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Abstract
Molecular discovery, when formulated as an op-
timization problem, presents significant compu-
tational challenges because optimization objec-
tives can be non-differentiable. Evolutionary Al-
gorithms (EAs), often used to optimize black-box
objectives in molecular discovery, traverse chem-
ical space by performing random mutations and
crossovers, leading to a large number of expensive
objective evaluations. In this work, we amelio-
rate this shortcoming by incorporating chemistry-
aware Large Language Models (LLMs) into EAs.
Namely, we redesign crossover and mutation op-
erations in EAs using LLMs trained on large cor-
pora of chemical information. We perform ex-
tensive empirical studies on both commercial and
open-source models on multiple tasks involving
property optimization, molecular rediscovery, and
structure-based drug design, demonstrating that
the joint usage of LLMs with EAs yields supe-
rior performance over all baseline models across
single- and multi-objective settings. We demon-
strate that our algorithm improves both the qual-
ity of the final solution and convergence speed,
thereby reducing the number of required objec-
tive evaluations. Our code is available at https:
//github.com/zoom-wang112358/MOLLEO.

1. Introduction
Molecular discovery is a complex and iterative process in-
volving the design, synthesis, evaluation, and refinement
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of molecule candidates. This process is often slow and la-
borious, making it difficult to meet the increasing demand
for new molecules in domains such as pharmaceuticals, op-
toelectronics, and energy storage (Tom et al., 2024). One
significant challenge is that evaluating molecular proper-
ties often requires expensive evaluations (oracles), such as
wet-lab experiments, bioassays, and computational simu-
lations (Gensch et al., 2022; Stokes et al., 2020). Even
approximate computational evaluations require substantial
resources (Gensch et al., 2022). Consequently, the devel-
opment of efficient algorithms for molecular search, pre-
diction, and generation has gained traction in chemistry to
accelerate the discovery process. These advancements in
computational techniques, particularly machine learning-
driven methods, have facilitated the rapid identification and
proposal of promising molecular candidates for real-world
experiments (Kristiadi et al., 2024; Atz et al., 2021; Du et al.,
2024).

Several current approaches used to generate molecular can-
didates are based on Evolutionary Algorithms (EAs) (Hol-
land, 1992), which do not require the evaluation of gradi-
ents and are thus well-suited for black-box objectives in
molecular discovery. However, a major downside is that
they generate proposals randomly without leveraging task-
specific information. Consequently, producing reasonable
candidates requires numerous evaluations of the objective
function, limiting the practical application of these algo-
rithms. Thus, proposals generated by operators that incor-
porate task-specific information can help reduce the number
of evaluations required to optimize the objective function.

Natural language processing (NLP) has increasingly been
utilized to represent molecular structures (Chithrananda
et al.; Schwaller et al., 2019; Öztürk et al., 2020) and ex-
tract chemical knowledge from literature (Tshitoyan et al.,
2019). The connection between NLP and molecular systems
is facilitated by molecular representations such as the Sim-
plified Molecular Input Line Entry System (SMILES) and
Self-Referencing Embedded Strings (SELFIES) (Weininger,
1988; Daylight Chemical Information Systems, 2007; Krenn
et al., 2020). These methods convert 2D molecular graphs
into text, allowing molecular structures to be represented in
the same modality as their textual descriptions.
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Recently, the performance of Large Language Mod-
els (LLMs) has been investigated in several chemistry-
related tasks, such as predicting molecular properties (Guo
et al., 2023b; Jablonka et al., 2024), retrieving optimal
molecules (Kristiadi et al., 2024; Ramos et al., 2023; Ye
et al., 2023), automating chemistry experiments (Bran et al.,
2023; Boiko et al., 2023; Yoshikawa et al., 2023; Darvish
et al., 2024), and generating molecules with target prop-
erties (Flam-Shepherd & Aspuru-Guzik, 2023; Liu et al.,
2024; Ye et al., 2023). Because LLMs have been trained on
large corpora of text that include a wide range of tasks, they
demonstrate general-purpose language comprehension as
well as knowledge of basic chemistry, making them interest-
ing tools for chemical discovery tasks (White, 2023). How-
ever, many LLM-based approaches depend on in-context
learning and prompt engineering (Guo et al., 2023b). This
can pose issues when designing molecules with strict nu-
merical objectives, as LLMs may struggle to satisfy pre-
cise numerical constraints or optimize for specific numer-
ical targets (AI4Science & Quantum, 2023). Furthermore,
methods that solely depend on LLM prompting may pro-
duce molecules with lower fitness due to a lack of physical
grounding, or they may produce invalid SMILES strings
that cannot be decoded into chemical structures (Skinnider,
2024).

In this work, we propose Molecular Language-Enhanced
Evolutionary Optimization (MOLLEO), which incorporates
LLMs into EAs to enhance the quality of generated propos-
als and accelerate the optimization process (see Figure 1).
MOLLEO leverages LLMs as genetic operators to produce
new proposals through crossover or mutation. To our knowl-
edge, this is the first demonstration of how LLMs can be
incorporated into EA frameworks for molecular generation.
In this work, we consider three LLMs: GPT-4 (Achiam
et al., 2023), BioT5 (Pei et al., 2023), and MoleculeSTM
(MolSTM) (Liu et al., 2023b). We integrate each LLM
into separate crossover and mutation procedures, justifying
our design choices through ablation studies. We empiri-
cally demonstrate the superior performance of MOLLEO
across multiple black-box optimization tasks, including
single-objective and multi-objective optimization. For all
tasks, including more challenging ones like protein-ligand
docking, MOLLEO outperforms the baseline EA and other
optimization algorithms based on reinforcement learning
(RL) and Bayesian Optimization (BO). To further illustrate
how our model can be used in novel molecular discovery
settings, we show that MOLLEO can improve on the best
existing JNK3 inhibitor molecules in ZINC 250K (Sterling
& Irwin, 2015).

2. Related Work
Molecular design is crucial in the chemical sciences, ad-
dressing challenges in medicine, engineering, and sustain-
ability (Sanchez-Lengeling & Aspuru-Guzik, 2018; Du
et al., 2022a). Efficiently searching for molecules of in-
terest is hindered by the vast and complex chemical space,
with slow and costly experimental validations (Bohacek
et al., 1996; Stumpfe & Bajorath, 2012). Traditional ap-
proaches use combinatorial chemical spaces with expert-
defined rules, leveraging methods like Monte Carlo Tree
Search (Yang et al., 2017), reinforcement learning (Olive-
crona et al., 2017a), and genetic algorithms (Jensen, 2019;
Fu et al., 2021; Nigam et al., 2022; Fu et al., 2022) to find
optimal molecular structures. Recently, machine learning,
particularly deep generative models, has accelerated molec-
ular optimization. These models, such as autoregressive
models (Popova et al., 2019; Gao et al., 2021), variational au-
toencoders (Gómez-Bombarelli et al., 2018; Jin et al., 2018),
and diffusion models (Hoogeboom et al., 2022; Schneuing
et al., 2022), learn from empirical data to generate new
molecular structures. They often incorporate optimization
techniques to iteratively search for molecules with desired
properties, using methods like gradient-based optimization
and Bayesian optimization (Gómez-Bombarelli et al., 2018;
Griffiths & Hernández-Lobato, 2020; Zang & Wang, 2020;
Du et al., 2022b; Wei et al., 2024).

Large Language Models (LLMs) have shown promise in sci-
entific domains, particularly in leveraging chemistry tools
for discovery and characterization tasks (Achiam et al.,
2023; AI4Science & Quantum, 2023; Bran et al., 2023;
Boiko et al., 2023). Studies have benchmarked LLMs
like GPT-4 on chemistry tasks, revealing strengths in zero-
shot question-answering but limitations in chemical rea-
soning (Mirza et al., 2024; Guo et al., 2023b). Smaller,
open-source models have been specifically trained on chem-
istry texts, such as BioT5 and Text+Chem T5, which excel
in text-based molecular generation and multi-modal chem-
istry tasks (Taylor et al., 2022; Pei et al., 2023; Edwards
et al., 2022; Christofidellis et al., 2023). Recent advance-
ments include using language models for molecular edit-
ing to guide input structures towards specific properties,
essential for optimizing compounds in pharmaceutical de-
velopment and battery design (Liu et al., 2023b; Ye et al.,
2023). We show the problem statement of single-objective
optimization, multi-objective optimization, and black-box
optimization in Appendix A.2.

3. Methodology
We build our MOLLEO framework upon the Graph-GA
algorithm (Jensen, 2019) — an evolutionary algorithm that
operates as follows.
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Figure 1: Overview of MOLLEO. Given an initial pool of molecules, mates are selected using default Graph-GA (Jensen,
2019) heuristics. LLMs then function as mutation or crossover operators, editing the molecules based on text prompts
that describe the target objective(s). The offspring molecules are then evaluated using an oracle, and the best-scoring ones
are passed to the next generation. This process is repeated until the maximum number of allowed molecule evaluations is
performed.

Algorithm 1 MOLLEO Algorithm
Data: the initial pool M0; the objective F ; the population

size nc; the number of offspring no.
Result: Optimized molecule population M∗

begin
for m ∈M0 do

Compute F (m)

for t ∈ [1, oracle_budget] do
offspring = []

for num_crossovers do
sample m0,m1 from Mt proportionally to ob-
jective value F (m)
offspring.append(CROSSOVER(m0,m1))

Mt ← sorted(Mt)
for i ∈ [1, num_mutations] do

offspring.append(MUTATION(Mt[i]))
offspring ← search(offspring)[: no] (small-

est Tanimoto distance to Mt[0])
Mt ← offspring for m ∈Mt do

Compute F (m)

if Task_type == single_objective then
Mt ← sorted(Mt)[: nc]

else
Mt ← Pareto_Frontier(Mt)

Return Mt

An initial pool of molecules is randomly selected, and their

fitnesses are calculated using a black-box oracle, F (·). Two
parents are then sampled with a probability proportional to
their fitnesses and combined using a CROSSOVER operator to
generate an offspring, followed by a random MUTATION with
probability pm. This process is repeated num_crossover
times, and the children are added to the pool of offspring.
Finally, the fitnesses of the offspring are measured using
F (·) and the offspring are added to the population. For
single-objective optimization, the nc fittest members from
the population at a given step are selected to pass on to
the next generation. For multi-objective optimization, two
strategies are investigated: (1) Objective summation, where
the summation of individual objectives is used as a single
objective, and the nc fittest members are retained; and (2)
Pareto set selection, where only the Pareto frontier of the
current population is kept. This process is repeated until the
maximum allowed oracle calls (oracle budget) have been
made. This process is outlined in Algorithm 1.

We incorporate chemistry-aware LLMs into the structure
of Graph-GA by using them as proposal generators at
CROSSOVER and MUTATION steps. That is, for the CROSSOVER
step, instead of randomly combining two parent molecules,
we generate molecules that maximize the objective fit-
ness function guided by the objective description. For the
MUTATION step, the operator mutates the fittest members
of the current population based on the target description.
However, we noticed that LLMs do not always generate can-
didates with higher fitness than the input molecule (demon-
strated in Appendix C.1), and so we constructed a selection
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pressure to filter edited molecules based on structural simi-
larity to the top molecule (Nigam et al., 2022). That is, we
sort the existing population by fitness, apply a mutation to
the top population members, and then add them to the pool
of offspring. Then, we prune the pool by selecting the no

most similar offspring to the fittest molecule in the entire
pool based on Tanimoto distance. We ablate the impact of
this filter in Appendix C.2.

For each LLM, we describe below the details of how we
implement the CROSSOVER and MUTATION operators. We
empirically studied different combinations of models and
hyperparameters (demonstrated in Appendix C.2), and for
each LLM, we describe the details of the implementation of
CROSSOVER and MUTATION operators in Appendix A.3.

4. Experiments
4.1. Experimental Setup

Benchmarks. We evaluate MOLLEO on 15 total tasks
from two molecular generation benchmarks, PMO (Gao
et al., 2022) and TDC (Huang et al., 2021). The tasks are
organized into Similarity-based optimizations and Property
optimization.

Evaluation metrics. To consider both the optimization
ability and sample efficiency of each method, we follow the
evaluation metrics in (Gao et al., 2022), using the area under
the curve of the top-k average property value (top-k AUC)
versus the number of oracle calls as the primary metric. We
report all metrics over five random seeds.

Data. We randomly sample an initial pool of 120
molecules from ZINC 250K (Sterling & Irwin, 2015) fol-
lowing PMO.

Base evolutionary algorithm. We build on Graph-GA
(Jensen, 2019) as our baseline evolutionary algorithm owing
to its simple architecture and competitive performance.

Base LLMs. We analyze three LLMs as genetic oper-
ators in MOLLEO. One model is GPT-4 (Achiam et al.,
2023), a close-source LLM excelling in chemistry question-
answering tasks (Mirza et al., 2024). The other two are
open-source models trained on domain-specific chemistry
text. BioT5 is trained on SELFIES for molecule repre-
sentations (Pei et al., 2023). MoleculeSTM, trained with
contrastive loss on molecular structures and text pairs, uses
an open-source generative model to decode molecule em-
beddings to SMILES strings (Liu et al., 2023b).

Baselines. We use the top-performing models from the
PMO benchmark (Gao et al., 2022) as baselines. These are
REINVENT (Olivecrona et al., 2017b), an RNN that uses

0.0 0.2 0.4 0.6 0.8 1.0
Fitness

MolLEO(GPT-4)

MolLEO(BioT5)

Init pop LLM editting, one round 1000 oracle calls 2000 oracle calls 4000 oracle calls

MolLEO(MolSTM)

Graph-GA

Figure 2: Population fitness over increasing number of it-
erations for JNK3 inhibition. In the lightest blue, we plot
the fitness distribution of the initial molecule pool. We then
pass the molecules through a single round of LLM edits
(pink curve). Finally, we show the fitness distribution of the
top-10 molecules after making 1000, 2000, and 4000 oracle
calls.

a reinforcement learning-based policy to guide generation,
Graph-GA, Gaussian process Bayesian optimization (GP
BO) (Tripp et al., 2021).

Prompts. For each model, we show the prompts in Ap-
pendix E. We created prompts similar to those demonstrated
in the original source code of each model, replacing each
template with a task description. We briefly investigate the
impact of prompt selection in Appendix C.6.

4.2. Empirical Study

First, we motivate the idea of why incorporating chemistry-
aware LLMs in GA pipelines is effective. In Figure 2, we
show the fitness distribution of an initial pool of random
molecules inhibiting JNK3. We then perform a single round
of edits to all molecules in the pool using each LLM and
plot the resulting fitness distribution of the edited molecules.
We find that the distribution for each LLM shifts to slightly
higher fitness values, indicating that LLMs do provide use-
ful modifications. However, the overall objective scores are
still low, and so single-step editing is not sufficient. We
then show the fitness distributions of the populations as the
genetic optimization progresses and find that the fitness in-
creases to higher values on average, given the same number
of oracle calls. We show the performance of direct LLM
querying versus the optimization procedure for additional
tasks in Appendix C.1.

The results of single-objective optimization across 12 tasks
in PMO are shown in Table 1, reporting the AUC top-10 for
each task and the overall rank of each model. The results
indicate that employing any of the three LLMs we tested
as genetic operators improves performance over the default
Graph-GA and all other baselines. Notably, MOLLEO
(GPT-4) outperforms all models in 9 out of 12 tasks,
demonstrating its utility in molecular generation. MOLLEO
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Task type Method
objective (↑) REINVENT Graph GA GP BO

MOLLEO
(MolSTM)

MOLLEO
(BioT5)

MOLLEO
(GPT-4)

Property
optimization

QED 0.941 ± 0.000 0.940 ± 0.000 0.937 ± 0.000 0.937 ± 0.002 0.937 ± 0.002 0.948 ± 0.004
JNK3 0.783 ± 0.023 0.553 ± 0.136 0.564 ± 0.155 0.643 ± 0.226 0.728 ± 0.079 0.790 ± 0.027

DRD2 0.945 ± 0.007 0.964 ± 0.012 0.923 ± 0.017 0.975 ± 0.003 0.981 ± 0.002 0.968 ± 0.012
GSK3β 0.865 ± 0.043 0.788 ± 0.070 0.851 ± 0.041 0.898 ± 0.041 0.889 ± 0.015 0.863 ± 0.047

Name-based
optimization

mestranol_similarity 0.618 ± 0.048 0.579 ± 0.022 0.627 ± 0.089 0.596 ± 0.018 0.717 ± 0.104 0.972 ± 0.009
thiothixene_rediscovery 0.534 ± 0.013 0.479 ± 0.025 0.559 ± 0.027 0.508 ± 0.035 0.696 ± 0.081 0.727 ± 0.052

perindopril_mpo 0.537 ± 0.016 0.538 ± 0.009 0.493 ± 0.011 0.554 ± 0.037 0.738 ± 0.016 0.600 ± 0.031
ranolazine_mpo 0.760 ± 0.009 0.728 ± 0.012 0.735 ± 0.013 0.725 ± 0.040 0.749 ± 0.012 0.769 ± 0.022
sitagliptin_mpo 0.021 ± 0.003 0.433 ± 0.075 0.186 ± 0.055 0.548 ± 0.065 0.506 ± 0.100 0.584 ± 0.067

Structure-
based

optimization

isomers_c9h10n2o2pf2cl 0.642 ± 0.054 0.719 ± 0.047 0.469 ± 0.180 0.871 ± 0.039 0.873 ± 0.019 0.874 ± 0.053
deco_hop 0.666 ± 0.044 0.619 ± 0.004 0.629 ± 0.018 0.613 ± 0.016 0.827 ± 0.093 0.942 ± 0.013

scaffold_hop 0.560 ± 0.019 0.517 ± 0.007 0.548 ± 0.019 0.527 ± 0.019 0.559 ± 0.102 0.971 ± 0.004

Total (↑) 7.872 7.857 7.521 8.395 9.202 10.008
Rank (↓) 4 5 6 3 2 1

Table 1: Top-10 AUC of single-objective tasks. The best model for each task is bolded and the top three are underlined. We
also report the sum of all tasks (total) and the rank of each model overall.

(BIOT5) achieves the second-best results out of all the mod-
els tested, obtaining a total score close to that of MOLLEO
(GPT-4), and has the benefit of being free to use. We
observe that MOLLEO (BIOT5) generally performs better
than MOLLEO (MOLSTM), producing a higher percentage
of molecules with improved fitness after editing, as shown in
Appendix C.1. For the tasks deco_hop and scaffold_hop,
there is only a small gain for the open-source MOLLEO
models. We speculate that this is because these models
have not been trained on molecular descriptions containing
SMARTS patterns. Also, it is unclear how well these mod-
els perform with negative matching (e.g., This molecule
does not contain the scaffold [#7]-c1n[c;h1]nc2
[c;h1]c(-[#8])[c;h0][c;h1]c12). We took ZINC20 (Ir-
win et al., 2020), a database of 1.4 billion compounds that
were used to generate the training set for BioT5, and Pub-
Chem (Kim et al., 2023)(∼250K molecules), which was
used to generate the training set for MoleculeSTM, and
checked if the final molecules for the JNK3 task from each
model appeared in the respective datasets. We found that
this was not the case; there was no overlap between the
generated molecules and the datasets.

We demonstrate empirically that MOLLEO algorithms con-
sistently converge faster than all the considered baselines,
i.e., for any given budget of oracle calls, MOLLEO achieves
better objective values (see Appendix C.3). This is impor-
tant when considering how these models can translate to
real-world experiments to reduce the number of experiments
needed to find ideal candidates. The experiment results and
analysis of docking and multi-objective optimization are
shown in Appendix A.5.

5. Conclusion, Takeaway and Future Work
Herein, we propose MOLLEO: the first demonstration of
incorporating LLMs into evolutionary algorithms for molec-
ular discovery. We show that chemistry-aware LLMs can
serve as informed proposal generators, resulting in supe-
rior optimization performance across multiple molecular
optimization benchmarks. Furthermore, we show that both
open-source and commercial versions of MOLLEO can be
used in scenarios that involve numerous objective evalua-
tions and can generate higher-ranked candidates with fewer
evaluation calls compared to baseline models. Because the
structural perturbations of MOLLEO are more effective than
random perturbations in a genetic algorithm, it will become
more feasible to deploy oracles that are computationally
more expensive but more accurate in representing the target
property, generating candidates that show greater promise
for real-life applications. This is an important consideration
due to the high experimental costs of testing candidates.

Molecular discovery and design is a rich field with numer-
ous practical applications, many of which extend beyond the
current study’s scope but remain relevant to the proposed
framework. Integrating LLMs into evolutionary algorithms
offers versatility through plain text specifications, suggest-
ing that the MOLLEO framework can be applied to scenar-
ios such as drug discovery, expensive in silico simulations,
and the design of materials or large biomolecules. Future
work will aim to further improve the quality of proposed
candidates, both in terms of their objective values and the
speed with which they are found. As LLMs continue to ad-
vance, we anticipate that the performance of the MOLLEO
framework will also continue to improve, making MOLLEO
a promising tool for applications in generative chemistry.
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Appendix
A. Extended descriptions
A.1. Extended Related Work

Molecular Optimization Molecular design is a fundamental problem in the chemical sciences and is essential to a
wide range of real-world challenges including medicine, mechanical engineering and sustainability (Sanchez-Lengeling &
Aspuru-Guzik, 2018; Du et al., 2022a). The main obstacle for efficiently searching molecules of interest is the gigantic
and rugged chemical space with slow and expensive experimental validations (Bohacek et al., 1996; Stumpfe & Bajorath,
2012). A classical approach is to make the chemical space combinatorial with expert-defined rules and leverages efficient
search and discrete optimization methods to find molecular structures with optimal properties of interest directly. These
methods include Monte Carlo Tree Search (MCTS) (Yang et al., 2017), reinforcement learning (RL) (Olivecrona et al.,
2017a), genetic algorithms (GA) (Jensen, 2019; Fu et al., 2021; Nigam et al., 2022; Fu et al., 2022) and others (Du et al.,
2022a). In recent years, machine learning methods, especially generative methods, have been applied to accelerate molecular
optimization. These deep generative models learn a continuous probabilistic model from empirical datasets and sample
new molecular structures from the learned distribution. This class of models include autoregressive models (ARs) (Popova
et al., 2019; Gao et al., 2021), variational autoencoders (VAEs) (Gómez-Bombarelli et al., 2018; Jin et al., 2018), flow
models (Madhawa et al., 2019; Shi et al., 2020), diffusion models (Hoogeboom et al., 2022; Schneuing et al., 2022) and
many others (Du et al., 2022a). Beyond generating arbitrary molecular structures, these models often model a conditional
probability distribution on certain molecular properties or combine an optimization loop to search for molecules with optimal
properties of interest iteratively. These methods include gradient-based optimization, Bayesian optimization or latent space
traversal methods (Gómez-Bombarelli et al., 2018; Griffiths & Hernández-Lobato, 2020; Zang & Wang, 2020; Du et al.,
2022b; Wei et al., 2024).

Language Models in Chemistry LLMs have been widely investigated for their knowledge in scientific domains (Achiam
et al., 2023; AI4Science & Quantum, 2023), as well as their ability to leverage chemistry tools for experimental tasks in
chemical discovery and characterization (Bran et al., 2023; Boiko et al., 2023). Several works have benchmarked LLMs such
as GPT-4 on chemistry tasks and found that LLMs can do better than human chemists in some zero-shot question-answering
settings, but still struggle with chemical reasoning (Mirza et al., 2024; Guo et al., 2023b). There have been several smaller,
open-source models that have specifically been trained or fine-tuned on chemistry text (Taylor et al., 2022). For example,
BioT5 involves a baseline T5 model trained in two phases; first, the model is trained on molecule-text data (339K samples),
SELFIES structures, protein sequences, and general scientific text from multiple sources (Pei et al., 2023) using language
masking as a training objective. They then fine-tuned their model on specific downstream tasks, including text-based
molecular generation, where molecule structures are generated to reflect input text describing them (Edwards et al., 2022).
Text+Chem T5 is also a T5 model pre-trained on multi-modal chemistry tasks, including predicting chemical reaction steps,
retrosynthesis prediction, molecular captioning, and text-conditioned molecular generation, and showed that multi-modal
training objectives are better than single-modal ones (Christofidellis et al., 2023).

Recently, language models have also been used to guide a given input molecular structure towards specific objective
properties (molecular editing) (Liu et al., 2023b; Ye et al., 2023). This is important for optimizing compounds that need to
satisfy multiple criteria, such as pharmaceutical development, where efficacy needs to be balanced with toxicity, and battery
design, where power needs to be balanced with cell lifespan. In this paper, we focus on a different and more goal-oriented
problem—molecular optimization to find molecules with desired properties instead of interactive editing.

Benchmarking LLMs on Chemistry Tasks ChemLLMBench benchmarked several widely-used LLMs on a set of eight
chemistry tasks, such as property prediction, reaction prediction, and molecule captioning (Guo et al., 2023b). The results
showed that while LLMs can perform well in selection tasks, they struggle with tasks requiring more in-depth chemical
reasoning, such as property-conditioned generation. This motivates the need for improving how LLMs are used in generative
tasks. Similarly, SciBench evaluated LLMs on free-response college-level exam questions across various science disciplines,
including chemistry, which required complex, multi-step solutions (Wang et al., 2023). Their results indicated that LLMs
were unable to generate correct solutions for the majority of questions (Wang et al., 2023). However, progress of LLMs
has been noted in general question-answering capabilities: a recent work introduced ChemBench, a dataset of over 7,000
question-answer pairs aimed at providing a systematic understanding of LLM capabilities across different subdomains

10



Efficient Evolutionary Search over Chemical Space with Large Language Models

in chemistry (Mirza et al., 2024). It was concluded that state-of-the-art LLMs such as GPT-4 and Claude 3 were able to
beat human chemists on these questions on average, although they still struggle with physical and commonsense chemical
reasoning.

LLMs and Evolutionary Algorithms Previous research has demonstrated that language models can be incorporated as
operators in evolutionary algorithms in applications such as code and prompt generation (Lehman et al., 2023). For example,
OPRO and LMEA use LLMs to optimize solutions for different mathematical optimization problems (Yang et al., 2024; Liu
et al., 2023a). Other works have shown that LLMs can be used as crossover and mutation operators to directly optimize
prompts using a training set, outperforming human-engineered prompts (Fernando et al., 2023; Guo et al., 2023a). Other
applications of LLMs in evolutionary frameworks have been code synthesis (FunSearch (Romera-Paredes et al., 2024)),
generation of reward functions in RL for robot control (Eureka (Ma et al., 2024), and resource allocation in public health
settings (Behari et al., 2024).

A.2. Problem statement

Black-box optimization. Molecule discovery with a given property can be formulated as an optimization problem

m∗ = arg max
m∈M

F (m) (1)

where m is a molecular structure and M denotes the set of valid molecules constituting the entire chemical space. The
objective F (m) : M → R is a black-box scalar-valued function that measures a certain molecule property m.

The measurement of chemical properties can involve complicated simulations or in vivo experiments, making it impossible
to evaluate the gradients of the objective function F . Additionally, we assume that the main computational expense of the
optimization procedure comes from the objective evaluation (oracle call). Therefore, we design algorithms to minimize the
number of oracle calls and compare all the algorithms with the same call budget.

Multi-objective black-box optimization. Oftentimes, molecules need to meet multiple, potentially competing objectives
simultaneously. Multi-objective optimization aims to find the Pareto-optimal solution, where none of the objectives can be
improved without deteriorating any of them (Lin et al., 2022). The naive approach to optimize given objectives {Fi(·)}ni=1

jointly is to consider an aggregate objective, such as the sum of all individual objectives, i.e.

m∗ = arg max
m∈M

∑
i

wiFi(m) , (2)

where wi is the weight of i-th objective, which can be considered a hyperparameter. However, determining the weight of
each objective function might be nontrivial (Kusanda et al., 2022).

The rigorous approach to multi-objective optimization is the introduction of partial order and considering the solutions from
the Pareto frontier (Geoffrion, 1968; Ekins et al., 2010). In this context, the partial order is defined by comparing all the
objectives {Fi(·)}ni=1 for the given molecules, i.e., m′ surpasses m if every objective evaluated on m′ is greater than the
same objective evaluated on m (assuming the maximization of objectives). Formally,

m′ ⪰ m ⇐⇒ ∀i Fi(m
′) ≥ Fi(m) . (3)

For the given set of molecules S = {mj}mj=1, the Pareto frontier P (S) is defined as the set of non-dominated solutions.
Namely, for every molecule m ∈ P (s) there is no other molecule in S surpassing m, i.e.

P (S) = {m ∈ S : {m′ ∈ S : m′ ⪰ m, m′ ̸= m} = ∅} . (4)

When jointly optimizing several objectives, we use the Pareto frontier to select candidates during the evolutionary search and
compare algorithms. Namely, assuming that the objectives are bounded (e.g., F (·) ∈ [0, 1]), one can compare two Pareto
frontiers by evaluating their hypervolume

Volume(P (S)) = Volume
(
∪m∈P (s)H(m)

)
, H(m) = {x ∈ [0, 1]n : xi ≤ Fi(m) ,∀i} , (5)

where H(m) is the hyperrectangle associated with the objectives evaluated on molecule m, and Volume(·) evaluates the
Euclidean volume of the input set.
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A.3. Implementation details

For each LLM, we describe below the details of how we implement the CROSSOVER and MUTATION operators. We empirically
studied different combinations of models and hyperparameters (demonstrated in Appendix C.2), and in what follows, we
describe the operators that resulted in the best performance.

Graph-GA The baseline algorithm that we build upon and compare against in our experiments.

• CROSSOVER: (default Graph-GA crossover): Two parent molecules are sampled with a probability proportional to their
fitness. Crossover takes place at a ring position or non-ring position with equal likelihood. Parents are cut at random
positions into fragments, and then fragments from both parents are combined. Invalid molecules are filtered out, and a
randomly spliced molecule is returned (Jensen, 2019).
• MUTATION: (default Graph-GA mutation): Random operations such as bond insertion or deletion, atom insertion or deletion,
bond order swapping, or atom identity changes are done with predetermined likelihoods (Jensen, 2019).

MOLLEO (GPT-4) GPT-4 is a proprietary LLM trained on a web-scale text corpus.

• CROSSOVER: Two parent molecules are sampled the same way as in Graph-GA. GPT-4 is then prompted to generate
an offspring with the template tin = “I have two molecules and their [target_objective] scores: (sin,0,
f0), (sin,1, f1). Propose a new molecule with a higher [target_objective] by making crossover and
mutations based on the given molecules.” , where sin,x is an input SMILES and fx is its fitness score. We then
obtain an edited SMILES molecule as an output: sout = GPT-4(tin). If sout cannot be decoded to a valid molecule
structure, we generate an offspring using the default crossover operation from Graph-GA. We demonstrate the frequency of
invalid LLM edits in Appendix C.1.
• MUTATION: We use the default Graph-GA mutation.

MOLLEO (BIOT5) BioT5 was developed with a two-phase training process using a baseline T5 model (Raffel et al.,
2020). Initially, the model was trained on molecule-text data (339K samples), SELFIES structures, protein sequences, and
general scientific text from multiple sources (Pei et al., 2023) using language masking as a training objective. Following this,
the model was fine-tuned on specific downstream tasks, including text-based molecular generation, where molecules are
generated given an input description (Edwards et al., 2022).

• CROSSOVER: We use the default Graph-GA crossover.
• MUTATION: For the top Y molecules in the entire pool, we mutate them by prompting BioT5 with the template tin =
“Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that
[target_objective]. Now complete the following example - Input: <bom>[lin]<eom> Output”, where lin is
the SELFIES representation of a molecule. We then obtain an edited SELFIES molecule as an output: lout = BioT5(tin).
We transform lout back to the SMILES representation and add it to the pool of offspring. Since SELFIES can always be
decoded into a molecular structure, there are no issues with BioT5 generating invalid molecules. With X offspring produced
from crossover and Y offspring from the editing procedure, we select the top nc offspring overall. This selection is based on
structural similarity determined using Tanimoto distance to the fittest molecule in the entire pool (Nigam et al., 2022).

MOLLEO (MOLSTM) MoleculeSTM was developed by jointly training molecule and text encoders on molecule-text
pairs from PubChem using a contrastive loss, which maximizes the embedding similarity of each pair (Liu et al., 2023b).
To enable molecular editing, they implemented a simple adaptor module to align their molecule encoder with the encoder
of a pre-trained generative model. This alignment allowed them to utilize the generative model’s decoder for structure
generation.

• CROSSOVER: We use the default Graph-GA crossover.
• MUTATION: For the top Y molecules in the entire pool, we edited them by following a single text-conditioned editing step
from (Liu et al., 2023b). Given the MoleculeSTM molecule and text encoders (EMc and ETc, respectively), a pre-trained
generative model consisting of an encoder EMg and decoder DMg (Irwin et al., 2022), and an adaptor module (Agc) to
align embeddings from EMc and EMg, an input molecule SMILES (sin) is edited towards a text prompt describing the
objective by updating the embedding from EMg . First, the molecule embedding x0 is obtained from EMg(sin). Then, x0 is
updated using gradient descent for T iterations:

xt+1 = xt − α∇xt
L(xt) , (6)
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where α is the learning rate and L(xt) is defined as:

L(xt) = −cosine_sim (EMc(Agc(xt)), ETc(text_prompt)) + λ||xt − x0||2 . (7)

λ controls how much the embedding at iteration t can deviate from the input embedding. Finally, xT is passed to the decoder
DMg to generate a molecule SMILES sout. We ablate MolSTM hyperparameter selection in Appendix C.4. If sout cannot
be decoded into a valid molecule (see Appendix C.1), we edit the next best molecule (so that we have Y offspring after the
editing has finished). Similarly to MOLLEO (BIOT5), we combine the X crossover and Y mutated offspring and select the
nc most similar molecules to the top molecule overall to keep.

A.4. Experimental Setup

Benchmarks. We evaluate MOLLEO on 15 total tasks from two molecular generation benchmarks, Practical Molecular
Optimization (PMO) (Gao et al., 2022) and Therapeutics Data Commons (TDC) (Huang et al., 2021). Exact task definitions
can be found in TDC 1. We organize the tasks into the following categories:

1. Structure-based optimization, which optimizes for molecules based on target structures. It includes isomer generation
based on a target molecular formula (isomers_c9h10n2o2pf2cl) and two tasks based on matching or avoiding scaffolds
and substructure motifs (deco_hop, scaffold_hop).

2. Name-based optimization. These tasks involve finding compounds similar to known drugs (mestranol_similarity,
thiothixene_rediscovery) and three multi-property optimization tasks (MPO) that aim to rediscover drugs (Perindo-
pril, Ranolazine, Sitagliptin) while optimizing for other properties such as hydrophobicity (LogP) and permeability
(TPSA). Although these tasks primarily involve rediscovering existing drugs rather than designing new molecules, they
demonstrate that LLMs possess basic e. Successfully completing these tasks means that LLMs can make perturbations
toward desired molecules when given a chemical optimization goal.

3. Property optimization. We first consider the trivial property optimization task QED (Bickerton et al., 2012), which
measures the drug-likeness of a molecule based on a set of simple heuristics. We then focus on the three following
tasks from PMO, which measure a molecule’s activity against the following proteins: DRD2 (Dopamine receptor D2),
GSK3β (Glycogen synthase kinase-3 beta), and JNK3 (c-Jun N-terminal kinase-3). For these tasks, molecular inhibition
is determined by pre-trained classifiers that take in a SMILES string and output a value p ∈ [0, 1], where p ≥ 0.5 predicts
that a molecule inhibits protein activity. Finally, we include three protein-ligand docking tasks from TDC (Graff et al.,
2021) (also referred to as structure-based drug design (Kuntz, 1992)), which are more difficult tasks closer to real-world
drug design compared to simple physicochemical properties (Cieplinski et al., 2020). The proteins we consider are DRD3
(dopamine receptor D3, PDB ID: 3PBL), EGFR (epidermal growth factor receptor, PDB ID: 2RGP), and Adenosine
A2A receptor (PDB ID: 3EML). Molecules are docked against the protein using AutoDock Vina (Eberhardt et al., 2021),
with the output being the docking score of the binding process.

Evaluation metrics. To evaluate our method, we follow (Gao et al., 2022) and report the area under the curve of top-k
average property values versus the number of oracle calls (AUC top-k), which takes into account both the objective values
and the computational budget spent. For this study, we set k = 10 in order to identify a small, distinct set of top molecular
candidates. For the multi-objective optimization, we consider two metrics: top-10 AUC for summing all optimized objectives
and the hypervolume of the Pareto frontier (see Equation (5)).

Data. We randomly sample an initial pool of 120 molecules from ZINC 250K (Sterling & Irwin, 2015) following PMO.

Base evolutionary algorithm. We build on Graph-GA (Jensen, 2019) as our baseline evolutionary algorithm owing to its
simple architecture and competitive performance. In each iteration, Graph-GA samples two molecules with a probability
proportional to their fitnesses for crossover and mutation and then randomly mutates the offspring with probability
pm = 0.067. This process is repeated to generate 70 offspring. The fitnesses of the offspring are measured and the top-120
most fit molecules in the entire pool are kept for the next generation. We reduce the number of generated offspring to 7 for
the docking experiments and the population size to 12 due to long experiment runtimes.

1https://github.com/mims-harvard/TDC/blob/main/tdc/chem_utils/oracle/oracle.py
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Figure 3: Average docking score of top-10 molecules when docked against DRD3, EGFR, or Adenosine A2A receptor
proteins. Lower docking scores are better. For each model, we show the convergence point (the moment of stabilization
of the population scores) with a star, if the model converges before 1000 oracle calls have been made. Here, the model is
considered to have converged if the mean score of the top 100 molecules does not increase by at least 1e-3 within 5 epochs.

Base LLMs. We analyze three LLMs in MOLLEO as genetic operators in MOLLEO. One of the considered models is
GPT-4 (Achiam et al., 2023) — a transformer trained using next-token prediction and reinforcement learning from human
feedback, which has achieved state-of-the-art performance on chemistry question-answering tasks (Mirza et al., 2024). The
other two considered models are open-sourced models trained on domain-specific chemistry text. Compared to GPT-4,
they have fewer parameters and have been trained on smaller datasets. BioT5, among other data, is trained on the string
representations of molecules called SELFIES to predict missing tokens (including those at the end of a sentence) (Pei et al.,
2023). Because of its ability to generate SELFIES representations, it always produces valid molecules, unlike other models.
Finally, MoleculeSTM is trained using a contrastive loss on the pairs of molecular structures and text descriptions and is
aligned with an open-source generative model to decode molecule embeddings to SMILES strings (Liu et al., 2023b).

Baselines. For baselines, we use the top-performing models from the PMO benchmark (Gao et al., 2022), including
REINVENT (Olivecrona et al., 2017b), an RNN that utilizes a reinforcement learning-based policy to guide generation;
Graph-GA; and Gaussian process Bayesian optimization (GP BO) (Tripp et al., 2021), where a GP acquisition function is
optimized with methods from Graph-GA.

Prompts. For each model, we show the prompts in Appendix E. We created prompts similar to those demonstrated in the
original source code of each model, replacing each template with a task description. We briefly investigate the impact of
prompt selection in Appendix C.6.

A.5. Additional Experiment Results

In Figure 3, we present results for more challenging protein-ligand docking tasks, which better approximate real-world
molecular generation scenarios compared to those in Table 1. We plot the average docking scores of the top-10 best
molecules for MOLLEO and Graph-GA against the number of oracle calls. We observe that nearly all LLMs in MOLLEO
generate molecules with lower (better) docking scores than the baseline model for all three proteins, and they converge faster
to the optimal set. Among the three LLMs, MOLLEO (BIOT5) achieves the best performance. Surprisingly, MOLLEO
(GPT-4) performs worse than Graph-GA in the Adenosine A2A receptor docking task. In practice, better docking scores
and faster convergence rates could result in requiring fewer bioassays to screen molecules, making the process both more
cost- and time-effective. We visualize the top-10 molecules found by MOLLEO in EGFR docking and deco_hop tasks in
Appendix D.2.

In Table 2, we show the results of our multi-objective optimization for three tasks. Tasks 1 and 2 are inspired by goals in
drug discovery and aim for simultaneous optimization of three objectives: maximizing a molecule’s QED, minimizing its
synthetic accessibility (SA) score (meaning that it is easier to synthesize), and maximizing its binding score to either JNK3
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Task 1: QED (↑), JNK3 (↑),
SAscore (↓)

Task 2: QED (↑), GSK3β (↑),
SAscore (↓)

Task 3: QED (↑), JNK3 (↑),
SAscore (↓),GSK3β (↓),
DRD2 (↓)

Aggregate
objective Model Sum Hypervolume Sum Hypervolume Sum Hypervolume

Sum

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 2.186 ± 0.069 0.719 ± 0.055 3.856 ± 0.075 0.162 ± 0.048
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 2.349 ± 0.132 0.303 ± 0.024 4.040 ± 0.097 0.474 ± 0.193

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 2.306 ± 0.120 0.693 ± 0.093 3.904 ± 0.092 0.266 ± 0.201
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 2.543 ± 0.014 0.832 ± 0.024 4.017 ± 0.048 0.606 ± 0.086

PO

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 2.339 ± 0.139 0.640 ± 0.034 4.051 ± 0.155 0.606 ± 0.052
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 2.340 ± 0.254 0.202 ± 0.054 3.989 ± 0.145 0.381 ± 0.204

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 2.299 ± 0.203 0.645 ± 0.127 3.946 ± 0.115 0.367 ± 0.177
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 2.631 ± 0.023 0.820 ± 0.024 4.212 ± 0.034 0.696 ± 0.029

Table 2: Summation and hypervolume scores of multi-objective tasks. We report the results for two aggregation methods:
Summation (Sum) and Pareto optimality (PO). The best model for each task is bolded.

Model JNK3 Top-10 AUC

Initial fitness 0.373±0.079

Graph-GA 0.787±0.035

MOLLEO (MOLSTM) 0.815±0.048

MOLLEO (BIOT5) 0.799±0.036

MOLLEO (GPT-4) 0.844±0.052

Table 3: Initializing MOLLEO with the best molecules from ZINC
250K (Sterling & Irwin, 2015). The results of three different LLMs
in MOLLEO and Graph-GA are compared. For all molecules in
ZINC 250K, we run the JNK3 oracle and select the top 120 molecule
pool. We run MOLLEO initializing from this pool of molecules
and optimizing JNK3. We report the top-10 AUC on the output of
MOLLEO. See the description of the models in the text.

(Task 1) or GSK3β (Task 2). Task 3 is more challenging as it targets five objectives simultaneously: maximizing QED and
JNK3 binding, as well as minimizing GSK3β binding, DRD2 binding, and SAScore. We find that MOLLEO (GPT-4)
consistently outperforms the baseline Graph-GA in all three tasks in terms of hypervolume and summation. In Figure 4, we
visualize the Pareto optimal set (in objective space) for MOLLEO and Graph-GA for Tasks 1 and 2. In Table 2, we see
that the performance of open-source LLMs degrades when introducing multiple objectives into the prompt. We speculate
that this performance drop may come from their inability to capture large, information-dense contexts. We also analyze the
structural diversity and objective diversity of the Pareto optimal set in Appendix D.1.

Given that the goal of EAs is to improve upon the properties of an initial pool of molecules and discover new molecules,
we showcase these abilities by generating a set of molecules with higher objective values than the best known molecules
from ZINC 250K (Sterling & Irwin, 2015). That is, we initialize the molecular pool with the best molecules from ZINC
250K and run the optimization with MOLLEO and Graph-GA. We report the top-10 AUC on the JNK3 task in Table 3 and
find that MOLLEO algorithms are consistently able to outperform the baseline model and improve upon the best values
found in the existing dataset. We also briefly investigate the use of retrieval augmented search in Appendix C.5 and find that
incorporating information from existing databases is helpful; we leave further investigations on this to future work.

A.6. Computational Resources

Our experiments were computed on NVIDIA A100-SXM4-80GB and T4V2 GPUs. Some of our experiments utilized
the GPT-4 model; this refers to the gpt-4-turbo checkpoint from 2023-07-01 2. All GPT-4 checkpoints were hosted on
Microsoft Azure3.

2.https://platform.openai.com/docs/models
3 *.openai.azure.com
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Figure 4: Pareto frontier visualizations for Graph-GA and MOLLEO on the following multi-objective tasks: (a) Task 1 (min
SAscore, max JNK3 binding, max QED) and (b) Task 2 (min SAscore, max GSK3β binding, max QED). The utopian point
corresponds to the maximum (best) possible values across all objectives. SAscores are rescaled to [0, 1].

A.7. Limitations

All benchmarks and tasks evaluated in this study are proxies for real chemical properties and may not correctly capture the
true chemical performance of molecules in the real world. Thus, the effectiveness of our model in real-world applications
remains to be thoroughly validated.

A.8. Broader Impact

The methods proposed in this paper aim to find compounds with desired properties more efficiently, which can benefit many
areas, including drug discovery and materials design. While we do not foresee negative societal impacts from our methods,
we acknowledge the potential of their dual use for nefarious purposes. We encourage discussions around these issues and
strongly support the development and deployment of safeguards to prevent them.

B. Hyperparameters
In this section, we report the hyperparameters that were used in Graph-GA, the baseline genetic algorithm that we build our
method upon. We kept the best hyperparameters that were determined in (Gao et al., 2022). In each iteration, Graph-GA
samples two molecules with a probability proportional to their fitnesses for crossover and mutation and then randomly
mutates the offspring with probability pm = 0.067. This process is repeated to generate 70 offspring. The fitnesses of
the offspring are measured, and the top 120 most fit molecules in the entire pool are kept for the next generation. For
docking experiments, we reduce the number of generated offspring to 7 and the population size to 12 due to long experiment
runtimes. We set the maximum number of oracle calls to 10,000 for all experiments except docking, where we set it to 1,000.
We kept the default early-stopping criterion the same as in PMO (Gao et al., 2022), which is that we terminate the algorithm
if mean score of the top 100 molecules does not increase by at least 1e-3 within five epochs.

C. Ablation studies
C.1. Performance of single-step molecule editing

To motivate the incorporation of LLMs into a GA framework, we directly query the LLMs we consider to edit a molecule
towards a certain property and calculate: (1) the percentage of valid molecules that are output (given that not all SMILES are
valid molecules) and (2) which of the output molecules have higher fitness. We show these results on the JNK3 inhibition
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Metric MoleculeSTM BioT5 GPT-4

Percent valid molecules

peridopril_mpo:
0.938
JNK3:
0.928

peridopril_mpo:
1.000
JNK3:
1.000

peridopril_mpo:
0.862
JNK3:
0.835

Percent molecules with
higher fitness after editting

peridopril_mpo:
0.456
JNK3:
0.206

peridopril_mpo:
0.568
JNK3:
0.513

peridopril_mpo:
0.240
JNK3:
0.263

Mean fitness increase

peridopril_mpo:
+0.033
JNK3:
+0.022

peridopril_mpo:
+0.208
JNK3:

+0.0320

peridopril_mpo:
+0.032
JNK3:

+0.0262

Table 4: Viability of LLM edits. We prompt different LLMs with descriptions of the JNK3 and perindopril_mpo target
objectives on an initial random pool of molecules drawn from 5 random seeds. We report the percentage of valid molecules
(number of valid molecules / number of total molecules), the percentage of molecules with higher fitness after editting, and
the mean fitness increase of those molecules.

task in Table 4 and find that MolSTM and GPT-4 are not always able to produce valid molecules, whereas BioT5 always is
due to its use of SELFIES. We also find that BioT5 produced more molecules with higher fitness values compared to the
other LLMs.

In Table 6, we show the performance of directly querying LLMs with an initial pool of molecules on additional tasks. We
find that while LLMs are able to edit the molecule pool to improve the fitness marginally, using them in an optimization
framework results in much better fitness values.

C.2. Incorporating LLM-based genetic operators into Graph-GA

There are many ways to incorporate LLMs as genetic operators in a GA framework. We investigate several options. First,
we investigate using LLMs as a crossover operator. For GPT-4 and BioT5, we gave each model two parent molecules as
input and a description of the objective, and asked the model to produce a molecule as an output. Because MolSTM aligns
molecule embeddings with text embeddings, our crossover operation was to either take a linear or spherical interpolation
of the parent molecule embeddings and maximize the similarity of the resulting embedding to the text objective. For the
mutation operator, we prompted each LLM with a molecule and a description of the objective. Finally, we investigated the
impact of applying a selection pressure in the form of a filter, where we only mutated the top Y molecules and pruned the
resulting offspring by distance to the best molecule overall. We show the results for all operator settings we tried in Table 5
and show which operators we ended up using for each LLM in the final framework.

C.3. Optimization trends over single-objective tasks.

In Figure 5, we show the optimization curves for three tasks: JNK3, perindopril_mpo, and isomers_c9h10n2o2pf2cl.

C.4. MoleculeSTM hyperparameter selection

MolSTM has several hyperparameters; in this section, we motivate our choices for the final model. The first is the number
of population members that are selected to undergo LLM-based mutations (Algorithm 1). In Table 7, we show the Top-10
AUC after choosing different numbers of top-scoring candidates for editing by MoleculeSTM. We find that 30 candidates
resulted in the best performance. Note that we used a different prompt for this experiment than the one used to obtain
results in Table 1 (see Appendix C.6). We use 30 candidates anytime the filter is employed for all models, although this
hyperparameter can be ablated independently for each model.

MoleculeSTM has several hyperparameters related to molecule generation since it involves gradient descent to optimize an
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Operators Graph-GA
(Baseline) MOLLEO (MOLSTM) MOLLEO (BIOT5) MOLLEO (GPT-4)

(Default Graph-GA settings)
CROSSOVER:
Random
MUTATION:
Random, pm = 0.067

peridopril_mpo:
0.538±0.009

JNK3:
0.553±0.136

N/A N/A N/A

CROSSOVER:
LLM
MUTATION:
Random, pm = 0.067

N/A

peridopril_mpo:
0.499±0.012[linear]

0.505±0.018[spherical]
JNK3:

0.722±0.046 [linear]
0.744±0.055 [spherical]

peridopril_mpo:
0.727±0.013

JNK3:
0.436±0.052

peridopril_mpo:
0.600±0.031

JNK3:
0.790±0.027

CROSSOVER:
Random
MUTATION:
LLM, pm = 0.067

N/A

peridopril_mpo:
0.532±0.034

JNK3:
0.631±0.327

peridopril_mpo:
0.676±0.034

JNK3:
0.650±0.096

peridopril_mpo:
0.552±0.024

JNK3:
0.673±0.047

CROSSOVER:
Random
MUTATION:
LLM, pm = 1

N/A

peridopril_mpo:
0.513±0.040

JNK3:
0.553±0.193

peridopril_mpo:
0.686±0.343

JNK3:
0.708±0.030

peridopril_mpo:
0.615±0.058

JNK3:
0.762±0.044

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
randomly mutated, pruned
offspring by distance to
top-1 molecule

peridopril_mpo:
0.579±0.044

JNK3:
0.571±0.109

N/A N/A N/A

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
mutated with LLM, pruned
offspring by distance to
top-1 molecule

N/A

peridopril_mpo:
0.554±0.034

JNK3:
0.730±0.188

peridopril_mpo:
0.740±0.032

JNK3:
0.728±0.079

peridopril_mpo:
0.575±0.074

JNK3:
0.758±0.031

Table 5: Top-10 AUC on 5 random seeds for the JNK3 and perindopril_mpo tasks using different combinations of
genetic operators. The operators used for each model to compute the final results in the main paper are indicated with a

symbol.
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Figure 5: Average of top-10 molecules generated by MOLLEO and Graph-GA models for three tasks over an increasing
number of oracle calls. For each model, we show the convergence point with a star. The model is considered to have
converged if the mean score of the top 100 molecules does not increase by at least 1e-3 within five epochs.

JNK3 isomers_c9h10n2o2pf2cl perindopril_mpo

Initial population 0.085 ± 0.010 0.101 ± 0.025 0.281 ± 0.026

MolSTM - direct query 0.084 ± 0.008 0.201 ± 0.040 0.390 ± 0.008
MOLLEO (MOLSTM) 0.716 ± 0.240 0.905 ± 0.0372 0.572 ± 0.041

BioT5 - direct query 0.109 ± 0.012 0.260 ± 0.076 0.648 ± 0.019
MOLLEO (BIOT5) 0.883 ± 0.040 0.909 ± 0.015 0.759 ± 0.019

GPT-4 - direct query 0.164 ± 0.076 0.686 ± 0.127 0.388 ± 0.075
MOLLEO (GPT-4) 0.926 ± 0.052 0.935 ± 0.048 0.643 ± 0.094

Table 6: Ablation studies of LLM editing based on direct user queries. Top-10 average objective scores are reported.

input molecule embedding based on a text prompt. We look at two hyperparameters, the number of gradient descent steps
(epochs) and learning rate, and plot the results in Figure 6. We find that if the learning rate is too large (lr=1), the mean
fitness changes unpredictably, but if it is too small (lr=1e-2), there are minimal changes to the mean fitness. Setting the
learning rate to 1e-1 results in more consistent improvements in mean fitness. We also set the number of epochs to 30 since
more epochs are too time-consuming and fewer do not result in noticeable fitness changes.

C.5. GPT-4 ablations

We conduct experiments to understand the performance of MOLLEO (GPT-4) in the following settings: different numbers
of offspring in each generation, different underlying GPT models, incorporating retrieval augmentation methods, and
different rules from Graph-GA and SMILES-GA in Table 8 and Table 9, and describe the results in following sections.

Number of top-scoring
candidates selected for mutation Top-10 AUC

20 0.680±0.213

30 0.730±0.188

50 0.627±0.250

Table 7: Top-10 AUC on JNK3 binding task with
varying number of top-scoring candidates selected
to undergo LLM-based mutations.
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(a)

(b)

Figure 6: Mean fitness and percent valid molecules with varying number of gradient descent epochs (plotted on log-scale)
and learning rates in MoleculeSTM on two tasks: (a) molecular similarity to Penicillin (based on Tanimoto distance) and (b)
molecule hydrophobicity (logP).
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Number of offspring RAG Search

20 70 200 w. RAG w/o. RAG

jnk3 0.731±0.012 0.790±0.027 0.785±0.022 0.830±0.047 0.790±0.027
isomer_c9h10n2o2pf2cl 0.967±0.010 0.874±0.053 0.960±0.049 0.982±0.018 0.874±0.053

perindopril mpo 0.573±0.042 0.600±0.031 0.580±0.028 0.717±0.024 0.600±0.031

Table 8: Ablation study on MOLLEO (GPT-4). Impact of the number of offspring in each round and retrieval-augmented
search (RAG).

Different Versions of LLMs Rules

GPT-3.5 GPT-4 No rules Graph-GA rules SMILES-GA rules

jnk3 0.669±0.104 0.790±0.027 0.765±0.047 0.790±0.027 0.774±0.084
isomer_c9h10n2o2pf2cl 0.902±0.021 0.874±0.053 0.871±0.085 0.874±0.053 0.872±0.029

perindopril mpo 0.564±0.022 0.600±0.031 0.562±0.042 0.600±0.031 0.583±0.031

Table 9: Ablation study on MOLLEO (GPT-4). Impact of different versions of LLMs and rules from different sources.

Number of offspring We vary the number of offspring generated in each iteration of MOLLEO (GPT-4) on three tasks
and find that 70 offspring produces, on average, the best results, which is also the same number determined in (Gao et al.,
2022)

Retrieval-augmented search To explore how retrieval can enhance LLMs in the optimization process, we incorporate a
retrieval-augmented search module into MOLLEO (GPT-4). Specifically, after offspring are proposed, 1,000 molecules are
randomly sampled from ZINC 250K. From these, 20 molecules are selected based on their Tanimoto similarity to the top 20
molecules in the current population. These retrieved molecules then replace the 20 worst molecules in the population. In
Table 8, the results show that this approach is effective in improving the optimization results of MOLLEO (GPT-4) for each
task.

GPT-3.5 vs. GPT-4 We tested MOLLEO using both GPT-4 and GPT-3.5, an older version of the model. In Table 9,
we show that GPT-4 outperforms GPT-3.5 on two tasks, although GPT-3.5 still beats the baseline Graph-GA algorithm
(Table 1). Interestingly, GPT-3.5 beats GPT-4 on a task based on structure-based optimization.

Different rules In Graph-GA, the default crossover and mutation operators are pre-defined by domain experts based on
chemical knowledge. These pre-defined operators can be considered as rules guiding the generation process. Here we also
consider rules from another source, SMILES-GA (Yoshikawa et al., 2018), which defines rules that operate on SMILES
strings instead of graphs. To evaluate the impact of rules from different sources, we perform an ablation study on MOLLEO
and also conduct experiments without any rules, where LLMs are repeatedly queried to propose molecules until the offspring
size reaches the target number in each round. The results shown in Table 9 indicate that both Graph-GA and SMILES-GA
rules are better than not using results at all, and Graph-based rules are better than SMILES-based rules.

C.5.1. GPT-4 IN AN ACTIVE LEARNING FRAMEWORK

We investigate the performance of GPT-4 when the EA framework is replaced with an active learning setting. This can be
thought of as testing the impact of the genetic operators in the underlying genetic framework. In this setting, we initialize a
population pool and randomly sample k molecules from the pool. We then pass the molecules to GPT-4 and query it for
a new molecule with better objective values. After generating a batch of molecules, we integrate the batch back into the
population without selection, allowing the population to grow until it reaches the budget of oracle calls. In our experiment,
we set the budget to 10,000 oracle calls, the batch size to 100, and k to 2.
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The results, shown in Table 10, indicate that the active learning setting achieves subpar performance compared to MOLLEO
(GPT-4). This demonstrates that while LLMs like GPT-4 can modify existing molecules, they struggle to independently
propose high-quality molecules, underscoring the necessity of the evolutionary process. Interestingly, we observe that the
active learning setting performs relatively well on the isomer task compared to the other two; this can maybe be attributed
to the isomer task being simple.

GPT4-AL MOLLEO (GPT-4)

JNK3 0.583±0.042 0.790±0.027

isomer_c9h10n2o2pf2cl 0.873±0.048 0.874±0.053

perindopril mpo 0.539±0.046 0.600±0.031

Table 10: Ablation studies of active learning (AL) on GPT-4. We report the Top-10 AUC of single objective results.

C.6. Impact of prompt selection

The choice of prompt for a given task is an important consideration, as some prompts can be better aligned with information
the model knows. For example, the prompt we used in MOLLEO (MOLSTM) for the JNK3 inhibition task was “This
molecule inhibits JNK3." However, there are multiple ways of describing inhibition and multiple ways of identifying
the enzyme (JNK3, c-Jun N-terminal kinase 3). To that end, we investigate the impact of prompt selection on downstream
performance.

To generate a set of prompts, we prompted GPT-4 to generate ten synonymous phrases for an input prompt. We then
computed the Spearman rank-order correlation coefficient (Spearman’s ρ) of each phrase on an initial molecule pool between
the cosine similarity generated by MoleculeSTM and the ground truth fitness values. Finally, we ran the genetic optimization
using MOLLEO (MOLSTM) with the input prompt and the prompt with the highest Spearman rank-order correlation
coefficient.

On the JNK3 task, the default prompt we wrote was “This molecule inhibits JNK3.", which had a Spearman’s ρ
of -0.0161. The prompt with the largest Spearman’s ρ (0.1202) was “This molecule acts as an antagonist to
JNK3." When we ran MOLLEO (MOLSTM) with the default input prompt, the top-10 AUC was 0.643 ± 0.226. When
we ran MOLLEO (MOLSTM) using the prompt with the largest Spearman’s ρ, the top-10 AUC was 0.730 ± 0.188. This
demonstrates that prompt selection can influence downstream results, especially for smaller models, and opens the door for
future work in this area.

D. Extended experiment results
D.1. Diversity analysis in multi-objective optimization

We show the structural diversity and objective diversity for multi-objective optimization in Table 11. Structural diversity
reflects the chemical diversity of the Pareto set and is computed by taking the average pairwise Tanimoto distance between
Morgan fingerprints of molecules in the set. Objective diversity illustrates the objective value coverage of the Pareto frontier
and is computed by taking the pairwise Euclidean distance between objective values of molecules in the Pareto set.

D.2. Case study: Sample molecules from final pool

Below, we show the top ten molecules across all runs from the MOLLEO and Graph-GA for two tasks: deco_hop and EGFR
docking.

D.2.1. TASK 1: deco_hop

The goal of the deco_hop task is to generate molecules that contain specific substructures while not containing others; these
substructures are shown in Figure 8. The final deco_hop score is calculated as the mean of substructure presence/absence
(binary score) and Tanimoto distance to the target molecule. We showcase our best-generated molecules from the deco_hop
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Task 1: maximize QED (↑),
minimize SA (↓), maximize JNK3 (↑)

Summation
(Top-10 AUC) (↑) Hypervolume (↑) Structural diversity (↑) Objective diversity (↑)

Summation

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 0.741 ± 0.115 0.351 ± 0.079
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 0.803 ± 0.011 0.362 ± 0.074

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 0.805 ± 0.196 0.341 ± 0.091
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 0.726 ± 0.063 0.292 ± 0.076

Pareto optimality

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 0.761 ± 0.034 0.219 ± 0.117
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 0.739 ± 0.015 0.306 ± 0.085

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 0.724 ± 0.020 0.339 ± 0.062
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 0.745 ± 0.057 0.322 ± 0.104

Task 2: maximize QED (↑),
minimize SA (↓), maximize GSKB3 (↑)

Summation

Graph-GA 2.186 ± 0.069 0.719 ± 0.055 0.778 ± 0.122 0.379 ± 0.101
MOLLEO (MOLSTM) 2.349 ± 0.132 0.303 ± 0.024 0.820 ± 0.010 0.440 ± 0.037

MOLLEO (BIOT5) 2.306 ± 0.120 0.693 ± 0.093 0.803 ± 0.013 0.384 ± 0.045
MOLLEO (GPT-4) 2.543 ± 0.014 0.832 ± 0.024 0.715 ± 0.052 0.391 ± 0.021

Pareto optimality

Graph-GA 2.339 ± 0.139 0.640 ± 0.034 0.816 ± 0.028 0.381 ± 0.071
MOLLEO (MOLSTM) 2.340 ± 0.254 0.202 ± 0.054 0.770 ± 0.017 0.188 ± 0.010

MOLLEO (BIOT5) 2.299 ± 0.203 0.645 ± 0.127 0.759 ± 0.022 0.371 ± 0.047
MOLLEO (GPT-4) 2.631 ± 0.023 0.820 ± 0.024 0.646 ± 0.017 0.191 ± 0.026

Task 3: maximize QED (↑), JNK3 (↑),
minimize SA (↓), GSKB3 (↓), DRD2 (↓)

Summation

Graph GA 3.856 ± 0.075 0.162 ± 0.048 0.821 ± 0.024 0.226 ± 0.057
MOLLEO (MOLSTM) 4.040 ± 0.097 0.474 ± 0.193 0.783 ± 0.027 0.413 ± 0.064

MOLLEO (BIOT5) 3.904 ± 0.092 0.266 ± 0.201 0.828 ± 0.005 0.243 ± 0.081
MOLLEO (GPT-4) 4.017 ± 0.048 0.606 ± 0.086 0.726 ± 0.064 0.289 ± 0.050

Pareto optimality

Graph GA 4.051 ± 0.155 0.606 ± 0.052 0.688 ± 0.047 0.294 ± 0.074
MOLLEO (MOLSTM) 3.989 ± 0.145 0.381 ± 0.204 0.792 ± 0.030 0.258 ± 0.019

MOLLEO (BIOT5) 3.946 ± 0.115 0.367 ± 0.177 0.784 ± 0.020 0.367 ± 0.177
MOLLEO (GPT-4) 4.212 ± 0.034 0.696 ± 0.029 0.641 ± 0.037 0.266 ± 0.062

Table 11: Multi objective results. The best model for each task is bolded.
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Figure 7: 2D plots for multi-objective optimization in task 1 and task 2
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Figure 8: Substructures to be included or avoided in the deco_hop task.

D.2.2. TASK 2: EGFR docking

The goal of the EGFR docking task is to generate molecules that have a low binding affinity to epidermal growth factor
receptors in humans (EGFR, PBD ID: 2RGP. Molecules are docked against EGFR using AutoDock Vina (Eberhardt et al.,
2021), and the output is the docking score of the binding process. We showcase our best-generated molecules from this task
in Figure 10.

E. Prompts
For each model, we show the prompts used for each task. When creating the prompts, we followed the format of examples
in the original source code as closely as possible.
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MOLLEO (MOLSTM) prompts

QED
This molecule is like a drug.

JNK3
This molecule inhibits JNK3.

GSK3β
This molecule inhibits GSK3B.

DRD2
This molecule inhibits DRD2.

mestranol_similarity
This molecule looks like Mestranol.

thiothixene_rediscovery
This molecule looks like Thiothixene.

perindopril_mpo
This molecule looks like Perindopril and has 2 aromatic rings.

ranolazine_mpo
This molecule looks like Ranolazine, is highly permeable, is hydrophobic, and has 1 F atom.

sitagliptin_mpo
This molecule has the formula C16H15F6N5O, looks like Sitagliptin, is highly permeable, and is hydrophobic.

Isomers_C9H10N2O2PF2Cl
This molecule has the atoms C9H10N2O2PF2Cl.

deco_hop
This molecule does not contain the substructure [#7]-c1ccc2ncsc2c1, which is a 6-aminobenzothiazole, does
not contain the substructure CS([#6])(=O)=O, which is a dimethyl sulfone, contains the scaffold, which is a
4-amino-7-hydroxyquinazoline, and is similar to CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C.

scaffold_hop
This molecule does not contain the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0] [c;h1]c12, contains
the substructure [#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]- [#7]-c1ccc2ncsc2c1, and is similar to
CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C.

maxjnk3_maxqed_minsa
This molecule is synthesizeable, looks like a drug, and inhibits JNK3.

maxgsk3b_maxqed_minsa
This molecule is synthesizeable, looks like a drug, and inhibits GSK3B.

maxjnk3_maxqed_minsa_mindrd2_mingsk3b
This molecule is synthesizable, does not inhibit GSKB3, does not inhibit DRD2, looks like a drug, and
inhibits JNK3.

3pbl_docking
This molecule inhibits DRD3.

2rgp_docking
This molecule inhibits EGFR.

3eml_docking
This molecule binds to adenosine receptor A2a.

MOLLEO (BIOT5) prompts

Template:

Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES molecule that {OBJECTIVE}.
Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

QED
OBJECTIVE: looks more like a drug

JNK3
OBJECTIVE: inhibits JNK3 more

GSK3β
OBJECTIVE: inhibits GSK3B more
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DRD2
OBJECTIVE: inhibits DRD2 more

mestranol_similarity
OBJECTIVE: looks more like Mestranol

thiothixene_rediscovery
OBJECTIVE: looks more like Thiothixene

perindopril_mpo
OBJECTIVE: looks more like Perindopril and has 2 aromatic rings

sitagliptin_mpo
OBJECTIVE: has the formula C16H15F6N5O, looks more like Sitagliptin, is highly permeable, and is hydrophobic

ranolazine_mpo
OBJECTIVE: looks more like Ranolazine, is highly permeable, is hydrophobic, and has 1 F atom

Isomers_C9H10N2O2PF2Cl
OBJECTIVE: has the formula C9H10N2O2PF2Cl

deco_hop
OBJECTIVE: does not contain the substructure [#7]-c1ccc2ncsc2c1, does not contain the substructure
CS([#6])(=O)=O, contains the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, and is
similar to [C][C][C][O][C][=C][C][=N][C][=N][C][Branch1][#C][N][C][=C][C][=C][N][=C][S][C][Ring1]
[Branch1][=C] [Ring1][=Branch2][=C][Ring1][S][C][=C][Ring2][Ring1][Ring2][S][=Branch1]
[C][=O][=Branch1][C][=O][C][Branch1][C][C][Branch1][C][C][C]

scaffold_hop
OBJECTIVE: does not contain the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, contains
the substructure [#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]- [#7]-c1ccc2ncsc2c1, and is similar
to the SELFIES [C][C][C][O][C][=C][C][=N][C][=N][C] [Branch1][#C][N][C][=C][C][=C][N][=C][S]
[C][Ring1][Branch1][=C][Ring1][=Branch2][=C] [Ring1][S][C][=C][Ring2][Ring1][Ring2][S]
[=Branch1][C][=O][=Branch1] [C][=O][C][Branch1][C][C][Branch1] [C][C][C]

maxjnk3_maxqed_minsa
OBJECTIVE: is a greater inhibitor of JNK3, is more synthesizable and is more like a drug.

maxgsk3b_maxqed_minsa
OBJECTIVE: inhibits GSK3B more, is more synthesizable and is more like a drug.

maxjnk3_maxqed_minsa_mindrd2_mingsk3b
OBJECTIVE: is a greater inhibitor of JNK3, is more like a drug, inhibits GSK3B less, inhibits DRD2 less and
is more synthesizable.

3pbl_docking
OBJECTIVE: inhibits DRD3 more

2rgp_docking
OBJECTIVE: inhibits EGFR more

3eml_docking
OBJECTIVE: binds better to adenosine receptor A2a

MOLLEO (GPT-4) prompts

Template:

I have two molecules and their {TASK}. {OBJECTIVE_DEFINITION}

(Smiles of Parent A, objective score of Parent A) (Smiles of Parent B, objective score of Parent B)

Please propose a new molecule that {OBJECTIVE}. You can either make crossover and mutations based on the
given molecules or just propose a new molecule based on your knowledge.
Your output should follow the format: {«<Explanation»>: $EXPLANATION, «<Molecule»>:
box{$Molecule}}. Here are the requirements:
1. $EXPLANATION should be your analysis.
2. The $Molecule should be the smiles of your propsosed molecule.
3. The molecule should be valid.

QED:
OBJECTIVE: has a higher QED score
TASK: QED scores
OBJECTIVE_DEFINITION: The QED score measures the drug-likeness of the molecule.

JNK3
OBJECTIVE: has a higher JNK3 score
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TASK: JNK3 scores
OBJECTIVE_DEFINITION: The JNK3 score measures a molecular’s biological activity against JNK3.

GSK3β
OBJECTIVE: has a higher GSK3β score
TASK: GSK3β scores
OBJECTIVE_DEFINITION: The GSK3β score measures a molecular’s biological activity against GSK3β.

DRD2
OBJECTIVE: has a higher DRD2 score
TASK: DRD2 scores
OBJECTIVE_DEFINITION: The DRD2 score measures a molecule’s biological activity against a biological target
named the dopamine type 2 receptor (DRD2).

mestranol_similarity
OBJECTIVE: has a higher mestranol similarity score
TASK: mestranol similarity scores
OBJECTIVE_DEFINITION: The mestranol similarity score measures a molecule’s Tanimoto similarity with
Mestranol.

thiothixene_rediscovery
OBJECTIVE: has a higher thiothixene rediscovery score
TASK: thiothixene rediscovery scores
OBJECTIVE_DEFINITION: The thiothixene rediscovery score measures a molecule’s Tanimoto similarity with
thiothixene’s SMILES to check whether it could be rediscovered.

perindopril_mpo
OBJECTIVE: has a higher perindopril multi-objective score
TASK: perindopril multi-objective scores
OBJECTIVE_DEFINITION: The perindopril multi-objective score measures the geometric means of several scores,
including the molecule’s Tanimoto similarity to perindopril and the number of aromatic rings.

sitagliptin_mpo
OBJECTIVE: has a higher sitagliptin multi-objective score
TASK: sitagliptin multi-objective scores
OBJECTIVE_DEFINITION: The sitagliptin multi-objective score measures the geometric means of several scores,
including the molecule’s Tanimoto similarity to sitagliptin, TPSA score, LogP score and isomer score with
C16H15F6N5O.

ranolazine_mpo
OBJECTIVE: has a higher ranolazine multi-objective score
TASK: ranolazine multi-objective scores
OBJECTIVE_DEFINITION: The ranolazine multi-objective score measures the geometric means of several scores,
including the molecule’s Tanimoto similarity to ranolazine, TPSA score LogP score and number of fluorine
atoms.

Isomers_C9H10N2O2PF2Cl:
OBJECTIVE: has a higher isomer score
TASK: isomer scores
OBJECTIVE_DEFINITION: The isomer score measures a molecule’s similarity in terms of atom counter to
C9H10N2O2PF2Cl.

deco_hop
OBJECTIVE: has a higher deco hop score
TASK: deco hop scores
OBJECTIVE_DEFINITION: The deco hop score is the arithmetic means of several scores, including
binary score about whether contain certain SMARTS structures (maximize the similarity to the
SMILE ’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’, while excluding specific SMARTS patterns
’[#7]-c1ccc2ncsc2c1’ and ’CS([#6])(=O)=O’) and (2) the molecule’s Tanimoto similarity to PHCO
’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C’.

scaffold_hop
OBJECTIVE: has a higher scaffold hop score
TASK: scaffold hop scores
OBJECTIVE_DEFINITION: The scaffold hop score is the arithmetic means of several scores, including (1)
binary score about whether contains certain SMARTS structures (maximize the similarity to the SMILE
’[#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]-[#7]-c1ccc2ncsc2c1’, while excluding specific SMARTS patterns
’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’) and
(2) the molecule’s Tanimoto similarity to PHCO ’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S
(=O)(=O)C(C)(C)C’.

maxjnk3_maxqed_minsa
OBJECTIVE: has a higher QED score, a higher JNK3 score, and a lower SA score
TASK: QED, SA (Synthetic Accessibility), and JNK3 scores.
OBJECTIVE_DEFINITION: None

maxgsk3b_maxqed_minsa
OBJECTIVE: has a higher QED score, a higher GSK3β score, and a lower SA score
TASK: QED, SA (Synthetic Accessibility), and GSK3β scores
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OBJECTIVE_DEFINITION: None

maxjnk3_maxqed_minsa_mindrd2_mingsk3b
OBJECTIVE: has a higher QED score, a higher JNK3 score, a lower GSK3β score, a lower DRD2 score and a lower
SA score
TASK: QED, SA (Synthetic Accessibility), JNK3, GSK3β and DRD2 scores
OBJECTIVE_DEFINITION: None

2rgp_docking
OBJECTIVE: binds better to EGFR
TASK: docking scores to EGFR
OBJECTIVE_DEFINITION: The docking score measures how well a molecule binds to EGFR. A lower docking score
generally indicates a stronger or more favorable binding affinity.

3pbl_docking
OBJECTIVE: binds better to DRD3
TASK: docking scores to DRD3
OBJECTIVE_DEFINITION: The docking score measures how well a molecule binds to DRD3. A lower docking score
generally indicates a stronger or more favorable binding affinity.

3eml_docking
OBJECTIVE: binds better to adenosine receptor A2a
TASK: docking scores to adenosine receptor A2a
OBJECTIVE_DEFINITION: The docking score measures how well a molecule binds to adenosine receptor A2a. A
lower docking score generally indicates a stronger or more favorable binding affinity.
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Figure 9: Molecules with best deco_hop scores generated by Graph-GA and each MOLLEO model. The deco_hop score of
each molecule is written beside it. Higher deco_hop scores are better.
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Figure 10: Molecules with best EGFR docking scores generated by Graph-GA and each MOLLEO model. The docking
score of each molecule is written beside it. Lower docking scores are better.
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