
StarHopper: A Touch Interface for Remote Object-Centric Drone
Navigation

Jiannan Li* Ravin Balakrishnan† Tovi Grossman‡

University of Toronto

ABSTRACT

Camera drones, a rapidly emerging technology, offer people the abil-
ity to remotely inspect an environment with a high degree of mobility
and agility. However, manual remote piloting of a drone is prone to
errors. In contrast, autopilot systems can require a significant degree
of environmental knowledge and are not necessarily designed to
support flexible visual inspections. Inspired by camera manipulation
techniques in interactive graphics, we designed StarHopper, a novel
touch screen interface for efficient object-centric camera drone navi-
gation, in which a user directly specifies the navigation of a drone
camera relative to a specified object of interest. The system relies
on minimal environmental information and combines both manual
and automated control mechanisms to give users the freedom to
remotely explore an environment with efficiency and accuracy. A
lab study shows that StarHopper offers an efficiency gain of 35.4%
over manual piloting, complimented by an overall user preference
towards our object-centric navigation system.

Index Terms: Human-centered computing—Human Compute
Interaction (HCI)—Interaction Techniques;

1 INTRODUCTION

Researchers in telepresence have long envisioned ‘beyond being
there’ [23]. Replicating all relevant local experiences, while remote,
should not be the only goal of telepresence; rather, we should also
strive to create telepresence systems which can enable benefits that
are not possible when the person is physically present. As such,
telepresence goes from replication to augmentation. One particular
instance of this vision is enabled by camera drones: our local bodies
can only walk on the ground, but our remote bodies can fly.

Current commercial remote robotic presence platforms have
mostly been designed to replicate face-to-face conversation expe-
riences [42, 59, 60]. Researchers exploring their usage in various
scenarios have noted a number of social and functional issues due
to their insufficient mobility [2, 21, 59]. Unmanned micro aerial
vehicles (called ‘drones’ hereafter) have already been applied in in-
dustrial inspection settings, such as aircraft surface checks [3]. With
drones becoming more affordable and reliable, they hold the poten-
tial for enabling more flexible remote presence and visual inspection
experiences [18, 22, 27, 43, 52, 60] for the general population.

While drones offer promise for such telepresence applications,
they are challenging to manually control remotely, due to numerous
factors including high degrees of freedom, narrow camera field-of-
views, and network delays [44]. Their control interfaces - virtual
or physical joysticks for consumer drones - are also unfamiliar for
many users and take extended training time to master [52].

To relieve the burden of manual piloting, autopilot techniques
have been applied to drone control. Most existing drone autopilot

*e-mail: jiannanli@dgp.toronto.edu
†e-mail:ravin@dgp.toronto.edu
‡e-mail:tovi@dgp.toronto.edu

Figure 1: Operating a camera drone remotely to inspect an apartment.
(a) The user specifies a desired view of the coffee machine by drag-
ging on the drone’s camera view (b) the drone flies towards to the
specified viewpoint.

interfaces are based on specifying a series of planned waypoints
in a 2D or 3D global map [12, 15, 40, 52]. However, in a situa-
tion where a user wishes to perform a real-time inspection, setting
waypoints a priori may not be efficient for producing the viewer’s
desired viewpoints. For example, the viewer may wish to see some-
thing from a closer distance, from a different viewpoint, or view an
area they didn’t know about when the waypoints were set. Some
autonomous systems avoid the use of waypoints and execute higher-
level plans [13,28,36] , such as following a subject to form canonical
shots [28], but they typically do not offer the flexibility for exploring
remote environments.

The difficulty of drone piloting poses a significant barrier for the
widespread adoption of free-flying robots. The goal of this research
is to design a camera drone control interface to support efficient
and flexible remote visual inspection for now universally adopted
touchscreens. Inspired by recent work in semi-autonomous hybrid
systems [36, 44], we wish to combine the strengths of both manual
and automatic piloting into a single hybrid navigation interface.
Our work is also inspired by decades of research in interactive
graphics, for which many camera navigation techniques have been
established [6, 20, 31, 37]. Most relevant, we build upon object-
centric techniques, where zooming, panning, and orbiting occurs
relative to the location of a 3D object of interest.

Existing object-aware drone navigation interfaces, such as DJI
ActiveTrack [9] and XPose [36], have been designed for aerial
photography within visual line-of-sight. As such, they lack support
for two important requirements of remote navigation and inspection:
first, free exploration of a remote environment, which may include
objects out of the initial camera field-of-view; and second, flexible
inspection from various viewing angles or distances in relation to
the object-of-interest.

We propose StarHopper, a remote object-centric camera drone
navigation interface that is operated through familiar touch interac-
tions and relies on minimal geometric information of the environ-
ment (Fig. 1). The system is designed based on a set of design goals
for remote object-centric drone navigation. It consists of an overhead
camera view for context and a 3D-tracked drone’s first-person view

Graphics Interface Conference 2020
28-29 May
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.	

							

for focus. New objects of interest can be specified through simple
touch gestures on both camera views. We combine automatic and
manual control via four navigation mechanisms that can complement
each other with unique strengths, to support efficient and flexible
visual inspection. The system focuses on indoor environments, rep-
resentative of tasks such as remote warehouse inspection [52] and
museum visits [54], and where positional tracking technology is
more reliable.

A remote object inspection study showed that StarHopper was
35.4% faster than a manual baseline interface, for both simple and
complex navigation routes. Users expressed general preferences to-
wards object-centric navigation for remote inspection. We conclude
by discussing potential design opportunities and future research to
further increase the efficiency of remote visual inspection tasks.

2 RELATED WORK

Our work builds upon prior research in interactive drones, robotic
teleportation and camera navigation techniques in computer graph-
ics.

2.1 Interactive Drones
Recently, interacting with drones has received considerable attention
in the HCI community. Researchers have explored their various
roles they can take on, such as programmable matter [18], haptic de-
vices [1, 57], mobile navigation guides [5, 32], and outdoor exercise
companions [19]. The high mobility and agility of drones naturally
lend themselves to serving as flying cameras, and many mid-to-high
range consumer drones were designed for video capture.

Given the difficulty of manually piloting a drone, there has been
prior research aimed to partially or fully automate flight paths to
reduce piloting efforts [13, 40] or to improve camera shot quality
via computationally optimized flight paths [15, 16]. Some work has
also considered real-time adjustment to autopilot plans to adapt to
changes [52]. The majority of the autopilot interfaces require the
user to set flight waypoints on an exocentric 2D or 3D map.

Other work has aimed to further reduce user input through acting
more autonomously based on environmental knowledge [13, 24, 28,
36, 39]. Notably, several aerial photography interfaces leverage
the positional and geometrical information of their photography
subjects. DJI drones with ActiveTrack [9] can follow a subject,
either automatically recognized or specified through a touchscreen
gesture, and orbit around the subject in response to user joystick
input. Huang et al. presented an interface by which the user could
move the drone relative to the recognized skeleton of a person [24].
With XPose [36], the user starts from choosing one of the candidate
positions for the drone to photograph a selected subject and then
fine-tune the framing through touch gestures on the camera view.
However, all of them assume a single subject that is already in the
camera field-of-view, and trade navigation flexibility for fast and
visually pleasing composition.

Another intuitive approach for remote drone control is to map the
locomotion and head orientation of the operator to the locomotion
and pose of the drone [22, 60]. However, with the current state
of technology, the delay between human and drone movement is
significant and detrimental to such experiences. Our design draws on
prior research on camera drone navigation, combining the efficiency
of auto-piloting with the flexibility of semi-manual and manual
controls. Notably, our system does not require a 3D environment
map and supports object-centric navigation, were users can position
the drone relative to the object of interest, rather than directly in the
world space.

2.2 Object-Aware Robot Operation
Many interfaces have been developed for instructing robots to in-
teract with objects in the environment. Human-robot interaction
researchers have created interfaces that enable users to direct a robot

to a target object and specify the kinds of actions that should be
performed. Kemp et al. [29] utilized a laser pointer for designating
objects of interest for a mobile robot, which would turn to the pointed
object. Ishii et al. [25] further explored mapping three actions of
a house robot to a set of laser pointer gestures around the objects.
Kent et al. [30] studied the performance of a teleoperation interface
that allowed users to directly specify a robotic arm grasping pose on
the 3D scan of an object.

Prior object-aware robot interfaces were mostly designed for sim-
ple physical manipulation, like grasping or moving objects, which
typically have well defined ideal end results. In contrast, visual
inspection can involve more free exploration and unplanned move-
ment. Our system extends existing object-aware robot control to
camera drones, through a set of mechanisms to work under such
ambiguity.

2.3 Camera Navigation in Computer Graphics
Common 3D navigation tools offered by commercial modelling
software include pan, zoom, and orbit [31]. Mastering these tools
can require extensive learning and even experienced computer users
can find 3D navigation confusing [11].

As such, numerous techniques have been developed to improve
camera navigation [8]. In particular, object-centric techniques im-
prove navigation by taking into account the user’s object of interest.
For example, HoverCam allowed users to move a virtual camera
smoothly around the edges of an object of interest [31]. StyleCam
supported designing camera trajectories with certain stylistic ele-
ments around an 3D object [6]. Navidget enabled the user to specify
a viewing angle around a 3D point of interest using 2D input [20].
Other techniques include clicking to approach and focus on an ob-
ject [20, 37] and through-the-lens camera control [17], where a user
manipulates a virtual camera by controlling features seen in the
image through its lens.

We took inspiration from classical object-centric camera control
in computer graphics and designed a set of camera manipulation
techniques for physical inspection. We adapt these classic techniques
to account for inaccurate measurements of the real world, and the
inherent limitations of aerial robotic systems.

3 DESIGN GUIDELINES

Grounded by our review of prior literature, we now present a set of
guidelines for remote object-centric drone navigation.

3.1 Support Situation Awareness
A user’s knowledge about the state of the surrounding environment,
known as situation awareness, is a key factor for successful teleop-
eration [58]. Users of current drone autopilot systems rely on 2D
or 3D maps of the remote space to maintain basic environmental
awareness for flight planning [40, 44, 52]. Such maps are mostly
static and unable to reflect the changes in a dynamic environment.
Up-to-date situational awareness can be more relevant to a user for
remote drone inspection, as the high mobility of drones can be better
exploited in environments with changing situations.

3.2 Minimize Reliance on Environmental Information
While 3D reconstruction technology has been advancing rapidly
(e.g. [26, 61]), it is still a computationally expensive process and
its performance is subject to environmental conditions. As such,
we argue for minimizing the reliance of our interface design on
environmental knowledge. A navigation interface that minimizes its
assumptions about available environmental information should be
able to adapt to a wider range of real-world applications.

3.3 Combine Automated and Manual Control
The navigation system should support both efficient and flexible
viewpoint control. Some automated control mechanisms can infer

Figure 2: StarHopper system components.

a user’s intent to simplify interaction. But this efficiency gain may
come at the price of control flexibility, which is important for users
to make adjustments when the automated control fails to achieve
the desired view, or the user simply wishes to make real-time ad-
justments to a navigation path. Recent research has shown that
users prefer having some level of manual control even when the
automation accuracy is high [48]. Control flexibility also supports
free exploration, an inherent component in many remote inspection
scenarios, such as exploring a museum [55]. Thus, it is desirable to
investigate the design of semi-autonomous, or hybrid interfaces, so
that users can gain the efficiency benefits from automation and at
the same time retain control flexibility.

3.4 Support Simple Touch Interactions
As many drone control applications are now available on mobile
devices, we focus on touch-based interactions. Within this context,
navigation commands should utilize known interaction patterns and
simple touch gestures to improve efficiency and facilitate learning.
Even though simple gestures may not have the capacity to encode
complex navigation paths, a complimentary automated control sys-
tem should be able to make reasonable assumptions about the user’s
intent, based on the input and its knowledge about the object of
interest.

3.5 Respect Physical Constraints
In comparison with a virtual camera, the control of a physical drone
may suffer from technical limitations. For example, navigation
transitions cannot be immediate, latency may be present in the con-
trol system, and there may be drift, inaccuracy, or instability in
the navigation paths and viewpoints. Furthermore, unlike virtual
camera control, a physical control needs to avoid objects along its
path. When designing interactions for camera drones, these physical
constraints should be accounted for.

4 STARHOPPER

4.1 System Overview
Based on the design guidelines described above, we built StarHop-
per, a remote drone navigation interface that implements an object-
centric control paradigm. We now describe its user interface and
relevant hardware configuration (Fig. 2).

Prior research has shown the effectiveness of an live exocentric
overview for enhancing situation awareness in robot teleoperation
[10, 49, 53]. To help the user maintain situation awareness, we
installed a regular RGB camera at a vantage point to provide an
overview of the remote environment, in a similar fashion to [50,
54]. The position and orientation of the drone in the remote space
is tracked in real-time to enable autopiloting and object-centric
controls.

StarHopper provides a touch screen interface for the users to
view the drone’s live stream video and to perform drone navigations

Figure 3: The StarHopper user interface. (a) Remote drone camera
view. (b) Overview camera view. (c) Virtual joysticks. (d) Object-of-
interest list. (e) Icon for object-centric mode.

Figure 4: The object-of-interest registration procedure. (a) The user
selects the object of interest in the overview camera view with a drag
gesture. (b) The drone points to the region, and the user then selects
the object again in the drone camera view.

(Fig. 3). The drone camera feed fills the screen. The overview
camera video and two virtual joysticks are at the bottom of the
interface.

4.2 Registering an Object of Interest

With StarHopper, the user can obtain the approximate position and
dimensions of an object through a simple two-step procedure, with-
out using pre-built maps or expensive real-time 3D reconstruction
methods. The user first selects the object of interest in the overview
camera view through a drag gesture (Fig. 4a). The starting point
of the gesture defines the center of a circle and the drag distance
defines the radius. When the gesture is completed, the drone turns
to look at the selected region. The user then performs another drag
gesture, this time in the drone camera view, to select the same object
(Fig. 4b). A computer vision algorithm triangulates the position
of the object from these two regions and estimates the dimensions
of a bounding cylinder of the object. The technical details of this
procedure are described later.

4.3 Navigation Mechanisms

Once an object is registered, it is immediately set as the object-of-
interest. The center of the object-of-interest is marked in the drone
camera view using a small gold 3D sphere. Inspired by camera
control mechanisms in interactive graphics, we have designed three
object-centric physical camera navigation mechanisms for viewing
an object of focus: 360 viewpoint widget, delayed through-the-lens
control, and object-centric joysticks.

4.4 360 Viewpoint Widget
The 360 viewpoint widget is a widget for quickly navigating to and
focusing on an object of interest, from a user-specified viewing
angle. The widget takes the shape of a semi-transparent 3D ring,
surrounding the bounding cylinder of the focus object (Fig. 5a). A
user taps the ring to activate the widget. A 3D arrow aimed at the
ring appears next to the user’s touch point, indicating the desired
viewing direction.

While the finger is down, the user can drag horizontally to rotate
the arrow around the ring, to specify the desired viewing angle. The
user can also drag the finger vertically to move the ring up or down
to adjust the vertical height of the viewpoint (Fig. 5b). Once the
user releases the finger, the autopilot system moves the drone to the
calculated viewpoint.

The algorithm determines a reasonable default viewing distance,
based on the size of the bounding cylinder. The distance is set so
that the object can fit into the central 1/3rd of the camera frame. The
travel time for the drone is set using a logarithmic mapping from
the travel distance. As such, the drone can approach distant targets
quickly, but still orbits smoothly when the user adjusts the viewing
direction around the object. This speed tuning method is partially
inspired by a similar virtual camera control technique [37].

Figure 5: Interaction with the 360 viewpoint widget. (a) The user
touches the area around the ring to activate the widget. (b) The user
drags the finger to adjust the viewing angle and camera height. Upon
releasing the drag, the drone navigates to the specified viewpoint.

4.5 Delayed Through-the-Lens Control
Through-the-lens camera control is a classic and intuitive camera
manipulation technique in interactive graphics. It allows a user to
move the camera by dragging one or more points in the current
image to their desired new positions. For virtual environments, this
procedure is usually performed in real-time. In the physical world,
with incomplete scene information, performing this interaction is
computationally heavy and error prone, and must deal with latency
in the drone’s movements [36]. By leveraging the estimated 3D
position of the object-of-interest, in relation to the drone camera, we
can calculate the required drone movement to achieve the specified
viewpoint. Because drones cannot move in real-time like virtual
cameras can, we delay the drone movements until the user has
completed their gesture.

To use the technique, the user first rests two fingers on the drone
camera view to freeze the current frame (Fig. 6a). The user then
performs a two-finger pinch-and-pan gesture to transform the current
frame to the desired viewpoint (Fig. 6b). The system then calculates
a new drone position that can produce the desired viewpoint which
the drone navigates towards.

4.6 Object-Centric Joysticks
Panning, zooming, and orbiting are standard camera control tech-
niques in 3D modelling software. Prior research in interactive graph-
ics proposed object-centric improvements, such as making the rota-
tion center sticky to 3D objects [11]. We extend this method to drone
camera control with object-centric joysticks. We remap the axis of
traditional drone control joysticks to object-centric commands and
add constraints to prevent manipulation errors. More specifically,

Figure 6: Adjusting the camera view using delayed through-the-lens
control. (a) The user rests two fingers on the screen to freeze the
current view. (b) A pan and zoom gesture on the frozen frame specifies
the desired view.

the user can still push the left joystick up or down or push the right
joystick left or right to pan the drone camera up, down, left, or right,
respectively (Fig. 7a). However, under the object-centric constraints,
the drone keeps the object of interest in its field-of-view during the
pan movements. The up/down movement of the right joystick is
mapped to an object-centric zoom, in which the drone aims its cam-
era at the object of interest and moves closer or further away from
it (Fig. 7b). When the left joystick is pushed to the left or right, the
drone orbits around the object while aiming at its center (Fig. 7c).

Figure 7: The object-centric joystick controls. Red areas indicate the
joystick axes used. (a) Pan. (b) Zoom. (c) Orbit.

4.7 Manual Joysticks
In addition to the three object-centric navigation mechanisms,
StarHopper also supports fully manual controls. This could be
useful in cases where the user wishes to make slight adjustments
to a viewpoint that the auto-pilot system navigated to. The manual
control uses the same joysticks as the object-centric joysticks. The
only difference is that the navigations are performed in world space,
and not relative to the object-of-interest. Manual controls are en-
abled by toggling an icon on the interface (Figure 3e), or when no
object-of-interest is selected.

4.8 Managing Objects of Interest
The object-of-interest list on the right of the interface (Fig. 3d)
records the thumbnails of all previously registered objects of interest.
The static images are taken from the drone camera during the object
registration procedure. The user can tap on the thumbnail to set it as
the object-of-interest, and the drone will turn towards it. A double-
tap on the thumbnail will trigger the drone to approach that object
using the auto-pilot system, until it reaches the default viewing
distance. All previous objects are also shown as red spheres on
the drone camera view, and can be tapped to be selected as the
object-of-interest.

4.9 Implementation Details
To triangulate object positions, we acquire the camera parameters
of the overview camera and the drone camera through a one-time
calibration process. For prototyping purposes, we used the Vicon
motion capture system for tracking the drone. This could potentially

be replaced with alternative internal or external tracking technologies
with much lower cost and sufficient precision (e.g. [51]).

We use Z-axis-aligned (vertical to the ground) bounding cylinders
as the approximate volumes for objects of interest. This represen-
tation has been chosen because it can be described with a small
number of parameters and contains sufficient geometric information
for common camera movements during visual inspection.

The two-view triangulation method in StarHopper is inspired
by earlier works in model-free 3D selection [35, 38]. The two
regions that a user selects in the overview camera and drone camera
views are processed by an image segmentation algorithm (GrabCut
[47]), to extract the foreground objects. We then back-project the
geometric centers of the two extracted objects to two 3D rays. Their
intersection can be approximated with the center of the line segment
that connects the two closest points of the two rays. We use this
approximated intersection point X as the geometric center of the
bounding cylinder. We then compute the radius r and height h of the
bounding cylinder using the following process:

• Let M and f be the external calibration matrix and focal length
of the drone camera, calculate the position of the cylinder
geometric center Xc(xc,yc,zc) in the camera coordinates using
Xc = MX

• Let wb and hb be the width and height of the 2D bounding
box of the object in the drone camera view, compute an ap-
proximate fit of the parameters r and h through matching the
projection of the cylinder with the object 2D bounding box:

r =
wbzc

2 f
(1)

• Let θ be the tilt angle of the drone camera.Plug r into the
equation f AB = hb to solve for h, where

A =
[
− h

2 cosθ − r sinθ + yc
h
2 cosθ + r sinθ + yc

]
(2)

and

B =

 1
− h

2 sinθ+r sinθ+zc
1

− h
2 sinθ+r sinθ−zc

 (3)

While more advanced triangulation techniques could be used, we
found that this method worked sufficiently well for the purpose of
visual object inspection. If anything, the technique tends to slightly
overestimate the size of the cylinder which was not problematic for
navigation.

One challenge of the technique is that the object of interest may
not be in the drone camera view, when the second gesture is needed
to define the second region, for triangulation. To overcome this
challenge, the drone turns and moves towards the region after the
first gesture in the overview camera view is made. To do so, a ray
is projected from the overview camera to the center of the initial
region. The ray is then divided into a “coverage segment”, where the
object center could lie, based on a predetermined range of possible
object heights. The drone then moves to the closest position, for
which the drone camera’s field-of-view can view the entire coverage
segment. When navigating towards an object, we incorporated a
simple mechanism adapted from the vector field histogram algorithm
[4] to avoid obstacles.

We used a Ryze Tello drone in our prototype, in its default “slow
mode” with a maximum speed of 6.7 miles per hour. Similar to other
small consumer drones, it uses WiFi for communication, which
introduces a small but noticeable delay in piloting and video stream-
ing. The drone was controlled through a Python client based on
the Ryze Tello SDK v1.3. The 4 degree-of-freedom velocity inputs
were generated by 4 separate proportion-integral-differential (PID)

Table 1: Properties of the four control mechanisms.

controllers. The user interface was implemented in C#/WPF and ran
on a windows 10 laptop with a 4-core 2.7 GHz CPU, 16G RAM,
and a touch screen.

4.10 Summary: Navigation Mechanism Properties
StarHopper consists of a set of four navigation mechanisms, ranging
from fully automated to fully manual. Taken together, this suite of
techniques allows users to perform both flexible and efficient scene
inspections by leveraging their contrasting capabilities (Table 1).

To discuss this in greater detail, we use the Levels of Automation
of Decision and Action Selection model [41] to define the automa-
tion level of a mechanism: A mechanism is considered as automated
if it makes decisions for a user, and, as semi-automated if it requires
a user to choose among available options, prior to executing the
chosen option automatically.

The 360 viewpoint widget is a highly efficient method as it enables
a user to approach an object from any angle with one touch gesture.
It has low flexibility, as the camera is constrained within a fixed orbit
and at a fixed distance to the target center.

The delayed through-the-lens control is less efficient than the 360
viewpoint widget as it can require more than one gesture to complete,
and is designed for covering smaller distances and movements. For
example, a target could be too far to be scaled with a single pinch
gesture. It also supports a medium level of flexibility as the user can
freely control the camera’s 3D position and angle, but only through
indirect 2D gestures.

Although object-centric joysticks enable convenient camera move-
ments for visual inspection such as orbiting, the user needs to con-
tinuously and accurately push the joysticks. As a result, we consider
it to have a medium level of efficiency. It also provides a medium
level of flexibility, as the user can control the drone movements, but
with the constraint of keeping the object in the field of view.

Manual joysticks are low in efficiency as the user needs to combine
two or more commands to perform useful movements, like orbiting
using the joysticks. We note that expert users familiar with the
joystick mapping may find this technique efficient, but we consider
it to be low efficiency, given the difficulty novice users would have
with the technique. However, this technique does provide high
flexibility, as it allows users to move the drone freely without any
constraints.

From the analysis, we recognize the trend that a higher automa-
tion level increases efficiency but reduces flexibility. Taken together,
the system offers the user both efficient and flexible navigation
mechanisms (Table 1). The 360 viewpoint widget, despite its high
efficiency, lacks in flexibility and can be complemented by delayed
through-the-lens control, object-centric joysticks and manual con-
trols. A possible workflow for inspecting an object, is to quickly ap-
proach the object with the more efficient 360 viewpoint widget, make
fine adjustments with delayed through-the-lens or object-centric joy-
sticks if needed, and freely explore the environment, perhaps to look
for other potential objects of interest, using manual joysticks.

5 USER STUDY: NAVIGATION MECHANISMS
The above analysis shows the promise of combining both automatic
and manual navigation mechanisms within a single interactive sys-
tem. To evaluate the navigation mechanisms of StarHopper, we

Figure 8: The environment consisted of 3 object locations (orange
spheres) and an initial drone position (yellow prism).

conducted a user study consisting of a remote object inspection task.
We compared StarHopper to a baseline, consisting of conventional
manual joystick controls. In tasks such as warehouse inventory
management, most items are likely to be visited repeatedly, with
occasional item addition or removal. For StarHopper, each object of
interest can be reused for following revisits after a one-time registra-
tion. Therefore, in this study we left out the registration phase and
focused on the actual navigation performance.

5.1 Participants
12 volunteers (7 female, Mage = 26.3, SDage = 4.4) were recruited
from the local community. Each received 20 dollars for their time.
Two participants were familiar with quadcopter drone piloting but
did not consider themselves experts. The others had no prior quad-
copter drone piloting experience. Five of the twelve participants
were frequent first-person-view (FPV) video game players, three
had played FPV games but not frequently. The others had little FPV
game experience.

5.2 Task and Stimuli
The task simulated a remote warehouse inspection scenario [52],
where the participant, playing the role of a remote inspector, operated
a camera drone to examine a number of key items in the environment.
The test environment was set up in our lab, in which 3 target objects
(ItemA, ItemB, ItemC) were positioned in the space (Fig. 8). In each
trial, the participant was instructed to operate the drone to inspect
one of the four sides (Left, Right, Front, Back) of an item using
one of the two control interfaces, StarHopper or manual joysticks
(Manual). The drone always started from the same initial position
and orientation (Fig. 8). The front side of each target object faced the
initial drone position. The participant was local, but a wall separator
was used to prevent the participant from seeing the actual study
environment, to simulate remote operation. As the study only aimed
to evaluate the navigation performance of StarHopper, and not the
two-view triangulation method, the target objects were predefined in
the system.

For each control interface, the experimenter first demonstrated
the operation of the interface. The participant then practiced piloting
freely for 5 minutes, and performed 4 practice trials. To start a trial,
the participant first tapped on a ‘start’ button. The item and side
to inspect were indicated through a reference photo, shown to the
participant before the trial began (Fig. 9). A three-second timer was
used to start each trial. In a trial, the participant operated the drone

Figure 9: Reference photos of the target objects. (a) Front of ItemA.
(b) Left of ItemB. (c) Back of ItemC. ArUco markers were attached to
each side of the objects.

using the two virtual joysticks (Manual) or using any combination of
the three object-centric navigation techniques for StarHopper. Thus,
for the StarHopper condition, the user needed to tap on the target
object prior to performing any navigation operations.

In order to complete the task, the participants needed to cap-
ture the specified side of the item, with a viewpoint similar to the
reference photo. To quantify this criteria, we attached a ArUco
fiducial marker [14, 45] to each side of the item (Fig. 9). When
facing the marker, the drone camera could capture it and a program
calculated the distance, d, between the drone camera and the marker
center, and the angle, θ , between the camera look direction and
the marker surface normal. The drone was considered to be in the
correct inspection position if d < 800mm and θ < 45° . The trial
was completed if the drone remained in the correct position for 1.5
seconds. The 800mm distance was set to be smaller than the default
viewing distance of the 360 viewpoint widget, and thus, required the
participants to make fine adjustments to the drone in all trials. If the
drone collided with items in the environment, we would restart the
trial. This only occurred three times across all participants.

On the study interface, a visual feedback icon was displayed to
inform participants of the task state. The icon was grey if the target
was out of sight, red if the target was too far or the viewing angle
was too oblique, and green if the target was properly captured. They
were also shown a progress bar advancing when the drone was in
the correct inspection position. The participant was instructed to
complete each trial as quickly as possible. When a trial finished, the
drone automatically returned to its initial position. We recorded the
completion time of each trial and the drone flight path. In addition,
the participants were asked to fill in a NASA TLX worksheet after
using each interface. A post-study questionnaire captured subjective
preferences.

5.3 Design

A repeated measures within-subject design was used. The indepen-
dent variables were Interface (StrarHopper, Manual), Item (ItemA,
ItemB, ItemC), and item Side (Left, Right, Front, Back). The de-
pendent variable was Time, defined as the time from when the trial
started until the viewpoint was successfully captured, for the 1.5s
duration. The presentation order of Interface was counter-balanced
across participants. For each Interface, participants completed one
trial for each of the 12 combinations of Item and Side, in a random-
ized order. Thus, the study consisted of 24 trials per participant,
lasting a total duration of approximately 60 minutes.

5.4 Apparatus

The experiment was conducted in a 4.5 by 4.5 meters test envi-
ronment in our lab. The participants were seated next to the test
environment while performing the tasks, but their line of sight to the
environment was blocked with barriers, to simulate remote opera-
tion. The target items were three chef figurines, each with distinctive

Figure 10: Mean task completion time of manual control and StarHop-
per. Error bars represent 95% CI.

Figure 11: Mean task completion time for each Side. Error bars
represent 95% CI.

features. Each of the four sides of the figurines had a 40mm AruCo
marker.

For StarHopper, we used the same hardware and software con-
figuration, as described in the Implementation Details section. For
Manual, the drone was operated with the two virtual joysticks in
the StarHopper interface, with the standard axis mapping of typical
drone interfaces.

5.5 Results

A repeated measures analysis of variance with Greenhouse-Geisser
correction was applied to analyze the performance data. We trans-
formed the data with a logarithmic transform to satisfy the normality
assumption before applying ANOVA tests. The transformation is
only for statistical analysis purposes and we still report the descrip-
tive statistics of the original data in the following results.

5.5.1 Trial Completion Time

A main effect of Interface on Time was found (F1,11 = 23.8, p <
0.001), showing that it was significantly faster to complete the task
with StarHopper than with egocentric manual control. Overall
StarHopper was 35.4% faster than manual control (StarHopper:
20.33s, Manual: 31.45s), demonstrating a substantial gain in effi-
ciency (Fig. 10).

We also found a significant main effect of Side on Time
(F2.8,30.4 = 31.9, p < 0.001). Post-hoc pairwise comparisons us-
ing t-test with Bonferroni adjustments showed that inspecting the
front side was significantly faster than the other three sides, and
that inspecting the left or right side was significantly faster than the
back side. This result showed that the participants’ performance
decreased as the navigation route complexity increased.

No significant interaction between Interface and Side was found.
StarHopper demonstrated a consistent efficiency advantage over
manual control (31% - 39%, Fig. 11), across the four sides. Even in
the easier Front condition, participants still spent longer time with
manual control, as they tended to make multiple short movements
with pauses in between. A significant main effect for Item on Time
was found (F1.7,18.6 = 31.9, p < 0.05). However, post-hoc tests did
not find a significant difference between any of the two items. There
was no interaction effect between Item and Interface.

Figure 12: Three example flight traces for StarHopper and manual
control, for the back side of ItemA. (a) Manual control. (b) StarHopper.

Figure 13: Distances to the final position as time progresses for the
front side of ItemC for P11. With manual control, the user made short
movements with intermittent pauses.

5.5.2 Flight Traces

We further analyzed the flight traces to better understand the cause
of the performance differences discussed above. For the manual
condition, the traces tended to be connected line segments, suggest-
ing that participants preferred keeping the orientation of the drone
constant while moving. In contrast, for StarHopper, motion occurred
in a more continuous nature, and was more likely to stay along an
optimal path (Fig. 12).

One slightly surprising result from our analysis of trial completion
time, was that StarHopper was faster even for the front views of the
target objects. Our observations indicated that even for this easier
manual task, participants would often start and stop when using the
manual controls, to account for latency and to prevent any potential
object collisions. Fig. 13 illustrates this effect, showing the distance
to a final target position as a trial progresses, for both Manual and
StarHopper.

Figure 14: NASA-TLX responses along six dimensions. StarHop-
per was ranked significantly better for mental demand, physical
demand, performance, and effort (lower scores indicate lower de-
mand/difficulty).

5.5.3 Subjective User Preferences and Workload Percep-
tions

The post-study questionnaire responses showed that all participants
preferred to use StarHopper over egocentric manual control for
remote inspection. They commented that StarHopper was more
intuitive and reduced navigation difficulty in comparison to the
manual controls. P12 mentioned “with joysticks people focus on
navigation, with the other people focus on the object”. Nine of the
twelve participants thought that virtual joysticks could add value to
pure gestural interaction for drone navigation.

Paired Wilcoxon signed-rank tests on NASA TLX responses
showed that StarHopper was ranked better than manual control for
mental demand (V = 56, p < .05), physical demand (V = 27, p <
.05), performance (V = 36, p < .05), and effort (V = 61, p < .05)
(Fig. 14). Most notably, the median perceived mental demand for
manual condition was more than twice as high as StarHopper.

5.6 Summary
Overall, the study results are very encouraging. The study con-
firmed the efficiency gain provided by the object-centric navigation
techniques in StarHopper. Data further indicated that object-centric
navigation could enhance remote inspection efficiency, for both sim-
ple and complex navigation routes. Users perceived lower workload
using StarHopper, while subjective measures suggested an overall
preference for object-centric controls.

6 DISCUSSION
In this section, we discuss the implications of the results from our
study, clarify important considerations and limitations related to our
work, and propose future lines of research.

6.1 Navigation Patterns
When demonstrating the three object-centric navigation techniques
to the participants, we intentionally avoided displaying a fixed work-
flow. Participants were told they could use any workflow or com-
bination of navigation techniques that they felt comfortable with.
At the end of the warmup trials, many participants converged on a
workflow in which they started with the 360 viewpoint widget to
approach the object, applied delayed through-the-lens control to
adjust, and possibly object-centric pan/orbit (object-centric zoom
was rarely used) to fine-tune the final viewpoint. Overall, it was
encouraging to see participants use a blend of the object-centric
navigation techniques, leveraging their complementary attributes.
Building Better Human-Automation Collaboration

StarHopper aims to explore the design of automation-human col-
laboration, in which automated systems execute tasks efficiently
and humans adjust its behaviors, through semi-automatic or manual

methods [48]. However, a recurring theme in the participants’ feed-
back was that they were hesitant to give the drone commands when
it was in the midst of an automated movement, even though we had
informed them is was ok to do so. Specifically, users commented that
they did not want to interrupt the drone. Such observations are less
likely to occur in a virtual navigation task, making it unique to phys-
ical viewpoint navigation. These breakdowns in automation-human
communication can impede efficiency and highlights the importance
of clearly communicating the intent and state of an automated system.
This problem has drawn strong community interest (e.g. [33, 46])
and many proposed solutions can enlighten the next iteration of
StarHopper. For local drone operation, augmented reality [56] could
overlay the future flight path of the drone. Alternatively, icons [34]
or subtle color changes [7], could be used display the intent or state.
We believe that this is an interesting problem for future work.

6.2 Beyond Fixed Overview Cameras
While the area that the drone can explore with StarHopper is bounded
by the field-of-view of the fixed overview camera, it can be greatly
expanded if we replace the overview camera with a second, spatially-
coupled camera drone [53]. Furthermore, StarHopper can also func-
tion outdoors with an accurate enough positioning system (e.g. RTK
GPS) tracking both drones. In future work, we plan to explore new
design opportunities enabled by these technical alternatives.

6.3 Limitations
We recognize that our study results are limited due to a number
of technical and non-technical factors. For one, the control and
video streaming latency displayed in our system is typical for small
consumer drones, especially during remote piloting. The impact of
latency on manual controls is likely to be greater than its impact on
StarHopper. Additionally, the primitive obstacle avoidance ability
of StarHopper restricted the maximum speed of the auto-piloting.
We anticipate that incorporating more advanced collision avoidance
algorithms could further increase its potential. The drone used in
the study also only had one fixed forward-looking camera. With
additional degrees-of-freedom, users would have more flexibility,
but there would also be an extra burden due to increased control
complexity.

As a first step in studying the performance of drone object-centric
navigation, our study design is limited in several ways. The study
was conducted in an artificial lab setting, with only three target items,
all of similar dimensions, and placed in a regular rectangular forma-
tion. Such an environment cannot represent the complexity that a
remote inspector may face in real-world environments. Additionally,
the participants were also not truly remote as they could hear the
noise from the drone. This could bring in extra information relevant
to navigation.

Our study was focused on the efficiency of object-centric naviga-
tion. We did not formally study flexibility, or the performance and
efficiency of the object-of-interest registration algorithm. We plan to
further explore these aspects with future studies set in more complex
environments. Finally, due to the difficulty of precise tracking in
outdoor environments, our design and evaluation only touched on
indoor inspection. As technology advances, we expect to extend
our research to a more diverse range of settings, such as search and
rescue in outdoor environments.

7 CONCLUSION
To remove the barriers of using drones as free-flying remote inspec-
tion platforms, we explored touch-based object-centric navigation
for camera drones through our prototype system, StarHopper. An in-
lab study showed that users were able to achieve notable efficiency
improvement using StarHopper for remote visual inspection, in com-
parison to a baseline condition using a touchscreen joystick for
manual control. A strength of StarHopper comes from its combined

use of a suite of automated, semi-automated, and manual control
mechanisms to achieve efficiency and flexibility. In future work,
we plan to empirically study users’ mental models when working
with automated camera drones, to understand how to build better
human-automation collaboration for remote inspection. We are also
interested in extending the usage of StarHopper to larger spaces and
outdoor environments with a second drone as the overview camera.

Our object-centric navigation techniques took inspiration from
classical techniques in interactive graphics. As 3D sensing, recon-
struction, object recognition, and other related fields advance, more
powerful techniques initially developed for the virtual world may be
applicable to telepresence navigation, taking us even closer to the
vision of unconstrained ‘beyond being there’ telepresence.

REFERENCES

[1] P. Abtahi, B. Landry, J. J. Yang, M. Pavone, S. Follmer, and J. A. Lan-
day. Beyond the force: Using quadcopters to appropriate objects and
the environment for haptics in virtual reality. CHI ’19, p. 359:1–359:13.
ACM, New York, NY, USA, 2019. event-place: Glasgow, Scotland Uk.
doi: 10.1145/3290605.3300589

[2] V. Ahumada-Newhart and J. S. Olson. Going to school on a robot:
Robot and user interface design features that matter. ACM Trans.
Comput.-Hum. Interact., 26(4):25:1–25:28, 6 2019. doi: 10.1145/
3325210

[3] Airbus. Airbus launches advanced indoor inspection drone to
reduce aircraft inspection times and enhance report quality. [Online
https://www.airbus.com/newsroom/press-releases/en/2018/04/airbus-
launches-advanced-indoor-inspection-drone-to-reduce-aircr.html;
accessed 2020-04-18].

[4] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, 7(3):278–288, 6 1991. doi: 10.1109/70.88137

[5] A. M. Brock, J. Chatain, M. Park, T. Fang, M. Hachet, J. A. Landay,
and J. R. Cauchard. Flymap: Interacting with maps projected from a
drone. PerDis ’18, p. 13:1–13:9. ACM, New York, NY, USA, 2018.
event-place: Munich, Germany. doi: 10.1145/3205873.3205877

[6] N. Burtnyk, A. Khan, G. Fitzmaurice, R. Balakrishnan, and G. Kurten-
bach. Stylecam: Interactive stylized 3d navigation using integrated
spatial temporal controls. UIST ’02, p. 101–110. ACM, New York,
NY, USA, 2002. event-place: Paris, France. doi: 10.1145/571985.
572000

[7] E. Cha, Y. Kim, T. Fong, and M. J. Mataric. A survey of nonverbal
signaling methods for non-humanoid robots. Foundations and Trends
in Robotics, 6(4):211–323, 2018. doi: 10.1561/2300000057

[8] M. Christie and P. Olivier. Camera control in computer graphics. 2006.
doi: 10.2312/egst.20061054

[9] DJI. Dji active track: Make the drones follow you. [Online
https://store.dji.com/guides/film-like-a-pro-with-activetrack/; accessed
2019-12-15].

[10] O. Erat, W. A. Isop, D. Kalkofen, and D. Schmalstieg. Drone-
augmented human vision: Exocentric control for drones exploring hid-
den areas. IEEE Transactions on Visualization and Computer Graphics,
24(4):1437–1446, 4 2018. doi: 10.1109/TVCG.2018.2794058

[11] G. Fitzmaurice, J. Matejka, I. Mordatch, A. Khan, and G. Kurtenbach.
Safe 3d navigation. I3D ’08, p. 7–15. ACM, New York, NY, USA,
2008. event-place: Redwood City, California. doi: 10.1145/1342250.
1342252

[12] T. Fong, C. E. Thorpe, and B. Glass. Pdadriver: A handheld system for
remote driving. 2003.

[13] Q. Galvane, C. Lino, M. Christie, J. Fleureau, F. Servant, F.-l. Tariolle,
and P. Guillotel. Directing cinematographic drones. ACM Trans.
Graph., 37(3):34:1–34:18, 7 2018. doi: 10.1145/3181975

[14] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
R. Medina-Carnicer. Generation of fiducial marker dictionaries us-
ing mixed integer linear programming. Pattern Recognition, 51, 10
2015. doi: 10.1016/j.patcog.2015.09.023

[15] C. Gebhardt, B. Hepp, T. Nägeli, S. Stevšić, and O. Hilliges. Airways:
Optimization-based planning of quadrotor trajectories according to
high-level user goals. CHI ’16, p. 2508–2519. ACM, New York, NY,

USA, 2016. event-place: San Jose, California, USA. doi: 10.1145/
2858036.2858353

[16] C. Gebhardt, S. Stevšić, and O. Hilliges. Optimizing for aesthet-
ically pleasing quadrotor camera motion. ACM Trans. Graph.,
37(4):90:1–90:11, 7 2018. doi: 10.1145/3197517.3201390

[17] M. Gleicher and A. Witkin. Through-the-lens camera control. SIG-
GRAPH ’92, p. 331–340. ACM, New York, NY, USA, 1992. [Online;
accessed 2019-09-13]. doi: 10.1145/133994.134088

[18] A. Gomes, C. Rubens, S. Braley, and R. Vertegaal. Bitdrones: To-
wards using 3d nanocopter displays as interactive self-levitating pro-
grammable matter. CHI ’16, p. 770–780. ACM, New York, NY, USA,
2016. event-place: San Jose, California, USA. doi: 10.1145/2858036.
2858519

[19] E. Graether and F. Mueller. Joggobot: A flying robot as jogging com-
panion. CHI EA ’12, p. 1063–1066. ACM, New York, NY, USA, 2012.
event-place: Austin, Texas, USA. doi: 10.1145/2212776.2212386

[20] M. Hachet, F. Decle, S. Knodel, and P. Guitton. Navidget for easy 3d
camera positioning from 2d inputs. pp. 83–89. 2008 IEEE Symposium
on 3D User Interfaces, 3 2008. doi: 10.1109/3DUI.2008.4476596

[21] Y. Heshmat, B. Jones, X. Xiong, C. Neustaedter, A. Tang, B. E. Riecke,
and L. Yang. Geocaching with a beam: Shared outdoor activities
through a telepresence robot with 360 degree viewing. CHI ’18, p.
359:1–359:13. ACM, New York, NY, USA, 2018. event-place: Mon-
treal QC, Canada. doi: 10.1145/3173574.3173933

[22] K. Higuchi, K. Fujii, and J. Rekimoto. Flying head: A head-
synchronization mechanism for flying telepresence. pp. 28–34. 2013
23rd International Conference on Artificial Reality and Telexistence
(ICAT), 12 2013. doi: 10.1109/ICAT.2013.6728902

[23] J. Hollan and S. Stornetta. Beyond being there. CHI ’92, p. 119–125.
ACM, New York, NY, USA, 1992. event-place: Monterey, California,
USA. doi: 10.1145/142750.142769

[24] C. Huang, Z. Yang, Y. Kong, P. Chen, X. Yang, and K. T. Cheng.
Through-the-lens drone filming. pp. 4692–4699. 2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 10
2018. doi: 10.1109/IROS.2018.8594333

[25] K. Ishii, S. Zhao, M. Inami, T. Igarashi, and M. Imai. Designing laser
gesture interface for robot control. Lecture Notes in Computer Science,
pp. 479–492. Springer Berlin Heidelberg, 2009.

[26] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera. UIST ’11, p. 559–568. ACM, New York, NY,
USA, 2011. event-place: Santa Barbara, California, USA. doi: 10.
1145/2047196.2047270

[27] B. Jones, K. Dillman, R. Tang, A. Tang, E. Sharlin, L. Oehlberg,
C. Neustaedter, and S. Bateman. Elevating communication, collabo-
ration, and shared experiences in mobile video through drones. DIS
’16, p. 1123–1135. ACM, New York, NY, USA, 2016. event-place:
Brisbane, QLD, Australia. doi: 10.1145/2901790.2901847

[28] N. Joubert, J. L. E, D. B. Goldman, F. Berthouzoz, M. Roberts,
J. A. Landay, and P. Hanrahan. Towards a drone cinematogra-
pher: Guiding quadrotor cameras using visual composition principles.
arXiv:1610.01691 [cs], 10 2016. arXiv: 1610.01691.

[29] C. C. Kemp, C. D. Anderson, H. Nguyen, A. J. Trevor, and Z. Xu.
A point-and-click interface for the real world: Laser designation of
objects for mobile manipulation. pp. 241–248. 2008 3rd ACM/IEEE
International Conference on Human-Robot Interaction (HRI), 3 2008.
doi: 10.1145/1349822.1349854

[30] D. Kent, C. Saldanha, and S. Chernova. A comparison of remote robot
teleoperation interfaces for general object manipulation. HRI ’17, p.
371–379. ACM, New York, NY, USA, 2017. event-place: Vienna,
Austria. doi: 10.1145/2909824.3020249

[31] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach.
Hovercam: Interactive 3d navigation for proximal object inspection.
I3D ’05, p. 73–80. ACM, New York, NY, USA, 2005. event-place:
Washington, District of Columbia. doi: 10.1145/1053427.1053439

[32] P. Knierim, S. Maurer, K. Wolf, and M. Funk. Quadcopter-projected
in-situ navigation cues for improved location awareness. CHI ’18, p.
433:1–433:6. ACM, New York, NY, USA, 2018. event-place: Montreal
QC, Canada. doi: 10.1145/3173574.3174007

[33] M. Kwon, S. H. Huang, and A. D. Dragan. Expressing robot incapabil-
ity. HRI ’18, p. 87–95. ACM, New York, NY, USA, 2018. event-place:
Chicago, IL, USA. doi: 10.1145/3171221.3171276

[34] S. Labs. Sidewalk labs | dtpr. [Online; accessed 2019-09-17].
[35] W. S. Lages, Y. Li, and D. A. Bowman. Evaluation of environment-

independent techniques for 3d position marking in augmented reality.
pp. 615–616. 2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), 3 2018. doi: 10.1109/VR.2018.8446055

[36] Z. Lan, M. Shridhar, D. Hsu, and S. Zhao. Xpose: Reinventing user
interaction with flying cameras. 2017. doi: 10.15607/rss.2017.xiii.006

[37] J. D. Mackinlay, S. K. Card, and G. G. Robertson. Rapid con-
trolled movement through a virtual 3d workspace. SIGGRAPH ’90, p.
171–176. ACM, New York, NY, USA, 1990. event-place: Dallas, TX,
USA. doi: 10.1145/97879.97898

[38] B. Nuernberger, K.-C. Lien, L. Grinta, C. Sweeney, M. Turk, and
T. Höllerer. Multi-view gesture annotations in image-based 3d recon-
structed scenes. VRST ’16, p. 129–138. ACM, New York, NY, USA,
2016. event-place: Munich, Germany. doi: 10.1145/2993369.2993371

[39] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges. Real-
time motion planning for aerial videography with dynamic obstacle
avoidance and viewpoint optimization. IEEE Robotics and Automation
Letters, 2(3):1696–1703, 7 2017. doi: 10.1109/LRA.2017.2665693

[40] Paparazzi. Paparazzi project, 9 2019. Page Version ID: 914664487.
[41] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A model for types

and levels of human interaction with automation. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans,
30(3):286–297, 5 2000. doi: 10.1109/3468.844354

[42] E. Paulos and J. Canny. Prop: Personal roving presence. CHI ’98,
p. 296–303. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1998. event-place: Los Angeles, California, USA. doi: 10.
1145/274644.274686

[43] E. Paulos and J. F. Canny. Ubiquitous tele-embodiment: applications
and implications. Int. J. Hum.-Comput. Stud., 46:861–877, 1997. doi:
10.1006/ijhc.1996.0120

[44] D. Pitman and M. L. Cummings. Collaborative exploration with a
micro aerial vehicle: A novel interaction method for controlling a mav
with a hand-held device. Adv. in Hum.-Comp. Int., 2012:18:18–18:18,
1 2012. doi: 10.1155/2012/768180

[45] F. Romero Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer.
Speeded up detection of squared fiducial markers. Image and Vision
Computing, 76, 6 2018. doi: 10.1016/j.imavis.2018.05.004

[46] E. Rosen, D. Whitney, E. Phillips, G. Chien, J. Tompkin, G. Konidaris,
and S. Tellex. Communicating robot arm motion intent through mixed
reality head-mounted displays. arXiv:1708.03655 [cs], 8 2017. arXiv:
1708.03655.

[47] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: Interactive
foreground extraction using iterated graph cuts. SIGGRAPH ’04, p.
309–314. ACM, New York, NY, USA, 2004. event-place: Los Angeles,
California. doi: 10.1145/1186562.1015720

[48] Q. Roy, F. Zhang, and D. Vogel. Automation accuracy is good, but
high controllability may be better. CHI ’19, p. 520:1–520:8. ACM,
New York, NY, USA, 2019. event-place: Glasgow, Scotland Uk. doi:
10.1145/3290605.3300750

[49] D. Saakes, V. Choudhary, D. Sakamoto, M. Inami, and T. Lgarashi. A
teleoperating interface for ground vehicles using autonomous flying
cameras. pp. 13–19. 2013 23rd International Conference on Artificial
Reality and Telexistence (ICAT), 12 2013. doi: 10.1109/ICAT.2013.
6728900

[50] D. Sakamoto, K. Honda, M. Inami, and T. Igarashi. Sketch and run: A
stroke-based interface for home robots. CHI ’09, p. 197–200. ACM,
New York, NY, USA, 2009. event-place: Boston, MA, USA. doi: 10.
1145/1518701.1518733

[51] SteamVR. Welcome to steamworks. [Online
https://partner.steamgames.com/vrlicensing; accessed 2019-09-
18].

[52] D. Szafir, B. Mutlu, and T. Fong. Designing planning and control
interfaces to support user collaboration with flying robots. The Interna-
tional Journal of Robotics Research, 36(5-7):514–542, 6 2017. doi: 10.
1177/0278364916688256

[53] R. Temma, K. Takashima, K. Fujita, K. Sueda, and Y. Kitamura. Third-
person piloting: Increasing situational awareness using a spatially
coupled second drone. UIST ’19, p. 507–519. ACM, New York, NY,
USA, 2019. event-place: New Orleans, LA, USA. doi: 10.1145/
3332165.3347953

[54] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers, F. Del-
laert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and
D. Schulz. Probabilistic algorithms and the interactive museum tour-
guide robot minerva. The International Journal of Robotics Research,
19(11):972–999, 11 2000. doi: 10.1177/02783640022067922

[55] P. Trahanias, W. Burgard, A. Argyros, D. Hahnel, H. Baltzakis, P. Pfaff,
and C. Stachniss. Tourbot and webfair: Web-operated mobile robots
for tele-presence in populated exhibitions. IEEE Robotics Automation
Magazine, 12(2):77–89, 6 2005. doi: 10.1109/MRA.2005.1458329

[56] M. Walker, H. Hedayati, J. Lee, and D. Szafir. Communicating robot
motion intent with augmented reality. HRI ’18, p. 316–324. ACM,
New York, NY, USA, 2018. event-place: Chicago, IL, USA. doi: 10.
1145/3171221.3171253

[57] K. Yamaguchi, G. Kato, Y. Kuroda, K. Kiyokawa, and H. Takemura. A
non-grounded and encountered-type haptic display using a drone. SUI
’16, p. 43–46. ACM, New York, NY, USA, 2016. event-place: Tokyo,
Japan. doi: 10.1145/2983310.2985746

[58] H. A. Yanco and J. Drury. ”where am i?” acquiring situation awareness
using a remote robot platform. vol. 3, pp. 2835–2840 vol.3. 2004 IEEE
International Conference on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583), 10 2004. doi: 10.1109/ICSMC.2004.1400762

[59] L. Yang, B. Jones, C. Neustaedter, and S. Singhal. Shopping over
distance through a telepresence robot. Proc. ACM Hum.-Comput.
Interact., 2(CSCW):191:1–191:18, 11 2018. doi: 10.1145/3274460

[60] X. Zhang, S. Braley, C. Rubens, T. Merritt, and R. Vertegaal. Lightbee:
A self-levitating light field display for hologrammatic telepresence.
CHI ’19, p. 12:1–12:10. ACM, New York, NY, USA, 2019. event-
place: Glasgow, Scotland Uk. doi: 10.1145/3290605.3300242

[61] H. Zhou, B. Ummenhofer, and T. Brox. Deeptam: Deep tracking and
mapping. pp. 822–838. Proceedings of the European Conference on
Computer Vision (ECCV), 2018. [Online; accessed 2019-09-14].

	Introduction
	Related Work
	Interactive Drones
	Object-Aware Robot Operation
	Camera Navigation in Computer Graphics

	Design Guidelines
	Support Situation Awareness
	Minimize Reliance on Environmental Information
	Combine Automated and Manual Control
	Support Simple Touch Interactions
	Respect Physical Constraints

	StarHopper
	System Overview
	 Registering an Object of Interest
	Navigation Mechanisms
	360 Viewpoint Widget
	Delayed Through-the-Lens Control
	Object-Centric Joysticks
	Manual Joysticks
	Managing Objects of Interest
	Implementation Details
	Summary: Navigation Mechanism Properties

	USER STUDY: NAVIGATION MECHANISMS
	Participants
	Task and Stimuli
	Design
	Apparatus
	Results
	Trial Completion Time
	Flight Traces
	 Subjective User Preferences and Workload Perceptions

	Summary

	 DISCUSSION
	Navigation Patterns
	 Beyond Fixed Overview Cameras
	 Limitations

	 CONCLUSION

