIFAR10 WRN-34-10 AT AWP-SAATup 84.05 58.76 54.16
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