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ABSTRACT

We introduce a new dataset for emotion and stress (frustration) detection from
physiological signals. Physiological signals are relevant in health applications like
stress detection and monitoring or in mental health where emotion regulation often
is of importance. The dataset contributes with the possibilities for disentangling a
detailed emotional space (10 emotions) in relation to physiological signals, study
dyads of prosocial behaviours vs teams of aggressive behaviours, and investigate
continual learning or replication uncertainties 1.

1 INTRODUCTION

Extensive research has been dedicated to the detection and prediction of stress and relevant health
markers from biosignals and wearable devices provide an easy, low-cost, unobtrusive way for real-
time monitoring of physiological changes (biosignals) Giannakakis et al. (2019); Schmidt et al.
(2019). However, there are lingering challenges in the safe deployment of the technology in health-
care and clinical settings Monteith et al. (2022). Often, the developed models are trained on data
collected from highly controlled setting. Controlled studies are often limited and may not generalise
as individual responses to stimuli can differ and experimental data is limited in sample size. Other
challenges include consistently reproducing model performance under real-world circumstances,
within individuals across measurement times and across individuals.

Understanding how emotions and frustration manifest physiologically during teamwork and com-
petition is crucial within mental health treatment Olesen et al. (2023). Most datasets on emotion
assessment from physiological signals often focus on individual experiences or lack specific con-
texts like teamwork and competition Sharma et al. (2019); Park et al. (2020); Bizzego et al. (2021).
This limits the development of tools that can understand emotional dynamics in social interactions.
This paper addresses the need for a new dataset by presenting EmoPairCompete. This dataset of-
fers physiological signals and emotional annotations through self-rated questionnaires, collected
after each phase of the competitive tasks. It includes data from multiple cohorts, offering insights
into individual and group-level emotional dynamics. Furthermore, the data is collected in a semi-
controlled setting, and hence is a contribution towards the infrastructure for in-the-wild studies and
a step towards safer tools for healthcare.

1Data is available at GitHub
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(a) Illustration of the data cohorts with a timeline of
the experiment design over an arbitrary round.

(b) Average difference of responses between the task
and rest phases, computed as the difference between
task and rest phase. Positive values indicate higher
values during task phase than in rest phase.

2 DATA COLLECTION METHODOLOGY

Task: To elicit emotions, we used a game-elicited-emotion paradigm. The tangram task was origi-
nally designed to study parent and social behaviour between parents and children Hudson & Rapee
(2001). It was designed to be difficult and impossible for the child to finish within the allotted time.
A variation of the tangram task has emerged, designed to assess aggressive and prosocial behaviour
in adults Saleem et al. (2015). Our task was designed to be difficult to complete in the allotted five
minutes and to elicit helpful or prosocial behaviour within the dyad by calling them teams and cre-
ating a competition between the teams. The task also necessitated a lot of communication between
team members. Participants were divided into pairs of two of their own choosing. Each team was
given a 7-piece tangram puzzle and a set of sketches of the puzzle solutions. The teams designated
one of the two members as a ‘puzzler’, and this team member was allowed to touch the puzzle pieces
and was responsible for assembling the pieces to solve the puzzle. The other member was the des-
ignated ‘instructor’, who was allowed to see the puzzle solution and was tasked with instructing the
puzzler in how to assemble the pieces but was not allowed to touch the puzzle pieces. Also, only the
final solution to each puzzle, and not the path to the solution, was provided to the instructor. The
solved puzzle yielded one point and the team with the most points at the end of round four won. Dur-
ing the competition the participants were asked to rate their emotions in a physical questionnaire. A
round consisted of seven parts: calibration, pre-puzzle (phase 1) and puzzle (phase 2), post-puzzle
(phase 3), and each phase was followed by a recording of emotions (self-rated questionnaire), as
illustrated in Fig. 1a.

Questionnaires: After each condition (rest, stress, recovery), we assessed emotions with the in-
ternational PANAS Short Form (I-PANAS-SF), which includes five positive emotions (active, alert,
attentive, determined, inspired) and five negative emotions (afraid, ashamed, hostile, nervous, upset)
that participants rate how much they were experiencing each emotion on a five-point scale from 1
(not at all) to 5 (a lot) Thompson (2007). We also assessed frustration level using a visual analogue
scale ranging from 0 (not at all frustrated) to 10 (extremely frustrated) after each condition. Finally,
participants rated how difficult they found the task on a visual analogue scale ranging from 0 (not at
all difficult) to 10 (extremely difficult) after the stress condition.

Data acquisition: Equipped with the Empatica E4 wearable Emp (2023) during the competition,
we measured the electrodermal activity (EDA), heart rate (HR), blood volume pulse (BVP) and
temperature of the participants. The participants were instructed to turn on the E4 at the beginning
of each round, tag the start and stop times of the rest and puzzle phases within each round, and to
turn off the E4 at the end of each round. By doing so, four measurements of ∼ 19 min were obtained
per participant. Thereby, a total of ∼ 72 min of measurement was obtained from each participant.
Data were collected over multiple acquisition cohorts (D11, D12, D13) with identical experimental
design, conducted at different times over a year. This study was approved by the institutional ethical
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review board [Anonymuous REF]2 and participants received written and verbal information about
the study before they signed consent forms.

Measuring device: Empatica E4 Wristband

To acquire the data in the experiments, the participants wear an Empatica E4 Wristband. This
wearable device contains the following sensors Emp (2023):

• PPG Sensor: measures the BVP, allowing to extract the HR.
• 3-axis Accelerometer: motion is measured.
• EDA Sensor: Changes in electrical properties of the skin.
• Infrared Termopile: measures skin temperature.
• Internal Real-Time Clock: high accuracy clock.
• Event button: marks beginnings and ends of events.

Hence, the following signals are possible to be extracted:

• EDA: Electro Dermal Activity measured in microSiemens (µ S)
• HR: Heart rate frequency measured in Hz.
• TEMP: Temperature sensor data measured in Celsius (°C)
• ACC: Accelerometer values in x, y and z directions, measured in g.
• BVP: Blood Volume Pulse.

Dataset Variables

Variables Description

HR Time-domain Heart-rate signal
BVP Time-domain Blood Volume Pulse signal
EDA Time-domain electro dermal activity
TEMPERATURE Time-domain temperature signal
ACC Time-domain accelerometer signal
Round Puzzling round (1-4)
Phase Phase of data collection in a round (1-3)
Individual Index of the individual
Puzzler Was the individual puzzling or instructing
PANAS responses self-rated levels of frustrated, upset, hostile, alert, ashamed, inspired,

nervous, determined, attentive, afraid, active, difficult

Cohort Different population groups

Participation: Participants (total N = 28) were recruited from our interdisciplinary research group
and students and employees within a university department. The ages of the participating women
and men ranged from approximately 20 to 42 years. The experiment was run on three separate
occasions. D11 were completed in the winter and D12 and D13 were completed in the fall. D13

were conducted in four separate sessions; D131 and D133 were completed in the morning and D132
and D134 were collected in the evening.

3 TECHNICAL VALIDATION

Signal summary: The mean and standard deviation of the time-domain HR, EDA and temperature
signals and their corresponding power spectral densities (PSD) are presented in Fig. 2a with respect
to the phases and cohorts. Furthermore, we extracted features using the NeuroKit2 toolbox and fea-
tures are visualised using t-SNE and differentiated based on cohort Makowski et al. (2021); Van der
Maaten & Hinton (2008). Considerable differences can be observed between the cohorts, despite
the replication in the collection methodology.

2Due to the non-anonymous nature of the reference, it will be added at the time of the publication.
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(a) Mean and standard deviation of the time-domain and frequency domain power spectral density (PSD)
signals (HR, EDA, Temperature).

(b) t-SNE visualisation of the features extracted from the signals (all, HR, EDA, TEMP) coloured based on
cohorts.

Self-rated Responses: The box plot shown in Fig. 3a presents the distribution of the PANAS di-
mensions by the participants. The scale for ‘frustrated’ and ‘difficulty’ ranges from 0 to 10, while
the scale for the rest is from 1 to 5. Responses to difficulty is logged by the participants only after the
task phase. In Fig. 3b, the correlation between the PANAS variables are shown. Overall, we observe

(a) Boxplots showing the distributions of PANAS vari-
ables responses. (b) Correlation of PANAS variables responses.

Figure 3: Self-rated responses

a positive correlation among the variables, except for some specific cases (alert-hostile, alert-afraid).
However, these cases with negative correlation occur with feelings with a very small variance. The
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a) Explained variance by principal components b) PCA loadings and input affective-states c) Reference dimensional-model of 
emotions 

d) Affective-state scores in the low-dimensional space

Figure 4: PANAS responses in lower-dimensional space and its correspondence to the dimensional-
model of emotions Russell (1980).

highest correlation occurs among positive-positive and negative-negative feelings, such as active-
determined, inspired-determined, attentive-determined, frustrated-upset, afraid-hostile.

Phase Analysis: The participants go through 3 different phases (rest, stress, recovery). We group
the pre-task and post-task phases and compare the responses to the task phase. From Fig. 1b, we
observe that the reported responses are stronger after the task phase. Frustration, active, attentive,
determined and alert variables are noticeably higher in the task phase than in the rest phase. This is
anticipated and further validates the dataset, as participants are likely to experience higher activation
during the task phase than during resting periods.

Subspace Analysis of PANAS Responses: We reduced the dimensionality of the PANAS responses
using principal component analysis (PCA). The explained variance (a), the loadings with respect
to the affective states (b) and the affective-state responses from the participants for each PANAS
variable in the PCA subspace (d) are demonstrated in Fig. 4 Wold et al. (1987); we can disentangle
and identify 10 emotion variables from the analysis.

4 CONCLUSION

We present the EmoPairCompete dataset which is one among the few studies on dyads of prosocial
behaviours for in-the-wild applications. The dataset comprises of physiological signals: HR, BVP,
EDA and TEMPERATURE obtained from the Empatica E4, which is a clinical grade device. The
participants are engaged in a team-puzzle task which is organised in phases and rounds. Labels
for the affective states are obtained from self-rated questionnaires according to PANAS form. The
dataset comprises of three cohorts or collection rounds. Analyses of the dataset shows the possibility
of disentangling affective states from the responses and a considerable difference in the signals
between cohorts, enabling the development and evaluation of machine learning tools for in-the-wild
and high-stakes applications.
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A DETAILS ON EXPERIMENTAL PROCEDURE

All participants were given an E4 biosensor and instructed on how to wear it, turn it on and off
and mark events. Biosignals were collected under a resting period, an emotion-eliciting condition,
and a recovery period as depicted in Figure 1a. After each condition, participants completed a
questionnaire. This procedure was repeated four times successively. We instructed participants to
turn off the biosensor after each recovery period. Each time the biosensor was turned on, it was
allowed to calibrate for one minute. For the resting and recovery periods, we asked participants to
find a comfortable position, sitting still and quietly and rest to the best of their ability.

B SIMILARITY VALIDATION

Three stages of experiments are held for the data acquisition process.It is important to understand the
similarity of these datasets, and test the results’ reproducibility. The analysis of this section directly
addresses the second research question Can we generate reliable and useful biosignal data for the
synchrony analysis? Is data consistent along the different experiments?, which intended to analyse
the data consistency along the different experiments. We do this using statistical tests.
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There are 2 datasets analysed: original dataset (features) and dataset respect baseline (features stan-
dardised after subtracting the rest value of round 1 phase 1). It is important to recall at this point that
our dataset does not respect the IID principle, as there are multiple records from the same individ-
ual in the experiment. Hence, the use of the statistical tests here needs to be interpreted under that
assumption, with illustrative purposes mainly rather than strictly statistical analysis.

For simplicity, a common p value threshold of < .05 is used for every test. This value shows strong
evidence against the null hypothesis H0, as the probability that the null evidence is correct is lower
than 5%. Another very important element to mention is that the rejection of the null hypothesis
does not imply that the alternative hypothesis H1 is true 3 . Hence, other methods, such as visual
inspection, are encouraged to reach a conclusion about the datasets’ similarity.

CONTINUOUS VARIABLES: ANOVA

The first analysis is the ANOVA, which uses the F-Test to assess how the different experiments differ
from each other. Only the continuous variables are taken for the test, therefore the answers from the
participants experiments are discarded in this section due to their discrete nature. The distribution
of p values on the original and standardized (compared with baseline) datasets are shown in Figure
5

Figure 5: Variables along experiments: Continuous variable validation via the
ANOVA test. The box plot shows the low p values obtained in the test, indicating
a rejection of the null hypothesis.

The Table 1 presents the % of variables that lie above or below the threshold established of p value,
then, accepting or rejecting the null hypothesis.

Dataset p< .05 p> .05
Original 70% 30%
Baseline 75% 25%

Table 1: Variables along experiments. ANOVA test p-values distribution: Only a
25/30 % of variables accept the null hypothesis. This implies that the continuous
variables along datasets do not seem to be similar.

It is observed that the majority of variables, both from the original features and normalised features
have p value below the threshold, rejecting the null hypothesis. However, it is important to recall
that the ANOVA test show insignificant p-values when at least 1 of the datasets compared does not
follow the trend of the others.

Therefore, the same test must be performed by couples between experiment datasets. The test to be
used is not ANOVA, as ANOVA is strictly used for more than 2 datasets. Thus, the reduced version

3https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017929/
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for 2 datasets, the t-test, is used.

CONTINUOUS VARIABLES: t-TEST

The t-test analyses the similarity between 2 univariate datasets. The datasets are compared by pairs
between experiment 1,2 and 3, so in total we will find 3 comparisons. The distribution of p values are
shown in Figure 6. The notation Exp 1-2 corresponds to the t-test between the values of experiment
session 1 and experiment session 2.

(a) Original dataset (b) Dataset respect baseline

Figure 6: Variables along experiments: Continuous variable validation via T
test. Comparing individually the datasets improve the similarity of continuous
variables.

Like in ANOVA, it is helpful to identify how many of the variables are found to accept or reject the
null hypothesis of experiment session similarity.

Dataset Experiment
Session p<0.05 p>0.05

Original
Exp 1-2 55% 45%
Exp 1-3 63% 37%
Exp 2-3 48% 52%

Baseline
Exp 1-2 63% 37%
Exp 1-3 63% 37%
Exp 2-3 49% 51%

Table 2: Variables along experiments. T test p-values distribution comparing the datasets by pairs.
Between 37 % and 52 % of continuous variables accept the null hypothesis. These values represent
an improvement respect the ANOVA test of previous section.

The results of the T-test show a higher percentage of values above the p value threshold than the
ANOVA test. This is because it excludes one of the datasets from the test, which may differ from
the other and fail the test.

Experiments 1 and 2, the ones performed before the execution of this thesis, have around a 45%
of similarity (percentage above the p = .05 threshold), while experiments 1-3 have a slightly lower
amount of similarity. However, experiments 2 and 3 show the highest level of variables with p value
above the threshold.

DISCRETE VARIABLES: KRUSKAL-WALLIS TEST

A different test is required to do a similar for the set of discrete variables, like the analysis in section
B. The use of a different test is explained by the suitability of ANOVA test only for continuous
variables and not discrete. For that reason, the Kruskal-Wallis test, which allows discrete variables,
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is applied here. The discrete variables analysed are the frustration level, difficulty experienced and
the 10 Likert scale feelings stated in the participants questionnaire.

Figure 7: Discrete variable validation: Kruskal-Wallis test

The discrete variables show a higher level of similarity among datasets in respect to the continuous
values. There are almost no outliers in the boxplot seen in image 7, suggesting that the distribution
of similarities is similar along variables.

As seen in Table 3, the values which do not reject the null hypothesis H0 correspond to the 50% of
the whole dataset. This implies that half of the discrete values mean rank value are equal, while the
other 50% have a different mean rank value.

Dataset p< .05 p> .05
Original 50% 50%
Baseline 50% 50%

Table 3: Kruskal-Wallis test p-values: Discrete variables

It is important to remind the reader that these discrete variables are completely subjective and
dependent on the perception of the participant. Several factors can affect the answers of the
participant, and differ the answers among experiment sessions.

DISCRETE VARIABLES: MANN-WHITNEY U TEST

The last statistical test of the section is the Mann-Whitney test, which is equivalent to the reduction
of the Kruskal-Wallis test to a comparison of only 2 datasets. Like in the continuous variables, the
test is applied by pairs on the 3 different experiment sessions.

Figure 8 shows the distribution of Mann Whitney U test p-values for the discrete variables along
the experiment pairs. It is noticeable the increase of values above the threshold, which accept the
null hypothesis and conclude that the mean rank of the variable along datasets is similar. For the
experiments 1 & 2, the median is above 0.2 and most of the values above the p value threshold. The
experiment 2 & 3 pair show however a median value lower than the p value threshold of .05. This
suggests that the majority of discrete variables have rejected the H0 hypothesis for this specific pair.

Checking the percentages of discrete variables above the threshold from the table above, we can
observe a majority of discrete variables with similar mean rank value in the pairs experiment 1-2
and Experiment 1-3, with over 80% of values which accept the null hypothesis. It is interesting to
see that, even though the p value distribution of Exp 1 & 2 is by average higher than 1 & 3, the %
of values above the threshold is the same. This is because it does not matter if a p value is .06 or .6,
both of them compute in the same way (as accepting H0) in the final percentage. The experiment
2 & 3 validation shows very different results from the other 2 pairs. Around 2/3 of the discrete
variables rejected the null hypothesis, indicating that only 1/3 of them have similar mean rank in
both datasets. This was expected from the boxplot of 8, with a very low median p value below .05.

9



Accepted as a Workshop Paper at TS4H@ICLR2024

(a) Original dataset (b) Dataset respect baseline

Figure 8: Discrete variable validation: Mann-Whitney U test along experiments

Dataset Experiment
Session p< .05 p> .05

Original
Exp 1-2 17% 83%
Exp 1-3 17% 83%
Exp 2-3 66% 34%

Baseline
Exp 1-2 17% 83%
Exp 1-3 17% 83%
Exp 2-3 66% 34%

Table 4: Mann-Whitney U test p-values: Discrete variables

It is interesting to understand why the participants expressed different feelings in experiment 3
respect to 2. As mentioned before, the level of subjectivity of the responses is very high, and several
non-measured factors influence the answers.
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