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ABSTRACT

Diffusion-based Large Language Models (dLLMs) are emerging as a powerful
alternative to traditional autoregressive models. These models learn to generate
text by iteratively denoising masked sequences. In this work, we identify a critical
problem in dLLMs that using token-level noise: the model’s attention is wastefully
expended on uninformative mask tokens, diluting its focus on meaningful context.
We term this phenomenon “attention dilution”. We further show that it is an
artifact of token-level noising, whereas models with sequence-level noise does not
have such phenomenon. To resolve this problem, we introduce Truncated Block
Generation, a novel sampling algorithm that not only mitigates attention dilution
but also enables faster inference and flexible-length sequence generation. Extensive
experiments validate our analysis and demonstrate the marked effectiveness of our
proposed method in enhancing both the performance and efficiency of dLLMs.

1 INTRODUCTION

Diffusion large language models (dLLMs) (Nie et al., 2025; Ye et al., 2025; Zhu et al., 2025;
Khanna et al., 2025) have recently emerged as an alternative promising paradigm for language
modeling. While autoregressive models (ARMs) (Achiam et al., 2023; Liu et al., 2024; Dubey et al.,
2024) generate text token-by-token in a strict left-to-right manner, dLLMs operate on a sequence of
masked tokens, iteratively refining the entire sequence in parallel. This non-autoregressive, denoising
approach enables bidirectional attention, parallel generation and more flexible generation patterns,
directly addressing some of the inherent limitations of ARMs.

The standard dLLM employs a uniform, sequence-level noise, where all masked tokens in a sequence
have equal importance (Nie et al., 2025). As illustrated in Figure 1(a), as the same loss weight is
assigned to every masked position, its surrounding context is ignored. A more nuanced approach is
proposed in Dream (Ye et al., 2025), which uses token-level noise and dynamically re-weights the
loss for each token based on its contextual informativeness. For example, as illustrated in Figure 1(b),
a masked token surrounded by unmasked neighbors is considered more informative, and is thus
assigned a higher loss weight. This encourages the model to prioritize predicting tokens with rich
contextual support during inference, leading to a more structured generation process.

However, we identify a critical and previously overlooked drawback of token-level noise. We provide
empirical and theoretical evidence that as the number of masked tokens in the generation context
grows, the informativeness of each individual mask token decreases significantly. For models trained
with token-level noise, attending to a long sequence of these low-information mask tokens dilutes the
model’s attention, preventing it from focusing on the truly informative tokens in the prompt and the
partially informative mask tokens. This “attention dilution” degrades generation quality, particularly
for long sequences. Conversely, our analysis reveals this is not an issue for models trained with
sequence-level noise, where all mask tokens are trained to carry useful information and contribute
meaningfully to the self-attention mechanism.

Inspired by this core insight, we propose Truncated Block Generation, a novel sampling method
designed specifically to mitigate attention dilution in dLLMs trained with token-level noise. Instead
of appending a single, long sequence of masks to the prompt, our method divides the generation
process into sequential rounds. In each round, a shorter block of masks is appended and denoised, and
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(a)   Sequence-Level Noise.

Diffusion [MASK] Language [MASK]

Diffusion Large Language Models

[MASK] [MASK] [MASK] [MASK]

w(t) = 1.0

w(t) = 0.5

w(t) = 0.0

Diffusion

[MASK]

[MASK]

Diffusion

Large

Language Models

[MASK]

       w(t) = 1.0      w(t) = 0.62      w(t) = 0        w(t) = 0 

       w(t) = 1.0       w(t) = 1.0     w(t) = 0.37   w(t) = 0.18 

(b)   Token-Level Noise.

Figure 1: The noise level of masked diffusion language models: Different from LLaDA, which uses
sequence-level noise, Dream uses token-level noise to re-weight the loss of different tokens.

we use the truncated unmasked block as the new context. This strategy ensures that the model always
attends to a context with a high density of informative tokens, alleviating the dilution problem. As a
result, Truncated Block Generation accelerates sampling speed, supports flexible-length generation,
and significantly improves output quality.

Our main contributions are summarized below.

1. We identify the “attention dilution” problem in dLLMs trained with token-level noise. We
demonstrate that an excessive number of mask tokens degrades performance by diverting
the model’s attention away from informative context.

2. We provide a theoretical analysis explaining the underlying mechanism of attention dilution.
Furthermore, we clarify why models trained with sequence-level noise are not susceptible to
this issue, highlighting a critical difference in their behavior.

3. Based on our analysis, we propose Truncated Block Generation, a simple yet effective
sampling strategy that directly mitigates attention dilution. Extensive experiments validate
that our method leads to substantial improvements in generation quality, faster inference
speed, and robust support for flexible-length outputs.

2 BACKGROUND

2.1 DIFFUSION LARGE LANGUAGE MODELS

Discrete diffusion models (Sohl-Dickstein et al., 2015; Meng et al., 2022; Austin et al., 2021a) are a
class of latent variable models of the form pθpx0q “

ş

pθpx0 : T qdx1:T . They are characterized by
a forward noising process and a learned reverse denoising process. The forward process progressively
corrupts the original data x0 into a sequence of increasingly noisy masked tokens x1, . . . ,xT , which
are of the same dimensionality as the data x0 „ pdata: qpx1:T | x0q “

śT
t“1 qpxt | xt´1q, where

qpxt | xsq “ Catpxt;Qtxsq and Qt is the transition matrix. The backward process learns to
gradually denoise the masked sequence back to the original data distribution by iteratively predicting
masked tokens as t moves from T to 0: pθpxq “

ř

x1:T
ppxT q

śT
t“1 pθpxt´1|xtq.

The model parameter θ can be optimized by minimizing the negative log-likelihood of the clean data
x0. If the model uses the absorbing kernel, learning the denoising process leads to the minimization
of the following Evidence Lower Bound (ELBO) of the log likelihood (Nie et al., 2025):

LLLaDApθq “ ´Ex„qpxq,ϵ„N p0,1q,t„Up1,T qwptq
N
ÿ

n“1

1rxn
t “MASKs log pθpxn

0 | xtq, (1)

where 1rxn
t “MASKs is the indicator function that ensures that the loss is computed only on the masked

tokens, and wptq P p0, 1s is a time-dependent reweighting term. To enable the model to decode easier
tokens earlier, Ye et al. (2025) propose using contextual token-level noise for token loss reweighting:

LDreampθq “ ´Ex0„qpx0q,ϵ„N p0,1q,t„Up1,T q

N
ÿ

n“1

wpxt, t, nq1rxn
t “MASKs log pθpxn´1

0 | xtq,
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    Remasking and inserting

  Unmask tokens 

(b) Semi-AR Generation

(a) Block Generation

Prompt  Block

Threshold 1    > ?     Generated Length 
Yes

Mask token
Generated token

     Unmask tokens

     Output as final answer
    No

Prompt  Block 

Threshold 2    > ?     Generated Length     Output as final answer

(c) Proposed truncated block generation algorithm

Yes

Figure 2: Comparison of block generation, semi-AR generation and our truncated block generation.

where

wpxt, t, nq “
1

2

N
ÿ

i“1

1rxi
t‰MASKsGeopp, |n ´ i| ´ 1q (2)

is a mixture of geometric distributions to quantify the information contribution of each clean token
relative to the noised tokens.

2.2 BI-DIRECTIONAL ATTENTION OF DIFFUSION LANGUAGE MODELS

For an input sentence X P R1ˆl, the dLLMs first projects each token to its embedding X0 P R1ˆlˆd,
where d is the hidden size. Unlike AR transformers, which add an unidirectional causal attention mask
to the attention score and generate text sequentially in a left-to-right manner, MDM’s transformer
uses bi-directional attention and attends to both the previous and future tokens.

Q0 “ X0WQ, K0 “ X0WK , A0 “ p
Q0K

J
0?

d
q, AttnpX0q “ SoftmaxpA0q.

Thus, on inference, the MDM (i) attends to the previous prompt tokens to understand the question,
and (ii) attends to the following rMASKs tokens for generating and organizing the content.

3 THE ATTENTION DILUTION PROBLEM IN MASKED DIFFUSION MODELS

MDMs generate sequences by appending a series of m1 mask tokens M1 P R1ˆm1 to the end
of a prompt P0 P R1ˆc. The combined sequence is then projected into an embedding space
X1 P R1ˆpc`m1qˆd:

X1 “ wte

ˆ„

P0

M1

ȷ˙

P R1ˆpc`m1qˆd, (3)

where wte is the word token embedding layer. While intuitive, this introduces a critical challenge
(which will be called attention dilution), particularly for models trained with token-level noise. For
a mask token xj in X1, we found that with the increase of the token’s positions, its contextual
information

wpxj`1, j ` 1, c ` m1q

wpxj , j, c ` m1q
“

řc`m1´1
i“0 p|n´i`1|

řc`m1

i“1 p|n´i|
“ p.

Theorem 1. When the length of the mask-appended sentence is sufficiently long, for every ϵ ą 0,
there exists k ą 0 such that wpxu, u, nq ă ϵ, @u ą k.

For tokens with contextual information less than ϵ, we call them no-informative tokens, and the model
attending on these tokens can only get positional information (know the length of the remaining free
space for generation), but this is not helpful for understanding and solving the problem. We define
the attention on tokens whose contextual information is greater than ϵ as contextual attention:

3
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(a) attention on prompt tokens with 64 mask tokens appended. 

[MASK]

(c) Contextual attention with different 
number of mask token. 

(b) attention on prompt tokens with 1024 mask tokens appended. 

Figure 3: The attention of Dream will be diluted by excessive masks.

Definition 1. We denote the ith mask token of X1 as m1
i . We define its contextual attention as its

attention on tokens whose contextual information is greater than ϵ:

CApm1
i q “

c`m1
ÿ

j“1

1rwpxj ,j,nqąϵsAttnijpX1q.

Next, we prove that the excessive redundant mask tokens dilutes the contextual attention.
Theorem 2. For the X1 defined above, we further append m2 ´ m1 mask tokens to its end and
denote it as X2:

X1 “ wte

ˆ„

P0

M1

ȷ˙

P R1ˆpc`m1qˆd, X2 “ wte

ˆ„

P0

M2

ȷ˙

P R1ˆpc`m2qˆd. (4)

We denote the ith mask token of X1 as m1
i and the ith mask token of X2 as m2

i . The contextual
attention of m1

i is strictly greater than the contextual attention of m2
i :

CApm1
i q “

c`m1
ÿ

j“1

exppA1
ijq

řc`m1

k“1 exppA1
ikq

ą

c`m1
ÿ

j“1

exppA2
ijq

řc`m2

k“1 exppA2
ikq

“ CApm2
i q (5)

We empirically validate this phenomenon in Figure 3. As we can see in Figure 3 (a) and Figure 3 (b),
given a prompt “You are a expert python coder”, when the number of appended rMASKs is 64, the
attention of the first mask token to the [You] token is 2.1ˆ10´5. However, if the number of appended
rMASKs is 1024, the attention of the first mask token to the [You] token will decrease to 5.3 ˆ 10´6.
The same phenomenon can be observed for attention on all of the prompt tokens. Moreover, we also
visualize how the contextual attention affected by the number of mask tokens and show the result in
Figure 3 (c). We draw the curve of three samples and the mean on the MBPP dataset, and we can
see that the contextual attention is decreasing with the increase of the number of mask tokens. This
demonstrates that an excess of masks diverts focus from the crucial context provided by the prompt.

Remarks. The attention dilution problem is significant in MDMs trained with token-level noise but
is absent in models trained with sequence-level noise.

Recall that in attention layer, qJk measures the similarity of different tokens, so masks tokens will
attend more to mask tokens rather than prompt tokens. However, prompt tokens are more important
for the generation. We observe that for both Dream (Ye et al., 2025) and LLaDA (Nie et al., 2025),
they will copy a previous token as query for self-attention in the following layers. As we can see
in Figure 5 (a) and Figure 5 (b), for the mask tokens, their attention will be paid to one token in the
prompt, we denote the index of the prompt token as k and the mask token as m:

AttnmpX0q “ ek, AttnmpX0qv “ eJ
k ¨

“

X1
0WV , ¨ ¨ ¨Xk

0WV , ¨ ¨ ¨
‰

“ Xk
0WV , (6)

where ek denotes the unit vector with a 1 in the k-th position and zeros elsewhere. The attention layer
will output the linear transformed token Xk

0WV in all the mask tokens’ positions and copy it to these
positions using residual connection.

m ` LayerpX0q “ m ` Xk
0Wv (7)

4
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Prompt: Write a python function to find 
the count of rotations of a binary 
string with odd value. 
[BEGIN]
 
First round generation:
def odd_Equivalent(s, n):
    count = 0
    m = len(s)                                         
    for i in range(n):
        rotated = s[i:] + s[:i]
        if rotated.count('1') % 2 == 1:
            count += 1
    return count
[DONE]<|endoftext|><|endoftext|><|endof
text|><|endoftext|>

Second round generation:
def odd_Equivalent(s, n):
    count = 0
    m = len(s)
    for i in range(n):
        rotated = s[i:] + s[:i]
        if rotated[-1] == '1':
            count += 1
    return count

# Test cases
assert odd_Equivalent("011001", 6) == 3
assert odd_Equivalent("11011", 5) == 4
assert odd_Equivalent("1010", 4) == 2
[DONE]<|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|>...... 

Keep

Delete

Generated in 
first round

Generated in 
second round

Prompt: Write a python function to find 
the count of rotations of a binary 
string with odd value. 
[BEGIN]

First round generation:
def odd_Equivalent(s, n):
    count = 0
    m = len(s)                                         
    for i in range(n):
        rotated = s[i:] + s[:i]
        if rotated.count('1') % 2 == 1:
            count += 1
    return count
[DONE]<|endoftext|><|endoftext|><|endof
text|><|endoftext|>

Second round generation:
def odd_Equivalent(s, n):
    count = 0
    m = len(s)                                         
    for i in range(n):
        rotated = s[i:] + s[:i]
        if rotated.count('1') % 2 == 1:
            count += 1
    return count
[DONE]<|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|><|endof
text|><|endoftext|><|endoftext|>...... 

(a) block generation (a) truncated block generation

Figure 4: Illustrative example comparing block generation with truncated block generation.
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Figure 5: Attention heat maps of LLaDA and Dream.

This mechanism allows mask tokens to carry forward contextual information from the prompt.
However, its application across the sequence differs between training methods.

For models trained with token-level noise (e.g., Dream), only the informative masks successfully
learn this copying behavior. As shown in Figure 5 (d), non-informative masks, being too distant,
fail to learn a meaningful attention pattern and instead exhibit random behavior. These semantically
empty tokens are the source of attention dilution.

For models trained with sequence-level noise (e.g., LLaDA), the model is incentivized to make
all mask tokens useful for the final prediction. Consequently, the copying behavior propagates
throughout the entire masked sequence, as seen in Figure 5 (c). In this case, attending to any mask
token is beneficial, as they all carry relevant contextual information. Therefore, models trained with
sequence-level noise do not have the dilution problem.

4 TRUNCATED BLOCK GENERATION

In this section, we introduce the proposed method, Truncated Block Generation. We first motivate
the approach by outlining the trade-offs in generative sequence length. We then detail the algorithm
and discuss the importance the truncation step.
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Algorithm 1 Truncated Block Generation

Require: Prompt c, model fθ , threshold γ1, γ2, ¨ ¨ ¨ , γk, block length b1, b2 ¨ ¨ ¨ , bk, truncated length
l1, l2, ¨ ¨ ¨ , lk, sampling step N .

1: Set r1 is a fully masked sequence of length L at time step 1.
2: for j Ð 1 to k do Ź Generate j th round.
3: for t Ð 1 down to 1

N step 1
N do Ź Iterate through all time steps.

4: s “ t ´ 1
N Ź Calculate previous timestep: s “ t ´ 1{N .

5: for i Ð 1 to L do Ź Iterate through each token i in the sequence (1 to L).
6: if rit ‰ M then Ź If token i at timestep t is not masked.
7: ri0 “ rit, c

i “ 1 Ź Keep the token unchanged and set confidence to 1.
8: else Ź If token i is masked.
9: ri0 “ argmaxri0 pθpri0|p0, rtq Ź Predict the most likely token for this token.

10: ci “ pθpri0|p0, rtqri0 Ź Record the confidence score of this token.
11: end if
12: end for
13: nun “ rLp1 ´ sqs Ź The number of unmasked tokens is nun in timestep s
14: for i Ð 1 to L do
15: if ci P Lowest ´ nunptciuLi“1q then Ź If confidence of token i is low.
16: ri0 “ M Ź Remask this token and select it for remasking.
17: end if
18: end for
19: rs “ r0 Ź Update the sequence state.
20: end for
21: if len(rs) ď γk then Ź If the valid length is less than a threshold.
22: Break Ź Break the loop and output.
23: else
24: r0 “ Cat pr0r0 : ljs, rMASKs ˆ bjq Ź Remasking and appending mask.
25: end if
26: end for
27: return r0

As discussed in Section 3, MDMs trained with token-level noise faces the “attention dilution”
challenge. Appending a long sequence of rMASKs tokens to a prompt dilutes the model’s attention
on the informative context, which degrades generation quality. However, a short masked sequence
provides insufficient context for complex tasks, such as generating complete code blocks or executing
a full chain of thought for mathematical reasoning. This limitation also leads to poor performance.
This raises a key question: How can we generate sequences with sufficient length without causing
attention dilution?

To address this challenge, we propose an iterative method called Truncated Block Generation. The
core idea is to generate text in fixed-size blocks, allowing the model to extend the sequence as
needed without being overwhelmed by an excessive number of rMASKs tokens at any single step. The
pseudocode of the proposed algorithm is shown in Algorithm 1.

Specifically, the algorithm proceeds as follows: First, the model generates content within a masked
block of a predefined length (line 2 to 20). Next, we measure the length of the valid generated output
(i.e., the sequence before any ăeosą token appears) and compare it against a continuation threshold,
γ (line 21). If the valid length is less than γ, we consider the generation complete. This indicates the
model did not need the full block capacity to finish its response. If the valid length is greater than or
equal to γ, we conclude the model needs more space. We then truncate the generated sequence to a
shorter, predetermined length. This truncated output serves as the new context, to which a new block
of rMASKs tokens is appended for the next round of generation.

This block-wise approach mitigates attention dilution by ensuring that only a manageable number of
uninformative rMASKs tokens are present in any given generation step.

Remarks. The truncation step is important to the success of this method. Without it (i.e., a
truncation length of zero), our algorithm would simplify to naive block generation, a strategy with

6
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Table 1: Performance of Dream-7B and LLaDA-8B on coding benchmarks.

Dataset Model
Generation length

32 64 128 256 512 1024 Ours
MBPP

Dream-7B
43.8 58.0 57.2 58.6 59.6 59.2 60.4

Humaneval 26.8 43.9 48.7 48.1 43.9 43.9 52.4

MBPP
LLaDA-8B

22.4 36.2 37.0 36.6 36.8 37.4 37.6
Humaneval 11.2 32.9 37.8 40.8 36.6 37.2 40.2

a significant flaw. Due to their bi-directional attention mechanism, MDMs are aware of sequence
boundaries. As generation approaches the end of a block, the model is strongly biased toward
producing an ăeosą token to complete the output within the available space, as illustrated in
Figure 4 (a). This premature termination prevents the model from generating content that naturally
extends beyond the block boundary. In contrast, our truncation method re-masks the tokens near
the end of the generated block (Figure 4 (b)). This action effectively removes the premature ăeosą

token and signals to the model that the sequence is incomplete (such as “#” token in GSM8K and
“[DONE]” token in MBPP), prompting it to continue generating coherently into the subsequent block.
This enables the flexible, arbitrary-length generation that our method is designed to achieve.

5 EXPERIMENTS

In this section, we show that our method can improve the sampling quality and faster generation
speed for Dream. Then we conduct the ablation study and compare with block generation.

Setup. To show the effectiveness of the proposed truncated block generation, we test it using
LLaDA-8B-Instruct (Nie et al., 2025) and Dream-7B-Instruct (Ye et al., 2025) on four datasets of
math reasoning and code generation: GSM8K (Cobbe et al., 2021), MATH (Saxton & Hill, 2019),
HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021b). We use 4-shot prompt for GSM8K
and Math dataset, 3-shot prompt for MBPP dataset and 0-shot prompt for Humaneval dataset. All
experiments are conducted on NVIDIA A6000 GPUs.

Baseline. We compare our method against the strongest sampling strategies of Dream and LLaDA.
Specifically, LLaDA uses confidence-based remasking with semi-autoregressive decoding, while
Dream adopts an entropy-based sampler. Since both approaches require a pre-defined sequence
length, we directly write it as fixed length generation in the following context .

Improved Test Accuracy. For the baseline fixed-length generation method, we use generation length
of 32, 64, 128, 256, 512 and 1024. As we can see in Table 1, on MBPP dataset, Dream achieves the
best performance with a fixed generation length 512, but achieves a comparable result with fixed
generation length 64. Thus, for code generation with truncated blocks, we set the block length to 64,
the threshold to 55, and and the look ahead length to 30. As most of the questions can be in generated
one or two blocks, we set the maximum number of generation blocks as 2.

We can see in the last column of Table 1, the proposed method achieves accuracies of 60.4 and 52.4
on MBPP and Humaneval dataset respectively. Because our method uses 2 blocks with 64 block
length, compared with generation with fixed length of 128, our method attains 3.2 improvement on
MBPP dataset and 3.7 on Humaneval dataset. Moreover, compare with the best result in all fixed
generation length, our method also improve from 59.6 to 60.4 on MBPP and from 48.7 to 52.4 on
Humaneval dataset. For math problems, as shown in Table 2, our method also improves the accuracy
from 78.01 to 78.92 on GSM8K dataset and 42.80 to 43.98 on Math dataset. However, LLaDA
predicts all tokens with the same penalty weight during training and do not suffer from the dilution
problem as we discussed Section 3. From Table 1 and Table 2, we can see that our algorithm cannot
improve LLaDA but achieve comparable performance.

Improved Inference Speed. We use the same setting of Humaneval in the section above. If we
want to generate 128 tokens, the fixed length generation needs to append 128 tokens to the end of
the prompt and forward the whole sentence. Compared with fixed length 128, we use two blocks
with 64 mask tokens in each block for generation. First, if our generate finish in the first round, the
forward times of the baseline will be the double because it will generate 2ˆ tokens. For example,
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Table 2: Accuracy of Dream-7B and LLaDA-8B on math benchmarks.

Model Gen Length GSM8K Math

Dream-7B

Flexible-Match Strict-Match Exact-Match Math-Verify
512 75.51 75.43 42.80 37.38

256 78.01 77.10 42.70 37.96

128 66.64 58.68 35.48 35.26

64 34.87 21.98 13.34 22.10

32 6.52 3.03 00.32 5.02

Ours 78.92 77.71 43.98 38.42

LLaDA-8B

512 80.21 73.2 26.76 29.94

256 79.75 54.73 28.70 31.18

128 74.22 59.96 30.86 29.52

64 63.53 37.68 24.70 22.64

32 21.22 11.75 4.16 18.8

Ours 80.06 73.38 30.14 28.92

36% answers are generated only in one stage on Humaneval dataset. Moreover, longer length requires
more computational time for each forward. If our generate finish in the second round, the forward
time of the previous 64 tokens will be reduced because it has shorter length but the forward time of
the left 64 tokens will be the same. As we can see in Table 3 and Table 4, if we use truncated block
generation to generate 128 tokens, it achieves 1.9ˆ acceleration on Humaneval dataset and 1.6ˆ

acceleration on MBPP dataset.

Moreover, we also show that our method also compatible with other accelerating method such as
parallel decoding and block KV-Cache (Wu et al., 2025). As we can see in Table 3, the baseline
Dream generates 13 tokens per second and achieves 48.7 accuracy. Compared with the baseline
method, our method has 2ˆ generation speed and 52.4 accuracy, which are both higher than the
baseline. Fast-dllm (Wu et al., 2025) adopt block KV-Cache and parallel decoding to accelerate
the generation speed but it will degrade the performance. It achieves 3.5ˆ acceleration but the
accuracy will decrease to 40.2. Our truncated block generation can further accelerate the generation
of Fast-dllm and achieves higher accuracy. It achieves 4.3ˆ acceleration and have 46.3% accuracy.

Ablation on the threshold. The hyperparameter threshold, which determines whether to continue
generating the next block or not, influences the generation quality and needs to be tuned on a
validation set. In this section, we also performed ablation studies of the threshold and have shown
the result below. We use GSM8K dataset and exact-match the evaluation metric. The first round
generation block is 256. As we can see in Figure 6, for both validation set and test dataset, the
accuracy shows an upward trend with the threshold and reaches the peak 44.0 at 254. After that, the
accuracy start decreasing drastically.

Ablation on truncated length and Compare with block generation. The truncated length also
influences the quality of the sampling. When the truncated length is 0, our algorithm degrades to
traditional block generation (Arriola et al., 2025). From Table 5, We can see that the performance of
our truncated block generation on all the four benchmarks are all higher than the block generation.
Moreover, we also test the model performance with different truncated lengths. We do experiment on
Humaneval dataset and visualize the result in Figure 6 (b). We can see that in the validation set, with
the increase of the truncated length, the accuracy will first increase and then decrease. And both the
test set and validation set attain highest score with truncated length 30.

6 RELATED WORKS

Diffusion Language Models. Diffusion models have achieved great success in the continuous
domain (Sohl-Dickstein et al., 2015; Ho et al., 2020; Karras et al., 2022). A simple approach is to
map tokens into continuous embeddings and perform diffusion process in continuous space (Li et al.,
2022; Han et al., 2022; Mahabadi et al., 2023). Alternatively, some methods directly train a discrete
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Figure 6: Ablation study on threshold and truncated length.

Method TPS Acc
Dream-7B 13 (1.0ˆ) 48.7
+ Ours 25 (1.9ˆ) 52.4
+ Fast-dllm 46 (3.5ˆ) 40.2
+ Fast + Ours 57 (4.3ˆ) 46.3

Table 3: Comparison with
Fast-dllm on Humaneval.

Method TPS Acc
Dream-7B 1.58 (1.0ˆ) 57.2
+ Ours 2.48 (1.6ˆ) 60.4
+ Fast-dllm 32.8 (20 ˆ) 55.2
+ Fast + Ours 42.2 (26 ˆ) 55.8

Table 4: Comparison with
Fast-dllm on MBPP.

Dataset Block Ours
HE 48.1 52.4
MBPP 58.0 60.4
Math 43.6 44.0
GSM8K 66.6 78.9

Table 5: Comparison with
block generation.

diffusion models on the discrete vocabulary space (Sohl-Dickstein et al., 2015; Austin et al., 2021a;
Lou et al., 2023; Nie et al., 2025; Ye et al., 2025). In this formulation, diffusion models forward
steps progressively map original tokens to rMASKs tokens or random tokens, which corresponds to
absorbing diffusion kernel and uniform diffusion kernel, and the reverse process reconstructs the
original text from these noised sequences. Building on the above analysis, lots of works scaling the
Masked diffusion models to billion-parameter scale (Nie et al., 2025; Ye et al., 2025; Khanna et al.,
2025; Zhu et al., 2025). Both of them adopt the absorbing diffusion kernel, which maps original
tokens to rMASKs tokens in the forward process. LLaDA series (Nie et al., 2025; Zhu et al., 2025)
trained diffusion models from scratch using direct mask prediction and sentence level noise loss
reweighting. Dream series (Xie et al., 2025; Ye et al., 2025) used ARMs for model initialization and
trained diffusion models using shift mask prediction and token level noise loss reweighting.

Inference Remasking strategies for dLLMs. Diffusion large language models inference are based
on low-confidence remasking (Zhu et al., 2025; Nie et al., 2025; Ye et al., 2025). Specifically,
similarly to Chang et al. (2022), they remask the t

s of predicted tokens with the lowest confidence
based on the predictions, called low-confidence remasking. Moreover, Kim et al. (2025) proposed to
use top probability margin remasking strategy instead of low-confidence remasking strategy, which
increases the performance on several planning benchmarks.

Block generation in dLLMs. Block generation or semi-ar generation are widely used in currents
diffusion language models (Arriola et al., 2025; Nie et al., 2025; Zhu et al., 2025; Wu et al., 2025).
Arriola et al. (2025) proposed a block-wise extension of the D3PM framework (Austin et al., 2021a)
to generate arbitrary-length sequences. And LLaDA (Zhu et al., 2025; Nie et al., 2025) also adopt
this strategy in their models. Wu et al. (2025) introduces KV-cache in their block-wise decoding.

7 CONCLUSION

In this paper, we provide empirical and theoretical evidence that excessive redundant mask tokens
will dilute the contextual attention of Dream model and degrade its performance. We also show that
both the contextual mask tokens of Dream and all the mask tokens of LLaDA will copy a token from
the prompt as query at predict the token. Inspired by the observation, we propose truncated block
generation for diffusion language models sampling, which leads to faster generation speed, high
quality generation, and support flexible generation. We conduct extensive experiments to visualize
our observation and validate the effectiveness of the proposed algorithm.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. NeurIPS, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021b.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In CVPR, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. arXiv preprint arXiv:2210.17432,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. NeurIPS, 2022.

Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum,
Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham Kakade, and Sitan Chen. Train for the worst, plan
for the best: Understanding token ordering in masked diffusions. arXiv preprint arXiv:2502.06768,
2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
improves controllable text generation. NeurIPS, 2022.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew E
Peters, and Arman Cohan. Tess: Text-to-text self-conditioned simplex diffusion. arXiv preprint
arXiv:2305.08379, 2023.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
score matching for discrete data. NeurIPS, 2022.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Grefenstette Saxton and Kohli Hill. Analysing mathematical reasoning abilities of neural models.
arXiv:1904.01557, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Findings of the Association for Computational
Linguistics: ACL 2023, 2023.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan
Gong, Xin Jiang, Zhenguo Li, et al. Dream-coder 7b: An open diffusion language model for code.
arXiv preprint arXiv:2509.01142, 2025.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs for grammar checking and wording improvement, ensuring it did not alter the text’s
meaning or add references.

B PROOF OF THEOREM 1

Since wpxj`1,j`1,nq

wpxj ,j,nq
“ p, we have wpxj`k,j`k,nq

wpxj ,j,nq
“ pk. We denote wpxc`1, c`1, nq “ C. Then, for

all ϵ ą 0, there exists k “ logp
ϵ
C , such that for all u ą k, wpxu, u, nq ă wpxk, k, nq “ Cpk ď ϵ.

C PROOF OF THEOREM 2

For the X1 defined in Section 3, we further append m2 ´ m1 mask tokens to its end and denote it as
X2:

X1 “

„

P0

M1

ȷ

P R1ˆpc`n1qˆd X2 “

«

P0

M1

M2

ff

P R1ˆpc`n1`n2qˆd, (8)

where n1 “ m1 and n2 “ m2 ´ m1. The query of X1 and X2 can be calculated as:

Q1 “ X1WQ “

„

P0WQ

M1WQ

ȷ

Q2 “ X2WQ “

«

P0WQ

M1WQ

M2WQ

ff

(9)

The key of X1 and X2 can be calculated as:

K1 “ X1WK “

„

P0WK

M1WK

ȷ

K2 “ X2WK “

«

P0WK

M1WK

M2WK

ff

(10)

By multiplying the key and value, we have:

A1 “

„

P0WQ

M1WQ

ȷ ˆ„

P0WK

M1WK

ȷ˙J

“

„

P0WQW
J
KP0 P0WQW

J
KM1

M1WQW
J
KP0 M1WQW

J
KM1

ȷ

(11)

A2 “

«

P0WQ

M1WQ

M2WQ

ff ˜«

P0WK

M1WK

M2WK

ff¸J

“

»

–

P0WQW
J
KP0 P0WQW

J
KM1 P0WQW

J
KM2

M1WQW
J
KP0 M1WQW

J
KM1 M1WQW

J
KM2

M2WQW
J
KP0 M2WQW

J
KM2 M1WQW

J
KM2

fi

fl (12)

After softmax, we can get the attention score:

SoftmaxpA1qkz “
exppA1

kcq
řc`n1

i“1 A1
ki

(13)

SoftmaxpA2qkz “
exppA2

kzq
řc`n1`n2

i“1 exppA2
kiq

, where z P r0, cs, k P rc, n1s (14)

It is easy to show that

SoftmaxpA2qkz “
exppA2

kzq
řc`n1`n2

i“1 exppA2
kiq

(15)

“
exppA1

kzq
řc`n1

i“1 exppA2
kiq `

řn2

i“c`n1
exppA2

kiq
(16)

“
exppA1

kzq
řc`n1

i“1 exppA1
kiq `

řn2

i“c`n1
exppA1

kiq
(17)

ď
exppA1

k1q
řc`n1

i“1 exppA1
kiq

(18)

“ SoftmaxpA1
kzq (19)
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Thus, we have:

CApm1
i q “

c`m1
ÿ

j“1

exppA1
kcq

řc`n1

i“1 exppA1
kiq

ą

c`m1
ÿ

j“1

exppA1
k1q

řc`n1

i“1 exppA1
kiq

“ CApm2
i q (20)

D DETAILED EXPERIMENT SETTING

For Dream model, when sampling, we set dtype as “bfloat16”, temperature as 0.1,top p as 0.9 and
alg as ”entropy”. For Fast-dllm, we set the block of KV-cache as 32.

For our truncated block generation, as shown in Table 6, for MBPP dataset, we set the block length
as 64, truncated length as 32, and threshold as 55. For Humaneval dataset, we set the block length
as 64, truncated length as 32, and threshold as 55. For GSM8K dataset, we set the block length as
128, truncated length as 64, and threshold as 127. For Math dataset, we set the block length as 256,
truncated length as 128, and threshold as 255.

MBPP Humaneval GSM8K Math
Block length 64 64 128 256
Truncated length 32 32 64 128
Threshold 55 55 127 255

Table 6: Detailed hyper-parameters setting.

E DETAILED COMPARISON OF DIFFERENT SAMPLING METHODS

In this section, we provide a detailed comparison of different methods on LLaDA using the Humaneval
dataset and present the results in Table 7. We compare our approach against confidence-based
remasking with and without fixed-length semi-ar generation, as well as block-wise sampling Arriola
et al. (2025). With a fixed generation length of 128, LLaDA with confidence-based remasking alone
achieves 8.5 accuracy, while adding semi-autoregressive sampling improves the accuracy to 37.0.
Block diffusion sampling attains 17.1 accuracy. Our method using 64+64 blocks achieves 37.6
accuracy, outperforming all of the above baselines.

Method Humaneval
Block diffusion 17.1
confidence remasking w/o semi-ar 8.5
confidence remasking w/ semi-ar 37.0
Ours 37.6

Table 7: Detailed comparison of different sampling methods

F GENERAL TASK

For a general ability testing, We tested BBH (Suzgun et al., 2023) and present the results in Table 8,
which consists of 23 particularly challenging BIG-Bench tasks spanning traditional NLP, mathematics,
commonsense reasoning, and question answering. We can see that our method also lead to better
performance.
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Method Semi-ar + Confidence based remasking Ours
Gen Len 128 256 128 + 128
Acc 50.68 56.60 57.12

Table 8: Accuracy of LLaDA-8B on BBH benchmarks.
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