Under review as a conference paper at ICLR 2026

WHEN A ROBOT IS MORE CAPABLE THAN A HUMAN:
LEARNING FROM CONSTRAINED DEMONSTRATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning from demonstrations enables experts to teach robots complex tasks using
interfaces such as kinesthetic teaching, joystick control, and sim-to-real transfer.
However, these interfaces often constrain the expert’s ability to demonstrate optimal
behavior due to indirect control, setup restrictions, and hardware safety. For
example, a joystick can move a robotic arm only in a 2D plane, even though the
robot operates in a higher-dimensional space. As a result, the demonstrations
collected by constrained experts lead to suboptimal performance of the learned
policies. This raises a key question: Can a robot learn a better policy than the
one demonstrated by a constrained expert? We address this by allowing the
agent to go beyond direct imitation of expert actions and explore shorter and
more efficient trajectories. We use the demonstrations to infer a state-only reward
signal that measures task progress, and self-label reward for unknown states using
temporal interpolation. Our approach outperforms common imitation learning
in both sample efficiency and task completion time. On a real WidowX robotic
arm, it completes the task in 12 seconds, 10x faster than behavioral cloning.
We provide real-robot videos and additional resources on our project website:
https://sites.google.com/view/constrainedexpert.

Human Expert @ collects demonstrations -|1.|_’under the constraints T of joystick interface N
P

CJ
More capable robot I'f \H learns a shorter path \ beyond the constrained demonstrations

Figure 1: A human expert constrained by a mode-switching joystick produces segmented trajectories.
A robot employing LfCD-GRIP executes smooth and efficient motions beyond the demonstrations.

1 INTRODUCTION

Imitation learning (IL) and inverse reinforcement learning (IRL) are powerful frameworks to acquire
complex robotic behaviors from expert demonstrations (Argall et al., 2009; Abbeel et al., 2010; Arora
& Doshi, 2021; Hussein et al., 2017; Ravichandar et al., 2020; Biyik et al., 2022). However, in
practice, human operators are often constrained by the control interface, occluded viewpoints, or
physical precision, preventing them from demonstrating optimal behaviors. For example, a 6-DoF
arm teleoperated with a joystick interface (Herlant et al., 2016; Losey, 2020) requires mode-switching
to control different axes. This restricts their ability to perform smooth, simultaneous, and multi-axis
motions. As aresult, the demonstrations exhibit slow, segmented demonstration trajectories (Figure 1).
In contrast, the robot is capable of fast, fluid, and coordinated actions across all degrees of freedom.

https://sites.google.com/view/constrainedexpert

Under review as a conference paper at ICLR 2026

This discrepancy raises the key problem of Learning from Constrained Demonstrations (LfCD):
Can an agent learn from constrained demonstrations and discover more efficient behaviors once
those constraints are lifted? Traditional approaches struggle because IL (Schaal, 1999) mimics the
suboptimal actions, while IRL (Ho & Ermon, 2016) infers reward functions that reflect the same
constraints. While work on learning from suboptimal demonstrations (Gao et al., 2018; Brown
et al., 2019) addresses imperfect or noisy expert behavior, LfCD applies to competent experts whose
demonstrations are constrained by the interface, leading to goal-directed but inefficient trajectories.

Solving the LfCD problem requires addressing three key challenges for an agent to improve by
exploring beyond the direct imitation of constrained experts. (1) Since expert actions are restricted
by the interface, the IRL reward should be decoupled from the expert action, defined for state-state
transitions rather than state-action. (2) Since demonstrations cover only part of the state space, a
learning agent must identify which explored states have reliable reward estimates. (3) Even for the
novel states encountered during exploration, the agent requires a generalizable reward signal.

To address these challenges, we introduce LFCD with Goal-proximity Reward InterPolation (LfCD-
GRIP). (1) To decouple rewards from constrained expert actions, our key insight is to use a state-only
measure of progress toward the goal. We adopt a goal proximity reward (Lee et al., 2021; Bae et al.,
2024), trained along expert demonstration trajectories via backward temporal decay from the goal.
However, such estimates do not generalize to observations beyond the demonstration distribution. (2)
To ensure reliable reinforcement learning, LECD-GRIP includes a confidence estimator that identifies
expert-like observations where goal proximity reward is valid. (3) Finally, to assign rewards in novel
states never visited by the experts, it interpolates proximity values along agent-collected trajectories,
propagating task progress smoothly between the states covered in demonstrations. Intuitively, we
use expert-like observations as anchors and interpolate proximity values across the agent’s own
trajectories to propagate the notion of task progress beyond the constraints.

We evaluate LfCD-GRIP across a range of discrete and continuous control tasks in both navigation and
manipulation domains. Empirical results show that LFCD-GRIP consistently outperforms baseline IL
and IRL approaches by finding efficient task solutions, particularly in scenarios where demonstrations
are constrained. For instance, in a real-world pick-and-place task using a WidowX arm, LfCD-GRIP
reduces task completion time from 100 seconds (under IL) to just 12 seconds. This demonstrates the
effectiveness of our method in enabling robots to go beyond the constraints of the demonstrations.

Our contributions in this work are as follows:

1. We introduce the problem of learning from constrained demonstrations (LfCD) to highlight that
expert demonstrations are often constrained in practice, limiting the quality of learned behaviors.

2. We propose LfCD-GRIP, an IRL framework that extends goal-proximity rewards beyond expert
demonstrations with a confidence-based proximity interpolator over an agent’s online learning.

3. We show LfCD-GRIP enables more efficient and generalizable policies across multiple domains,
outperforming existing IL and IRL baselines under various constrained expert demonstrators.

2 RELATED WORK

Imitation Learning and Learning from Observations. Imitation learning (IL) enables robots to
acquire behaviors by mimicking expert demonstrations without requiring access to an explicit reward
function (Argall et al., 2009; Hussein et al., 2017; Schaal, 1999). The most basic form of IL is
behavioral cloning (BC) (Pomerleau, 1988), which treats imitation as a supervised learning problem
by directly mapping states to actions. Generative adversarial imitation learning (GAIL) (Ho & Ermon,
2016) introduced an adversarial training framework that matches the state-action distribution of
expert demonstrations. These methods replicate the expert’s actions, which is suboptimal in LfCD.

Imitation learning from observations addresses the case when expert action labels are unavailable (Liu
et al., 2018; Torabi et al., 2018a; Yang et al., 2019; Liu et al., 2020; Ko et al., 2024; Wen et al.,
2024). For instance, GAIL from Observations (GAIfO) (Torabi et al., 2018b) extends GAIL to
learn solely from state transitions. It mitigates action space mismatch but still replicates expert-like
state transitions. In contrast, LECD-GRIP only follows the expert’s demonstrated intended goal and
discovers improved policies that leverage the robot’s full capabilities.

Learning from Suboptimal Demonstrations. Expert demonstrations can be noisy or suboptimal due
to limited skill or inconsistent behavior (Choi et al., 2019; Yang et al., 2022; Zhu et al., 2022; Yu et al.,

Under review as a conference paper at ICLR 2026

2023; Gao et al., 2019; Zhang et al., 2021). T-REX (Brown et al., 2019) and D-REX (Brown et al.,
2020) infer reward functions from suboptimal demonstrations by ranking trajectory segments, while
Self-Supervised Reward Regression (SSRR) (Chen et al., 2021) learns a reward by injecting noise into
expert trajectories and using noise levels as self-supervised ranking signals. In contrast, LfCD assumes
the demonstrator arrives at the correct goal with actions optimal within their constrained action space,
but is limited by real-world factors such as interface restrictions or safety constraints. Moreover, our
method explicitly leverages the goal-directed nature of tasks to enable policy improvement beyond
the constraints, which is not leveraged by prior works on learning from suboptimal demonstrations.

Learning from Cross-Embodied Demonstrators. Approaches like Raychaudhuri et al. (2021); Hu
et al. (2021); Dasari et al. (2019); Zakka et al. (2022); Xu et al. (2023) learn from experts operating
in different action spaces than the robot, due to mismatched embodiment or control interfaces. They
typically learn alignment functions or explicit mappings that translate expert demonstration actions
into actions feasible within the robot’s action space. For example, Cross-Domain Imitation Learning
(CDIL) (Raychaudhuri et al., 2021) employs optimal transport to align action distributions before
imitation. Similarly, robot-aware control (Hu et al., 2021) models the dynamics of both the expert
and the robot to bridge the action space mismatch. These techniques aim to reproduce the expert’s
behavior, whereas we aim to discover better policies that exploit the agent’s wider action space.

Goal-Proximity Reward Learning from Demonstrations. Proximity-based IRL (Lee et al., 2021;
Ma et al., 2022) trains a goal proximity function from demonstrations to provide shaped, dense,
action-free rewards that measure task progress. However, it fails to generalize to states observed in
the agent’s online exploration beyond the demonstration distribution. As a result, the agent receives
low reward in unexplored states, limiting its ability to discover more efficient policies than those
demonstrated. LFCD-GRIP addresses this by interpolating proximity values along agent trajectories
in online rollouts. Using high-confidence states as anchors, we construct smoother, more reliable
rewards that guide exploration beyond constrained demonstrations.

3 LFCD PROBLEM FORMULATION

We formulate the LfCD problem as a Markov decision process (MDP) (Sutton, 1984), defined by
the tuple (S, A, R, P, po,), where S is the state space, A is the action space, R:Sx AxS —Ris
the reward function, P(s’ | s, a) is the transition distribution, pg is the initial state distribution, and
~ € [0, 1) is the discount factor. A policy 7(a | s) defines a distribution over actions conditioned on
the current state. The objective is to find a policy that maximizes the expected discounted return,

T—1
mEXE(SmaU,m,ST)NW [Z 'VtR(staatast+1)‘| (1)
t=0

where T is the episode length. Without access to the reward function R, this objective is
achieved by learning from a dataset of expert demonstrations D¢ = {7, 72,...,TK }, Where
T = {S0,a0,...,87}. We work in a generalized formulation where access to actions is not
necessary and state trajectories 7, = {so, s1, . .., ST} are sufficient to define the objective.

Particularly in LfCD, expert demonstrations are collected under action space constraints that limit the
expert’s available actions at each state. We denote this potentially unknown constrained action space as
A¢(s) C A, indicating that at state s, the expert can only choose from actions a € .A°(s). In contrast,
the learning agent i.e., the robot, has access to the full action space 4, and can potentially learn
policies that outperform the constrained expert by utilizing actions unavailable during demonstration'.

4 APPROACH: LFCD WITH GOAL-PROXIMITY REWARD INTERPOLATION

To address the problem of learning from constrained demonstrations, we develop the Goal-proximity
Reward InterPolation (LfCD-GRIP) framework, which extends proximity-based IRL with confidence-
guided reward propagation. Our approach builds on the insight that expert actions are restricted by the
interface, but their demonstrations still contain reliable signals of task progress. LfCD-GRIP therefore
(i) defines a goal-proximity reward that depends only on states, decoupling reward from suboptimal
expert actions, (ii) introduces a confidence estimation module to identify which states—whether

'Our method trivially extends to the cases where the robot’s action space is also state-dependent as long as
A°(s) C A"(s) forall s € S.

Under review as a conference paper at ICLR 2026

from expert data or agent rollouts—provide trustworthy proximity values, and (iii) incorporates a
trajectory-wise interpolation mechanism that propagates these values to novel states encountered
during exploration. Together, these components enable the agent to explore efficient behaviors toward
the goal and surpass the constraints of human demonstrators (Figure 1).

4.1 GOAL-PROXIMITY AS ACTION-FREE REWARD

Proximity-based IRL (Lee et al., 2021) defines rewards based on the estimated proximity of a
state to the task goal, rather than relying on expert actions. This formulation assumes that expert
demonstrations are optimal and collected without constraints. The proximity function fy(s) is trained
with two complementary objectives: (1) expert states are assigned exponentially decayed proximity
values, such that states closer to the goal receive higher values, and (2) agent rollouts are pushed
toward zero to avoid overgeneralization. The combined loss is

Ly =Eq,~npe (fo(st) — 5T_t)2 +Eq, o (fo(st))” (2)
L3 £5

where § € (0, 1) is the temporal decay factor, 7T is the trajectory length, D¢ the expert dataset, and
DT the dataset of agent rollouts. We denote Eg as the expert supervision loss, and L; as online
regularization loss, for reference in later sections.

Proximity-based IRL alternates between updating the proximity network and training the policy with
rewards derived from it. The reward label for a state transition is the reduction in goal proximity:

Rprox(3t7 St+1) = f¢(5t+1) - f¢(8t) 3)

The policy 7y is trained to maximize the expected cumulative reward:

max E.,

; Rprox(sta st+1)‘| = mézx E‘n’g l; f¢(st+1) - f¢(5t) (4)

While our framework is compatible with any reinforcement learning algorithm, we use proximal
policy optimization (PPO) (Schulman et al., 2017) for all experiments. Proximity-based IRL provides
a dense, progress-based reward signal independent of expert actions, making it well-suited for learning
from demonstrations collected under constrained action spaces.

Limitation of proximity-based IRL: All agent explored states are assigned low proximity, de-
incentivizing exploration. While effective in unconstrained settings, Proximity-based IRL struggles
when expert demonstrations are collected under constrained action spaces. This limitation stems from
the objective for online states, £j,, which penalizes proximity predictions on all states outside the
demonstration distribution—including those that could enable shorter paths to the goal. As a result, it
discourages exploration and prevents the agent from discovering more efficient solutions.

To overcome this, we propose to provide meaningful proximity values for out-of-distribution obser-
vations with expert demonstrations. The key idea is to propagate proximity estimates from reliable
observations—those with confident and well-calibrated predictions—to uncertain online observations.
As training progresses and more reliable observations are identified, this propagation extends to a
broader region of the observation space. This process introduces two main challenges: (1) identify-
ing which observations have reliable proximity predictions, and (2) assigning proximity values to
uncertain observations based on their relationship to confident anchors. We address both through two
core components: a confidence estimation module and a trajectory-wise interpolation mechanism.

4.2 GOAL-PROXIMITY CONFIDENCE ESTIMATION MODULE

This module aims to identify reliable observations that can serve as anchors for proximity propagation.
We first treat expert observations as reliable, as their proximity values are predefined based on temporal
distance to the goal. However, we must also distinguish reliable observations among online collected
samples, which lie outside the expert distribution.

Monte Carlo Dropout (MCD) (Gal & Ghahramani, 2016) provides a practical solution. By enabling
dropout at inference time and performing multiple stochastic forward passes, we can estimate the

Under review as a conference paper at ICLR 2026

Algorithm 1 LfCD-GRIP

Require: Expert dataset D¢, decay factor §, rollout budget NV, RL algorithm (e.g., PPO)
1: Initialize proximity network fy, policy mg
2: Pretrain f, using expert loss £
3: for iteration = 1 to N do
Collect rollouts D" using policy 7y
Proximity Model Training:
Estimate confidence for each s; € D" using MCD
Identify confident endpoints and construct sub-trajectories D"
Generate interpolated proximity targets for intermediate states from D"
Compute proximity loss: LR = L& + L 4 Lyreont
10: Update f, using gradient descent on LGX®
11: Policy Training:
12: Compute rewards for policy buffer with Rpmx(st, St41) = fo(Se41) — fo(se)
13: Update policy my via RL using proximity rewards
14: end for

Ve RNk

uncertainty of the proximity predictions. The variance of these predictions reflects model uncertainty,
with lower variance indicating higher confidence:

K 2
confidence,(s;) = —Var(fy(st)) = —% Z (fék)(st) - fqﬁ(&s)) ;

K
where f¢(st) = %Zfék)(st)a

and fék) (s¢) denotes the output of the proximity network on the k-th forward pass with dropout.

In practice, we pretrain the proximity network on expert demonstrations using the expert supervision
loss L€, which results in low-variance (i.e., high-confidence) predictions on those expert observations.
To classify whether an online-collected state is high-confidence or not, we compute a dynamic
threshold at each iteration based on the expert states. Specifically, the confidence threshold is set as
the maximum proximity variance observed among expert states. Any online state with lower variance
than this threshold is treated as high-confidence. This design guarantees that all expert states are
always included as high-confidence anchors throughout training, while also allowing online states
with similarly low uncertainty to be used for proximity interpolation.

4.3 GOAL-PROXIMITY INTERPOLATION MECHANISM

Once high-confidence observations are identified, we propagate
their proximity values to nearby low-confidence observations.
Here, nearby refers to temporal rather than spatial proximity.
To enable this propagation, we identify sub-trajectories where
both endpoints are high-confidence, and use them as anchors Pstart
for interpolation. Concretely, when two high-confidence obser- ! !
vations lie on the same trajectory, the intermediate states are | d I £ | [d
assigned smoothly interpolated proximity values, as illustrated q q q
in Figure 2. For each intermediate state s;, we define a proxim- V4 <l V4

ity target f by linearly interpolating in the log-proximity space Figure 2: Proximity is interpolated
between the sub-trajectory’s start and end points: between high-confidence anchors.

t
Pt = Pstart + T. (Pena -Pstart) Pena
sub

t
ft — 5P.~mn+ Ton (Pcnd*ﬂstan) (5)

where Ty, is the temporal length of the sub-trajectory, and pg. and peng are the log-scale goal-
proximity distances at its endpoints.

To stabilize training in the early stages, we introduce an annealing strategy that gradually increases
the reliance on interpolated values. At each training iteration, we sample a masking probability
pitr € [0, 1] that starts at 1 and linearly decays to 0 over time. With probability p, we mask the

Under review as a conference paper at ICLR 2026

b
|

MiniGrid-LfCD Maze2d Fetch-Push Fetch-Pick WidowX-Pick

Figure 3: We use various manipulation and navigation tasks with different kinds and degrees of
constrained expert demonstration datasets.

interpolated targets, assigning them zero proximity. This encourages conservative learning early on,
and enables progressive generalization as training proceeds. The resulting loss for interpolated states
becomes:

L5 = Bopnps (1= i) (Fa(s0) =)+ s - (Fals0)° ©

where m;;,. ~ Bernoulli(p;,.) is a stochastic mask applied independently to each intermediate state,
and D" denotes online sub-trajectories with high-confidence start and end states. This masking
strategy allows the model to interpolate proximity values only when it becomes confident enough,
ensuring smooth propagation without introducing premature bias from uncertain data. We include a
comparison to the no-masking variant in Appendix C.

For all remaining states—those not covered by confident sub-trajectories—we retain the original
assumption of zero proximity:

E;nconf = Eq,~(Dr\Deonty <f¢(3t))2 @)
The full training objective for the proximity function in LfCD-GRIP is:
,CgRIP — E; + Lzbonf + [’qubnconf (8)

The complete LfCD-GRIP training loop, including proximity updates and policy optimization,
is provided in Algorithm 1. In summary, LfCD-GRIP trains an agent with PPO by inferring a
goal-proximity reward complemented with confidence estimation and proximity interpolation from
constrained expert demonstrations.

5 EXPERIMENTS

We investigate the effectiveness of LFCD-GRIP through the following experiments: (1) Can LfCD-
GRIP learn to produce optimal trajectories that other methods fail to discover? (2) Does LfCD-
GRIP outperform standard IL methods and state-of-the-art approaches for learning from suboptimal
demonstrations under constrained experts? (3) Can LfCD-GRIP lead to policies that leverage actions
unavailable to the expert? (4) How do LfCD-GRIP and baselines perform as expert constraints
become more severe? (5) What is the practical impact of LFCD-GRIP for real-robot applications?

Baselines and Ablations. We compare LfCD-GRIP against common imitation learning and inverse
RL baselines, a state-of-the-art method for learning from suboptimal demonstrations, and ablations
of our approach to validate the technical contributions. The key comparison metric is having a short
trajectory length of achieving the goals and consistently achieving successes.

* BC directly maps observations to actions via supervised learning on expert demonstrations.

* GAIL trains a discriminator to distinguish expert observation-action pairs from those generated by
the learning agent, using the discriminator as a reward function.

* GAIfO removes the need for expert actions by matching state-transition distributions.

* SSRR learns a reward by ranking demonstrations with injected noise and using noise severity as a
proxy for suboptimality. It is a state-of-the-art method for learning from suboptimal demonstrations.

* Proximity (Proximity-based IRL) learns a reward function based on the temporal distance to the
goal and trains the agent via RL.

Under review as a conference paper at ICLR 2026

* Proximity-Drop is an ablation of Proximity-based IRL with dropout layers enabled, but without
confidence estimation or interpolation. This baseline isolates the contribution of our proposed
modules from the regularizing effect of dropout.

* LfCD-GRIP augments Proximity-Drop with confidence estimation and interpolation to propagate
reliable proximity values to unseen observations.

5.1 LFCD-GRIP DISCOVERS SHORTCUT TRAJECTORIES TO GOAL IN MINIGRID-LFCD

To evaluate whether LfCD-GRIP can
recover optimal trajectories beyond
those demonstrated, we design a
simple but illustrative MiniGrid en-
vironment (Brockman et al., 2016;
Chevalier-Boisvert et al., 2023). The
agent always starts in the top-left cor-
ner with the goal fixed in the bottom-
right. Expert demonstrations, con-
strained to the four cardinal directions,
traverse only the top row and right-
most column. In contrast, the agent

i? allqwed to move in all eight direc- Figure 4: MiniGrid-LfCD Results. (left) The expert follows
tions, including diagonals. This asym- the blue path to the green goal, while LECD-GRIP takes the

metry introduces a shorter diagonal red shortcut; (right) average episode length across methods.
path that lies well outside the expert

distribution. As shown in Figure 4,

only LfCD-GRIP discovers this optimal shortcut by propagating goal proximity values to unseen
but reachable states, while all baselines remain confined to the demonstrated path, yielding longer
average trajectories.

MiniGrid-Constrained

100 —

Expert
B SSRR
BC
B GAIfO

GAIL
B Proximity
Proximity-Drop
LfCD-GRIP(Ours)

60

Trajectory Length

0

Expert | f{CD-GRIP

5.2 QUANTITATIVE RESULTS ON CONSTRAINED EXPERT DEMONSTRATIONS

We further validate LECD-GRIP on various navigation and manipulation tasks, as shown in Figure 3:
MAZE2D (Fuetal., 2020; Kumar et al., 2020), FETCHPICK (Plappert et al., 2018), FETCHPUSH (Plap-
pert et al., 2018). Details for all environments are provided in Appendix A.

Action Space Constraints. To simulate limited control interfaces, we constrain the expert’s ac-
tion space during demonstration collection. The full action space for continuous environments is
normalized to [—1, 1] in each dimension. The specific constraints for each environment are as follows:

* MAZE2D. The robot uses 2D accelerations with experts actions constrained to [—0.1, 0.1].

* FETCHPICK. The robot actions control the 3D continuous Cartesian displacements (z, y, 2) and a
binary action for the gripper. Expert actions are constrained to [—0.1,0.1].

* FETCHPUSH. The action space matches that of FetchPick except the gripper, which is disabled.
Expert actions are constrained to [—0.05, 0.05].

This setup emulates realistic scenarios in which robots are capable of high-speed motion, but expert
demonstrations are collected under constrained control for safety and reliability.

For each environment, we compare all methods under two settings: (1) the UnconstrainedExpert
setting, where the agent and the expert share the same constrained action space, except in Maze2D ,
where both the agent and expert use the full action space. This intentional exception allows us to
contrast Maze2D with Minigrid; and (2) the ConstrainedExpert setting, where the agent has access to
the full action space while the expert demonstrations are generated under constraints. This dual setup
assesses LfCD-GRIP’s performance gains when constraints are introduced in expert demonstrations.

Results Discussion. For all environments, we run experiments with four random seeds, and each
evaluation checkpoint averages results over 160 episodes. We report the average episode length across
all evaluation trajectories from the final trained policy, including unsuccessful attempts. This length
metric measures the policy’s optimality and ability to leverage the unconstrained action space for
faster goal completion. In Figure 5, LECD-GRIP achieves strong performance across all environments
in both settings. Although it remains competitive in UnconstrainedExpert, it consistently outperforms
other baselines when the agent operates with an expanded action space in ConstrainedExpert. In the

Under review as a conference paper at ICLR 2026

Maze2d Fetch-Pick Fetch-Push

— 600 160 560
<
46’0 450 120 :[420 I
£ I I I I -
—

300 80 280
2 I
8 150 40 140
o I = I -
g ol |
& oo 0 0

o Maze2d-Constrained “ Fetch-Pick-Constrained o Fetch-Push-Constrained
—, 6001
<
o0 120 420
] I I I I
3
S 80 280
3
‘a 40 I 140
S x
[l 0 0

Expert W SSRR W BC B GAIfO GAIL Bl Proximity Proximity-Drop LfCD-GRIP(Ours)

Figure 5: Average episode length across UnconstrainedExpert settings (top) and ConstrainedExpert
settings (bottom). LfCD-GRIP consistently outperforms all baselines in constrained settings by
finding short trajectory length solutions consistently, and remains robust in unconstrained ones.

Maze2D-Constrained setting, although the bar for Proximity-based IRL appears visually similar to
LfCD-GRIP in the figure, LECD-GRIP completes the task in 100 transitions on average—reducing
episode length by over 10% compared to Proximity-based IRL, which requires 113 transitions.

These results support our central claim: LfCD-GRIP enables agents to go beyond expert constraints
by learning a goal-proximity reward function, rather than mimicking constrained expert behavior.
5.3 ANALYSIS: DOES LFCD-GRIP LEVERAGE OUT-OF-CONSTRAINT (OOC) ACTIONS?

To assess whether LFCD-GRIP generalizes be-
yond constrained demonstrations, we analyze

N 3 Baseline Success Rate 0OOC Action Ratio
the proportion of actions selected by each agent
that fall outside the expert’s action space in the GAIL 6% 1%
L Y P BC 12% 69%
Maze2D environment. Table | reports both the GAIfO 51% 100%
success rate and the ratio of out-of-constraint LICD-GRIP 100% 100%

(OOC) actions. LfCD-GRIP achieves a 100%) o
success rate while selecting OOC actions 100% Table 1: Success rate and OOC action ratio in
of the time. In contrast, GAIL and BC favor in- Maze2D-Constrained. LFCD-GRIP achieves 100%
distribution actions, and GAIfO, despite using Success while effectively leveraging OOC actions.
OOC actions entirely, fails to achieve high task

success. These results underscore the importance of reward generalization, not just action diversity.
This analysis further validates that our method is action-independent, as it successfully exploits
actions beyond expert constraints to achieve optimal performance.

5.4 ANALYSIS: LFECD-GRIP PERFORMANCE WITH MORE SEVERE EXPERT CONSTRAINTS

We evaluate LfCD-GRIP under two constraint levels in the Fetch- w0
Pick environment. In the relaxed case, the constraint is widened to
[—0.7,0.7], allowing more expressive expert behavior. In the severe
case (Severity 2), the expert’s action space is limited to [—0.05, 0.05],
simulating highly restricted demonstrations. We compare against
representative subset of baselines: BC (supervised imitation), Ex-
pert (expert performance), and Proximity-based IRL (closest to our 0

Expert
m BC
3007 WM Proximity
LfCD-GRIP(Ours)

Trajectory Length

1 2

method). We omit GAIL and GAIfO, as they never surpass expert Severity Level
performance and behave similarly to the Expert baseline. SSRR is ex-
cluded because it fails to learn a successful policy under constrained
demonstrations.

Figure 6: Varying constraint
severity shows the increasing
benefit of LfCD-GRIP over
Figure 6 shows LfCD-GRIP maintains strong performance across baselin;s. Severity 2 means
both constraint levels, whereas baselines such as BC and Proximity- constraint [—0.05,0.05].

Under review as a conference paper at ICLR 2026

Time Elapsed

BC *

Others

GRIP ©

Figure 7: Real-robot rollouts of the WidowX-Pick task. Only BC learns meaningful policies, while
LfCD-GRIP completes the task 10x faster than BC.

based IRL degrade substantially under severe constraints. These

results demonstrate that LFCD-GRIP works effectively across varying degrees of expert action space
constraints, and is able to find short path solutions to the goal consistently by utilizing the agent’s
exploration efficiently.

5.5 WIDOWX-PICK: SIMULATION AND REAL-ROBOT EXPERIMENT

We evaluate LfCD-GRIP on the WidowX-Pick task, WidowX-Pick
both in simulation and on the real WidowX 250s
robotic arm. We use a mode-switching joystick inter-
face (Losey, 2020) to collect demonstrations, which
allows control of only one axis at a time. This creates
a natural constraint in the expert’s action space, yield-
ing constrained demonstrations. Training in simula-
tion (Figure 8) shows that LFCD-GRIP outperforms
all baselines, achieving substantially shorter trajecto-
ries. Except for BC, the other baselines fail to learn
meaningful policies, while BC remains limited by the Fpert B AL Proximity Drop

expert’s constrained behavior. S SRR W GAIO. W Proxinity LICD-GRIP(Our)

Trajectory Length {
z @ B B g
—

o
S

o

We then deploy the learned policy on the real-world Figure 8: WidowX-Pick Simulation. Only BC

WidowX-Pick setup (Figure 7). While BC reproduces and LfCD-GRIP succeed, with LfCD-GRIP
expert-like behavior, it fails to utilize the full action peing more efficient.

space and executes slowly, requiring 100 seconds per

trial. In contrast, LFCD-GRIP generates efficient trajectories that completes the task 10x faster, in
just 12 seconds. These results demonstrate that our method transfers effectively to real hardware and
enables better-than-expert performance by overcoming action space constraints.

6 CONCLUSION & LIMITATIONS

We address the challenge of learning from constrained expert demonstrations, where the expert
lacks access to the robot’s full action space due to interface or embodiment limitations. We propose
LfCD-GRIP, a framework that learns a generalizable progress-aware reward function via interpolation,
enabling agents to extrapolate beyond constrained demonstrated behavior and discover more efficient
policies. Extensive experiments show that LfCD-GRIP outperforms baselines, highlighting the
promise of decoupling reward learning from constrained expert actions.

Limitations. The proximity-based reward assumes that task progress can be measured with respect
to a specific goal state. While well suited for goal-reaching tasks, this limits applicability to settings

Under review as a conference paper at ICLR 2026

without clearly defined terminal conditions. Extending LfCD-GRIP to such tasks remains an important
direction for future work. Estimating progress in multi-task scenarios also remains challenging,
as our approach currently relies on goal-conditioned proximity estimates tailored to individual
demonstrations. Generalizing progress signals across tasks with semantically varied goals will require
advances in representation learning and reward modeling.

Future Work. While we demonstrate LfCD-GRIP in the setting of constrained experts, the core
idea of interpolating proximity-based rewards along an agent’s own trajectories is broadly applicable.
In particular, this mechanism enables reward generalization to unseen states whenever the expert
data provides only partial coverage of the state space, which in turn enables more efficient paths
to the goals than those observed in demonstrations. We therefore view constrained experts as one
practically important instance of a more general problem: learning progress-aware rewards from
sparse or biased expert coverage, and plan to investigate our approach more broadly.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, We provide the source code in the supplementary material, witha README
file containing commands for all experiments. We describe the simulation environments in Ap-
pendix A, the real-robot setup in Appendix B, and the training details in Appendix E and Appendix F.

LLM USAGE

We used large language models (LLMs) to assist with grammar correction and rewording. No
model-generated content was used for scientific claims, experiments, or core contributions. All ideas
and analyses are original and developed by the authors.

BIBLIOGRAPHY

Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics through
apprenticeship learning. The International Journal of Robotics Research, 29(13), 2010.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57(5), 2009.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500, 2021.

Junik Bae, Kwanyoung Park, and Youngwoon Lee. Tldr: Unsupervised goal-conditioned rl via
temporal distance-aware representations. arXiv preprint arXiv:2407.08464, 2024.

Erdem Biyik, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. Learning reward functions from diverse sources of human feedback: Optimally integrating
demonstrations and preferences. The International Journal of Robotics Research, 41(1):45-67,
2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783-792. PMLR, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pp. 330-359. PMLR,
2020.

Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration via
self-supervised reward regression. In Conference on robot learning, pp. 1262—-1277. PMLR, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. Advances in Neural
Information Processing Systems, 36:73383-73394, 2023.

Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demonstrations with mixed
qualities using leveraged gaussian processes. IEEE Transactions on Robotics, 35(3):564-576,
2019.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
arXiv preprint arXiv:1910.11215, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050-1059.
PMLR, 2016.

11

Under review as a conference paper at ICLR 2026

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations, 2019. URL https://arxiv.org/abs/1802.05313.

Laura V Herlant, Rachel M Holladay, and Siddhartha S Srinivasa. Assistive teleoperation of
robot arms via automatic time-optimal mode switching. In 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pp. 35-42. IEEE, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. arXiv preprint
arXiv:1606.03476, 2016.

Edward S Hu, Kun Huang, Oleh Rybkin, and Dinesh Jayaraman. Know thyself: Transferable visual
control policies through robot-awareness. arXiv preprint arXiv:2107.09047, 2021.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2):35, 2017.

Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act
from actionless videos through dense correspondences. In The Twelfth International Conference
on Learning Representations, 2024.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
1179-1191, 2020.

Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J Lim. Generalizable imitation learning
from observation via inferring goal proximity. Advances in neural information processing systems,

34:16118-16130, 2021.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning. In
International Conference on Learning Representations, 2020.

YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation:
Learning to imitate behaviors from raw video via context translation. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 1118-1125. IEEE, 2018.

Dylan Losey. Personalizing robots through learned latent actions. https://youtu.be/
J-00EXBiJ1I, 2020. Accessed: 2025-04-27.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for research. arXiv preprint arXiv:1802.09464,
2018.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent advances in
robot learning from demonstration. Annual review of control, robotics, and autonomous systems, 3
(1):297-330, 2020.

Dripta S Raychaudhuri, Sujoy Paul, Jeroen Vanbaar, and Amit K Roy-Chowdhury. Cross-domain
imitation from observations. In International conference on machine learning, pp. 8902-8912.
PMLR, 2021.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233-242, 1999.

12

https://arxiv.org/abs/1802.05313
https://youtu.be/J-0OEXBiJ1I
https://youtu.be/J-0OEXBiJ1I

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of Mas-
sachusetts Amherst, 1984.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
trajectory modeling for policy learning. In Robotics: Science and Systems (RSS), 2024.

Mengda Xu, Zhenjia Xu, Cheng Chi, Manuela Veloso, and Shuran Song. Xskill: Cross embodiment
skill discovery. In Conference on robot learning, pp. 3536-3555. PMLR, 2023.

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. Ad-
vances in neural information processing systems, 32, 2019.

Mengjiao Yang, Sergey Levine, and Ofir Nachum. TRAIL: Near-optimal imitation learning with
suboptimal data. In International Conference on Learning Representations (ICLR), 2022.

Lantao Yu, Tianhe Yu, Jiaming Song, Willie Neiswanger, and Stefano Ermon. Offline imitation
learning with suboptimal demonstrations via relaxed distribution matching. In Proceedings
of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational
Advances in Artificial Intelligence, 2023.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pp.
537-546. PMLR, 2022.

Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learning
from demonstrations with varying optimality. Advances in Neural Information Processing Systems,
34:12340-12350, 2021.

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Self-adaptive imitation learning: Learning
tasks with delayed rewards from sub-optimal demonstrations. Proceedings of the AAAI Conference
on Artificial Intelligence, 36(8):9269-9277, 2022.

13

Under review as a conference paper at ICLR 2026

Appendix

A ENVIRONMENT DETAILS

We conduct experiments across four environments: MINIGRID-LFCD, MAZE2D, FETCHPICK, and
FETCHPUSH. Below we describe their environment dynamics, state/action spaces, and demonstration
collection protocols. Note that the full action space for continuous environments is always normalized
to [—1, 1] in each dimension.

Minigrid-LfCD. This environment is a grid-based navigation task with discrete spatial observations.
Each cell in the grid is encoded as a one-hot vector representing one of four categories: wall, empty
space, the agent, or the goal. The layout of the grid remains fixed throughout all episodes. The
environment is fully observable, with observations of size [19 x 19 x 4].

The agent always starts in the top-left corner, and the goal is located in the bottom-right corner. The
full action space A includes 8 discrete movement actions: the four cardinal directions (up, down,
left, right) and four diagonals. In contrast, the expert is constrained to only the 4 cardinal directions,
simulating limited action capabilities.

The expert dataset consists of a single demonstration, generated using a breadth-first search (BFS)
planner that computes the shortest path under the constrained action space. This setup ensures that
the demonstration is optimal given the expert’s limitations, while allowing the agent to potentially
discover shorter paths using the full action space.

Maze2D. The agent is a point mass that navigates through a 2D maze by controlling its (z,y)
acceleration in continuous space. The state includes the agent’s 2D position, velocity, and the goal
position. We slightly modify the standard maze2d-medium-v1 environment from D4RL (Fu et al.,
2020) by reducing the maximum episode length from 600 to 400 steps.

The full action space A is a 2-dimensional continuous space, where each dimension controls acceler-
ation in the x or y direction. In the constrained setting, the expert’s actions are clipped to a restricted
range [—0.1, 0.1], reducing movement magnitude and limiting directional flexibility.

For training, we collect two datasets: 800 expert demonstrations using the full action space, and 800
expert demonstrations under the [—0.1, 0.1] constrained action space, both using the planner provided
by D4RL.

FetchPick and FetchPush. These manipulation tasks are adapted from the OpenAl Gym Fetch
environments (Plappert et al., 2018), where a 7-DoF arm controls its end-effector in 3D space with
an additional continuous dimension for the gripper (which is ineffective in FETCHPUSH). The 16-
dimensional state vector includes the relative position of the goal to the object, the end-effector to the
object, and the robot’s joint configuration. Following prior findings from Proximity-based IRL (Lee
et al., 2021), we exclude velocity information from the state input, which improves performance for
learning-from-observation approaches.

For both environments, the full action space A is a 4-dimensional continuous space, representing
Cartesian displacements in z, y, and z directions of the end effector, along with a gripper control
signal, which is fixed for FetchPush. In the constrained setting, the expert is limited to actions within
a smaller bounded region, [—0.1, 0.1] for FETCHPICK and [—0.05, 0.05] for FETCHPUSH , reducing
dexterity and making successful grasps more challenging.

For both FETCHPICK and FETCHPUSH, we collect 400 constrained demonstrations using a scripted
policy that moves the gripper above the object, descends to grasp/push it, and transports it to the goal.

B WIDOWX DESCRIPTION

Environment. We use the ManiSkill simulator to collect expert demonstrations and pretrain the
policy, followed by sim-to-real transfer to the WidowX 250s hardware. The task requires the robot
to grasp a cube placed on a surface and lift it slightly above that surface to succeed. To simplify
the task and reduce orientation complexity, the robot’s end-effector is fixed in a downward-pointing
orientation. Additionally, to mitigate challenges in precisely replicating visual setups between
simulation and the real-world hardware, we use a low-dimensional observation space instead of visual
inputs. Specifically, the observations provided to the robot include the gripper’s end-effector position,

14

Under review as a conference paper at ICLR 2026

the gripper opening state, the cube’s position and whether the cube is grasped. To ensure clarity of
the cube’s state for the agent, the cube is initialized randomly at one of three fixed, predetermined
positions at each environment reset.

Expert Action Space. Expert demonstrations are collected in simulation using a Machenike G5
controller. To minimize accidental inputs and ensure precise control, we map discrete movements
to the controller’s directional pad (D-pad) and ABXY buttons. Specifically, the D-pad is used to
command horizontal movements—Ileft, right, forward, and backward—while the A and Y buttons
control vertical movement (up and down). The B and X buttons control the opening and closing of
the gripper. Human demonstrators thus issue discrete, single-axis commands sequentially, restricting
simultaneous multi-axis control and limiting the range and complexity of demonstrated actions.

Agent Action Space. The robot agent operates in a continuous 4-dimensional action space: three
degrees for Cartesian movement and one for gripper actuation. Unlike the human expert, the agent
can perform smooth and simultaneous multi-axis movements, enabling more efficient trajectories and
improved manipulation behaviors.

C FURTHER ABLATION: NO MASKING

To evaluate the importance of the masking strategy in LfCD-
GRIP, we conduct an ablation study in which the masking
probability is removed—i.e., the interpolated values are always
used as training targets for intermediate states. This variant is
evaluated on the FetchPick-Constrained environment.

Juy

a1

(=}
)

Juy

[

a1
L

=

=3

(=}
L

As shown in Figure 9, removing the masking leads the agent
to become overconfident in its early interpolations. This results
in reward propagation through unreliable states, ultimately pre-
venting the policy from generalizing and achieving successful
task completion. These findings highlight the importance of
gradual interpolation: masking helps regulate learning by lim-
iting reward propagation to only confident regions in the early
stages of training.

g
—

Trajectory Length {

[=)

w/ Masking w/o Masking

Figure 9: Ablation of the masking
strategy for interpolated values.
D FULL TRAINING

CURVES FOR ALL SIMULATION EXPERIMENTS

This section presents the complete training curves for all baselines across the simulation experiments
in Figure 10. Unlike the main paper, which reports only the final converged values, these curves
illustrate the learning dynamics and stability of each method throughout training.

Note: For BC and SSRR, which use different x-axes, we represent their results with a horizontal line
indicating final performance.

15

Under review as a conference paper at ICLR 2026

810 Maze2d Maze2d Constrained
600

811
812
813
814
815
816
817
818
819 , , , , , , ,
820 0 2 4 6 8 4 6 8
821 Env Steps 166 Env Steps 1e6

822
823 FetchPick FetchPick Constrained
150

824 —C D — \\\
825

826
827
828
829
830
831

832 0 . . . :
0.0 L5 3.0 45 6.0 0.0 15 3.0 45 6.0
833

Env Steps 17 Env Steps 17

j*1

(=3

(=]
L

'S
o
S

Trajectory Length

Trajectory Length

=

j=3

(=]
L

(=]
o

o
N A

—_
o
(=]

Juny
S}
(=]

-
nN
(=]

O

(=]
o
(=]

L

o)
(=]

Trajectory Length

@
(=]

Trajectory Length

834

8es FetchPush FetchPush Constrained
836 500 500

837 o
838 4001 400,
839

300] L\/\

840
841
842
843
844
aas 0 ; : : 3 % > : p 3
846 1e7 Env Steps 1e7
847

848 MiniGrid WidowX

850
858 0 T T T 1 0 T T T J
0.0 0.5 1.0 15 2.0 0.00 0.25 0.50 0.75 1.00

851
852
853

854

855

856

859 Env Steps 17 Env Steps 17

860 BN SSRR W BC WEE GAIfO W% GAIL WEEE Proximity WS Proximity-Drop M@ LfCD-GRIP(Ours)

861

862

863 Figure 10: RL Training Curves: UnconstrainedExpert settings (left) and ConstrainedExpert settings
(right) except Minigrid and WidowX. Both of them belong to ConstrainedExpert settings

Trajectory Length
Trajectory Length

Env Steps

—_
=)
(=]

@
(=3
(=]

®
(=]

o)
f=]
— N
@® =
j= j=]

'S
o
—
N}
=]
|

Trajectory Length
Trajectory Length

[

(=]

D

o
!

857

16

Under review as a conference paper at ICLR 2026

E NETWORK ARCHITECTURES

Actor and Critic Networks. The actor and critic networks share the same architecture, differing
only at the final layer: the actor outputs an action distribution, while the critic outputs a scalar
value estimate. For MiniGrid-LfCD, we use a convolutional encoder with the following structure:
CONV(3,2,16) - ReLU - MaxPool(2,2) - CONV(3, 2,32) - ReLU - CONV(3, 2, 64), followed by
two fully connected layers of size 64. Here, CONV (k, s, ¢) denotes a convolutional layer with kernel
size k, stride s, and ¢ output channels.

For all other environments, we use separate 3-layer MLPs for the actor and critic, each with hidden
layer size 256. For continuous control tasks, the final layer of the actor MLP outputs both the
mean and standard deviation of a Gaussian distribution over actions. We use ReLLU activations for
MiniGrid-LfCD and tanh activations elsewhere.

Goal Proximity Function and Discriminator. The proximity function and discriminator networks
adopt the same encoder architectures as the policy networks. For image-based inputs, we use the
same convolutional encoder as above, followed by a single hidden layer of size 64. For other tasks,
we use a 3-layer MLP with 64 hidden units. For uncertainty estimation, we maintain an ensemble of
5 proximity networks.

F TRAINING DETAILS

For all baselines (except BC), we train policies using PPO (Schulman et al., 2017). A full list of
training hyperparameters for each environment is provided in Table 2.

Hyperparameter Minigrid-LfCD Maze2D FetchPick FetchPush WidowX
PPO related

Entropy Coefficient le-2 le-2 le-3 le-3 le-4

learning Rate le-3 le-3 le-4 le-4 le-3

Epochs per Update 4 4 10 10 10

Mini-batches 4 4 32 32 32

Rollout Size led led 4096 4096 4096

Proximity Function related

Discount Factor ¢ 0.95 0.95 0.99 0.99 0.95
learning Rate § le-3 le-3 le-3 le-4 le-3
Batch Size 32 32 128 128 128
Epochs for Pre-training 2 5 2 5 500

Table 2: Policy-specific Hyperparameters

G DIFFERENCES FROM SUBOPTIMAL DEMONSTRATORS

Section 2 discusses learning from suboptimal demonstrations and explains that LfCD assumes
constrained-but-competent demonstrators instead of noisy or inconsistent experts. Here, we elaborate
the distinction more explicitly. Conceptually, suboptimal-demonstrator methods (e.g., T-REX, D-
REX, SSRR) assume that expert and agent share the same action space, that the expert is unconstrained
but imperfect, and that near-optimal behavior is already present in the data; their objective is to
denoise or rank trajectories to recover the best actions hidden in suboptimal demonstrations. In
contrast, LfCD assumes a competent expert who is structurally constrained by the interface (e.g.,
mode-switching joystick), while the robot later operates in a strictly larger action space. In this
setting, the agent’s optimal policy can lie beyond anything the expert can physically demonstrate, so
the goal is to extract a goal-directed, state-only notion of progress from constrained trajectories and
extrapolate efficiency beyond them. Table 3 summarizes these differences.

17

Under review as a conference paper at ICLR 2026

Table 3: Key differences between settings with suboptimal demonstrators and constrained demonstra-

tors.

Property

Suboptimal demonstrators

Constrained demonstrators

Action space

Expert behavior

Agent policy

Problem objective

Learning signal

Suitable application

Shared between expert and agent.

Expert behaviors are noisy/inconsistent;
some trajectories are better than others.

Assumes the agent’s optimal policy is
present in the expert data under noise.

Denoise/rank trajectories to uncover the
best actions in suboptimal data.

Relative quality of trajectories (rankings,
noise levels).

Unconstrained but imperfect experts in a
shared action space.

Expert acts in a restricted action subspace;
agent has a larger space.

Expert is optimal under interface con-
straints (e.g., mode-switching joystick).
Agent’s optimal policy can lie beyond
what the expert demonstrates

Extrapolate beyond demonstrated behav-
ior to outperform the expert.

Goal-reaching state-only progress to be
independent of constraints.

Interface- or embodiment-constrained ex-
perts with action-space mismatch.

H HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the robustness of LfCD-GRIP, we conduct a hyperparameter sensitivity analysis across
four key hyperparameters: (1) size of the expert dataset(12.5%, 25%, 50%, 100%), (2) number of
pretraining iterations(2, 5, 10), (3) temporal decay factor ¢ used in proximity value calculation(0.9,
0.95, 0.99), and (4) the number of Monte Carlo samples K used for confidence estimation(3, 5, 7,
10). The first experiment is conducted on MAZE2D, and the remaining three on MINIGRID.

For MINIGRID, the result reported in the main paper is 25.2 average episode length. The optimal
path has a length of 24, while the constrained expert’s trajectory length is 32. All baselines average
above 32, meaning they fail to surpass the constrained expert. In contrast, LECD-GRIP achieves over
25% improvement.

For MAZE2D, our reported result is an average trajectory length of 103, significantly outperforming
the constrained expert whose average is 264.37. Also it obviously outperforms the best baseline,
Proximity-IRL, with an average trajectory length of 113.

As shown in Table 4, except for pretrain iteration number = 10 and K = 3, LfCD-GRIP demonstrates

strong and consistent performance across different hyperparameter choices.

Table 4: Hyperparameter Sensitivity Analysis

Expert Dataset Size Trajectory Length ~ Pretrain Iteration Number Trajectory Length
25 % 104 2 25.2
50 % 103 5 25.5
100 % 105 10 33.5
1) Trajectory Length K Trajectory Length
0.9 25 3 29.5
0.95 25.2 5 25.2
0.99 25.0 7 25.3
- - 10 24.1

18

	Introduction
	Related Work
	LfCD Problem Formulation
	Approach: LfCD with Goal-proximity Reward Interpolation
	Goal-proximity as Action-Free Reward
	Goal-Proximity Confidence Estimation Module
	Goal-Proximity Interpolation Mechanism

	Experiments
	LfCD-GRIP Discovers Shortcut Trajectories to Goal in MiniGrid-LfCD
	Quantitative Results on Constrained Expert Demonstrations
	Analysis: Does LfCD-GRIP Leverage Out-of-Constraint (OOC) Actions?
	Analysis: LfCD-GRIP Performance With More Severe Expert Constraints
	WidowX-Pick: Simulation and Real-Robot Experiment

	Conclusion & Limitations
	Bibliography
	Environment Details
	WidowX Description
	Further Ablation: No Masking
	Full Training Curves for All Simulation Experiments
	Network Architectures
	Training Details
	Differences from Suboptimal Demonstrators
	Hyperparameter Sensitivity Analysis

