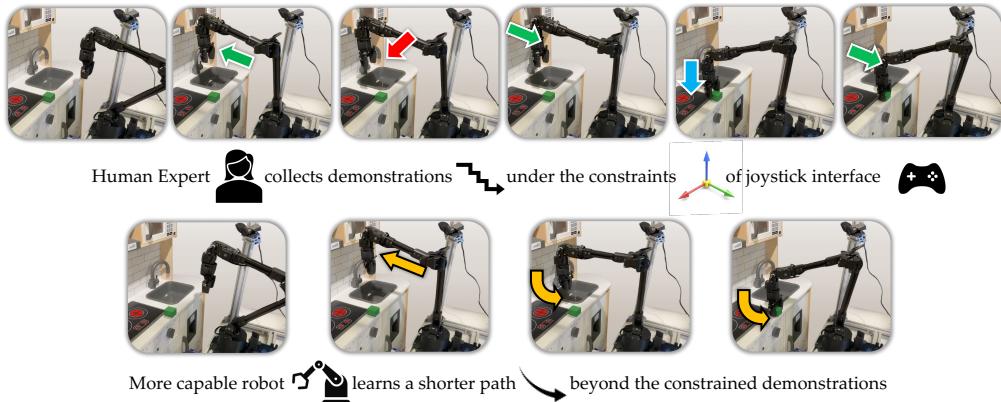


WHEN A ROBOT IS MORE CAPABLE THAN A HUMAN: LEARNING FROM CONSTRAINED DEMONSTRATORS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Learning from demonstrations enables experts to teach robots complex tasks using
012 interfaces such as kinesthetic teaching, joystick control, and sim-to-real transfer.
013 However, these interfaces often constrain the expert's ability to demonstrate optimal
014 behavior due to indirect control, setup restrictions, and hardware safety. For
015 example, a joystick can move a robotic arm only in a 2D plane, even though the
016 robot operates in a higher-dimensional space. As a result, the demonstrations
017 collected by constrained experts lead to suboptimal performance of the learned
018 policies. This raises a key question: *Can a robot learn a better policy than the
019 one demonstrated by a constrained expert?* We address this by allowing the
020 agent to go beyond direct imitation of expert actions and explore shorter and
021 more efficient trajectories. We use the demonstrations to infer a state-only reward
022 signal that measures task progress, and self-label reward for unknown states using
023 temporal interpolation. Our approach outperforms common imitation learning
024 in both sample efficiency and task completion time. On a real WidowX robotic
025 arm, it completes the task in 12 seconds, 10 \times faster than behavioral cloning.
026 We provide real-robot videos and additional resources on our project website:
027 <https://sites.google.com/view/constrainedexpert>.



042 Figure 1: A human expert constrained by a mode-switching joystick produces segmented trajectories.
043 A robot employing LfCD-GRIP executes smooth and efficient motions beyond the demonstrations.

1 INTRODUCTION

044 Imitation learning (IL) and inverse reinforcement learning (IRL) are powerful frameworks to acquire
045 complex robotic behaviors from expert demonstrations (Argall et al., 2009; Abbeel et al., 2010; Arora
046 & Doshi, 2021; Hussein et al., 2017; Ravichandar et al., 2020; Biyik et al., 2022). However, in
047 practice, human operators are often constrained by the control interface, occluded viewpoints, or
048 physical precision, preventing them from demonstrating optimal behaviors. For example, a 6-DoF
049 arm teleoperated with a joystick interface (Herlant et al., 2016; Losey, 2020) requires mode-switching
050 to control different axes. This restricts their ability to perform smooth, simultaneous, and multi-axis
051 motions. As a result, the demonstrations exhibit slow, segmented demonstration trajectories (Figure 1).
052 In contrast, the robot is capable of fast, fluid, and coordinated actions across all degrees of freedom.
053

054 This discrepancy raises the key problem of **Learning from Constrained Demonstrations (LfCD)**:
 055 Can an agent learn from constrained demonstrations and discover more efficient behaviors once
 056 those constraints are lifted? Traditional approaches struggle because IL (Schaal, 1999) mimics the
 057 suboptimal actions, while IRL (Ho & Ermon, 2016) infers reward functions that reflect the same
 058 constraints. While work on learning from suboptimal demonstrations (Gao et al., 2018; Brown
 059 et al., 2019) addresses imperfect or noisy expert behavior, LfCD applies to competent experts whose
 060 demonstrations are constrained by the interface, leading to goal-directed but inefficient trajectories.

061 Solving the LfCD problem requires addressing three key challenges for an agent to improve by
 062 exploring beyond the direct imitation of constrained experts. (1) Since expert actions are restricted
 063 by the interface, the IRL reward should be decoupled from the expert action, defined for state-state
 064 transitions rather than state-action. (2) Since demonstrations cover only part of the state space, a
 065 learning agent must identify which explored states have reliable reward estimates. (3) Even for the
 066 novel states encountered during exploration, the agent requires a generalizable reward signal.

067 To address these challenges, we introduce **LfCD with Goal-proximity Reward Interpolation** (LfCD-
 068 GRIP). (1) To decouple rewards from constrained expert actions, our key insight is to use a state-only
 069 measure of progress toward the goal. We adopt a **goal proximity** reward (Lee et al., 2021; Bae et al.,
 070 2024), trained along expert demonstration trajectories via backward temporal decay from the goal.
 071 However, such estimates do not generalize to observations beyond the demonstration distribution. (2)
 072 To ensure reliable reinforcement learning, LfCD-GRIP includes a **confidence estimator** that identifies
 073 expert-like observations where goal proximity reward is valid. (3) Finally, to assign rewards in novel
 074 states never visited by the experts, it **interpolates** proximity values along agent-collected trajectories,
 075 propagating task progress smoothly between the states covered in demonstrations. *Intuitively, we*
 076 *use expert-like observations as anchors and interpolate proximity values across the agent’s own*
 077 *trajectories to propagate the notion of task progress beyond the constraints.*

078 We evaluate LfCD-GRIP across a range of discrete and continuous control tasks in both navigation and
 079 manipulation domains. Empirical results show that LfCD-GRIP consistently outperforms baseline IL
 080 and IRL approaches by finding efficient task solutions, particularly in scenarios where demonstrations
 081 are constrained. For instance, in a real-world pick-and-place task using a WidowX arm, LfCD-GRIP
 082 reduces task completion time from 100 seconds (under IL) to just 12 seconds. This demonstrates the
 083 effectiveness of our method in enabling robots to go beyond the constraints of the demonstrations.

084 Our contributions in this work are as follows:

- 085 1. We introduce the problem of learning from constrained demonstrations (LfCD) to highlight that
 086 expert demonstrations are often constrained in practice, limiting the quality of learned behaviors.
- 087 2. We propose LfCD-GRIP, an IRL framework that extends goal-proximity rewards beyond expert
 088 demonstrations with a confidence-based proximity interpolator over an agent’s online learning.
- 089 3. We show LfCD-GRIP enables more efficient and generalizable policies across multiple domains,
 090 outperforming existing IL and IRL baselines under various constrained expert demonstrators.

091 2 RELATED WORK

092 **Imitation Learning and Learning from Observations.** Imitation learning (IL) enables robots to
 093 acquire behaviors by mimicking expert demonstrations without requiring access to an explicit reward
 094 function (Argall et al., 2009; Hussein et al., 2017; Schaal, 1999). The most basic form of IL is
 095 behavioral cloning (BC) (Pomerleau, 1988), which treats imitation as a supervised learning problem
 096 by directly mapping states to actions. Generative adversarial imitation learning (GAIL) (Ho & Ermon,
 097 2016) introduced an adversarial training framework that matches the state-action distribution of
 098 expert demonstrations. These methods replicate the expert’s actions, which is suboptimal in LfCD.

099 Imitation learning from observations addresses the case when expert action labels are unavailable (Liu
 100 et al., 2018; Torabi et al., 2018a; Yang et al., 2019; Liu et al., 2020; Ko et al., 2024; Wen et al.,
 101 2024). For instance, GAIL from Observations (GAIfO) (Torabi et al., 2018b) extends GAIL to
 102 learn solely from state transitions. It mitigates action space mismatch but still replicates expert-like
 103 state transitions. In contrast, LfCD-GRIP only follows the expert’s demonstrated intended goal and
 104 discovers improved policies that leverage the robot’s full capabilities.

105 **Learning from Suboptimal Demonstrations.** Expert demonstrations can be noisy or suboptimal due
 106 to limited skill or inconsistent behavior (Choi et al., 2019; Yang et al., 2022; Zhu et al., 2022; Yu et al.,

108 2023; Gao et al., 2019; Zhang et al., 2021). T-REX (Brown et al., 2019) and D-REX (Brown et al.,
 109 2020) infer reward functions from suboptimal demonstrations by ranking trajectory segments, while
 110 Self-Supervised Reward Regression (SSRR) (Chen et al., 2021) learns a reward by injecting noise into
 111 expert trajectories and using noise levels as self-supervised ranking signals. In contrast, LfCD assumes
 112 the demonstrator arrives at the correct goal with actions optimal *within* their constrained action space,
 113 but is limited by real-world factors such as interface restrictions or safety constraints. Moreover, our
 114 method explicitly leverages the goal-directed nature of tasks to enable policy improvement beyond
 115 the constraints, which is not leveraged by prior works on learning from suboptimal demonstrations.

116 **Learning from Cross-Embodied Demonstrators.** Approaches like Raychaudhuri et al. (2021); Hu
 117 et al. (2021); Dasari et al. (2019); Zakka et al. (2022); Xu et al. (2023) learn from experts operating
 118 in different action spaces than the robot, due to mismatched embodiment or control interfaces. They
 119 typically learn alignment functions or explicit mappings that translate expert demonstration actions
 120 into actions feasible within the robot’s action space. For example, Cross-Domain Imitation Learning
 121 (CDIL) (Raychaudhuri et al., 2021) employs optimal transport to align action distributions before
 122 imitation. Similarly, robot-aware control (Hu et al., 2021) models the dynamics of both the expert
 123 and the robot to bridge the action space mismatch. These techniques aim to reproduce the expert’s
 124 behavior, whereas we aim to discover *better* policies that exploit the agent’s wider action space.

125 **Goal-Proximity Reward Learning from Demonstrations.** Proximity-based IRL (Lee et al., 2021;
 126 Ma et al., 2022) trains a goal proximity function from demonstrations to provide shaped, dense,
 127 action-free rewards that measure task progress. However, it fails to generalize to states observed in
 128 the agent’s online exploration beyond the demonstration distribution. As a result, the agent receives
 129 low reward in unexplored states, limiting its ability to discover more efficient policies than those
 130 demonstrated. LfCD-GRIP addresses this by interpolating proximity values along agent trajectories
 131 in online rollouts. Using high-confidence states as anchors, we construct smoother, more reliable
 132 rewards that guide exploration beyond constrained demonstrations.

3 LfCD PROBLEM FORMULATION

133 We formulate the LfCD problem as a Markov decision process (MDP) (Sutton, 1984), defined by
 134 the tuple $\langle \mathcal{S}, \mathcal{A}, R, P, \rho_0, \gamma \rangle$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ is
 135 the reward function, $P(s' | s, a)$ is the transition distribution, ρ_0 is the initial state distribution, and
 136 $\gamma \in [0, 1]$ is the discount factor. A policy $\pi(a | s)$ defines a distribution over actions conditioned on
 137 the current state. The objective is to find a policy that maximizes the expected discounted return,
 138

$$139 \max_{\pi} \mathbb{E}_{(s_0, a_0, \dots, s_T) \sim \pi} \left[\sum_{t=0}^{T-1} \gamma^t R(s_t, a_t, s_{t+1}) \right] \quad (1)$$

140 where T is the episode length. Without access to the reward function R , this objective is
 141 achieved by learning from a dataset of expert demonstrations $\mathcal{D}^e = \{\tau_1, \tau_2, \dots, \tau_K\}$, where
 142 $\tau_k = \{s_0, a_0, \dots, s_T\}$. We work in a generalized formulation where access to actions is not
 143 necessary and state trajectories $\tau_k = \{s_0, s_1, \dots, s_T\}$ are sufficient to define the objective.

144 Particularly in LfCD, expert demonstrations are collected under *action space constraints* that limit the
 145 expert’s available actions at each state. We denote this *potentially unknown* constrained action space as
 146 $\mathcal{A}^e(s) \subseteq \mathcal{A}$, indicating that at state s , the expert can only choose from actions $a \in \mathcal{A}^e(s)$. In contrast,
 147 the learning agent i.e., the robot, has access to the full action space \mathcal{A} , and can potentially learn
 148 policies that outperform the constrained expert by utilizing actions unavailable during demonstration¹.
 149

4 APPROACH: LfCD WITH GOAL-PROXIMITY REWARD INTERPOLATION

150 To address the problem of learning from constrained demonstrations, we develop the **Goal-proximity**
 151 **Reward Interpolation** (LfCD-GRIP) framework, which extends proximity-based IRL with confidence-
 152 guided reward propagation. Our approach builds on the insight that expert actions are restricted by the
 153 interface, but their demonstrations still contain reliable signals of task progress. LfCD-GRIP therefore
 154 (i) defines a goal-proximity reward that depends only on states, decoupling reward from suboptimal
 155 expert actions, (ii) introduces a confidence estimation module to identify which states—whether

156 1Our method trivially extends to the cases where the robot’s action space is also state-dependent as long as
 157 $\mathcal{A}^e(s) \subseteq \mathcal{A}^r(s)$ for all $s \in \mathcal{S}$.

162 from expert data or agent rollouts—provide trustworthy proximity values, and (iii) incorporates a
 163 trajectory-wise interpolation mechanism that propagates these values to novel states encountered
 164 during exploration. Together, these components enable the agent to explore efficient behaviors toward
 165 the goal and surpass the constraints of human demonstrators (Figure 1).

167 4.1 GOAL-PROXIMITY AS ACTION-FREE REWARD

168 Proximity-based IRL (Lee et al., 2021) defines rewards based on the estimated proximity of a
 169 state to the task goal, rather than relying on expert actions. This formulation assumes that expert
 170 demonstrations are optimal and collected without constraints. The proximity function $f_\phi(s)$ is trained
 171 with two complementary objectives: (1) expert states are assigned exponentially decayed proximity
 172 values, such that states closer to the goal receive higher values, and (2) agent rollouts are pushed
 173 toward zero to avoid overgeneralization. The combined loss is

$$174 \mathcal{L}_\phi = \underbrace{\mathbb{E}_{s_t \sim \mathcal{D}^e} (f_\phi(s_t) - \delta^{T-t})^2}_{\mathcal{L}_\phi^e} + \underbrace{\mathbb{E}_{s_t \sim \mathcal{D}^r} (f_\phi(s_t))^2}_{\mathcal{L}_\phi^r} \quad (2)$$

178 where $\delta \in (0, 1)$ is the temporal decay factor, T is the trajectory length, \mathcal{D}^e the expert dataset, and
 179 \mathcal{D}^r the dataset of agent rollouts. We denote \mathcal{L}_ϕ^e as the expert supervision loss, and \mathcal{L}_ϕ^r as online
 180 regularization loss, for reference in later sections.

181 Proximity-based IRL alternates between updating the proximity network and training the policy with
 182 rewards derived from it. The reward label for a state transition is the reduction in goal proximity:

$$184 \hat{R}_{\text{prox}}(s_t, s_{t+1}) = f_\phi(s_{t+1}) - f_\phi(s_t) \quad (3)$$

186 The policy π_θ is trained to maximize the expected cumulative reward:

$$188 \max_{\theta} \mathbb{E}_{\pi_\theta} \left[\sum_t \hat{R}_{\text{prox}}(s_t, s_{t+1}) \right] = \max_{\theta} \mathbb{E}_{\pi_\theta} \left[\sum_t f_\phi(s_{t+1}) - f_\phi(s_t) \right] \quad (4)$$

191 While our framework is compatible with any reinforcement learning algorithm, we use proximal
 192 policy optimization (PPO) (Schulman et al., 2017) for all experiments. Proximity-based IRL provides
 193 a dense, progress-based reward signal independent of expert actions, making it well-suited for learning
 194 from demonstrations collected under constrained action spaces.

195 **Limitation of proximity-based IRL:** All agent explored states are assigned low proximity, de-
 196 incentivizing exploration. While effective in unconstrained settings, Proximity-based IRL struggles
 197 when expert demonstrations are collected under constrained action spaces. This limitation stems from
 198 the objective for online states, \mathcal{L}_ϕ^r , which penalizes proximity predictions on all states outside the
 199 demonstration distribution—including those that could enable shorter paths to the goal. As a result, it
 200 discourages exploration and prevents the agent from discovering more efficient solutions.

201 To overcome this, we propose to provide meaningful proximity values for out-of-distribution obser-
 202 vations with expert demonstrations. The key idea is to propagate proximity estimates from reliable
 203 observations—those with confident and well-calibrated predictions—to uncertain online observations.
 204 As training progresses and more reliable observations are identified, this propagation extends to a
 205 broader region of the observation space. This process introduces two main challenges: (1) identify-
 206 ing which observations have reliable proximity predictions, and (2) assigning proximity values to
 207 uncertain observations based on their relationship to confident anchors. We address both through two
 208 core components: a confidence estimation module and a trajectory-wise interpolation mechanism.

209 4.2 GOAL-PROXIMITY CONFIDENCE ESTIMATION MODULE

211 This module aims to identify reliable observations that can serve as anchors for proximity propagation.
 212 We first treat expert observations as reliable, as their proximity values are predefined based on temporal
 213 distance to the goal. However, we must also distinguish reliable observations among online collected
 214 samples, which lie outside the expert distribution.

215 Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016) provides a practical solution. By enabling
 dropout at inference time and performing multiple stochastic forward passes, we can estimate the

216 Algorithm 1 LfCD-GRIP

217
Require: Expert dataset \mathcal{D}^e , decay factor δ , rollout budget N , RL algorithm (e.g., PPO)

218 1: Initialize proximity network f_ϕ , policy π_θ
219 2: Pretrain f_ϕ using expert loss \mathcal{L}_ϕ^e
220 3: **for** iteration = 1 to N **do**
221 4: Collect rollouts \mathcal{D}^r using policy π_θ
222 5: **Proximity Model Training:**
223 6: Estimate confidence for each $s_t \in \mathcal{D}^r$ using MCD
224 7: Identify confident endpoints and construct sub-trajectories $\mathcal{D}^{\text{conf}}$
225 8: Generate interpolated proximity targets for intermediate states from $\mathcal{D}^{\text{conf}}$
226 9: Compute proximity loss: $\mathcal{L}_\phi^{\text{GRIP}} = \mathcal{L}_\phi^e + \mathcal{L}_\phi^{\text{conf}} + \mathcal{L}_\phi^{\text{unconf}}$
227 10: Update f_ϕ using gradient descent on $\mathcal{L}_\phi^{\text{GRIP}}$
228 11: **Policy Training:**
229 12: Compute rewards for policy buffer with $\hat{R}_{\text{prox}}(s_t, s_{t+1}) = f_\phi(s_{t+1}) - f_\phi(s_t)$
230 13: Update policy π_θ via RL using proximity rewards
231 14: **end for**

232 uncertainty of the proximity predictions. The variance of these predictions reflects model uncertainty,
233 with lower variance indicating higher confidence:

234

$$\text{confidence}_\phi(s_t) = -\text{Var}(f_\phi(s_t)) = -\frac{1}{K} \sum_{k=1}^K \left(f_\phi^{(k)}(s_t) - \bar{f}_\phi(s_t) \right)^2,$$

235

236 where $\bar{f}_\phi(s_t) = \frac{1}{K} \sum_{k=1}^K f_\phi^{(k)}(s_t)$,

237

238 and $f_\phi^{(k)}(s_t)$ denotes the output of the proximity network on the k -th forward pass with dropout.

239
240
241
242
243 In practice, we pretrain the proximity network on expert demonstrations using the expert supervision
244 loss \mathcal{L}_ϕ^e , which results in low-variance (i.e., high-confidence) predictions on those expert observations.
245 To classify whether an online-collected state is high-confidence or not, we compute a dynamic
246 threshold at each iteration based on the expert states. Specifically, the confidence threshold is set as
247 the maximum proximity variance observed among expert states. Any online state with lower variance
248 than this threshold is treated as high-confidence. This design guarantees that all expert states are
249 always included as high-confidence anchors throughout training, while also allowing online states
250 with similarly low uncertainty to be used for proximity interpolation.

251 4.3 GOAL-PROXIMITY INTERPOLATION MECHANISM

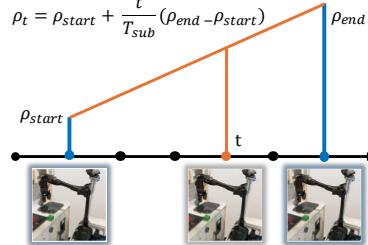
252 Once high-confidence observations are identified, we propagate
253 their proximity values to nearby low-confidence observations.
254 Here, *nearby* refers to temporal rather than spatial proximity.
255 To enable this propagation, we identify sub-trajectories where
256 both endpoints are high-confidence, and use them as anchors
257 for interpolation. Concretely, when two high-confidence obser-
258 vations lie on the same trajectory, the intermediate states are
259 assigned smoothly interpolated proximity values, as illustrated
260 in Figure 2. For each intermediate state s_t , we define a prox-
261 imity target \hat{f}_t by linearly interpolating in the log-proximity space
262 between the sub-trajectory’s start and end points:

263

$$\hat{f}_t = \delta^{\rho_{\text{start}} + \frac{t}{T_{\text{sub}}} (\rho_{\text{end}} - \rho_{\text{start}})} \quad (5)$$

264 where T_{sub} is the temporal length of the sub-trajectory, and ρ_{start} and ρ_{end} are the log-scale goal-
265 proximity distances at its endpoints.

266 To stabilize training in the early stages, we introduce an annealing strategy that gradually increases
267 the reliance on interpolated values. At each training iteration, we sample a masking probability
268 $p_{itr} \in [0, 1]$ that starts at 1 and linearly decays to 0 over time. With probability p , we mask the



269 Figure 2: Proximity is interpolated
270 between high-confidence anchors.

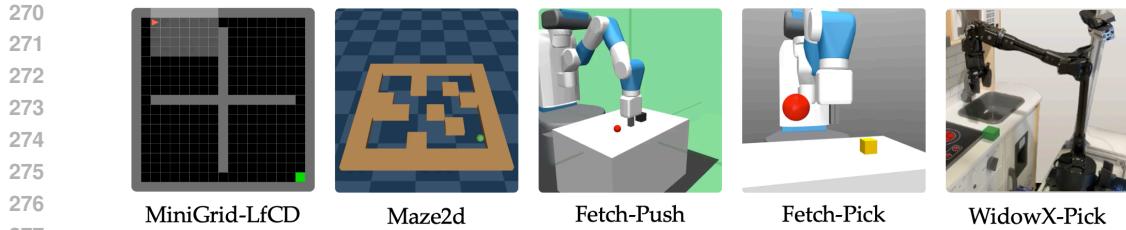


Figure 3: We use various manipulation and navigation tasks with different kinds and degrees of constrained expert demonstration datasets.

interpolated targets, assigning them zero proximity. This encourages conservative learning early on, and enables progressive generalization as training proceeds. The resulting loss for interpolated states becomes:

$$\mathcal{L}_\phi^{\text{conf}} = \mathbb{E}_{s_t \sim \mathcal{D}^{\text{conf}}} \left[(1 - m_{itr}) \cdot \left(f_\phi(s_t) - \hat{f}_t \right)^2 + m_{itr} \cdot (f_\phi(s_t))^2 \right] \quad (6)$$

where $m_{itr} \sim \text{Bernoulli}(p_{itr})$ is a stochastic mask applied independently to each intermediate state, and $\mathcal{D}^{\text{conf}}$ denotes online sub-trajectories with high-confidence start and end states. This masking strategy allows the model to interpolate proximity values only when it becomes confident enough, ensuring smooth propagation without introducing premature bias from uncertain data. We include a comparison to the no-masking variant in Appendix C.

For all remaining states—those not covered by confident sub-trajectories—we retain the original assumption of zero proximity:

$$\mathcal{L}_\phi^{\text{unconf}} = \mathbb{E}_{s_t \sim (\mathcal{D}^r \setminus \mathcal{D}^{\text{conf}})} (f_\phi(s_t))^2 \quad (7)$$

The full training objective for the proximity function in LfCD-GRIP is:

$$\mathcal{L}_\phi^{\text{GRIP}} = \mathcal{L}_\phi^{\text{e}} + \mathcal{L}_\phi^{\text{conf}} + \mathcal{L}_\phi^{\text{unconf}} \quad (8)$$

The complete LfCD-GRIP training loop, including proximity updates and policy optimization, is provided in Algorithm 1. In summary, LfCD-GRIP trains an agent with PPO by inferring a goal-proximity reward complemented with confidence estimation and proximity interpolation from constrained expert demonstrations.

5 EXPERIMENTS

We investigate the effectiveness of LfCD-GRIP through the following experiments: (1) Can LfCD-GRIP learn to produce optimal trajectories that other methods fail to discover? (2) Does LfCD-GRIP outperform standard IL methods and state-of-the-art approaches for learning from suboptimal demonstrations under constrained experts? (3) Can LfCD-GRIP lead to policies that leverage actions unavailable to the expert? (4) How do LfCD-GRIP and baselines perform as expert constraints become more severe? (5) What is the practical impact of LfCD-GRIP for real-robot applications?

Baselines and Ablations. We compare LfCD-GRIP against common imitation learning and inverse RL baselines, a state-of-the-art method for learning from suboptimal demonstrations, and ablations of our approach to validate the technical contributions. The key comparison metric is having a short trajectory length of achieving the goals and consistently achieving successes.

- **BC** directly maps observations to actions via supervised learning on expert demonstrations.
- **GAIL** trains a discriminator to distinguish expert observation-action pairs from those generated by the learning agent, using the discriminator as a reward function.
- **GAIfO** removes the need for expert actions by matching state-transition distributions.
- **SSRR** learns a reward by ranking demonstrations with injected noise and using noise severity as a proxy for suboptimality. It is a state-of-the-art method for learning from suboptimal demonstrations.
- **Proximity** (Proximity-based IRL) learns a reward function based on the temporal distance to the goal and trains the agent via RL.

324

- 325 • **Proximity-Drop** is an ablation of Proximity-based IRL with dropout layers enabled, but without
- 326 confidence estimation or interpolation. This baseline isolates the contribution of our proposed
- 327 modules from the regularizing effect of dropout.
- 328 • **LfCD-GRIP** augments Proximity-Drop with confidence estimation and interpolation to propagate
- 329 reliable proximity values to unseen observations.

330 **5.1 LFCD-GRIP DISCOVERS SHORTCUT TRAJECTORIES TO GOAL IN MINIGRID-LFCD**

331 To evaluate whether LfCD-GRIP can
 332 recover optimal trajectories beyond
 333 those demonstrated, we design a
 334 simple but illustrative MiniGrid en-
 335 vironment (Brockman et al., 2016;
 336 Chevalier-Boisvert et al., 2023). The
 337 agent always starts in the top-left cor-
 338 ner with the goal fixed in the bottom-
 339 right. Expert demonstrations, con-
 340 strained to the four cardinal directions,
 341 traverse only the top row and right-
 342 most column. In contrast, the agent
 343 is allowed to move in all eight direc-
 344 tions, including diagonals. This asym-
 345 metry introduces a shorter diagonal
 346 path that lies well outside the expert
 347 distribution. As shown in Figure 4,
 348 only LfCD-GRIP discovers this optimal
 349 shortcut by propagating goal proximity
 350 values to unseen but reachable states,
 351 while all baselines remain confined to
 352 the demonstrated path, yielding longer
 353 average trajectories.

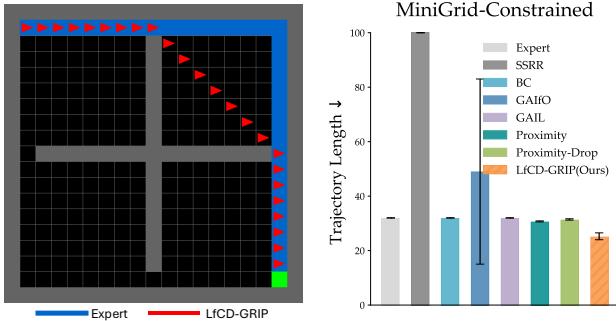


Figure 4: MiniGrid-LfCD Results. (left) The expert follows the blue path to the green goal, while LfCD-GRIP takes the red shortcut; (right) average episode length across methods.

354 **5.2 QUANTITATIVE RESULTS ON CONSTRAINED EXPERT DEMONSTRATIONS**

355 We further validate LfCD-GRIP on various navigation and manipulation tasks, as shown in Figure 3:
 356 MAZE2D (Fu et al., 2020; Kumar et al., 2020), FETCHPICK (Plappert et al., 2018), FETCHPUSH (Plap-
 357 pert et al., 2018). Details for all environments are provided in Appendix A.

358 **Action Space Constraints.** To simulate limited control interfaces, we constrain the expert’s ac-
 359 tion space during demonstration collection. The full action space for continuous environments is
 360 normalized to $[-1, 1]$ in each dimension. The specific constraints for each environment are as follows:

361

- 362 • MAZE2D. The robot uses 2D accelerations with experts actions constrained to $[-0.1, 0.1]$.
- 363 • FETCHPICK. The robot actions control the 3D continuous Cartesian displacements (x, y, z) and a
 364 binary action for the gripper. Expert actions are constrained to $[-0.1, 0.1]$.
- 365 • FETCHPUSH. The action space matches that of FetchPick except the gripper, which is disabled.
 366 Expert actions are constrained to $[-0.05, 0.05]$.

367 This setup emulates realistic scenarios in which robots are capable of high-speed motion, but expert
 368 demonstrations are collected under constrained control for safety and reliability.

369 For each environment, we compare all methods under two settings: (1) the *UnconstrainedExpert*
 370 setting, where the agent and the expert share the same constrained action space, except in Maze2D,
 371 where both the agent and expert use the full action space. This intentional exception allows us to
 372 contrast Maze2D with Minigrid; and (2) the *ConstrainedExpert* setting, where the agent has access to
 373 the full action space while the expert demonstrations are generated under constraints. This dual setup
 374 assesses LfCD-GRIP’s performance gains when constraints are introduced in expert demonstrations.

375 **Results Discussion.** For all environments, we run experiments with four random seeds, and each
 376 evaluation checkpoint averages results over 160 episodes. We report the average episode length across
 377 all evaluation trajectories from the final trained policy, including unsuccessful attempts. This length
 378 metric measures the policy’s optimality and ability to leverage the unconstrained action space for
 379 faster goal completion. In Figure 5, LfCD-GRIP achieves strong performance across all environments
 380 in both settings. Although it remains competitive in *UnconstrainedExpert*, it consistently outperforms
 381 other baselines when the agent operates with an expanded action space in *ConstrainedExpert*. In the

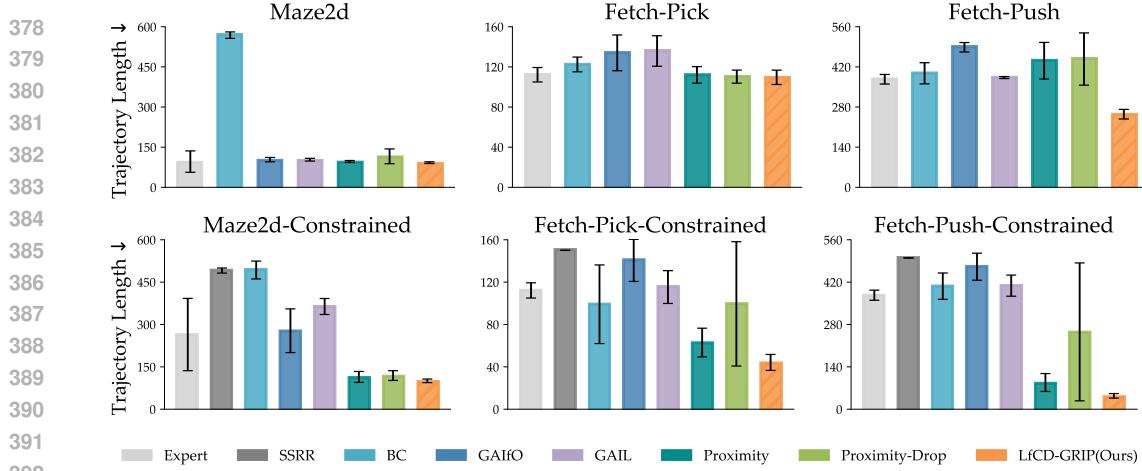


Figure 5: Average episode length across *UnconstrainedExpert* settings (top) and *ConstrainedExpert* settings (bottom). LfCD-GRIP consistently outperforms all baselines in constrained settings by finding short trajectory length solutions consistently, and remains robust in unconstrained ones.

Maze2D-Constrained setting, although the bar for Proximity-based IRL appears visually similar to LfCD-GRIP in the figure, LfCD-GRIP completes the task in 100 transitions on average—reducing episode length by over 10% compared to Proximity-based IRL, which requires 113 transitions.

These results support our central claim: LfCD-GRIP enables agents to go beyond expert constraints by learning a goal-proximity reward function, rather than mimicking constrained expert behavior.

5.3 ANALYSIS: DOES LFC-GRIP LEVERAGE OUT-OF-CONSTRAINT (OOC) ACTIONS?

To assess whether LfCD-GRIP generalizes beyond constrained demonstrations, we analyze the proportion of actions selected by each agent that fall outside the expert’s action space in the Maze2D environment. Table 1 reports both the success rate and the ratio of out-of-constraint (OOC) actions. LfCD-GRIP achieves a 100% success rate while selecting OOC actions 100% of the time. In contrast, GAIL and BC favor in-distribution actions, and GAIfO, despite using OOC actions entirely, fails to achieve high task success. These results underscore the importance of reward generalization, not just action diversity. This analysis further validates that our method is action-independent, as it successfully exploits actions beyond expert constraints to achieve optimal performance.

5.4 ANALYSIS: LFC-GRIP PERFORMANCE WITH MORE SEVERE EXPERT CONSTRAINTS

We evaluate LfCD-GRIP under two constraint levels in the Fetch-Pick environment. In the relaxed case, the constraint is widened to $[-0.7, 0.7]$, allowing more expressive expert behavior. In the severe case (Severity 2), the expert’s action space is limited to $[-0.05, 0.05]$, simulating highly restricted demonstrations. We compare against representative subset of baselines: BC (supervised imitation), Expert (expert performance), and Proximity-based IRL (closest to our method). We omit GAIL and GAIfO, as they never surpass expert performance and behave similarly to the Expert baseline. SSRR is excluded because it fails to learn a successful policy under constrained demonstrations.

Figure 6 shows LfCD-GRIP maintains strong performance across both constraint levels, whereas baselines such as BC and Proximity-

Baseline	Success Rate	OOC Action Ratio
GAIL	69%	71%
BC	12%	69%
GAIfO	51%	100%
LfCD-GRIP	100%	100%

Table 1: Success rate and OOC action ratio in Maze2D-Constrained. LfCD-GRIP achieves 100% success while effectively leveraging OOC actions.

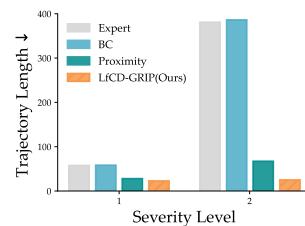
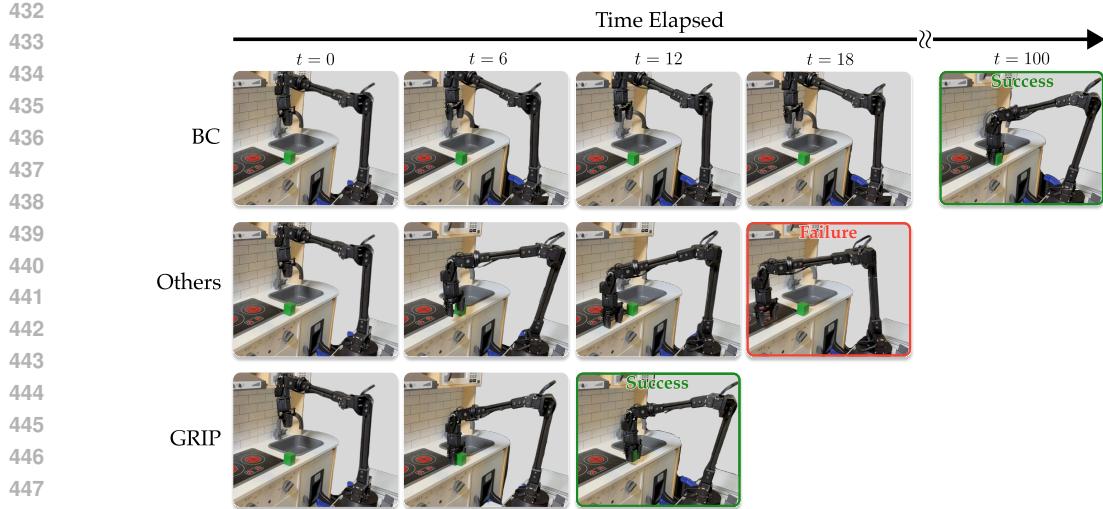


Figure 6: Varying constraint severity shows the increasing benefit of LfCD-GRIP over baselines. Severity 2 means constraint $[-0.05, 0.05]$.



449 Figure 7: Real-robot rollouts of the WidowX-Pick task. Only BC learns meaningful policies, while
450 LfCD-GRIP completes the task **10x faster** than BC.

451 based IRL degrade substantially under severe constraints. These
452 results demonstrate that LfCD-GRIP works effectively across varying degrees of expert action space
453 constraints, and is able to find short path solutions to the goal consistently by utilizing the agent’s
454 exploration efficiently.

456 5.5 WIDOWX-PICK: SIMULATION AND REAL-ROBOT EXPERIMENT

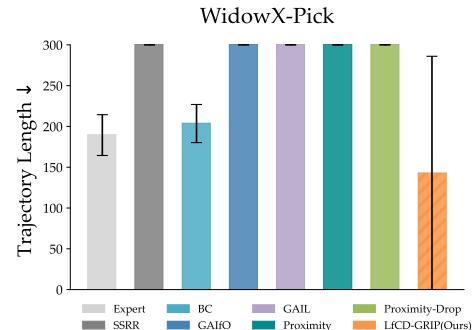
457 We evaluate LfCD-GRIP on the WidowX-Pick task,
458 both in simulation and on the real WidowX 250s
459 robotic arm. We use a mode-switching joystick inter-
460 face (Losey, 2020) to collect demonstrations, which
461 allows control of only one axis at a time. This creates
462 a natural constraint in the expert’s action space, yielding
463 constrained demonstrations. Training in sim-
464 ulation (Figure 8) shows that LfCD-GRIP outperforms
465 all baselines, achieving substantially shorter trajec-
466 tories. Except for BC, the other baselines fail to learn
467 meaningful policies, while BC remains limited by the
468 expert’s constrained behavior.

469 We then deploy the learned policy on the real-world
470 WidowX-Pick setup (Figure 7). While BC repro-
471 duces expert-like behavior, it fails to utilize the full action
472 space and executes slowly, requiring 100 seconds per
473 trial. In contrast, LfCD-GRIP generates efficient trajectories that complete the task **10x faster**, in
474 just 12 seconds. These results demonstrate that our method transfers effectively to real hardware and
475 enables better-than-expert performance by overcoming action space constraints.

476 6 CONCLUSION & LIMITATIONS

477 We address the challenge of learning from constrained expert demonstrations, where the expert
478 lacks access to the robot’s full action space due to interface or embodiment limitations. We propose
479 LfCD-GRIP, a framework that learns a generalizable progress-aware reward function via interpolation,
480 enabling agents to extrapolate beyond constrained demonstrated behavior and discover more efficient
481 policies. Extensive experiments show that LfCD-GRIP outperforms baselines, highlighting the
482 promise of decoupling reward learning from constrained expert actions.

483 **Limitations.** The proximity-based reward assumes that task progress can be measured with respect
484 to a specific goal state. While well suited for goal-reaching tasks, this limits applicability to settings



485 Figure 8: WidowX-Pick Simulation. Only BC and LfCD-GRIP succeed, with LfCD-GRIP
486 being more efficient.

486 without clearly defined terminal conditions. Extending LfCD-GRIP to such tasks remains an important
487 direction for future work. Estimating progress in multi-task scenarios also remains challenging,
488 as our approach currently relies on goal-conditioned proximity estimates tailored to individual
489 demonstrations. Generalizing progress signals across tasks with semantically varied goals will require
490 advances in representation learning and reward modeling.

491 **Future Work.** While we demonstrate LfCD-GRIP in the setting of constrained experts, the core
492 idea of interpolating proximity-based rewards along an agent’s own trajectories is broadly applicable.
493 In particular, this mechanism enables reward generalization to unseen states whenever the expert
494 data provides only partial coverage of the state space, which in turn enables more efficient paths
495 to the goals than those observed in demonstrations. We therefore view constrained experts as one
496 practically important instance of a more general problem: *learning progress-aware rewards from*
497 *sparse or biased expert coverage*, and plan to investigate our approach more broadly.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REPRODUCIBILITY STATEMENT
541542 To ensure reproducibility, We provide the source code in the supplementary material, with a README
543 file containing commands for all experiments. We describe the simulation environments in [Appendix A](#),
544 the real-robot setup in [Appendix B](#), and the training details in [Appendix E](#) and [Appendix F](#).545 LLM USAGE
546547 We used large language models (LLMs) to assist with grammar correction and rewording. No
548 model-generated content was used for scientific claims, experiments, or core contributions. All ideas
549 and analyses are original and developed by the authors.550 BIBLIOGRAPHY
551552 Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics through
553 apprenticeship learning. *The International Journal of Robotics Research*, 29(13), 2010.

554

555 Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
556 from demonstration. *Robotics and Autonomous Systems*, 57(5), 2009.557 Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
558 and progress. *Artificial Intelligence*, 297:103500, 2021.

559

560 Junik Bae, Kwanyoung Park, and Youngwoon Lee. Tldr: Unsupervised goal-conditioned rl via
561 temporal distance-aware representations. *arXiv preprint arXiv:2407.08464*, 2024.562 Erdem Biyik, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
563 Sadigh. Learning reward functions from diverse sources of human feedback: Optimally integrating
564 demonstrations and preferences. *The International Journal of Robotics Research*, 41(1):45–67,
565 2022.

566

567 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
568 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.569 Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
570 optimal demonstrations via inverse reinforcement learning from observations. In *International
571 conference on machine learning*, pp. 783–792. PMLR, 2019.572 Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
573 via automatically-ranked demonstrations. In *Conference on robot learning*, pp. 330–359. PMLR,
574 2020.

575

576 Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration via
577 self-supervised reward regression. In *Conference on robot learning*, pp. 1262–1277. PMLR, 2021.578 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
579 Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
580 customizable reinforcement learning environments for goal-oriented tasks. *Advances in Neural
581 Information Processing Systems*, 36:73383–73394, 2023.

582

583 Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demonstrations with mixed
584 qualities using leveraged gaussian processes. *IEEE Transactions on Robotics*, 35(3):564–576,
585 2019.586 Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
587 Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
588 *arXiv preprint arXiv:1910.11215*, 2019.

589

590 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
591 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.592 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
593 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
594 PMLR, 2016.

594 Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
 595 from imperfect demonstrations. *arXiv preprint arXiv:1802.05313*, 2018.
 596

597 Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
 598 from imperfect demonstrations, 2019. URL <https://arxiv.org/abs/1802.05313>.
 599

600 Laura V Herlant, Rachel M Holladay, and Siddhartha S Srinivasa. Assistive teleoperation of
 601 robot arms via automatic time-optimal mode switching. In *2016 11th ACM/IEEE International
 602 Conference on Human-Robot Interaction (HRI)*, pp. 35–42. IEEE, 2016.
 603

604 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *arXiv preprint
 605 arXiv:1606.03476*, 2016.
 606

607 Edward S Hu, Kun Huang, Oleh Rybkin, and Dinesh Jayaraman. Know thyself: Transferable visual
 608 control policies through robot-awareness. *arXiv preprint arXiv:2107.09047*, 2021.
 609

610 Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
 611 survey of learning methods. *ACM Comput. Surv.*, 50(2):35, 2017.
 612

613 Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act
 614 from actionless videos through dense correspondences. In *The Twelfth International Conference
 615 on Learning Representations*, 2024.
 616

617 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 618 reinforcement learning. In *Advances in Neural Information Processing Systems*, volume 33, pp.
 619 1179–1191, 2020.
 620

621 Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J Lim. Generalizable imitation learning
 622 from observation via inferring goal proximity. *Advances in neural information processing systems*,
 623 34:16118–16130, 2021.
 624

625 Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning. In
 626 *International Conference on Learning Representations*, 2020.
 627

628 YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation:
 629 Learning to imitate behaviors from raw video via context translation. In *2018 IEEE international
 630 conference on robotics and automation (ICRA)*, pp. 1118–1125. IEEE, 2018.
 631

632 Dylan Losey. Personalizing robots through learned latent actions. <https://youtu.be/J-0OEXBiJ1I>, 2020. Accessed: 2025-04-27.
 633

634 Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
 635 Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
 636 *arXiv preprint arXiv:2210.00030*, 2022.
 637

638 Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
 639 Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learning:
 640 Challenging robotics environments and request for research. *arXiv preprint arXiv:1802.09464*,
 641 2018.
 642

643 Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. *Advances in neural
 644 information processing systems*, 1, 1988.
 645

646 Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent advances in
 647 robot learning from demonstration. *Annual review of control, robotics, and autonomous systems*, 3
 (1):297–330, 2020.
 648

649 Dripta S Raychaudhuri, Sujoy Paul, Jeroen Vanbaar, and Amit K Roy-Chowdhury. Cross-domain
 650 imitation from observations. In *International conference on machine learning*, pp. 8902–8912.
 651 PMLR, 2021.
 652

653 Stefan Schaal. Is imitation learning the route to humanoid robots? *Trends in cognitive sciences*, 3(6):
 654 233–242, 1999.
 655

648 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 649 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 650

651 Richard Stuart Sutton. *Temporal credit assignment in reinforcement learning*. University of Mas-
 652 sachusetts Amherst, 1984.

653 Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. *arXiv preprint*
 654 *arXiv:1805.01954*, 2018a.
 655

656 Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
 657 *arXiv preprint arXiv:1807.06158*, 2018b.

658 Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
 659 trajectory modeling for policy learning. In *Robotics: Science and Systems (RSS)*, 2024.
 660

661 Mengda Xu, Zhenjia Xu, Cheng Chi, Manuela Veloso, and Shuran Song. Xskill: Cross embodiment
 662 skill discovery. In *Conference on robot learning*, pp. 3536–3555. PMLR, 2023.

663 Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
 664 Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. *Ad-
 665 vances in neural information processing systems*, 32, 2019.

666

667 Mengjiao Yang, Sergey Levine, and Ofir Nachum. TRAIL: Near-optimal imitation learning with
 668 suboptimal data. In *International Conference on Learning Representations (ICLR)*, 2022.

669 Lantao Yu, Tianhe Yu, Jiaming Song, Willie Neiswanger, and Stefano Ermon. Offline imitation
 670 learning with suboptimal demonstrations via relaxed distribution matching. In *Proceedings*
 671 *of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference*
 672 *on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational*
 673 *Advances in Artificial Intelligence*, 2023.

674 Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
 675 Xirl: Cross-embodiment inverse reinforcement learning. In *Conference on Robot Learning*, pp.
 676 537–546. PMLR, 2022.
 677

678 Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learning
 679 from demonstrations with varying optimality. *Advances in Neural Information Processing Systems*,
 680 34:12340–12350, 2021.

681 Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Self-adaptive imitation learning: Learning
 682 tasks with delayed rewards from sub-optimal demonstrations. *Proceedings of the AAAI Conference*
 683 *on Artificial Intelligence*, 36(8):9269–9277, 2022.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 Appendix

704 A ENVIRONMENT DETAILS

706 We conduct experiments across four environments: MINIGRID-LFCD, MAZE2D, FETCHPICK, and
 707 FETCHPUSH. Below we describe their environment dynamics, state/action spaces, and demonstration
 708 collection protocols. Note that the full action space for continuous environments is always normalized
 709 to $[-1, 1]$ in each dimension.

710 **Minigrid-LfCD.** This environment is a grid-based navigation task with discrete spatial observations.
 711 Each cell in the grid is encoded as a one-hot vector representing one of four categories: wall, empty
 712 space, the agent, or the goal. The layout of the grid remains fixed throughout all episodes. [The
 713 environment is fully observable, with observations of size \$\[19 \times 19 \times 4\]\$.](#)

714 The agent always starts in the top-left corner, and the goal is located in the bottom-right corner. The
 715 full action space A includes 8 discrete movement actions: the four cardinal directions (up, down,
 716 left, right) and four diagonals. In contrast, the expert is constrained to only the 4 cardinal directions,
 717 simulating limited action capabilities.

718 The expert dataset consists of a single demonstration, generated using a breadth-first search (BFS)
 719 planner that computes the shortest path under the constrained action space. This setup ensures that
 720 the demonstration is optimal given the expert's limitations, while allowing the agent to potentially
 721 discover shorter paths using the full action space.

722 **Maze2D.** The agent is a point mass that navigates through a 2D maze by controlling its (x, y)
 723 acceleration in continuous space. The state includes the agent's 2D position, velocity, and the goal
 724 position. We slightly modify the standard maze2d-medium-v1 environment from D4RL (Fu et al.,
 725 2020) by reducing the maximum episode length from 600 to 400 steps.

726 The full action space A is a 2-dimensional continuous space, where each dimension controls acceleration
 727 in the x or y direction. In the constrained setting, the expert's actions are clipped to a restricted
 728 range $[-0.1, 0.1]$, reducing movement magnitude and limiting directional flexibility.

730 For training, we collect two datasets: 800 expert demonstrations using the full action space, and 800
 731 expert demonstrations under the $[-0.1, 0.1]$ constrained action space, both using the planner provided
 732 by D4RL.

733 **FetchPick and FetchPush.** These manipulation tasks are adapted from the OpenAI Gym Fetch
 734 environments (Plappert et al., 2018), where a 7-DoF arm controls its end-effector in 3D space with
 735 an additional continuous dimension for the gripper (which is ineffective in FETCHPUSH). The 16-
 736 dimensional state vector includes the relative position of the goal to the object, the end-effector to the
 737 object, and the robot's joint configuration. Following prior findings from Proximity-based IRL (Lee
 738 et al., 2021), we exclude velocity information from the state input, which improves performance for
 739 learning-from-observation approaches.

740 For both environments, the full action space A is a 4-dimensional continuous space, representing
 741 Cartesian displacements in x , y , and z directions of the end effector, along with a gripper control
 742 signal, which is fixed for FetchPush. In the constrained setting, the expert is limited to actions within
 743 a smaller bounded region, $[-0.1, 0.1]$ for FETCHPICK and $[-0.05, 0.05]$ for FETCHPUSH, reducing
 744 dexterity and making successful grasps more challenging.

745 For both FETCHPICK and FETCHPUSH, we collect 400 constrained demonstrations using a scripted
 746 policy that moves the gripper above the object, descends to grasp/push it, and transports it to the goal.

748 B WIDOWX DESCRIPTION

750 **Environment.** We use the ManiSkill simulator to collect expert demonstrations and pretrain the
 751 policy, followed by sim-to-real transfer to the WidowX 250s hardware. The task requires the robot
 752 to grasp a cube placed on a surface and lift it slightly above that surface to succeed. To simplify
 753 the task and reduce orientation complexity, the robot's end-effector is fixed in a downward-pointing
 754 orientation. Additionally, to mitigate challenges in precisely replicating visual setups between
 755 simulation and the real-world hardware, we use a low-dimensional observation space instead of visual
 inputs. Specifically, the observations provided to the robot include the gripper's end-effector position,

756 the gripper opening state, the cube’s position and whether the cube is grasped. To ensure clarity of
 757 the cube’s state for the agent, the cube is initialized randomly at one of three fixed, predetermined
 758 positions at each environment reset.

759 **Expert Action Space.** Expert demonstrations are collected in simulation using a Machenike G5
 760 controller. To minimize accidental inputs and ensure precise control, we map discrete movements
 761 to the controller’s directional pad (D-pad) and ABXY buttons. Specifically, the D-pad is used to
 762 command horizontal movements—left, right, forward, and backward—while the A and Y buttons
 763 control vertical movement (up and down). The B and X buttons control the opening and closing of
 764 the gripper. Human demonstrators thus issue discrete, single-axis commands sequentially, restricting
 765 simultaneous multi-axis control and limiting the range and complexity of demonstrated actions.

766 **Agent Action Space.** The robot agent operates in a continuous 4-dimensional action space: three
 767 degrees for Cartesian movement and one for gripper actuation. Unlike the human expert, the agent
 768 can perform smooth and simultaneous multi-axis movements, enabling more efficient trajectories and
 769 improved manipulation behaviors.

771 C FURTHER ABLATION: NO MASKING

772
 773 To evaluate the importance of the masking strategy in LfCD-
 774 GRIP, we conduct an ablation study in which the masking
 775 probability is removed—i.e., the interpolated values are always
 776 used as training targets for intermediate states. This variant is
 777 evaluated on the FetchPick-Constrained environment.

778 As shown in [Figure 9](#), removing the masking leads the agent
 779 to become overconfident in its early interpolations. This results
 780 in reward propagation through unreliable states, ultimately pre-
 781 venting the policy from generalizing and achieving successful
 782 task completion. These findings highlight the importance of
 783 gradual interpolation: masking helps regulate learning by lim-
 784 iting reward propagation to only confident regions in the early
 785 stages of training.

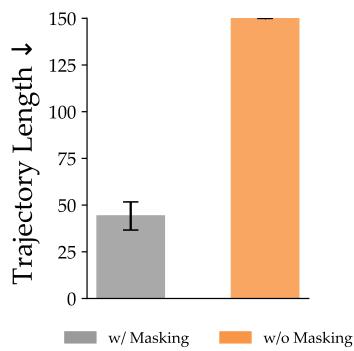
786 D FULL TRAINING

787 CURVES FOR ALL SIMULATION EXPERIMENTS

788 This section presents the complete training curves for all baselines across the simulation experiments
 789 in [Figure 10](#). Unlike the main paper, which reports only the final converged values, these curves
 790 illustrate the learning dynamics and stability of each method throughout training.

791 *Note:* For BC and SSRR, which use different x-axes, we represent their results with a horizontal line
 792 indicating final performance.

793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809



792 Figure 9: Ablation of the masking
 793 strategy for interpolated values.

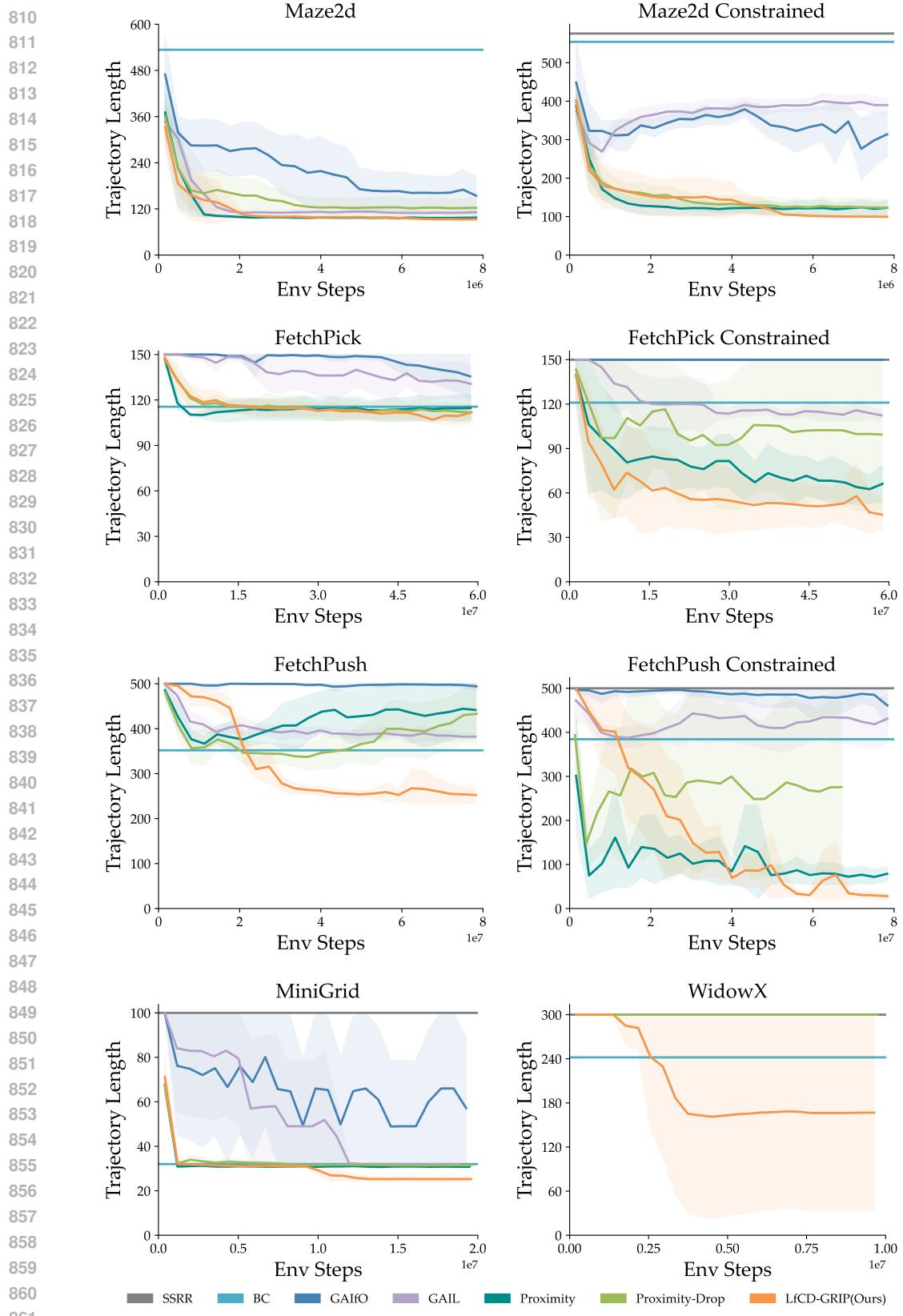


Figure 10: RL Training Curves: *UnconstrainedExpert* settings (left) and *ConstrainedExpert* settings (right) except Minigrid and WidowX. Both of them belong to *ConstrainedExpert* settings

864 **E NETWORK ARCHITECTURES**
865866 **Actor and Critic Networks.** The actor and critic networks share the same architecture, differing
867 only at the final layer: the actor outputs an action distribution, while the critic outputs a scalar
868 value estimate. For MiniGrid-LfCD, we use a convolutional encoder with the following structure:
869 $\text{CONV}(3, 2, 16) - \text{ReLU} - \text{MaxPool}(2, 2) - \text{CONV}(3, 2, 32) - \text{ReLU} - \text{CONV}(3, 2, 64)$, followed by
870 two fully connected layers of size 64. Here, $\text{CONV}(k, s, c)$ denotes a convolutional layer with kernel
871 size k , stride s , and c output channels.
872873 For all other environments, we use separate 3-layer MLPs for the actor and critic, each with hidden
874 layer size 256. For continuous control tasks, the final layer of the actor MLP outputs both the
875 mean and standard deviation of a Gaussian distribution over actions. We use ReLU activations for
876 MiniGrid-LfCD and tanh activations elsewhere.
877878 **Goal Proximity Function and Discriminator.** The proximity function and discriminator networks
879 adopt the same encoder architectures as the policy networks. For image-based inputs, we use the
880 same convolutional encoder as above, followed by a single hidden layer of size 64. For other tasks,
881 we use a 3-layer MLP with 64 hidden units. For uncertainty estimation, we maintain an ensemble of
882 5 proximity networks.
883884 **F TRAINING DETAILS**
885886 For all baselines (except BC), we train policies using PPO (Schulman et al., 2017). A full list of
887 training hyperparameters for each environment is provided in Table 2.
888

Hyperparameter	Minigrid-LfCD	Maze2D	FetchPick	FetchPush	WidowX
PPO related					
Entropy Coefficient	1e-2	1e-2	1e-3	1e-3	1e-4
learning Rate	1e-3	1e-3	1e-4	1e-4	1e-3
Epochs per Update	4	4	10	10	10
Mini-batches	4	4	32	32	32
Rollout Size	1e4	1e4	4096	4096	4096
Proximity Function related					
Discount Factor δ	0.95	0.95	0.99	0.99	0.95
learning Rate δ	1e-3	1e-3	1e-3	1e-4	1e-3
Batch Size	32	32	128	128	128
Epochs for Pre-training	2	5	2	5	500

902 Table 2: Policy-specific Hyperparameters
903904 **G DIFFERENCES FROM SUBOPTIMAL DEMONSTRATORS**
905906 **Section 2** discusses learning from suboptimal demonstrations and explains that LfCD assumes
907 constrained-but-competent demonstrators instead of noisy or inconsistent experts. Here, we elaborate
908 the distinction more explicitly. Conceptually, suboptimal-demonstrator methods (e.g., T-REX, D-
909 REX, SSRR) assume that expert and agent share the same action space, that the expert is unconstrained
910 but imperfect, and that near-optimal behavior is already present in the data; their objective is to
911 denoise or rank trajectories to recover the best actions hidden in suboptimal demonstrations. In
912 contrast, LfCD assumes a competent expert who is structurally constrained by the interface (e.g.,
913 mode-switching joystick), while the robot later operates in a strictly larger action space. In this
914 setting, the agent’s optimal policy can lie beyond anything the expert can physically demonstrate, so
915 the goal is to extract a goal-directed, state-only notion of progress from constrained trajectories and
916 extrapolate efficiency beyond them. Table 3 summarizes these differences.
917

918
919
920
921 Table 3: Key differences between settings with suboptimal demonstrators and constrained demonstra-
922 tors.
923
924

921 Property	922 Suboptimal demonstrators	923 Constrained demonstrators
924 Action space	925 Shared between expert and agent.	926 Expert acts in a restricted action subspace; agent has a larger space.
927 Expert behavior	928 Expert behaviors are noisy/inconsistent; some trajectories are better than others.	929 Expert is optimal under interface constraints (e.g., mode-switching joystick).
930 Agent policy	931 Assumes the agent’s optimal policy is present in the expert data under noise.	932 Agent’s optimal policy can lie beyond what the expert demonstrates
933 Problem objective	934 Denoise/rank trajectories to uncover the best actions in suboptimal data.	935 Extrapolate beyond demonstrated behavior to outperform the expert.
936 Learning signal	937 Relative quality of trajectories (rankings, noise levels).	938 Goal-reaching state-only progress to be independent of constraints.
939 Suitable application	940 Unconstrained but imperfect experts in a shared action space.	941 Interface- or embodiment-constrained experts with action-space mismatch.

942

H HYPERPARAMETER SENSITIVITY ANALYSIS

943 To assess the robustness of LfCD-GRIP, we conduct a hyperparameter sensitivity analysis across
944 four key hyperparameters: (1) size of the expert dataset(12.5%, 25%, 50%, 100%), (2) number of
945 pretraining iterations(2, 5, 10), (3) temporal decay factor δ used in proximity value calculation(0.9,
946 0.95, 0.99), and (4) the number of Monte Carlo samples K used for confidence estimation(3, 5, 7,
947 10). The first experiment is conducted on MAZE2D, and the remaining three on MINIGRID.

948 For MINIGRID, the result reported in the main paper is 25.2 average episode length. The optimal
949 path has a length of 24, while the constrained expert’s trajectory length is 32. All baselines average
950 above 32, meaning they fail to surpass the constrained expert. In contrast, LfCD-GRIP achieves over
951 25% improvement.

952 For MAZE2D, our reported result is an average trajectory length of 103, significantly outperforming
953 the constrained expert whose average is 264.37. Also it obviously outperforms the best baseline,
954 Proximity-IRL, with an average trajectory length of 113.

955 As shown in Table 4, except for pretrain iteration number = 10 and K = 3, LfCD-GRIP demonstrates
956 strong and consistent performance across different hyperparameter choices.

957 Table 4: Hyperparameter Sensitivity Analysis

958 Expert Dataset Size	959 Trajectory Length	960 Pretrain Iteration Number	961 Trajectory Length
962 25 %	963 104	964 2	965 25.2
966 50 %	967 103	968 5	969 25.5
970 100 %	971 105	972 10	973 33.5
974 δ	975 Trajectory Length	976 K	977 Trajectory Length
978 0.9	979 25	980 3	981 29.5
982 0.95	983 25.2	984 5	985 25.2
986 0.99	987 25.0	988 7	989 25.3
990 -	991 -	992 10	993 24.1