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ABSTRACT

Deep Neural Networks (DNNs) have revolutionized a wide range of industries,
from healthcare and finance to automotive, by offering unparalleled capabilities
in data analysis and decision-making. Despite their transforming impact, DNNs
face two critical challenges: the vulnerability to adversarial attacks and the in-
creasing computational costs associated with more complex and larger models. In
this paper, we introduce an effective method designed to simultaneously enhance
adversarial robustness and execution efficiency. Unlike prior studies that enhance
robustness via uniformly injecting noise, we introduce a non-uniform noise in-
jection algorithm, strategically applied at each DNN layer to disrupt adversarial
perturbations introduced in attacks. By employing approximation techniques, our
approach identifies and protects essential neurons while strategically introducing
noise into non-essential neurons. Our experimental results demonstrate that our
method successfully enhances both robustness and efficiency across several attack
scenarios, model architectures, and datasets.

1 INTRODUCTION

Deep Neural Networks (DNNs) are at the forefront of technological advancements, powering a mul-
titude of intelligent applications across various sectors (Al-Qizwini et al., 2017; Bai et al., 2018;
Fujiyoshi et al., 2019). Yet, as DNNs become deeply integrated into mission-critical systems, two
challenges emerge in DNN deployment. First, when DNNs are used in vital decision-making tasks,
their vulnerability to adversarial attacks becomes a serious concern. From a self-driving car mis-
interpreting a traffic sign due to subtle, maliciously introduced perturbations, to defense systems
being deceived into false detection, the outcomes could be catastrophic (Carlini & Wagner, 2017;
Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017; Moosavi-Dezfooli et al., 2016).
Second, as DNNs become more complex and sophisticated, their computational demands increase
correspondingly, calling for advanced optimization strategies to ensure that these powerful neural
network models can operate efficiently even with constrained computational resources (Han et al.,
2015; Niu et al., 2020; Roy et al., 2021; Zaheer et al., 2020).

Recent studies suggest that introducing noise not only enhances the robustness of DNN models
but also provides a controllable means to achieve such improvement, as evidenced by recent re-
search (Liu et al., 2018; He et al., 2019; Pinot et al., 2019; Xiao et al., 2020; Wu et al., 2020; Jeddi
et al., 2020). Noise can be sampled from various probability distributions, including Gaussian (Liu
et al., 2018; Lecuyer et al., 2019; He et al., 2019), Laplace (Lecuyer et al., 2019), Uniform (Xie
et al., 2017), and Multinomial (Dhillon et al., 2018) distributions. Introducing random noise into
the model, whether during training or inference phases, can be characterized as a non-deterministic
querying process. Detailed theoretical proofs have shown that this approach leads to a significant
improvement in adversarial robustness (Pinot et al., 2019).

However, these methods apply noise injections uniformly to all neurons, and such aggressive strate-
gies inevitably compromise model accuracy (Pinot et al., 2019). Moreover, injecting noise into the
model often requires additional computations (Liu et al., 2018; He et al., 2019; Jeddi et al., 2020),
presenting a significant challenge to the model’s efficiency, especially as the model size continues
to grow.

The limitations raise a question: Can we design a method to retain the benefits of noise injection
while enhancing its execution efficiency? To address this, we draw inspiration from techniques to
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Figure 1: Overview of SINAI: Firstly, (a) we select non-essential neurons in the low-rank space and
perform noise injection on these neurons. This step is efficiently integrated into the natural process
of random projection, incurring minimal additional overhead. Secondly, (b) we return to the high-
dimensional space for fine-tuning. Lastly, (c) the noises introduced during training and defense are
randomized, which contributes to the improvement in robustness.

improve model execution efficiency and focus on the activation-based sparsity approach. This ap-
proach is based on the principle that not all neurons are equally important. Prior studies (Fu et al.,
2021b; Guo et al., 2018; Madaan et al., 2020; Sehwag et al., 2020; Ye et al., 2019; Gopalakrishnan
et al., 2018; Gui et al., 2019) have explored the potential of sparsity to enhance the robustness of
DNNs. Yet, the application of sparsity to neural networks to boost adversarial robustness presents
limitations and challenges in control. Moderate sparsity is essential for maintaining DNNs’ adver-
sarial robustness, and over-sparse networks become more vulnerable (Guo et al., 2018). We posit
that this phenomenon is linked to the impact on essential neurons, which are crucial in preserving
clean accuracy.

Thus, we hypothesize that only a subset of neurons are essential for representation learning while
the rest can tolerate noise perturbations without affecting overall accuracy, which potentially bridges
the benefits of noise injection and the concept of activation sparsity. To achieve this, we introduce
Injecting Noise to Non-Essential Neurons to enhance DNNs robustness and efficiency. Instead
of perturbing all neurons, our method protects identified essential neurons, bringing noise to only
non-essential ones to enhance robustness.

The key is to identify the essential neurons and inject noise into the remaining non-critical neurons
effectively and efficiently. As shown in Figure 1 (a), we adopt a learning-based approximate method
(Liu et al., 2020) to identify essential neurons. Additionally, as a way to reduce computation costs,
in Figure 1 (b), we propose to directly replace non-essential neurons with approximate values used
for detection, and this approach will naturally bring in Pseudo-Gaussian noise with minimal com-
putational resources. We further investigate the noise injection granularity and propose structured
noise injection to significantly improve efficiency.

In summary, the contributions of this paper are as follows:

• We draw inspiration from the approaches of noise injection and sparsity and propose a
novel method to simultaneously enhance both adversarial robustness and model efficiency,
dubbed Selective Injection of Noise for Adversarial Robustness with Improved Efficiency
(SINAI). Upon identifying essential and non-essential neurons, we retain the essential neu-
rons while efficiently introduce noise into the non-essential ones.

• We design a novel algorithm, that efficiently selects non-essential neurons, and a selective
noise injection is brought via approximation to enhance DNN adversarial robustness while
preserving clean accuracy. In addition, our method is a general approach which can be
applied to any pre-trained network without retraining from scratch. We conduct the hard-
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ware performance analysis of our algorithm, producing promising results demonstrating its
potential for efficiency.

• We showcase that using a variety of DNN models across different datasets and exposed
to different adversarial attacks, our algorithm consistently exhibits significantly higher ro-
bustness compared to the baselines. For example, on ResNet-18 with CIFAR-10, SINAI
improves 14.74% robust accuracy under PGD20 and 15.49% under AutoAttack, surpassing
overfitting adversarial training with 82.6% BitOPs reduction in computational costs.

2 BACKGROUND AND RELATED WORK

Adversarial Attacks & Defense with Noise. Adversarial attacks, as discussed before (Croce &
Hein, 2020), pose a significant threat to the deployment of machine learning (ML) models. Without
protective measures, ML models can experience a significant drop in accuracy, often exceeding 20%,
even under basic attacks. To defend against adversarial attacks, various methods have been proposed.
Noise Injection (Liu et al., 2018; He et al., 2019; Pinot et al., 2019; Xiao et al., 2020; Wu et al., 2020;
Jeddi et al., 2020; Lecuyer et al., 2019; Xie et al., 2017; Dhillon et al., 2018) is an effective method
where models are trained by introducing random sampled noise to the original weights. Introducing
random noise into the model can be characterized as a non-deterministic querying process, which
acts as a shield, enhancing the model’s robustness.

For example, RSE (Liu et al., 2018) proposes enhancing robustness by introducing a ‘Noise’ layer
at the inception of the convolution block. This ‘Noise’ layer injects random noise into the activation
values of the preceding layer, thereby fortifying the model’s robustness. Similarly, PNI (He et al.,
2019) adds a learnable Gaussian noise to each weight matrix/input/activation value, further enhanc-
ing robustness and probing for the granularity of noise injection. Based on PNI, Learn2Perturb
(Jeddi et al., 2020) presents a regularizer for estimating distribution parameters and progressively
enhances noise distributions. It is evident that noise injection-based approaches often introduce ad-
ditional computational overhead, which poses challenges in the current era of increasingly larger
models. A recent development, Random Projection Filters (RPF) (Dong & Xu, 2023) proposes a
noise injection technique based on random projection. This method employs random projection to
introduce noise into a randomized subset of filters. While the RPF approach bears similarities to
ours, our method distinguishes itself by selecting neurons for noise injection based on their acti-
vation values. Moreover, we note that the RPF approach comes with some drawbacks, including
the introduction of extra computational overhead, the requirement for training from scratch, and the
inability to select the specific filters for noise injection precisely.

Robustness and Efficiency. Researchers explore several methods to improve the performance of
deep neural networks (DNNs), including reducing their size and enhancing their resilience to at-
tacks. In the domain of sparsity and robustness, a study (Guo et al., 2018) investigates how intro-
ducing sparsity in DNN architectures can bolster their resilience against adversarial attacks. A more
comprehensive analysis (Ye et al., 2019) examines various techniques such as adversarial training,
robust regularization, and model compression methods including pruning, quantization, and knowl-
edge distillation to enhance adversarial robustness. Some studies, inspired by the lottery hypothesis
(Frankle & Carbin, 2018) and adversarial training (Madry et al., 2017; Shafahi et al., 2019; Wong
et al., 2020), combine pruning or sparse masking with adversarial training to obtain a sparse sub-
network with robustness (Sehwag et al., 2020; Madaan et al., 2020; Fu et al., 2021b). Nevertheless,
these methods offer only modest enhancements in robustness and present challenges in precisely
controlling and further improving the model’s robustness (Guo et al., 2018).

3 APPROACH

Building on the hypothesis that only a subset of neurons are essential for model inference, we can
introduce noise injection to the non-essential neurons as a defense against adversarial attacks. Our
challenge is to identify precisely these essential neurons. Drawing from approximation studies
(Achlioptas, 2001; Ailon & Chazelle, 2009; Vu, 2016), we propose a learning-based method to
identify essential neurons and inject noise into the non-essential neurons. Our approach not only
retains model accuracy but also enhances adversarial robustness.
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3.1 LEARNING-BASED APPROXIMATION METHOD

Algorithm 1 Fine-Tuning Process
Require: Model parameters W , b; input batch

X = [x1, . . . , xB ]; learning rate η; distilled
parameters W̃ , b̃; random projection matrix
P .

Ensure: Updated model parameters W , b,
W̃Q, b̃Q.

1: while not converged do
2: [z1, . . . , zB ] = WX + b

3: [z̃1, . . . , z̃B ] = W̃QPXQ + b̃Q

4: Get Lossoriginal using z and true labels
5: Get LMSE = 1

B

∑B
i=1 ∥zi − z̃i∥22

6: Combined loss Loss = Lossoriginal +
0.1 · LMSE

7: Update W, b, W̃Q, b̃Q,
8: end while

Algorithm 2 Inference Process
Require: Original parameters W , b; quantized

noisy parameters W̃Q, b̃Q; threshold θth to
determine m; random projection matrix P ;
current input x.

Ensure: Final output z
1: xQ = Q(x)

2: z̃ = W̃QPxQ + b̃Q

3: Generating m according to Section 3.2
4: for each mi ∈ m do
5: if mi == 1 then
6: zi = ϕ(W [i, :]x+ bi)
7: else
8: zi = z̃i
9: end if

10: end for

As shown in Algorithm 1, we introduce layer-wise approximation as z̃ = W̃Px + b̃, where W̃ ∈
Rn×k and b̃ ∈ Rn are trainable parameters, P ∈

√
3
k · {−1, 0, 1}k×d is a sparse random projection

matrix. Note that the approximate vector z̃ has the same dimension with the original output vector
z. Since the approximate data is only used for the selection of essential neurons and injection of
noise, we incorporate quantization to decrease the bit-width of approximation parameters to further
reduce computation costs. Specifically, we apply a one-time quantization step on W̃ as well as b̃ to
INT4 fixed-point arithmetic as W̃Q and b̃Q.

Learning process of approximation parameters. The trainable parameters, W̃Q and b̃Q, are
learned through minimizing the mean squared error (MSE) as the optimization target:

LMSE =
1

B
||z − z̃||22 =

1

B
||(Wx+ b)− (W̃Px+ b̃)||22 (1)

where B is the mini-batch size. The random projection matrix P is not trainable and stays constant
after initialization.

3.2 SELECTION OF ESSENTIAL NEURONS AND NOISE INJECTION

After we obtain optimized approximation parameters, we can use the approximate results z̃ to es-
timate the importance of individual neurons and select those with higher magnitude among z̃. We
can select essential neurons by comparing the approximate results with a threshold, which is the
smallest one in the Top-K values. A neuron is regarded as essential if its approximation from z̃ is
larger than the threshold. Specifically, we can generate a binary mask m ∈ {0, 1}n, work as a map
of essential neurons to keep and non-essential neurons to inject noise, where mi equals 1 when the
neurons are essential while it switches to 0 when the neurons are non-essential. In this way, we can
estimate which neurons are essential without actual computations.

Once we identify the non-essential neurons, we can inject noise as a kind of perturbation. Instead
of adding a noise term drawn from a normal or uniform distribution to the outputs, we propose to
directly populate the non-essential neuron with approximate values drawn from z̃ that are computed
in the selection step. Details can be found in Algorithm 2. Overall, the outputs of a DNN layer under
our method can be formulated as

z
′
= z ⊙m + z̃ ⊙ (1−m), (2)

where the ⊙ denotes point-wise multiplication.
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3.3 PRESERVATION OF CLEAN ACCURACY

With the aforementioned algorithm, we can allow the essential neurons to maintain clean accuracy,
while the non-essential neurons are injected with noise, which has a boosting effect on the adversar-
ial robustness. In this section, we will provide the theoretical support for our method.

We start with the proof that there is almost no clean accuracy drop by using our essential neurons
selection algorithm. Our essential neurons selection algorithm is an algorithm that dynamically
selects in a low-dimensional space. To prove that this algorithm has almost no loss in clean accuracy
is to demonstrate that this transformation in low-dimensional space has almost no effect on the
accuracy of matrix-matrix multiplication or matrix-vector multiplication. To simplify matters, we
will focus on treating each operation within a sliding window of the convolution layer or the entirety
of the fully connected (FC) layer, considering them as individual basic optimization problems for a
single input sample. Each output activation zi is generated by the inner production:

zi = φ (⟨xi,Wj⟩) (3)
where xi is the i-th row in the matrix of input feature maps and for FC layer, there is only one x
vector. Wj is the j-th column of the weight matrix W , and φ(·) is the activation function, here we
omit the bias for simplicity. After defining Eq. 3 in this way, since matrix-matrix multiplication
or matrix-vector multiplication consists of inner products, all we have to prove is that there exists
a mapping of lower dimensional spaces that still gives a good approximation to inner products in
higher dimensional spaces.

In dimensional transformations, according to the relation between inner product and the Euclidean
distance, preserving inner-product is same as keeping the Euclidean distance between two points, as
shown in the following lemma.

Lemma 1. (Johnson, 1984). Given 0 < ϵ < 1, a set of N points in Rd (i.e., all xi and Wj ), and a

number of k > O
(

log(N)
ϵ2

)
, there exists a linear map f : Rd ⇒ Rk such that (1− ϵ) ∥xi −Wj∥2 ≤

∥f (xi)− f (Wj)∥2 ≤ (1 + ϵ) ∥xi −Wj∥2.

For any given xi and Wj pair, where ϵ is a hyper-parameter to control the approximation error, i.e.,
larger ϵ ⇒ larger error. This lemma is a dimension-reduction lemma, named Johnson-Lindenstrauss
Lemma(JLL)(Johnson, 1984), which states that a collection of points within a high-dimensional
space can be transformed into a lower-dimensional space, where the Euclidean distances between
these points remain closely preserved.

Random projection (Achlioptas, 2001; Ailon & Chazelle, 2009; Vu, 2016) has found extensive use
in constructing linear maps f(·). In particular, the original d-dimensional vector is projected to a
k-dimensional space, where k ≪ d, utilizing a random k×d matrix P. Consequently, we can reduce
the dimension of all xi and Wj by applying this projection.

f (xi) =
1√
k
Pxi ∈ Rk, f (Wj) =

1√
k
PWj ∈ Rk (4)

The random projection matrix P can be generated from Gaussian distribution (Ailon & Chazelle,
2009). In this paper, we adopt a simplified version, termed as sparse random projection (Achlioptas,
2001; Bingham & Mannila, 2001; Li et al., 2006) with Pr (Ppq =

√
s) = 1

2s ; Pr (Ppq = 0) =

1− 1
s ; Pr (Ppq = −

√
s) = 1

2s for all elements in P. This P only has ternary values that can re-
move the multiplications during projection, and the remaining additions are very sparse. Therefore,
the projection overhead is negligible compared to other high-precision multiplication operations.
Here we set s = 3 with 67% sparsity in statistics.

When ϵ in Lemma 1. is sufficiently small, a corollary derived from Johnson-Lindenstrauss Lemma
(JLL) yields the following norm preservation:

Corollary 1. (Instructors Sham Kakade, 2009) For Y ∈ Rd. If the entries in P ⊂ Rk×d are sampled
independently from N(0, 1). Then,

Pr

[
(1− ϵ)∥Y∥2 ≤ ∥ 1√

k
PY∥2 ≤ (1 + ϵ)∥Y∥2

]
≥ 1−O

(
ϵ2
)
. (5)

where Y could be any xi or Wj . This implies that the preservation of the vector norm is achievable
with a high probability, which is governed by the parameter ϵ. Given these basics, we can have the
inner product preservation as:
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Theorem 1. Given a set of N points in Rd (i.e. all xi and Wj ), and a number of k > O
(

log(N)
ϵ2

)
,

there exists random projection matrix P and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

Pr

[∣∣∣∣〈 1√
k
Pxi,

1√
k
PWj

〉
− ⟨xi,Wj⟩

∣∣∣∣ ≤ ϵ

]
≥ 1−O

(
ϵ2
)
. (6)

for all xi and Wj , which indicates the low-dimensional inner product ⟨ 1√
k
Pxi,

1√
k
PWj⟩ can still

approximate the original high-dimensional one ⟨xi,Wj⟩ in Eq. 3 if the reduced dimension is suffi-
ciently high. Therefore, it is possible to calculate Eq. 3 in a low-dimensional space for activation
estimation and select the essential neurons. The detailed proof can be found in the Appendix A.

3.4 IMPROVEMENT OF ADVERSARIAL ROBUSTNESS

Regarding proof of robustness improvement, Pinot et al. (2019) have demonstrated that injecting
noise into a deep neural network can enhance the model’s resilience against adversarial attacks. A
deep neural network can be considered as a probabilistic mapping M , which maps the input X to
Z via M : X → P (Z). According to Pinot et al. (2019), the risk optimization term of the model is
defined as:

Risk(M) := E(x,z)∼D
[
Ez′∼M(x) [⊮ (z′ ̸= z)]

]
(7)

In the adversarial attack scenario, the model risk optimization term becomes the:

Riskα(M) := E(x,z)∼D

[
sup

∥τ∥X≤α

Ez′∼M(x+τ) [⊮ (z′ ̸= z)]

]
(8)

where τ is the adversarial perturbation applied to the input sample, α is treated as the upper limit
of perturbation. After obtaining these, Theorem 1 in Pinot et al. (2019) proved that noise sampled
from the Exponential Family can ensure robustness. Finally, the robustness of the neural network
with noise injection can be expressed by the following theorem:

Theorem 2. (Pinot et al., 2019) Let M be the probabilistic mapping at hand. Let us suppose that M
is robust, then:

|Riskα(M)− Risk(M)| ≤ 1− e−θEx

[
e−H(M(x))

]
(9)

where H is the Shannon entropy H(p) = −
∑

i pi log (pi).

This theorem provides a means of controlling the accuracy degradation when under attack, with
respect to both the robustness parameter θ and the entropy of the predictor. Intuitively, as the in-
jection of noise increases, the output distribution tends towards a uniform distribution for any input.
Consequently, as θ → 0 and the entropy H(M(x)) → log(K), K is the number of classes in the
classification problem, both the risk and the adversarial risk tend towards 1/K. Conversely, when
no noise is introduced, the output distribution for any input resembles a Dirac distribution. In this
scenario, if the prediction for an adversarial example differs from that of a regular one, θ → ∞
and H(M(x)) → 0. Therefore, the design of noise needs to strike a balance between preserving
accuracy and enhancing robustness against adversarial attacks, which proves our motivation.

3.5 IMPLICATIONS FOR EFFICIENT EXECUTION

As indicated in Eq. 2, the computed pattern is a mixture of precise computation and approximate
computation in the form of non-essential neurons noise injection. For precise computation, only es-
sential neurons need to be computed and non-essential neurons are from approximation. Hence, we
can skip precise computations of non-essential neurons, leading to potential performance speedup
and energy saving in the similar spirit of accelerated execution of activation sparsity. In addition,
our approximate method incurs a small amount of low-precision operations.

On noise injection granularity. While selective noise injection can improve execution efficiency
from computation skipping of essential neurons, the unconstrained and unstructured noise injection
patterns would increase the hardware design complexity and execution overheads from irregular data
access and low data reuse.
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Figure 2: Structured Non-essential Neurons Noise Injection: After getting the approximate module
from fine-tuning, the Top-K algorithm is utilized to take out the index of the largest value of N , and
then the corresponding mask m is generated. Accurate module carries out the N:M Sparsity through
the mask m, and the final result is still a mixture of approximate and accurate modules.

Taking inspiration from the sparsity-oriented designs, we raise the hypothesis that noise injection
granularity can be constrained in a similar way as sparsity constraints. In particular, structured
sparsity, denoted as N:M, is an emerging trend that preserves N elements in every 1×M vector of a
dense matrix. This fine-grained approach offers more combinations than block sparsity. An example
is the 1:2 and 2:4 structured pruning techniques for neural network weight introduced in NVIDIA
Ampere (Nvidia, 2020). Such techniques aim for efficiency and faster inference without sacrificing
performance.

As shown in Figure 2, our revised method chooses N essential neurons out of a vector of M neurons
and injects noise into the rest. Note that here we perform noise injection dynamically on neurons or
activations, not static weight sparsity, despite the similarity in granularity.

4 EVALUATION

In this section, we evaluate the following two aspects of our selective noise injection method: firstly,
to enhance adversarial robustness of the model while retaining clean accuracy; secondly, to demon-
strate efficiency gains and implications on hardware of our method. In this paper, we focus our ex-
amination on ResNet-18 (He et al., 2016) and WideResNet34-10 (Zagoruyko & Komodakis, 2016),
evaluating their performance on the CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009)
and ResNet-50 on ImageNet (Russakovsky et al., 2015). We keep the 10% essential neurons for
experiments on CIFAR-10 and CIFAR-100, and 50% essential neurons on ImageNet to avoid clean
accuracy loss. Our detailed evaluation methodology is in Appendix D. Additionally, we also design
adaptive attack and examine our method for gradient obfuscation (Athalye et al., 2018a). For further
details, refer to Appendix E (Adaptive Attack) and Appendix F (Gradient Obfuscation).

Baselines. For the comparison of adversarial robustness, we use the overfitting adversarial training
(Rice et al., 2020) as a baseline. Moreover, our approach is mainly a kind of noise injection method,
such that various noise injection methods are selected for comparison of adversarial robustness, in-
cluding PNI (He et al., 2019), L2P (Jeddi et al., 2020). A recent method – Random Projection Filters
(Dong & Xu, 2023) – is also a noise injection method. We reproduce all the above methods. For
model efficiency comparisons, we evaluate the BitOPs for all the baselines and our method. Hard-
ware experimental setting and more results could be found in Appendix C. As a defense method,
we also compare our method with other state-of-the-art defense methods in recent years, such as
TRADES (Zhang et al., 2019), FAT (Zhang et al., 2020), AWP (Wu et al., 2020) and RobustWRN
(Huang et al., 2021).

4.1 RESULTS ON CIFAR-10/100

Results on CIFAR-10. As illustrated in Table 1 and Table 2, the underlined values represent the low-
est robust accuracy for each method across all attackers, SINAI substantially improves robustness,
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Table 1: The clean accuracy (%) and robust accuracy (%) of our non-essential neurons noise injec-
tion algorithm with ResNet-18 on CIFAR-10/100 under different adversarial attack methods. ‘Im-
provement’ is from the comparison of our method and overfitting adversarial training.

Datasets Methods Clean PGD20 FGSM MIFGSM CWl2 AutoAttack Average BitOPs

CIFAR-10

OAT (Rice et al., 2020) 81.71 52.53 57.08 55.54 78.27 48.62 58.41 2.60 E9
PNI (He et al., 2019) 80.53 53.44 59.24 56.10 80.70 52.23 60.34 2.61 E9

L2P(Jeddi et al., 2020) 80.82 53.59 61.42 56.52 81.40 65.47 63.68 2.61 E9
RPF (Dong & Xu, 2023) 83.79 61.25 62.10 59.12 82.35 62.61 65.49 2.60 E9

SINAI (Ours) 82.37 67.27 69.08 68.58 81.90 64.11 70.19 4.52 E8
Improvement +0.66 +14.74 +12.00 +13.04 +3.63 +15.49 +11.78 -82.6%

CIFAR-100

OAT (Rice et al., 2020) 54.85 28.92 31.31 30.28 50.48 24.65 33.13 2.60 E9
PNI (He et al., 2019) 55.64 28.72 32.54 30.50 55.55 31.38 35.74 2.61 E9

L2P(Jeddi et al., 2020) 55.00 28.50 34.01 30.34 55.03 38.51 37.28 2.61 E9
RPF (Dong & Xu, 2023) 56.69 37.20 36.91 35.29 56.40 34.98 40.16 2.60 E9

SINAI (Ours) 55.35 42.52 43.50 43.04 54.47 35.90 43.89 4.52 E8
Improvement +0.50 +13.60 +12.19 +12.76 +3.99 +11.25 +10.76 -82.6%

Table 2: The clean accuracy (%) and robust accuracy (%) of our non-uniform noise injection algo-
rithm with WideResNet-34-10 on CIFAR-10 under different adversarial attack methods. ‘Improve-
ment’ is from the comparison of our method and overfitting adversarial training.

Methods Clean PGD20 FGSM MIFGSM AutoAttack Average BitOPs

OAT (Rice et al., 2020) 85.84 55.25 61.04 58.83 52.30 56.86 2.81 E10
PNI (He et al., 2019) 85.92 55.35 61.57 58.65 58.10 58.42 2.82 E10

L2P(Jeddi et al., 2020) 82.93 53.99 60.67 56.76 64.41 58.96 2.82 E10
RPF (Dong & Xu, 2023) 86.49 62.18 63.50 60.12 57.59 60.85 2.81 E10

SINAI (Ours) 86.56 74.95 76.02 75.61 69.26 73.96 4.88 E9
Improvement +0.72 +19.7 +14.98 +16.78 +16.96 +17.10 -82.6%

and with an appropriately selected noise injection ratio, it maintains clean accuracy. Specifically,
we can see that (1) our method consistently attains superior robust accuracy while maintaining com-
parable clean accuracy, largely outperforming the overfitting adversarial training method against
prevalent white-box attacks across all networks and datasets. Moreover, compared to baseline noise
injection approaches, our method demonstrates marked improvements against many attack meth-
ods. Specifically, on ResNet-18, our method not only maintains a clean accuracy of 82.37% but
also significantly enhances robust accuracy compared to overfitting adversarial training. The im-
provements are 14.74% for PGD20, 12.00% for FGSM, 13.04% for MIFGSM, 3.63% for CWl2, and
15.49% for AutoAttack. Regarding noise injection baselines, our approach shows an improvement
of 6.02% to 9.46% over the current state-of-the-art noise injection techniques under PGD20, FGSM,
and MIFGSM. Additionally, it achieves comparable robust accuracy when defending CWl2 and Au-
toAttack. Similar to the results on ResNet-18, on WideResNet-34-10, our method also gains 12.77%
and 1.2% improvement than Random Projection Filters under PGD20 and AutoAttack respectively.

(2) Our method significantly reduces computational demands, thereby enhancing execution effi-
ciency, e.g. 82.6% computational cost reduction. This indicates its capability to effectively adjust
the degree of noise injection to attain the desired robustness, making it suitable for scenarios with
limited computational resources.

Results on CIFAR-100. Table 1 shows the results of ResNet-18 on CIFAR-100, the observations
on CIFAR-100 are consistent with those on CIFAR-10, demonstrating our method’s scalability to
more complex tasks. Our method improves 13.6% and 11.25% robust accuracy of overfitting ad-
versarial training under PGD20 and AutoAttack respectively without compromising clean accuracy.
For other noise injection baselines, our approach also achieves significant improvements under the
same attacks.

4.2 SCALABILITY TO STRONGER PERTURBATIONS

We further evaluate our method’s scalability to stronger perturbations with different PGD attacks
ϵ and steps of ResNet-18 on CIFAR-10 and CIFAR-100. Figure 3 shows the results, it is worth
emphasizing that noise injection on non-essential neurons achieves even higher robustness improve-
ment. With a 90% noise injection ratio, our method achieves robustness improvements of 23.77%
and 28.60% for two different attack ϵ = 12 and ϵ = 16, outperforming Overfitting Adversarial

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

20 40 60 80 100
PGD Steps

10

20

30

40

50

60

Ro
bu

st
 A

cc
ur

ac
y 

(%
)

34.60 33.94 33.70 33.65 33.59

58.37 57.88 57.73 57.50 57.42
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(c) ResNet-18 on CIFAR-100 (  = 12)

20 40 60 80 100
PGD Steps

10.86 10.34 10.19 10.10 10.04

30.03 29.14 28.85 28.84 28.79

(d) ResNet-18 on CIFAR-100 (  = 16)
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Figure 3: Evaluation stronger PGD attacks using different ϵ and steps. (ResNet-18 on CIFAR-10
and CIFAR-100)

Training. Similar trends are observed on CIFAR-100 (17.92% and 19.17%). This demonstrates the
adaptability of our approach to defend stronger attack challenges.

4.3 COMPARE WITH SOTA DEFENSE METHODS

Compared with other SOTA defense methods, our approach demonstrates a more robust defense
capability. Table 3 details the results between our method and other SOTA defense techniques ap-
plied to WideResNet-34-10 on CIFAR-10 and CIFAR-100, AutoAttack here keeps 10 steps. For
instance, our method outperforms six baseline methods for WideResNet-34-10 on CIFAR-10 under
AutoAttack, achieving improvements ranging from 1.2% to 16.97%. We further have the experi-
ments of our method to ResNet-50 on ImageNet. For the baseline method, we reproduce Overfitting
AT, Random Projection Filters, Double-win Quantization. For others we cite the number from the
original paper. As shown in the Table 4, the noise injection ratio can be 50% without losing clean
accuracy. Our method can get 6.05% and 6.18% improvement in the robust accuracy under PGD-10
and PGD-50, respectively. In addition, our method can achieve 39.5% saving in the BitOPs.

Table 3: Comparison with SOTA defense methods, except for overfitting AT and Random Projection
Filters, all the baseline results are the reported ones in the original papers.

Methods CIFAR-10 CIFAR-100
PGD20 AutoAttack PGD20 AutoAttack

Overfitting Adversarial Training (Rice et al., 2020) 55.25 52.52 31.27 27.79
TRADES (Zhang et al., 2019) 56.61 53.46 - -

FAT (Zhang et al., 2020) 55.98 53.51 - -
AWP (Wu et al., 2020) 58.14 54.04 - 28.86

RobustWRN (Huang et al., 2021) 59.13 52.48 34.12 28.63
Random Projection Filters (Dong & Xu, 2023) 62.18 68.25 31.53 40.35

SINAI (Ours) 74.95 69.45 48.02 42.28

Table 4: Comparison on ImageNet results.
Methods PGD-10 PGD-50 BitOPs

Overfitting Adversarial Training (Rice et al., 2020) 40.68 39.83 3.34 E12
RobustWRN (Huang et al., 2021) 31.14 - 3.34 E12

Double-Win Quantization(Fu et al., 2021a) 43.05 42.97 1.73 E12
Random Projection Filters(Dong & Xu, 2023) 47.07 46.82 3.34 E12

SINAI (Ours) 46.73 46.01 2.02 E12
Improvement + 6.05 + 6.18 -39.5%

4.4 ABLATION STUDY

In our algorithm, we quantize W̃ and b̃. To isolate the effect of this component on robustness,
we first conduct a control experiment. Furthermore, the impact of noise injection in non-essential
neurons, particularly the Noise Injection Ratio, affects both the clean and robust accuracy of the
model. To investigate this effect in detail, we conduct ablation studies examining how variations in
this ratio influence accuracy metrics, including robustness against PGD20 attacks. Additionally, we
consider the potential outcomes of applying noise injection to essential neurons and conduct further
experiments to explore this aspect.

9
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Quantization and Robustness. We test various quantization bit-width versions of W̃ and b̃, ranging
from full precision to INT2. Our findings indicate that quantizing to INT4 retains the model’s
clean accuracy while offering the most significant efficiency improvements. As detailed in Table 5,
although different quantization levels introduce varying levels of noise, they minimally impact the
model’s robust accuracy.

Table 5: ResNet-18 and WideResNet-34-10 on CIFAR-10 with different quantization
Method Base FP32 (default) INT32 INT16 INT8 INT4 INT2

ResNet-18 on CIFAR-10

Clean Accuracy 81.71 82.57 82.85 82.42 82.43 82.37 72.48
PGD-20 52.53 67.28 67.36 67.15 67.03 67.27 54.86

WideResNet-34-10 on CIFAR-10

Clean Accuracy 85.84 86.01 86.32 86.90 86.51 86.56 78.88
PGD-20 55.25 73.81 73.98 74.31 75.01 74.95 63.21

Noise Injection Ratio. As shown in Figure 4 (a) and (b), the relationship between the noise injection
ratio and changes in clean/robust accuracy is not linear. Notably, clean accuracy begins to decrease
significantly when the noise injection ratio reaches 90%, whereas robust accuracy shows substantial
improvement at a 60% noise injection ratio. This result highlights the stability of our algorithm,
which achieves a ‘triple-win’ scenario by maintaining high robustness and clean accuracy, even at
high levels of execution efficiency (noise injection ratio).
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(a) ResNet-18 on CIFAR-10
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(b) ResNet-18 on CIFAR-100
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(c) ResNet-18 on CIFAR-10 (Essential)
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(d) ResNet-18 on CIFAR-100 (Essential)
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Overfitting AT - Clean Acc
Overfitting AT - Robust Acc

Figure 4: Clean and robust accuracy (PGD20) under different noise injection ratio.

Noise Injection to Essential Neurons. Figure 4 (c) and (d) shows that the noise injection to essential
neurons cannot maintain clean accuracy even with 20% noise injection ratio. However, we observe
that PGD accuracy also increases with the proportion of noise injection. This likely occurs because
injecting noise into essential neurons introduces drawbacks along the neural network’s critical paths,
which is worth further exploration in future studies.

5 CONCLUSION

In this work, we introduce a novel approach: noise injection on non-essential neurons, effectively
bridging the gap between adversarial robustness and execution efficiency. Inspired by the approaches
of noise injection and activation sparsity, our data-dependent method can precisely identify and
keep the critical neurons that are contributing more to model accuracy, while injecting noise to the
remaining trivial neurons with approximate values to improve robust accuracy. We believe that our
findings highlight the importance of fine-grained noise injection, providing valuable insights into
improving adversarial robustness and advancing the field of machine learning.
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A PROOF OF ALGORITHM FOR INNER PRODUCT RESERVATION

Theorem 1. Given a set of N points in Rd (i.e. all xi and Wj ), and a number of k > O
(

log(N)
ϵ2

)
,

there exists random projection matrix P and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

Pr

[∣∣∣∣〈 1√
k
Pxi,

1√
k
PWj

〉
− ⟨xi,Wj⟩

∣∣∣∣ ≤ ϵ

]
≥ 1−O

(
ϵ2
)
.

for all xi and Wj .

Proof. According to the definition of inner product and vector norm, any two vectors a and b satisfy{
⟨a,b⟩ =

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
/2

⟨a,b⟩ =
(
∥a+ b∥2 − ∥a∥2 − ∥b∥2

)
/2

. (10)

It is easy to further get
⟨a,b⟩ =

(
∥a+ b∥2 − ∥a− b∥2

)
/4. (11)

Therefore, we can transform the target in Eq. 3 to
|⟨f (xi) , f (Wj)⟩ − ⟨xi,Wj⟩|

=
∣∣∣∥f (xi) + f (Wj)∥2 − ∥f (xi)− f (Wj)∥2 − ∥xi +Wj∥2 + ∥xi −Wj∥2

∣∣∣ /4
≤
∣∣∣∥f (xi) + f (Wj)∥2 − ∥xi +Wj∥2

∣∣∣ /4 + ∣∣∣∥f (xi)− f (Wj)∥2 − ∥xi −Wj∥2
∣∣∣ /4

(12)

which is also based on the fact that |u−v| ≤ |u|+|v|. Now recall the definition of random projection
in Eq. 4 of the main text

f (xi) =
1√
k
Pxi ∈ Rk, f (Wj) =

1√
k
PWj ∈ Rk.

Substituting Eq. 4 into Eq. 12, we have
|⟨f (xi) , f (Wj)⟩ − ⟨xi,Wj⟩|

≤

∣∣∣∣∣
∥∥∥∥ 1√

k
Pxi +

1√
k
PWj

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 +

∣∣∣∣∣
∥∥∥∥ 1√

k
Pxi −

1√
k
PWj

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4

=

∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi +Wj)

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 +

∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi −Wj)

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4

(13)
Further recalling the norm preservation in Eq. 5 of the main text: there exists a linear map f : Rd ⇒
Rk and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

Pr

[
(1− ϵ)∥Y∥2 ≤ ∥ 1√

k
PY∥2 ≤ (1 + ϵ)∥Y∥2

]
≥ 1−O

(
ϵ2
)
.

Substituting the Eq. 5 into Eq. 13 yields

P

[∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi +Wj)

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 +

∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi −Wj)

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4 . . .

≤ ϵ

4

(
∥xi +Wj∥2 + ∥xi −Wj∥2

)
=

ϵ

2

(
∥xi∥2 + ∥Wj∥2

)]
. . .

≥ Pr

(∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi +Wj)

∥∥∥∥2 − ∥xi +Wj∥2
∣∣∣∣∣ /4 ≤ ϵ

4
∥xi +Wj∥2

)
. . .

×Pr

(∣∣∣∣∣
∥∥∥∥ 1√

k
P (xi −Wj)

∥∥∥∥2 − ∥xi −Wj∥2
∣∣∣∣∣ /4 ≤ ϵ

4
∥xi −Wj∥2

)
. . .

≥
[
1−O

(
ϵ2
)]

·
[
1−O

(
ϵ2
)]

= 1−O
(
ϵ2
)
.

(14)

Combining equation 12 and 14, finally we have

Pr

[∣∣∣∣〈 1√
k
Pxi,

1√
k
PWj

〉
− ⟨xi,Wj⟩

∣∣∣∣ ≤ ϵ

2

(
∥xi∥2 + ∥Wj∥2

)]
≥ 1−O

(
ϵ2
)

(15)
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B ROBUSTNESS EXPERIMENTS AT STRUCTURED GRANULARITY

In this section, in our pursuit of enhanced hardware execution efficiency, we experiment with struc-
tured design. This approach not only improves execution efficiency but also notably increases ro-
bustness compared with overfitting adversarial training. We assess our structured noise injection
method with ratios ranging from 1:8 to 7:8, indicating noise injection into 1 to 7 out of every 8
neurons. Table 6 demonstrates that this approach of structured noise injection further enhances
execution efficiency.

Table 6: The evaluation of clean accuracy, robustness and efficiency of different granularity of
ResNet-18 on CIFAR-10 and CIFAR-100.

Datasets Method Clean PGD20 BitOPs

CIFAR-10

Noise Injection Ratio 10% 81.52 52.71 2.53 E9
Noise Injection 1:8 81.55 52.78 2.47 E9

Noise Injection Ratio 20% 81.55 52.70 2.27 E9
Noise Injection 2:8 81.54 52.94 2.14 E9

Noise Injection Ratio 30% 81.56 52.67 2.01 E9
Noise Injection 4:8 81.53 55.22 1.49 E9

Noise Injection Ratio 50% 81.61 52.88 1.49 E9
Noise Injection 6:8 82.11 58.07 8.42 E8

Noise Injection Ratio 80% 82.11 59.61 7.12 E8
Noise Injection 7:8 82.18 65.73 5.17 E8

Noise Injection Ratio 90% 82.37 67.27 4.52 E8

CIFAR-100

Noise Injection Ratio 10% 55.60 28.88 2.53 E9
Noise Injection 1:8 55.62 28.83 2.47 E9

Noise Injection Ratio 20% 55.57 28.86 2.27 E9
Noise Injection 2:8 55.62 28.97 2.14 E9

Noise Injection Ratio 30% 55.60 28.84 2.01 E9
Noise Injection 4:8 55.80 29.58 1.49 E9

Noise Injection Ratio 50% 55.60 29.02 1.49 E9
Noise Injection 6:8 56.07 33.20 8.42 E8

Noise Injection Ratio 80% 56.14 34.82 7.12 E8
Noise Injection 7:8 55.51 39.56 5.17 E8

Noise Injection Ratio 90% 55.35 42.52 4.52 E8

C ADDITIONAL HARDWARE BACKGROUND

Experimental Setup. We tested the effectiveness of our algorithm on a co-designed hardware
implementation via an in-house cycle-accurate simulator. The simulator tracks key performance
metrics and maps them to specific power values. SRAM power/area is estimated using CACTI, and
all other components are synthesized using Synopsys Design Compiler on the FreePDK 45nm PDK.

To get an accurate reference for an optimized accelerator, we design our own hardware. The general
hierarchy is simple, with a central Matrix-Vector Unit (MVU), core-specific SRAM, and registers.
The MVU is purpose-designed to match the algorithm requirements as efficiently as possible. It
which uses 4-bit multipliers as a precision-scaling element, offering both 4- and 16-bit multiplication
while limiting additional hardware.

Hardware Efficiency. By matching the hardware capabilities to the algorithm requirements, we can
achieve better hardware efficiency. A major factor is using relatively lower cost of low-precision
arithmetic vs. high-precision. Because multiplication characterizes each bit against each other, scal-
ing from 4- to 16-bits increases the intensity by 16x, not 4x. As a result, the cost of approximation
is low compared to full-precision calculation.

As it pertains to performance, Figure 5 shows that the noise injection granularity is directly tied to
hardware performance. This figure highlights two key findings: 1) SINAI alone provides signifi-
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Figure 5: Normalized value of various metrics across different levels of perturbation generated from
our hardware simulator. NOTE: sixteen BitOps = four 4-bit additions = one 4-bit multiplication.

cant performance gains and 2) applying structure at the same degree of noise further enhanced the
efficiency.

First, with the relative intensity of full-precision calculation, increasing perturbation alone effec-
tively improves speed and efficiency. This is because fewer precise values must be calculated.
Because high precision execution dominates performance, a reduction in the high precision stage
therefore has a significant effect on performance.

Second, when using a structured perturbation scheme, speed and efficiency are improved relative to
an equivalent unstructured scheme. This is because with constrained, predictable execution patterns,
we can expand the MVU without significant overhead, allowing for a higher throughput and faster
execution despite a worse mapping efficiency. Additionally, with structured scheme, there is more
data reuse, reducing the SRAM energy. Going further, with structured sparsity, we see that the
enhanced parallelism allows for a greater reduction in execution time, similar energy, and higher
efficiency between sparsities of the same degree.

From these two points, we can see structured dynamic perturbation is an effective means to vastly
improve inference performance. This is because it capitalizes on the efficiency gains of sparse
execution on high-cost operations while minimizing the energy & hardware costs which often limit
the efficiency of sparsity.

A nuance to structured execution is that the optimal execution pattern is not always met. As seen in
5, structured does not always achieve as much of an EDP reduction in ResNet18 under high sparsity.
This is due to the alignment and the reliance on minimum pipeline depth, which isn’t consistently
achieved under that sparsity. As such, VPUs will not be entirely full, leading to some wasted cycles.
This can be avoided with some additional hardware, but that itself could outweigh the cost of occa-
sionally reduced efficiency. As such, we perform our analysis with no such hardware. Regardless,
we see that it does not significantly effect performance, as it accounts for a lower overhead relative
to the savings.

D EVALUATION METHODOLOGY

Networks and Datasets. In this paper, we focus our examination on ResNet-18 (He et al., 2016) and
WideResNet34-10 (Zagoruyko & Komodakis, 2016), evaluating their performance on the CIFAR-
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10 and CIFAR-100 datasets (Krizhevsky et al., 2009) and ResNet-50 on ImageNet (Russakovsky
et al., 2015).

Training Strategy. We adopt the state-of-the-art adversarial training protocol from overfitting ad-
versarial training (Rice et al., 2020) for our experiments. Specifically, we train the network for 200
epochs using SGD with a batch size of 128, momentum of 0.9, a learning rate of 0.1, and weight
decay set to 5× 10−4. The learning rate is decayed at 100 and 150 epochs with the decay factor 0.1.
We also use PGD-10 for adversarial attack with a maximum perturbation size ϵ = 8/255 and a step
size of 2/255. On ImageNet, we train the network for 90 epochs using SGD with a batch size of 64,
momentum of 0.9, a learning rate of 0.02. We employ PGD-2 for adversarial example generation
with a maximum perturbation size ϵ = 4/255.

After obtaining the pre-trained model, SINAI is applied only to the convolutional layers, and we
implemented these models using the PyTorch framework(Paszke et al., 2019). On CIFAR-10 and
CIFAR-100, we distill the models using the momentum SGD optimizer for 50 epochs and fine-
tuned them for only 1 epoch to achieve various noise injection ratios and structured sparsity. Our
experiments with Non-Essential Neurons Noise Injection involve five different noise injection ratios:
90% and 99%. We also explore structured SINAI with patterns of 1:8 to 7:8, and the details can be
found in Appendix B. On ImageNet, we distill our model using AdamW for 50 epochs and fine-tune
it for 10 epochs.

Attacks. To evaluate adversarial robustness, we deploy various attack methods on our experiments,
including Projected Gradient Descent (PGD) (Madry et al., 2017), Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014), C&W attack (Carlini & Wagner, 2017), Momentum-based It-
erative Fast Gradient Sign Method (MIFGSM) (Dong et al., 2018), and AutoAttack (Croce & Hein,
2020). We use the torchattacks (Kim, 2020) library in Pytorch to deploy the above attack methods,
with all parameters set according to the protocol given in the library. For FGSM, PGD, MIGFSM,
and AutoAttack, we set the maximum perturbation size ϵ to 8/255 and use a step size of 2/255 for
PGD and MIGFSM. PGD employs 20 steps, while MIGFSM uses 5 steps. For the CW attack, we set
the learning rate to 0.01 and perform 1000 steps. For AutoAttack, we set the attack steps of APGD
20 steps. On ImageNet, ϵ is 4/255 with steps 10 and 50.

E ADAPTIVE ATTACK

Our approach to crafting an adaptive attack is guided by the principle of ‘T3:Adapt the objective to
simplify the attack’, as outlined in Tramer et al. (2020). This involves a thorough analysis of the
defense mechanisms and design new objective functions, leading us to propose an adaptive attack
specifically tailored to the injection of noise. To attack effectively, the attacker should be aware of
the noise injected to the neurons. We estimate the noise impact on the output activations and define
the final loss expression as:

min
δ

(LC(x+ δ, yt)− L(A(Noisy(x+ δ)), A(x+ δ)))

where:LC is the classifier’s loss, Noisy is the function that applies noise to the neurons, A is the
activation.

The setting of adaptive PGD are the same as Vanilla PGD-20, epsilon = 8/255 and step size =
2/255. As illustrated in the table, the robust accuracy still achieves a more than 3.68% and 2.81%
higher robust accuracy over Overfitting AT on CIFAR-10 and CIFAR-100, respectively, indicating
the consistent effectiveness of our method.

Table 7: ResNet-18 on CIFAR-10 and CIFAR-100 under adaptive attack
Method CIFAR-10 (Clean) CIFAR-10 (Adaptive PGD) CIFAR-100 (Clean) CIFAR-100 (Adaptive PGD)
Overfitting AT 81.71 52.53 54.85 28.92
SINAI 82.37 56.21 55.35 31.73

F GRADIENT OBFUSCATION

We also evaluate our method on the gradient obfuscation.
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1. EOT + PGD/AutoAttack experiments:

Applying Expectation over Transformation (EOT) (Athalye et al., 2018b) can correctly compute
the gradient over the expected transformation to the input. EOT optimizes the expectation over the
transformation Et∼T f(t(x)). The optimization problem can be solved by gradient descent, noting
that ∇Et∼T f(t(x)) = Et∼T∇f(t(x)). A key insight here is that the gradient of the expectation
can be expressed as the expectation of the gradient. This allows us to compute gradients not just
through the classifier itself but also through the transformations applied to the input and approximat-
ing the expectation with samples at each gradient descent step. We set the EOT iteration 20 and try
EOT+PGD and EOT+AutoAttack experiments for ResNet-18 on CIFAR-10 and CIFAR-100. We
can see that the results are not much different.

Table 8: Performance on CIFAR-10 and CIFAR-100 under EOT+PGD
Dataset Method AT SINAI

CIFAR-10 PGD 52.53 67.27
EOT+PGD 53.27 67.78

CIFAR-100 PGD 28.92 42.52
EOT+PGD 29.11 42.69

Table 9: Performance on CIFAR-10 and CIFAR-100 under EOT+AutoAttack
Dataset Method AT SINAI

CIFAR-10 AutoAttack 48.62 64.11
EOT+AutoAttack 48.64 64.18

CIFAR-100 AutoAttack 24.65 35.90
EOT+AutoAttack 24.69 36.09

2. Checklist from Athalye et al. (2018a):

Table 10: Characteristics to identify gradient obfuscation
Characteristics to identify gradient obfuscation Pass Fail
1. One-step attack performs better than iterative attacks ✓
2. Black-box attacks are better than white-box attacks ✓
3. Unbounded attacks do not reach 100% success ✓
4. Random sampling finds adversarial examples ✓
5. Increasing distortion bound doesn’t increase success ✓

For item 1, evidence from Tables 1 and 2 in our paper clearly shows that the FGSM attack (a one-step
method) is less effective than the PGD attack (an iterative method).

Regarding item 2, we utilize the Square attack as a black-box method against ResNet on both
CIFAR-10 and CIFAR-100 datasets. Our findings, as compared with Table 1, indicate that black-box
attacks are generally less effective than white-box attacks.

Table 11: ResNet-18 on CIFAR-10 and CIFAR-100 under Square Attack
Dataset Method AT SINAI
CIFAR-10 Square 54.15 72.06
CIFAR-100 Square 29.21 44.14

For item 3, we try unbounded attacks of PGD on our Noise Injection 90%, and the success rate result
is 100%.
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For item 4, the prerequisite is the gradient-based attack (e.g., PGD and FGSM) cannot find the
adversarial examples, however the experiments in Fig. 3 reveals that our method still can be broken
when increasing the distortion bound.

Lastly, item 5, also in Fig 3, increasing the distortion bound increases the attack success rate.

G LIMITATIONS AND FUTURE DIRECTIONS

We discuss the limitations of our approach and future directions.

Apply to ViT architecture. we have applied our method to the ViT architecture, while keeping
our paper mostly on the exploration of CNN architectures. We design our application into two
modules of transformer-based models. Firstly, on FFNs only, since the Attention layer in ViT plays
the main role of pattern recognition, FFNs have little impact on the robustness of the whole network.
Secondly, for applications involving the Attention layer, we hypothesize that the Softmax activation
function mitigates the impact of noise through its averaging effect, further explaining the limited
enhancement in robustness. This exploration serves as an early step, highlighting the necessity for
further investigation into adapting our method for broader transformer architectures.

Table 12: Experiments of ViT-B-16 on CIFAR-10.
Model Clean FGSM

Only FFN:
ViT-B-16 99.03 42.30
Noise Injection 20% 98.98 41.98
Noise Injection 30% 98.91 39.20
Noise Injection 40% 98.69 43.72
Noise Injection 50% 98.77 42.43

Both
Noise Injection 20% 98.25 42.57
Noise Injection 30% 98.00 44.37
Noise Injection 40% 97.66 40.92
Noise Injection 50% 96.57 38.23
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