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ABSTRACT

Current pre-training of Vision-Language Models (VLMs) relies on large-scale, high-
quality alt-text datasets. However, alt-text data is typically short yet noisy, with this
issue being more pronounced for non-English languages. To address this limitation,
this paper proposes a recaptioning model that rewrites original alt-text data into
versions with rich details while maintaining low hallucination rates. The key to
mitigating hallucinations lies in a reinforcement learning approach that leverages
preference data produced via visual checklists. Leveraging this recaptioning model,
we construct X-Recap - a dataset comprising 1 billion synthetic image-caption
pairs with low hallucinations. We empirically demonstrate that a VLM pre-trained
on X-Recap substantially outperforms its counterpart trained on the original alt-
text data, achieving an average performance improvement of approximately 4.6%
across 15 vision-language tasks. To facilitate further research in the community,
20% of the X-Recap dataset will be released to the public.

1 INTRODUCTION

With the enormous power of large language models, remarkable performance gains have recently
been achieved in a variety of tasks in natural language processing (NLP), computer vision (CV), and
also in cross-modal fields (Brown et al., 2020; Chung et al., 2022; Chowdhery et al., 2022; Touvron
et al., 2023; Dosovitskiy et al., 2021; Alayrac et al., 2022; Liu et al., 2023; Achiam et al., 2023;
Wang et al., 2024; Hurst et al., 2024). The Large Language Model (LLM) and the Vision Language
Model (VLM) are usually equipped with Transformer (Vaswani et al., 2017) as the backbone and
then pre-trained with a tremendous amount of unlabeled data. The strong representation ability of the
model, the massive amount of data, and the effective means of training make the foundation models
powerful for successfully solving the tasks of vision and language.

While the exponential growth of text data has fueled large language models, the pre-training of
vision-language models (VLMs) confronts a critical data bottleneck: the scarcity of high-quality,
aligned image-text pairs. The prevailing methods for curating these datasets rely on the extraction of
web-based alt-text (Sharma et al., 2018; Changpinyo et al., 2021; Ordonez et al., 2011; Schuhmann
et al., 2021; 2022; Byeon et al., 2022; Gadre et al., 2023; Liu et al., 2022; Gu et al., 2022). This
approach is fraught with inefficiency; its multistage pipeline of cleaning, filtering, and validation
not only causes significant data loss but also yields short yet noisy captions that frequently suffer
from misalignment with visual content. Critically, as the finite supply of high-quality, naturally
occurring pairs is depleted, scaling these extraction methods leads to diminishing marginal returns,
with deteriorating data quality hindering VLM training. This bottleneck highlights an urgent need for
novel techniques to generate large-scale, high-quality multimodal datasets.

Although recent exploratory investigations into multimodal synthetic data have shown promise for
various cross-modal tasks (Li et al., 2023; Betker et al., 2023; Yu et al., 2024; Li et al., 2024b;
Awadalla et al., 2024), their efficacy is consistently undermined by a critical flaw: the prevalence of
factual hallucinations. As illustrated in Figure 1, captions generated by previous methods are often rife
with erroneous details (highlighted in red) or lack sufficient information. To address this limitation,
our work introduces a methodology to substantially mitigate hallucinations in synthetic captions. We
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subsequently demonstrate that pre-training on our resulting large-scale, low-hallucination dataset
yields significant performance improvements for VLMs.

Alt-text: Change in head-level weight sharing. We compute the proportion of shared 
features within the structures every 50 samples as the search progresses

Ours：The image is a line graph that shows the percentage of shared operations as a 
function of the number of samples. The x-axis represents the number of samples, ranging 
from 0 to 600, while the y-axis represents the percentage of shared operations, ranging from 
0 to 100%. The graph starts at approximately 20% at 50 samples and shows an overall 
increasing trend as the number of samples increases. There are notable peaks and troughs, 
with the highest percentage reaching 95% at around 600 samples. The data points are marked 
with red squares and connected by a blue line.

Alt-text: man performing on stage

Capfusion-120M: On stage, a man is performing, while 
a woman wearing a striped shirt stands nearby.

Ours: A person is on stage in front of a large audience. The individual is 
wearing a striped long-sleeve shirt and dark pants, and they appear to be in 
a dynamic pose, possibly dancing or performing. The audience is seated in a 
darkened theater or auditorium with red curtains in the background, and the 
stage is illuminated by a spotlight or stage light. The person's hand is raised, 
and the overall scene suggests a live performance or concert.

Alt-text: Original new green connector dx5 printhead Mutoh VJ1204 VJ1304 VJ1604 Mimaki
JV33 JV5 CJV30 printer dx5 print head solvent new and original dx4 printhead eco solvent 
dx4 print head for epson roland vp 540 for mimaki jv2 jv4 printer

Recap-DataComp-1B: A close-up image of a laptop screen with a black bezel and a visible 
screen with a white backlight. The screen is detached from the laptop and is placed on a 
white background. There are two screws visible on the bezel, and the screen is slightly tilted 
upwards.

Ours: The image shows a printhead assembly, which is a component used in printers. The 
printhead has a metallic or metal-like central part with a square or rectangular shape, and it 
is mounted on a black or dark-colored base. There are visible screws securing the printhead 
to the base. On the left side of the printhead, there is a green connector or interface, which 
is typically used for electrical connections in printer hardware. The overall design suggests it 
is a part of a printer used for printing, possibly for models like Mutoh VJ1204, VJ1304, 
VJ1604, Mimaki JV33, JV5, CJV30, or similar printers.

Alt-text: Hanging Wall Above the fault plane. Hanging (head) Wall Foot Wall

Recap-DataComp-1B: A digital illustration of a road with a green border labeled 'Hanging 
Wall'. The road is depicted with a damaged surface, and there is a warning sign that reads 
'ABOVE THE FAULT PLANE'. The image is overlaid with a green square that says 'HANGING 
WALL' and a green triangle with the text 'HANGING WALL'. There is a photo of a woman in a 
red jacket and a man in a blue jacket, both smiling, with the text 'HANGING WALL' written 
above them. The image also includes a green rectangle with the text 'HANGING WALL' and a 
green square with

Ours: The image is a diagram or educational illustration related to geological fault planes. It 
includes a title at the top that reads 'Hanging Wall' and a subtitle or description below it that 
says 'Above the fault plane.' The central part of the image shows a diagram with a green 
outline that divides the area into two sections: 'Hanging (head) Wall' and 'Foot Wall.' There 
is a photograph of a person in a red jacket lying on a surface within the 'Hanging (head) 
Wall' section. The background of the image appears to be a natural setting with some 
blurred elements, possibly representing a fault or geological formation.

Alt-text: Illinois Fighting Illini Women&#x27;s Cream Varsity Sweater

BLIP3-KALE: A woman wears an Illinois Fighting Illini Women's Varsity 
Sweater in this image. The off-white or cream sweater features a prominent, 
bold orange 'I' logo on the front, signifying a team or university affiliation. 
The letter 'I' stands out against the striped sleeves, which are adorned with 
black and white stripes. The woman underneath wears a light-colored top, 
completing the look with a neutral expression.

Ours: The image shows a cream-colored sweater with a large red letter 'I' in 
the center, outlined in blue. The sleeves have blue and white stripes at the 
cuffs. This is likely a piece of apparel associated with the Illinois Fighting Illini 
women's team.

Alt-text: Wireless Adaptador Pci Tp-Link Tl-Wn951n 300mbps 3 Antenas

BLIP3-KALE: The PCI wireless network card showcased in the image is a TP-Link TL-
WN951N model, which boasts a 300Mbps connection speed and is equipped with three 
antennas. Mounted on a PCI slot, this device delivers 300Mbps PCI Express wireless 
connectivity, as indicated by the label's prominent "300Mbps PCI Express Wireless PCI 
Adapter" text. The card's green color scheme is complemented by TP-Link's branding and 
certification marks, as well as a visible serial number.

Ours：The image shows a TP-Link TL-WN951N 300Mbps Wireless N PCI Adapter with three 
black antennas. The adapter is green and has a gold-colored edge connector. The label on 
the adapter indicates it is a 300Mbps Wireless N PCI Adapter.

Figure 1: Examples of the original caption, previous synthetic caption, and our synthetic caption.

Although VLMs offer an efficient pathway to large-scale caption synthesis, their reliability is critically
undermined by persistent hallucinations (Bai et al., 2024). This issue is prevalent in prominent
datasets such as Recap-DataComp-1B (Li et al., 2024b) and Blip3-KALE (Awadalla et al., 2024),
where, as we show quantitatively in Section 4, significant hallucinatory contents (see Table 1). Such
erroneous data corrupt the model’s learning process by impeding the acquisition of correct vision-
language alignments, making its mitigation a paramount challenge. To address this, we introduce a
novel pipeline whose core innovation is the construction of large-scale caption preference data by
adjudicating hallucinations against a visual checklist. Constructing large-scale preference captions
is a non-trivial challenge that demands a simple, reliable, and scalable production method. To this
end, we developed a rigorous model-based framework. Our process first decomposes each caption
into fine-grained visual assertions, which a powerful VLM then individually judges for factuality.
These assertions act as a visual checklist, enabling the VLM to determine which of two captions
contains fewer hallucinations. This "decompose-then-judge" approach is the key to producing high-
quality preference data. This preference data then powers an iterative Direct Preference Optimization
(DPO) framework. Our approach explicitly aligns the model with preferences for factually grounded
descriptions over hallucinatory ones, and we find that it exhibits a distinct scaling law with iterative
application. The efficacy of this method is striking: applying our pipeline (detailed in Section 3)
to the same dataset used by BLIP3-KALE, we increase the non-hallucination rate from 56.0% to
86.63%. This represents a substantial 30.63 percentage point improvement in data fidelity (metrics in
Section 4.1), underscoring the power of the pipeline to create more reliable synthetic captions.

Leveraging our recaption pipeline, we introduce X-Recap, a large-scale synthetic dataset comprising
one billion image-text pairs. A primary contribution of this work is the demonstrably high quality
of X-Recap, particularly its significantly reduced hallucination rate. We empirically validate the
effectiveness of X-Recap as a superior pre-training resource. Systematic comparisons reveal that
vision-language models (VLMs) pre-trained on X-Recap consistently outperform those trained on
traditional alt-text across various model architectures and data scales. Specifically, our models achieve
an average performance gain of at least 4.6% across 15 diverse vision-language tasks under two
distinct settings. We attribute this significant improvement to the high information density and factual
accuracy of our synthetic data, which enhances the robustness and capabilities of downstream models.

Our contributions are summarized as follows:

1. A novel pipeline for high-fidelity captions. We propose a novel pipeline that first constructs a
large-scale preference dataset by adjudicating captions against a visual checklist. This data is then
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Dataset Method # Visual Details ↑ # None Hallucinations ↑ # Hallucination/Visual Details ↓

Laion2B

CapsFusion-120M 2.58 72.3% 0.14
w Qwen2-VL-7B 7.00 58.01% 0.094

w Gemma3-VL-27B 10.99 62.42% 0.052
w Qwen2-VL-72B 7.11 69.88% 0.065
Our Method (27B) 6.85 79.66% 0.040

DataComp

Recap-DataComp-1B 6.95 29.7% 0.249
BLIP3-KALE 6.52 56.0% 0.101

w Qwen2-VL-7B 6.35 58.02% 0.109
w Gemma3-VL-27B 6.84 77.64% 0.043
w Qwen2-VL-72B 8.15 74.67% 0.045

w Our Method (27B) 6.83 86.63% 0.024

Table 1: Hallucination Analysis of Synthetic Caption Datasets. We compare our method (using
Gemma3-VL-27B as the baseline) against existing large-scale synthetic datasets on a random sample
of 1,000 pairs from each. We report the Non-Hallucination Rate (% of zero-hallucination captions),
Hallucination/Detail Rate (ratio of hallucinatory to total details), and average Visual Details per
caption. See Section 4.1 for detailed evaluation methodology.

used within an iterative Direct Preference Optimization (DPO) framework to significantly reduce
hallucinations, yielding captions with demonstrably higher factual consistency than prior approaches.

2. A superior large-scale dataset for VLM pre-training. We demonstrate that our resulting one
billion pair dataset, X-Recap, provides substantial performance gains over existing synthetic data
when used for VLM pre-training. Our approach particularly enhances the model’s capabilities,
providing the community with a valuable, high-fidelity training resource.

2 RELATED WORK

Vision-Language Model. Vision-Language Models (VLMs) can be broadly classified into two
paradigms. The first is the dual-encoder architecture, exemplified by models such as CLIP (Radford
et al., 2021) and SigLIP (Zhai et al., 2023b), which learn aligned cross-modal representations through
contrastive training and excel at retrieval and zero-shot classification. The second, more recent
paradigm integrates a vision encoder with a Large Language Model (LLM), a direction pioneered
by Flamingo (Alayrac et al., 2022) and popularized by LLaVA (Liu et al., 2023). Driven by the
remarkable success of LLMs (Brown et al., 2020; OpenAI, 2023; Grattafiori et al., 2024; Guo et al.,
2025), this architecture has become the focus of extensive research and refinement (Wang et al.,
2024; Wu et al., 2024; McKinzie et al., 2024; Chen et al., 2024b; Liu et al., 2024). Despite their
architectural differences and the advanced capabilities of modern LLM-based VLMs, both paradigms
share a fundamental dependency: a reliance on large-scale, high-quality image-text pairs for effective
training. This shared requirement has created a critical bottleneck. The supply of naturally occurring,
high-quality image-text data is finite and increasingly exhausted (Villalobos et al., 2022), making it
difficult to keep pace with the ever-growing scale of state-of-the-art models. To break this impasse
and enable continued progress, synthetic data has emerged as a promising solution.

Synthetic data. Building on its success in enhancing large language models (Zhang et al., 2024;
Shao et al., 2024; Zhu et al., 2024; Yang et al., 2024), synthetic data generation is increasingly being
explored within the multimodal domain. Some methods, such as BLIP-2 (Li et al., 2023), utilize
image captioning models to synthesize short captions as substitutes for alt-text, with CapsFusion (Yu
et al., 2024) leveraging LLMs for refinement. However, captions generated by these approaches
often remain simplistic, providing minimal added information value beyond the original alt-text.
Recap-DataComp-1B (Li et al., 2024b) and BLIP3-KALE (Awadalla et al., 2024) attempt to transform
alt-text using existing vision language models, but face the significant challenge of hallucination
inherent in current VLMs. Other works focusing on dense captioning, including Allava (Chen et al.,
2024a) and Dense-Fusion-1M (Li et al., 2024c), generate localized descriptions, but the resulting
datasets can also suffer from notable hallucinations. These limitations in existing synthetic VLM data
highlight the need for more sophisticated generation techniques. In summary, generating high-quality
multimodal synthetic data presents challenges related to controlling hallucination. Although VLM
hallucination is a studied topic (Bai et al., 2024), a comprehensive synthetic visual captioning method
capable of simultaneously producing diverse and rich content with minimal hallucination is still
needed.

3
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Our work introduces a novel approach for generating high-fidelity synthetic captions, culminating in a
large-scale dataset with a demonstrably low hallucination rate. We provide comprehensive empirical
evidence that this dataset serves as a highly effective resource for large-scale VLM pre-training.
This contribution offers a viable and scalable alternative to traditional data sources, effectively
addressing the dual challenges of scarcity of high-quality real-world data and the diminishing returns
of web-scraped datasets.

3 METHODOLOGY

In this section, we detail our synthetic data generation pipeline. We begin by outlining its two core
stages: an initial Supervised Fine-Tuning (SFT) phase, followed by an Iterative Direct Preference
Optimization (DPO) framework. As a key part of our DPO description, we will elaborate on the novel
method used to construct large-scale preference data. The section concludes with the full training
procedures and hyperparameter configurations.

3.1 SUPERVISED FINE-TUNING

A significant limitation of previous recaption models (Li et al., 2023; Yu et al., 2024) is their tendency
to produce generic descriptions that lack specificity. For example, a caption might read "a man
performing on stage" (Figure 1), which, due to its limited informational value, offers minimal benefit
in training powerful vision-language models. In contrast, our work places a significant emphasis
on integrating rich, factual information. To achieve this, we leverage GPT-4o to construct a dataset
of captions with high information density, which serves as the training data for our Supervised
Fine-Tuning (SFT) stage. This approach compels our model to generate descriptions with a much
higher degree of specificity and detail.

Please describe the content of the image in detail with one paragraph, let‘s proceed step by step:

Step 1: Please describe the content of the image accurately and specifically in one paragraph, avoiding subjective comments (such as “gives a sense of 

tranquility”). Entities/knowledge directly related to the image content (such as “Eiffel Tower” instead of “a metal tower” ) should be included in the 

description. Ensure semantic correctness and fluency of the sentences, and the length of the returned description text shouldbe more than 50 words.

Step 2: Please refer to the image title to improve the description from Step 1. If the image title contains specific place names, personal names, IP names, 

etc., and these can be inferred from the image, please add them to the description. If these details cannot be inferred from the image, do not add them. 

Do not mention the source of the information in the improved description, and do not include phrases like "image title".

Step 3: Explain the changes made in the description from Step 2.

Please return the result in the following JSON format:

{

"caption": "the caption",

"improved_caption": "the improved caption",

"explanation": "the reason to make the change"

}

Image Title: a man fishing at sunset on a lake with his guide

Figure 2: Prompt Design for Generating informative Captions with GPT-4o. Our prompt is struc-
tured as a three-step procedure designed to elicit informative captions. The instructions highlighted
in red are specifically engineered to guide the model in injecting relevant world knowledge.

By constructing SFT data with captions rich in descriptive details, we enable the model, through
fine-tuning, to learn to produce detailed and specific descriptions. Therefore, we designed a detailed
prompt and used GPT-4o to generate the initial training data. While GPT-4o understands the prompt
requirements, the output data still contain a significant number of hallucinations. To address this, we
conducted a manual review of the generated captions. By integrating these data processing steps, we
constructed the knowledge-enhanced supervised fine-tuning data suitable for training models capable
of generating rich image captions, such as the "arctolamia gestro" illustrated in Figure 1.

3.2 ITERATIVE DPO

Reinforcement Learning from Human Feedback (RLHF) has proven to be effective in mitigating
hallucinations in large language models (LLM) (Zhang et al., 2023; Huang et al., 2025). As a specific
and efficient RLHF paradigm, Direct Preference Optimization (DPO) (Rafailov et al., 2023) offers
a compelling method for fine-tuning models on preference data. The DPO loss function, shown in
Equations 1 and 2, is designed to optimize for this preference directly. As noted in Rafailov et al.
(2023), the gradient of the loss function, LDPO, systematically increases the likelihood of preferred
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completions (yw) while decreasing that of dispreferred completions (yl). This mechanism provides
a natural and logical framework for combating hallucinations in image captioning. Intuitively, by
defining hallucination-free captions as the preferred data (yw) and captions containing hallucinations
as the dispreferred data (yl), the DPO process directly trains the model to favor factually grounded
descriptions. Maximizing the probability of accurate samples while minimizing the likelihood of
hallucinatory ones steers our recaption model toward generating captions with the highest possible
fidelity.

LDPO = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(1)

∇θLDPO(πθ;πref) =

− βE(x,yw,yl)∼D

 σ(r̂θ(x, yl)− r̂θ(x, yw))︸ ︷︷ ︸
higher weight when reward estimate is wrong

∇θ log π(yw | x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π(yl | x)︸ ︷︷ ︸
decrease likelihood of yl


 ,

(2)

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) is the reward implicitly defined by the language model πθ and the

reference model πref.

We observe that standard DPO fails to yield continuous performance improvements in our caption
synthesis task, quickly reaching a performance plateau. We attribute this to the static implicit reward
signal generated by the fixed reference model in the DPO objective function (Equation 2), which
causes the policy to prematurely converge to a local optimum. To overcome this, our iterative
DPO framework periodically updates the reference model with the current best policy whenever
performance saturates. The updated model then generates a new, more challenging set of preference
data, providing a refreshed reward signal that enables the policy to resume optimization and surpass
its previous performance ceiling.

Furthermore, to ensure that the model learns from the semantic content of the captions rather than
superficial features, we address a potential training bias related to sequence length. Since longer
completions may have a higher probability of containing hallucinations, we apply a length-balancing
operation to the preference pairs during DPO training. This ensures that the average sequence lengths
of the preferred (yw) and dispreferred (yl) completions are closely matched, preventing the model
from learning a spurious correlation between caption length and quality.

3.3 LARGE-SCALE PREFERENCE DATA

"Bruce Springsteen and Patti Scialfa HD Metal
Print - Canvas Art Rocks - 10"

"Bruce Springsteen and Patti Scialfa are performing together on stage, with BruceSpringsteen holding a guitar and Patti Scialfa in a stylish outfit wit
h a patterned blouse and long wavy hair. The background is dark with some stage lights visible. The image is a high-
resolution black and white photograph."

"The image is a black and white photograph featuring Bruce Springsteen and Patti Scialfa. Bruce Springsteen is playing an electric guitar with both h
ands raised in the air, while Patti Scialfa is dressed in a black outfit with a white patterned top, holding a microphone. The background is blurred, ind
icating that the focus is on the two figures. The photograph is framed and appears to be a metal print on a canvas, as indicated by the label 'Canvas
Art Rocks' in the bottom right corner."

…

"The image depicts Bruce Springsteen playing an electric guitar while Patti Scialfa plays the saxophone. Patti is wearing a white dress and a
black vest with fringes and large earrings. Bruce, on the other hand, is wearing a dark coat and a hat. They are on stage with a crowd visible
in the background and a microphone in the foreground."

Qwen3-32B
Visual Details Checklist

Qwen2-VL-72B-InstructJudgment

{
"decompose_facts": [
{
"category": "person",
"fact": "The image shows Bruce Springsteen playing an electric guitar",
"is_visual_info": "Yes"

},
{
"category": "person",
"fact": "The image shows Patti Scialfa playing the saxophone",
"is_visual_info": "Yes"

},
…

]
}

{
"verify_result": [
{
"category": "person",
"fact": "The image shows Bruce Springsteen playing an electric guitar",
"analysis": "The image shows a man playing an electric guitar, associated with the image of Bruce Springsteen.",
"judgment_result": "support"

},
{
"category": "person",
"fact": "The image shows Patti Scialfa playing the saxophone",
"analysis": "The image shows the woman not playing the saxophone, but holding a tambourine.",
"judgment_result": "conflict"

},
…

]
}

<image, win caption, loss caption> tuples 

Figure 3: The illustration of the generating preference captions pipeline.
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The efficacy of DPO is critically dependent on high-quality preference data, yet quantifying caption
hallucination is a challenging task. While large-scale human annotation is infeasible due to cost, direct
model-based judgments are often unreliable. We therefore introduce a visual checklist methodology
for generating superior preference data. Our approach mimics human reasoning: a Large Language
Model (LLM, Qwen3-32B) first deconstructs a caption into a checklist of visual details, and a Vision-
Language Model (VLM, Qwen2-VL-72B) then verifies the factuality of each detail individually. This
two-step process simplifies the detection task.

To validate this methodology, we conducted a controlled experiment. We randomly sampled 200
images and used our initial SFT model to generate eight candidate captions for each image. 1 We then
created preference data using two different scoring methods: 1) a baseline approach where a VLM
directly scores the entire caption for hallucinations, and 2) our proposed method, which uses the visual
checklist-based scoring. As demonstrated in Table 2, our method not only substantially outperforms
direct VLM-based evaluation using the same base model but also matches or exceeds the performance
of stronger, closed-source VLMs, confirming the superiority of our structured approach. Specifically,
when using the same VLM for judgment, our visual checklist-based method improves upon the direct
scoring baseline by 23.3% in precision and 36.3% in recall. This significant improvement indicates
that, compared to direct, holistic scoring, our visual checklist approach can more comprehensively
and accurately identify individual points of hallucinatory information within a caption.

Model Gemini-2.5-Pro GPT4o-latest Qwen2-VL-72B Qwen2-VL-72B
Evaluation VLM score VLM score VLM score Visual Checklist

Precision 82.8% 70.8% 68.2% 91.5%
Recall 68.7% 45.8% 19.3% 55.6%

Table 2: Evaluation of Caption Preference Data. In this table, Precision measures the fraction of
retrieved correct preference pairs, while Recall measures the fraction of all existing correct preference
pairs that were successfully retrieved.

3.4 TRAINING PIPELINE

This section details our comprehensive training pipeline. The pipeline consists of two primary stages:
an initial SFT phase, followed by several rounds of iterative DPO. For our experiments, we employ
three distinct VLMs as base models: Qwen2-VL-7B, Gemma3-27B, and Qwen2-VL-72B. The
entire training process is implemented using the LLaMAFactory (Zheng et al., 2024) framework. A
comparative analysis of the characteristics and performance of each baseline is presented in Section 4.

Supervised Fine-Tuning. We initiated our pipeline by sampling a raw dataset of image-text pairs from
several open-source multimodal corpora, including CC3M (Sharma et al., 2018), CC12M (Chang-
pinyo et al., 2021), DataComp (Gadre et al., 2023), and Wikipedia (Srinivasan et al., 2021). Using
the prompt detailed in Figure 2, we then employed GPT-4o to generate an initial set of recaptioned
data, from which we retained 43, 408 high-quality entries. Subsequently, we performed Low-Rank
Adaptation (LoRA) fine-tuning on the base model using this curated data. Fine-tuning was performed
for 10 epochs with a global batch size of 128 and a peak learning rate of 1e− 5, which produced our
initial SFT model.

Iterative DPO. As outlined in Section 3.2, our methodology begins with the initial SFT model. To
generate preference data, we first randomly sample 200, 000 image-text pairs and perform inference
using this SFT model. For each pair, we generate eight diverse candidate captions using the following
sampling hyperparameters: TOPP=1.0, TOPK=20, and TEMPERATURE=1.0. From this set of eight
candidates, we then construct a preference pair (yw, yl) by selecting the best (chosen) and worst
(rejected) outputs determined by a critic model. We employ Qwen2-VL-72B as our critic model,
which operates via a two-step process: it first decomposes each caption into fine-grained visual
details and subsequently identifies the number of hallucinations by assessing the factuality of each
detail. For each set of candidates, the caption with zero hallucinations is selected as the chosen
response (yw), while the one with the highest number of hallucinations is designated as the rejected
response (yw). To mitigate potential length-induced bias in training, we apply a length-balancing
sampling strategy to the initial preference data. This curation step ensures a similar length distribution
between the chosen (yw) and rejected (yw) captions. We then use this dataset to perform DPO

1Decoding parameters were set to TOPP=1.0, TOPK=20, and TEMPERATURE=1.0.
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training on the SFT model, resulting in our first-stage DPO model. This first-stage DPO model is then
used to bootstrap subsequent iterations of data generation. We repeat this process—sampling new
image-text pairs, generating preference data using the latest DPO model for inference, and applying
our critic model and length-balancing filtration for a total of four iterations. This iterative refinement
yields a final set of preference pairs, with the total volume varying slightly for each base model:
357k for Qwen2-VL-7B, 340k for Qwen2-VL-72B, and 569k for Gemma3-VL-27B. 2 The specific
hyperparameters for each stage are detailed in Table 3.

Stage-1-SFT Stage-2-DPO

Resolution # pixels [3136, 12845056] [3136, 12845056]

Dataset # Samples 43K [357K, 340k, 569k]

Finetuning Type LoRA LoRA

Batch Size, Learning Rate, Learning Epoch 128, 1e− 5, 10 64, 5e− 6, 1

Table 3: Training Configurations for the Recaption Model Stages. This table details the
specifications for each stage of our model’s training process, including the vision parameter settings,
dataset characteristics, model details, and training hyperparameters.

4 EXPERIMENTS

This section presents a comprehensive quality assessment of our recaptioned data. We begin by
outlining the evaluation criteria, followed by an analysis across two key dimensions: 1) the level
of hallucination present in the captions, and 2) the data’s empirical impact on the pre-training of
large-scale vision-language models.
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Figure 4: Performance of Iterative DPO Strategies. This figure demonstrates the effectiveness
of our iterative DPO method in mitigating hallucinations across three different base models. The
horizontal axis represents the scale of the training data, while the vertical axis indicates the percentage
of hallucination-free captions on the validation set.

4.1 CAPTION EVALUATION METRICS

As established in Section 3.3, our visual checklist method is highly effective for generating preference
data. We therefore adopt this framework as our primary methodology for the quantitative assessment
of hallucination levels. To ensure maximum precision for this critical evaluation task, we leverage
a powerful model, GPT-4o, for both the detail decomposition and factuality judgment steps. The
reliability of this approach was confirmed through a manual verification study: on a set of 200
randomly sampled cases, two NLP experts concurred with our GPT-4o-based judgments with an
accuracy exceeding 95%. We then conduct a comprehensive evaluation to benchmark our method’s
superiority, validating it on two fronts: 1) against prominent open-source synthetic caption datasets,
and 2) against various open-source VLM models.

First, to ensure a fair comparison against other data generation methods, we apply our recaptioning
pipeline to the same input image-text pairs used in previous work, including samples from Laion2B
(used in CapsFusion (Yu et al., 2024)) and Datacomp (used in Recap-DataComp-1B (Li et al., 2024b)
and BLIP3-KALE (Awadalla et al., 2024)). The results presented in Table 1 demonstrate a substantial

2The dataset for Gemma3-VL-27B is notably larger as it was trained on a multilingual corpus.
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reduction in hallucinations. Specifically, our generated captions achieve the following: (1) a 56.9
percentage point increase in the non-hallucination rate compared to Recap-DataComp-1B. (2) an
8.6 and 30.6 percentage point increase in the non-hallucination rate compared to CapsFusion and
BLIP3-KALE, respectively.

Second, when compared with other leading open source VLM models on a fixed dataset, our approach
again yields a significant decrease in hallucination rates. In both evaluation scenarios, our method
consistently produces higher-fidelity captions, proving its superior ability to generate factually
grounded training data. Finally, we evaluated the effectiveness of our iterative DPO method for
hallucination mitigation. As illustrated in Figure 4, all base models exhibit a significant and consistent
increase in the proportion of hallucination-free captions as the DPO dataset is iteratively expanded.

Scientific QA OCR QA Benchmark QA Hallucination Tasks
Dataset MathVista MMMU AI2D ScienceQA OCRBench DocVQA TextVQA InfographicsVQA ChartQA MMBench MMStar RealworldQA MMVet HallusionBench None-Hallu. Rate Avg.

testmini val test test test val val val test (aug./hum.) en-dev test test test test –

Alt-text 50.10 45.0 73.18 85.57 59.8 77.34 68.47 43.99 62.08 72.42 47.89 61.57 42.09 33.80 39.27 57.50
Recap-DataComp-1B 53.70 44.44 74.65 86.12 62.1 79.11 66.39 45.38 64.28 65.89 50.44 61.96 39.34 32.77 43.62 58.01
Qwen2-VL-7B 52 45.22 77.19 88.60 66.7 83.13 70.77 51.92 66.84 74.31 52.71 65.49 47.29 31.98 66.20 62.69
X-Recap 56.20 44.00 77.91 89.74 65.9 83.06 71.37 50.32 68.96 72.34 54.66 65.49 43.17 36.38 71.86 63.42

Table 4: Experimental results on 15 vision-language tasks. Avg. denotes the average score across
all evaluated vision-language tasks. The Non-Hallucination Rate is a hallucination assessment metric
defined in Section 4.1. For evaluation, we randomly sampled 1000 instances from the DataComp
dataset to quantify the non-hallucination rate. In the table, bold text indicates the optimal performance.

4.2 EFFECTIVENESS OF RECAPTION DATA

Our primary validation assesses the effectiveness of X-Recap for vision-language pre-training at
two distinct scales. We first conduct experiments in a small-scale, open-source "toy setting" to
ensure rapid community reproducibility. We then perform a comprehensive validation on a larger
one-billion-pair dataset to verify that the benefits of our high-quality captions are sustained at scale.
Furthermore, we demonstrate the broader extensibility of our data through exploratory experiments
on a cross-modal text-to-image generation task.

Vision-Language Model Pre-Training.

We first validate the effectiveness of our X-Recap dataset for pre-training Vision-Language Models
(VLMs). The objective is to demonstrate that, compared to existing alt-text and other recaption
datasets, X-Recap facilitates more effective VLM training, leading to superior performance on both
general multimodal benchmarks and our internal knowledge-intensive test sets.

Experimental Setup. To ensure a fair comparison, we standardized our evaluation across two distinct
experimental settings designed to isolate the impact of different data sources and scales.

1. Open-Source Comparative Setting. In this setting, we aim to directly compare the efficacy
of different caption datasets. We adopted the LLaVA (Liu et al., 2023) architecture, utilizing
SigLIP (Zhai et al., 2023a) as the visual encoder and Hunyuan-7B (Hunyuan, 2025) as the base large
language model. For each dataset under comparison (i.e., various alt-text and our recaption datasets),
we sampled a consistent volume of 20M data points for pre-training. Following this, a light, unified
supervised fine-tuning (SFT) (Wang et al., 2023; Li et al., 2024a) was applied to all models. It is
important to note that our goal here is to isolate the impact of the caption data itself. Therefore,
these experiments were conducted at a fixed scale, using only pure caption data without annealing
techniques, advanced fine-tuning, or reinforcement learning. As such, the results are intended for
comparative analysis and not for direct comparison with state-of-the-art leaderboards.

2. Large-Scale Scaling Analysis. To investigate the scaling properties of our recaptioned data, we
conducted a series of large-scale experiments, comparing its effectiveness against traditional alt-text.
For this analysis, we used the LLaVA architecture with a smaller Hunyuan-2B language model to
balance computational resources and efficiency. The pre-training data for each experimental run
was a blend: 70% was either our synthetic captions or the alt-text baseline, mixed with a fixed 30%
proportion of a diverse in-house corpus (primarily OCR, STEM, and text-only data). We performed
experiments at four distinct scales, corresponding to total token counts of 20B, 50B, 200B, and 1T .
Following each pre-training run, a common 6B-token in-house dataset was used for a unified SFT
stage to consistently align and elicit the model’s final capabilities.
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Results. 1. Open-Source Comparative Setting. As presented in Table 4, the Vision-Language Model
(VLM) pre-trained on X-Recap significantly outperforms all baselines trained on existing alt-text and
synthetic caption datasets across 15 multimodal tasks. This superiority is particularly pronounced on
hallucination-related benchmarks, where our dataset provides a substantial performance advantage.
For context within the table, "Qwen2-VL-7B" denotes a baseline trained on 20M data generated by
an unoptimized model with a higher hallucination rate. Furthermore, the benefits of X-Recap extend
beyond final performance metrics; as detailed in Appendix A, models pre-trained with our data also
exhibit markedly improved convergence properties during the subsequent SFT phase.

2. Large-Scale Scaling Analysis. As presented in Table 5, our recaptioned data demonstrates superior
performance compared to the original alt-text data. This advantage is consistent across various data
scales and on nearly all evaluation tasks. Crucially, as the data volume increases, X-Recap exhibits a
favorable scaling law, indicating that its benefits are sustained and amplified at scale. This superiority
is particularly pronounced on hallucination-related benchmarks, a finding that aligns with our results
from the Open-Source Comparative Setting and further underscores the significant advantages of
low-hallucination synthetic captions. Furthermore, we include the performance of a 2B-scale leading
model, Qwen2-VL-2B, for reference. It is important to note that our training methodology was
intentionally simplified to isolate the effect of the caption data, without the extensive fine-tuning
and optimization typically applied to benchmark models. Despite using less training data and a
non-optimized strategy, our model trained on X-Recap achieves better performance than this strong
baseline, underscoring the high quality and efficacy of our generated captions.

Scientific QA OCR QA Benchmark QA Hallucination Tasks
Dataset Data size MathVista MMMU AI2D ScienceQA OCRBench DocVQA TextVQA InfographicsVQA ChartQA MMBench MMStar RealworldQA MMVet HallusionBench None-Hallu. Rate Avg.

testmini val test test test val val val test (aug./hum.) en-dev test test test test –

Qwen2-VL-2B 1.4T 43 41.1 74.7 80.4 80.9 90.1 79.7 65.5 73.5 74.9 48.0 62.9 49.5 41.7 54.33 64.02

ALT-Text 20B 43.4 34.56 53.34 70.02 64.7 72.55 66.84 39.73 66.32 57.73 37.88 47.84 39.03 29.92 25.05 49.88
X-Recap 20B 44.5 36.56 55.57 71.49 72.2 80.28 70.9 49.99 70.92 60.65 41.1 49.67 44.63 32.9 41.73 54.87
ALT-Text 50B 41.3 34.89 55.28 71.05 71.5 81.24 72.05 49.56 70.88 62.42 40.09 53.86 42.84 35.06 36.37 56.00
X-Recap 50B 46.6 36.11 59.42 74.42 73.8 82.67 73.43 52.91 72.72 62.97 42.5 55.69 43.39 33.37 49.90 57.33
ALT-Text 200B 44.6 35.33 58.1 72.88 79.1 84.33 77.14 53.66 71.6 61.77 41.3 51.37 40.41 34.63 43.29 56.63
X-Recap 200B 50.7 36.22 58.42 74.91 81.4 87.08 77.43 58.48 74.56 66.07 45.58 52.94 43.48 36.37 61.72 60.36
ALT-Text 1T 52 36.78 61.01 74.96 82.5 87.61 78.74 57.99 76.32 62.2 45.72 52.68 48.66 40.38 48.40 60.42
X-Recap 1T 54.1 37.33 68.62 76.3 85 91.36 79.57 66.91 79.2 67.01 51.74 56.47 50.0 44.39 67.63 65.04

Table 5: Experimental results on 15 vision-language tasks for the Large-Scale Scaling Analysis.
Results in bold indicate the superior performance between the two methods under the same data scale
setting. An underline denotes the best overall result across all methods, including the comparison
with a leading, similarly-sized open-source model, Qwen2-VL-2B.
Text-to-Image Model Training. We also validated X-Recap on the text-to-image generation task by
fine-tuning the Hunyuan-DiT model (Li et al., 2024d). The fine-tuned model achieved a significantly
lower FID and a higher CLIP score than the public baseline (Table 6), confirming that our data
enhances the generation of authentic, high-fidelity images. Examples are presented in Appendix B.

FID↓ CLIP Score↑
Dataset Row Caption Our Recaption Fine-tuning with Our Recaption Row Caption Our Recaption Fine-tuning with Our Recaption

MSCOCO Test set 28.79 21.09 15.46 0.307 0.305 0.313

Table 6: Text-to-Image Evaluation of the Hunyuan-DiT model on MSCOCO-30K, comparing
performance with and without fine-tuning using our recaption data. It should be noted that, due to
computational resource limitations, we only sampled 2M data points from the X-Recap dataset for
LoRA fine-tuning.

5 CONCLUSION

This work tackles the critical challenge of hallucination in large-scale synthetic image captioning.
Our core finding is that Direct Preference Optimization (DPO) is exceptionally effective at reducing
caption hallucinations. We further show that by applying DPO iteratively, we can progressively
increase the ratio of hallucination-free captions in our synthetic data, a process that demonstrates a
distinct and predictable scaling law. Leveraging this methodology, we construct X-Recap, a new large-
scale dataset of high-fidelity, low-hallucination captions. Our extensive experiments demonstrate
that pre-training Vision-Language Models (VLMs) on X-Recap yields substantial performance gains
over models trained on both raw alt-text and existing synthetic datasets. To foster future research
in multimodal learning, we will release the X-Recap dataset to the open-source community. For a
detailed discussion of limitations and potential risks, refer to Sections C and D.
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A LOSS OF VISION-LANGUAGE MODEL TRAINING

To address the issue of loss value incomparability arising from diverse pre-training data distributions,
we examine the convergence behavior of pre-trained models when fine-tuned on a common supervised
dataset (Wang et al., 2023; Li et al., 2024a), as illustrated in Figure 5. Figure 5 shows that models
trained with X-Recap data exhibit superior convergence. Quantitatively, these models converge to a
lower final loss of 0.4796 compared to models pre-trained on other datasets.

Figure 5: Loss curve of vision-language model pre-trained with alt-text, Recap-DataComp-1B,
Qwen2-VL-Zeroshot or X-Recap. To ensure a fair comparison, all pre-trained models analyzed
here utilized the same amount of data (20M ) for pre-training. Furthermore, the four convergence
curves presented are obtained by fine-tuning these models on an identical supervised dataset.

B EXAMPLES OF TEXT-TO-IMAGE GENERATIONS

This section presents examples of text-to-image generation in Figure 6; the corresponding text
prompts are provided in Table 7. Observation of these examples reveals that the original Hunyuan-
DiT model struggles to accurately render certain concepts (e.g. abacus, Yueqin) and produces less
accurate depictions for others (e.g. jellyfish, acerola). However, after fine-tuning with the X-Recap
data, the model’s understanding of these concepts becomes more precise, resulting in generated
images with a more realistic style. These qualitative improvements are consistent with the quantitative
results shown in Table 6, such as the observed reduction in FID. This consistency highlights how
the comprehensive concept coverage in our data enhances the model’s perceptual fidelity, which is
further corroborated by the significant performance improvement of the VLM trained with X-Recap
on numerous vision-language tasks.

C LIMITATIONS

The pre-training of large vision-language models is an inherently resource-intensive endeavor. In
our work, for instance, pre-training the 2B-scale VLM on 1B tokens alone required 123, 776 A800
GPU hours. Due to these substantial computational demands, a key limitation of this study is that
we were unable to explore the full scaling potential of our recaptioned data with even larger VLM
architectures. We leave this promising direction for future investigation.
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Text Image Hunyuan-DiT Hunyuan-DiT wRecap Hunyuan-DiT wFT

Jellyfish

Acerola

Abacus

Yueqin

Alpaca

The Grotto

Shanghai Tower

Figure 6: Demonstration of text-to-image cases. Here, the original instruction for image generation
is denoted as "Text", the original picture as "Image", the generation effect of the original open-source
model as "Hunyuan-DiT", the generation effect of the original open-source model with our Synthetic
texts as "Hunyuan-DiT wRecap", and the effect of the model fine-tuned with our recaption data as
"Hunyuan-DiT wFT".
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Text Our Recaption

Jellyfish The picture shows two jellyfishes. Their bodies are orange or light red with
distinct stripes or lines. Their tentacles are long, slender, transparent or
semi-transparent. The background is black, highlighting the colors of the
jellyfish and the details of their tentacles. The jellyfish are swimming or
floating in the water, and their tentacles are spread out in the water, forming
a distinct linear effect.

Brazilian Acerola The image shows the branches of a tree laden with red and green fruits. The
red fruits look ripe, while the green ones appear unripe. There are also green
leaves on the branches. In the background, more green leaves and a few
blurred flowers or small buds can be seen. The overall environment seems to
be an outdoor natural setting.

Abacus There is a group of people sitting in front of a wooden table in the picture,
using abacuses for learning or operation. There are several abacuses on the
table. Wooden doors and windows can be seen in the background, indicating
that this is an indoor environment, perhaps a classroom or a study place.
People are wearing casual or semi-formal clothes, looking relaxed.

Yueqin This is a Yueqin, which has a circular resonator and four strings. There are
multiple positions for pressing the strings on the body of the instrument,
and there are four tuning pegs on the headstock. Overall, it exhibits the
characteristics of a traditional musical instrument.

Alpaca There are two alpacas standing on the grass in the image, with blue sky and
white clouds in the background. The alpaca on the left has lighter fur, while
the one on the right has darker fur. The grass is green, and the postures of
the alpacas suggest that they are either walking or standing.

The Grotto The Grotto is a church located in a natural environment. The facade of the
church is a huge rock cave, covered with green vegetation above the cave,
and surrounded by dense trees. Inside the church, there is an altar, above
which a cross is hung, surrounded by lighting. In front of the church, there
is a row of wooden benches for believers to sit and pray.

Shanghai Tower Shanghai Tower is a skyscraper with a spiral glass curtain wall design on its
exterior. At the top, there is a circular observation deck, surrounded by other
high-rise buildings. The overall architectural style is modern and futuristic.

Table 7: The original text of the image in Figure 6 and the synthetic caption after being processed by
our recaption model.

D POTENTIAL RISKS

The original image-text pairs are primarily derived from open-source datasets. While we have
implemented substantial measures to filter out undesirable content, potential risks remain. These risks
are particularly salient in the field of image generation, exemplified by issues such as the creation of
fake portraits for social media (Hill & White, 2020), which is a recognized challenge in this research
area.

E DECLARATION ON THE USE OF AI TOOLS

During the preparation of this manuscript, the authors utilized a large language model to assist with
language editing and refinement. The tool was employed to improve grammar, clarity, and readability.
The authors take full responsibility for the final content and all scientific claims presented herein.
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