
Under review as submission to TMLR

PruneFuse: Efficient Data Selection via Weight Pruning and
Network Fusion

Anonymous authors
Paper under double-blind review

Abstract

Efficient data selection is crucial for enhancing the training efficiency of deep neural networks
and minimizing annotation requirements. Traditional methods often face high computational
costs, limiting their scalability and practical use. We introduce PruneFuse, a novel strategy
that leverages pruned networks for data selection and later fuses them with the original
network to optimize training. PruneFuse operates in two stages: First, it applies structured
pruning to create a smaller pruned network that, due to its structural coherence with the
original network, is well-suited for the data selection task. This small network is then
trained and selects the most informative samples from the dataset. Second, the trained
pruned network is seamlessly fused with the original network. This integration leverages the
insights gained during the training of the pruned network to facilitate the learning process
of the fused network while leaving room for the network to discover more robust solutions.
Extensive experimentation on various datasets demonstrates that PruneFuse significantly
reduces computational costs for data selection, achieves better performance than baselines,
and accelerates the overall training process.

1 Introduction

Deep learning models have achieved remarkable success across various domains, ranging from image recognition
to natural language processing (Ren et al., 2015; Long et al., 2015; He et al., 2016). However, the performance
of models heavily relies on the access to large amounts of labeled data for training (Sun et al., 2017). In
practical real-world applications, manually annotating massive datasets can be prohibitively expensive and
time-consuming. Data selection techniques such as Active Learning (AL) (Gal et al., 2017) offer a promising
solution to this challenge by iteratively selecting the most informative samples from the unlabeled dataset for
annotation, thereby reducing labeling costs while approaching or even surpassing the performance of fully
supervised training. Even with the rapid scaling of large language models and multimodal foundation models,
effective adaptation to downstream tasks continues to demand high-quality, domain-aligned labeled data. A
growing body of work demonstrates that principled selection techniques, including AL, outperform simple
scaling of in-domain data in both final performance and overall computational efficiency (Xie et al., 2023; Yu
et al., 2024; 2025). Traditional AL methods, however, incur severe computational overhead. Each selection
cycle in AL typically requires extensive training or inference with a large model on the entire unlabeled pool.
As model and dataset sizes grow, this repeated training becomes a critical scalability bottleneck, especially in
resource-constrained environments. In this paper, we propose a novel strategy for efficient data selection in
an AL setting that overcomes the limitations of traditional approaches. Our approach builds on the concept
of model pruning, which selectively reduces the complexity of neural networks while preserving their accuracy.
By utilizing small pruned networks as reusable data selectors, we eliminate the need to train large models,
specifically during the data selection phase, thus significantly reducing computational demands. By enabling
swift identification of the most informative samples, our method not only enhances the efficiency of AL but
also ensures its scalability and cost-effectiveness in resource-limited settings. Additionally, we employ these
pruned networks to train the final model through a fusion process, effectively harnessing the insights from
the trained networks to accelerate convergence and improve generalization.

1

Under review as submission to TMLR

Main Contribution. To summarize, our key contribution is to introduce PruneFuse, an efficient and rapid
data selection technique that leverages pruned networks. This approach mitigates the need for continuous
training of a large model prior to data selection, which is inherent in conventional active learning methods.
By employing pruned networks as data selectors, PruneFuse ensures computationally efficient selection of
informative samples, which leads to overall superior generalization. Furthermore, we propose the novel
concept of fusing these pruned networks with the original untrained model, enhancing model initialization
and accelerating convergence during training.

We demonstrate the broad applicability of PruneFuse across various network architectures, providing re-
searchers and practitioners with a flexible tool for efficient data selection in diverse deep learning settings.
Extensive experimentation on CIFAR-10, CIFAR-100, Tiny-ImageNet-200, ImageNet-1K, text datasets
(Amazon Review Polarity and Amazon Review Full), as well as Out-of-Distribution (OOD) benchmarks,
shows that PruneFuse achieves superior performance to state-of-the-art AL methods while significantly
reducing computational costs.

2 Related Work
Data Selection. Recent studies have explored techniques to improve the efficiency of data selection in deep
learning. Approaches such as coreset selection (Sener & Savarese, 2018a), BatchBALD (Kirsch et al., 2019),
and Deep Bayesian Active Learning (Gal et al., 2017) aim to select informative samples using techniques
like diversity maximization and Bayesian uncertainty estimation. Parallelly, the domain of active learning
has unveiled strategies, such as uncertainty sampling (Shen et al., 2018; Sener & Savarese, 2018b; Kirsch
et al., 2019), expected model change-based approach (Freytag et al., 2014; Käding et al., 2016), snapshot
ensembles Jung et al. (2023), and query-by-density (Sener & Savarese, 2018a). These techniques prioritize
samples that can maximize information gain, thereby enhancing model performance with minimal labeling
effort. While these methods achieve efficient data selection, they still require training large models for
the selection process, resulting in significant computational overhead. Other strategies, such as Gradient
Matching (Killamsetty et al., 2021a) optimize this selection process by matching the gradients of a subset with
the training or validation set based on the orthogonal matching algorithm, and (Killamsetty et al., 2021b)
performs meta-learning based approach for online data selection. SubSelNet (Jain et al., 2023) proposes to
approximate a model that can be used to select the subset for various architectures without retraining the
target model, hence reducing the overall overhead. However, it involves a pre-training routine, which is very
costly and must be repeated for any change in data or model distribution.

Proxy-based selection methods such as SVP (Coleman et al., 2020) train a smaller proxy model (e.g.,
ResNet-20) as a data selector for a larger target model (e.g., ResNet-56). However, after selecting a subset,
the proxy is discarded and the target is trained from scratch on the selected subset. Since the proxy and
target architectures are typically different and not directly aligned, there is generally no canonical way to
reuse trained proxy weights directly in the target, except indirectly, e.g., via distillation. PruneFuse differs in
that the data selector model is obtained by structured pruning of the target model, yielding a channel-aligned
subnetwork of the target. This structural alignment enables weight-aligned fusion, where the weights of the
trained pruned model are directly copied into the corresponding coordinates of the dense original model,
while with a generic proxy like SVP’s, there is no such one-to-one mapping of the proxy to the target model.
In essence, fusion enables a warm-start for the target model in PruneFuse by leveraging the training compute
of the selection process and results in faster convergence and better accuracy than training the dense target
from scratch on the same selected subset.

Efficient Deep Learning. Efficient deep learning has gained significant attention in recent years. Methods
such as Neural Architecture Search (NAS) (Zoph & Le, 2016; Wan et al., 2020), network pruning (Han et al.,
2016), quantization (Dong et al., 2020; Jacob et al., 2018; Zhou et al., 2016), and knowledge distillation
(Hinton et al., 2015; Yin et al., 2020) have been proposed to reduce model size and computational requirements.
Neural Network pruning has been extensively investigated as a technique to reduce the complexity of deep
neural networks (Han et al., 2016). Pruning strategies can be broadly divided into Unstructured Pruning
(Dong et al., 2017; Guo et al., 2016; Park et al., 2020) and Structured Pruning (Li et al., 2016; He et al.,
2017; You et al., 2019; Ding et al., 2019) based on the granularity and regularity of the pruning scheme.
Unstructured pruning often yields a superior accuracy-size trade-off, whereas structured pruning offers

2

Under review as submission to TMLR

4

1

23

Pruning

Fusion

Loss
× 𝜆

×
(1

−
𝜆
)

5

r % 𝑻𝒔𝒚𝒏𝒄 = 0

Figure 1: Overview of the PruneFuse method: (1) An untrained neural network is initially pruned to form
a structured, pruned network θp. (2) This pruned network θp queries the dataset to select prime candidates for
annotation, similar to active learning techniques. (3) θp is then trained on these labeled samples to form the trained
pruned network θ∗

p. (4) The trained pruned network θ∗
p is fused with the base model θ, resulting in a fused model.

(5) The fused model is further trained on a selected subset of the data, incorporating knowledge distillation from θ∗
p.

At regular intervals Tsync, the fused model is utilized to dynamically update the pruned model for subsequent data
selection.
practical speedup and compression without necessitating specialized hardware. While pruning literature
suggests pruning after training (Renda et al., 2020) or during training (Zhu & Gupta, 2017; Gale et al., 2019),
recent research explores the viability of pruning at initialization (Lee et al., 2019; Tanaka et al., 2020; Frankle
et al., 2021; Wang et al., 2020). In our work, we leverage the benefits of model pruning at initialization
to create a small representative model for efficient data selection, allowing for the rapid identification of
informative samples while minimizing computational requirements.

3 Background and Motivation

Efficient data selection is paramount in modern machine learning applications, especially when dealing with
deep neural networks. We are given a labeled dataset D = {(xi, yi)}n

i=1 drawn i.i.d. from an unknown
distribution pZ over X ×Y , and a training procedure A that maps any labeled set s ⊆ D to model parameters
θs = A(s). The subset selection problem can be framed as the challenge of selecting a subset s of fixed size b
such that the model trained on s has population risk close to that of the model trained on the full dataset:

s⋆ ∈ arg min
s⊆D, |s|=b

∣∣E(x,y)∼pZ

[
l(x, y; θs)

]
− E(x,y)∼pZ

[
l(x, y; θD)

]∣∣ , (1)

where θs = A(s) and θD = A(D) denote the parameters obtained by training on the subset s and the full
dataset D, respectively.

3.1 Subset Selection Framework

Active Learning (AL) is a widely utilized iterative approach tailored for situations with abundant unlabeled
data. Given a classification task with C classes and a large pool of unlabeled samples U , AL revolves around
selectively querying the most informative samples from U for labeling. The process commences with an initial
set of randomly sampled data s0 from U , which is subsequently labeled. In subsequent rounds, AL augments
the labeled set L by adding newly identified informative samples. This cycle repeats until a predefined
number of labeled samples, denoted by b, has been selected.

3.2 Network Pruning and Its Relevance

Network pruning emerges as a potent tool to reduce the complexity of neural networks. By eliminating redun-
dant parameters, pruning preserves vital network functionalities while streamlining its architecture. Pruning
strategies can be broadly categorized into Unstructured Pruning and Structured Pruning. Unstructured
Pruning targets the removal of individual weight independent of their location. While it trims down the
overall number of parameters, tangible computational gains on conventional hardware often demand very

3

Under review as submission to TMLR

high pruning ratios (Park et al., 2017). On the other hand, Structured Pruning emphasizes the removal of
larger constructs like kernels, channels, or layers. Its strength lies in preserving locally dense computations,
which not only yields a leaner network but also bestows immediate performance improvements (Liu et al.,
2017). Given its computational benefits, particularly in expediting evaluations and aligning with hardware
optimizations, we opted for Structured Pruning over its counterpart. Importantly, pruned networks maintain
the architectural coherence of the original model. This coherence makes them inherently more suitable for
tasks such as data selection. Unlike heavily modified or entirely different models that can be used for data
selection Coleman et al. (2020); Jain et al. (2023), the pruned model echoes the original structure, particularly
advantageous in recognizing and prioritizing data samples that resonate with the patterns of the original
network. The goal is clear: to develop a data selection strategy that conserves computational resources,
minimizes memory overhead, and potentially improves model generalization.

4 PruneFuse

In this section, we delineate the PruneFuse methodology. The procedure begins with network pruning at
initialization, offering a streamlined model for data selection. Upon attaining the desired data subset, the
pruned model undergoes a fusion process with the original network, leveraging the structural coherence
between them. The fused model is subsequently refined through knowledge distillation, enhancing its
performance. An overall view of our proposed methodology is illustrated in Fig. 1.

Let θp ∈ Θp denotes a pruned model (e.g., structured pruned subnetworks of the target architecture θ),
Sk(D; θp) be an acquisition operator that returns a subset of size k by scoring/ranking examples in D using
proxy parameters θp (e.g., least-confidence, entropy, or greedy k-centers). PruneFuse selects sp = Sk(D; θp),
|sp| = k, and then trains the target model on sp, i.e., θsp

= A(sp). This yields the following proxy-constrained
variant of Eq. 1:

s⋆
p ∈ arg min

sp⊆D

∣∣E(x,y)∼pZ

[
l(x, y; θsp

)
]
− E(x,y)∼pZ

[
l(x, y; θD)

]∣∣
s.t. |sp| = k, ∃ θp ∈ Θp such that sp = Sk(D; θp).

(2)

where the subset can be defined as sp = {(xi, yi) ∈ D : score(xi; θp) ≥ τ} where τ is chosen so that |sp| = k.
Equivalently, for score-based acquisition (e.g., least-confidence or entropy), Sk can be implemented by ranking
examples via a scalar score(x; θp) and selecting the top-k as Sk(D; θp) = Topk{(xi, yi) ∈ D by score(xi; θp)}.
Whereas, for diversity-based acquisition (e.g., greedy k-centers), Sk denotes the corresponding greedy selection
routine applied to embeddings/features produced by the pruned model.

Eq. 2 formalizes the goal of selecting sp so that training the target model on sp yields population risk close
to training on the full dataset D, while performing selection using an efficient pruned model. Algorithm 1
precisely describes the PruneFuse methodology, i.e. training the proxy on the current labeled pool, scoring
the unlabeled pool, and querying the next batch for annotation. The key insight is that structural coherence
between the pruned and target architectures makes this acquisition effective for the target while greatly
reducing selection-time computation.

4.1 Pruning at Initialization

Pruning at initialization has been demonstrated to uncover superior solutions compared to the conventional
approach of pruning an already trained network followed by fine-tuning (Wang et al., 2020). Specifically,
it shows potential in training time reduction and enhanced model generalization. In our methodology, we
employ structured pruning due to its benefits, such as maintaining the architectural coherence of the network,
enabling more predictable resource savings, and often leading to better-compressed models in practice.

Consider an untrained neural network, represented as θ. Let each layer ℓ of this network have feature maps
or channels denoted by cℓ, with ℓ ∈ {1, . . . , L}. Channel pruning results in binary masks mℓ ∈ {0, 1}dℓ for
every layer, where dℓ represents the total number of channels in layer ℓ. The pruned subnetwork, θp, retains
channels described by cℓ ⊙mℓ, where ⊙ symbolizes the element-wise product. The sparsity p ∈ [0, 1] of the
subnetwork illustrates the proportion of channels that are pruned: p = 1−

∑
ℓ mℓ/

∑
ℓ dℓ.

4

Under review as submission to TMLR

To reduce the model complexity, we employ the channel pruning procedure prune(C, p). This prunes to a
sparsity p via two primary functions: i) score(C): This operation assigns scores zℓ ∈ Rdℓ to every channel
in the network contingent on their magnitude (using the L2 norm). The channels C are represented as
(c1, . . . , cL). and ii) remove(Z, p): This process takes the magnitude scores Z = (z1, . . . , zL) and translates
them into masks mℓ such that the cumulative sparsity of the network, in terms of channels, is p. We employ a
one-shot channel pruning that scores all the channels simultaneously based on their magnitude and prunes the
network from 0% sparsity to p% sparsity in one cohesive step. Although previous works suggest re-initializing
the network to ensure proper variance (van Amersfoort et al., 2020), the performance gains are marginal; we
retain the weights of the pruned network before training.

4.2 Data Selection via Pruned Model

Algorithm 1 PruneFuse
Notation: Labeled dataset L, prune model θp, fuse
model θF , and scored jth data sample Dj .
Input: Unlabeled dataset U , initial labeled data s0,
original model θ, pruning ratio p, AL rounds R to achieve
budget b, synchronization interval Tsync, and acquisition
score.

1: Randomly initialize θ
2: θp ← Prune(θ, p) //structured pruning
3: θ∗

p ← Train(θp, s0)
4: L← s0

5: for r = 1 to R do
6: Compute score(x; θ∗

p) ∀ x ∈ U
7: Dk = Topk[Dj ∈ U]j∈[k]
8: Query labels yk for selected samples Dk

9: L← L ∪ {(Dk, yk)}
10: if Tsync = 0 or r%Tsync != 0 then
11: θ∗

p ← Train(θp, L)
12: else if r%Tsync = 0 then
13: θ∗

F ← Fuse(θ, θ∗
p) and Fine-tune (w/ KD) on L

14: θ∗
p ← Prune(θ∗

F , p) and Fine-tune on L

15: θF ← F use(θ, θ∗
p)

16: θ∗
F ← Fine-tune θF (w/ KD) on L

17: Return L, θ∗
F

We begin by randomly selecting a small subset of
data samples, denoted as s0, from the unlabeled
pool U = {xi}i∈[n] where [n] = {1, ..., n}. These
samples are then annotated. The pruned model θp

is trained on this labeled subset s0, resulting in the
trained pruned model θ∗

p. At each subsequent round,
θ∗

p scores U and proposes a batch of k points for
annotation.

We instantiate three widely used criteria for data
selection, namely Least Confidence (LC) (Settles,
2012), Entropy (Shannon, 1948), and Greedy k-
centers (Sener & Savarese, 2018a).

1. Least Confidence based selection tends to-
ward samples where the pruned model exhibits the
least confidence in its predictions. The confidence
score is essentially the highest probability the model
assigns to any class label. Thus, the uncertainty
score for a given sample xi based on LC is defined
as score(xi; θ∗

p)LC = 1−maxŷ P (ŷ|xi; θ∗
p). 2. In En-

tropy based selection, the entropy of the model’s
predictions is the focal point. Samples with high
entropy indicate situations where θ∗

p is ambivalent
about the correct label. For each sample in U ,
the uncertainty based on entropy is computed as
score(xi; θ∗

p)Entropy = −
∑

ŷ P (ŷ|xi; θ∗
p) log P (ŷ|xi; θ∗

p). Subsequently, we select the top-k samples exhibiting
the highest uncertainty scores, proposing them as prime candidates for annotation. 3. The objective of the
Greedy k-centers algorithm is to cherry-pick k centers from the dataset such that the maximum distance
of any sample from its nearest center is minimized. The algorithm proceeds in a greedy manner by selecting
the first center arbitrarily and then iteratively selecting the next center as the point that is furthest from the
current set of centers. The selection can be mathematically represented as x = arg maxx∈U minc∈centers d(x, c)
where centers is the current set of chosen centers and d(x, c) is the distance between point x and center c.
Although various metrics can be used to compute this distance, we opt for the Euclidean distance since it is
widely used in this context.

Remark. These criteria are standard, and our contributions are orthogonal to the choice of acquisition score.
Alternative or learned scores can be seamlessly integrated into our pipeline; see Supplementary Materials 8.5,
8.13 for more details.

4.3 Training of Pruned Model

Once we have selected the samples from U , they are annotated to get their respective labels. These freshly
labeled samples are assimilated into the labeled dataset L. At the start of each training cycle, a fresh pruned

5

Under review as submission to TMLR

model θp is generated. Training from scratch in every iteration is vital to prevent the model from developing
spurious correlations or overfitting to specific samples (Coleman et al., 2020). This further ensures that
the model learns genuine patterns in the updated labeled dataset without carrying over potential biases
from previous rounds. The training process adheres to a typical deep learning paradigm. Given the dataset
L with samples (xi, yi), the aim is to minimize the loss function: L(θp, L) = 1

|L|
∑|L|

i=1 Li(θp, xi, yi), where
Li denotes the individual loss for the sample xi. Training unfolds over multiple iterations (or epochs). In
each iteration, the weights of θp are updated using backpropagation with an optimization algorithm such as
stochastic gradient descent (SGD).

This process is inherently iterative, as in standard Active Learning. After each round of training, new samples
are chosen, annotated, and the model is reinitialized and retrained from scratch. This cycle persists until
certain stopping criteria, e.g., labeling budget or desired performance, are met. With the incorporation of
new labeled samples at every stage, θ∗

p progressively refines its performance, becoming better suited for the
subsequent data selection phase.

4.4 Fusion with the Original Model

ϴ

(a) θ trajectory

ϴ𝒑ϴ𝒑
∗

(b) θp trajectory

ϴ𝑭=Fuse(ϴ, ϴ𝒑
∗) ϴ

ϴ𝒑
∗

(c) θF with a refined trajectory due to fusion

Figure 2: Evolution of training trajectories. Con-
ceptual illustration of how Pruning θ to θp tailors the loss
landscape from 2a to 2b, allowing θp to converge on an
effective configuration, denoted as θ∗

p. This model, θ∗
p, is

later fused with the original θ, which provides a better
initialization and yeilding and improved trajectory for θF

to follow, as depicted in 2c.

After achieving the predetermined budget, the next
phase is to integrate the insights from the trained
pruned model θ∗

p into the untrained original model θ.
This step is crucial, as it amalgamates the learned
knowledge from the pruned model with the expansive
architecture of the original model, aiming to harness
the best of both worlds.

Rationale for Fusion. Traditional pruning and
fine-tuning methods often involve training a large
model, pruning it down, and then fine-tuning the
smaller model. While this is effective, it does not fully
exploit the potential benefits of the larger, untrained
model. The primary reason is that the pruning pro-
cess might discard useful structures and connections
within the original model that were not yet leveraged
during initial training. By fusing the trained pruned
model with the untrained original model, we aim to
create a model that combines the learned knowledge
by θ∗

p with the broader, unexplored model θ.

The Fusion Process. Fusion transfers the trained parameters of the pruned selector θ∗
p into the corresponding

coordinates of the original (untrained) dense model θ, producing the fused model,

θF = Fuse(θ, θ∗
p).

We view θ as a sequence of layers j = 1, . . . , L. For each layer j, structured pruning at initialization selects a
subset of output-channel indices Ij ⊆ {1, . . . , C

(j)
out} and, by architectural coherence, the pruned layer θ∗

p is
isomorphic to the sub-tensor of the dense layer indexed by [Ij × Ij−1] (with I0 = {1, . . . , C

(1)
in }, e.g., RGB

channels). Instead of a coordinate copy, one may spread the trained pruned weights across multiple dense
coordinates via a layer-wise dispersion map Dj :

W
(j)
F ← Dj

(
W

(j)
p∗

)︸ ︷︷ ︸
expanded onto (C

(j)
out,C

(j)
in)

⊙ Mj + W
(j)
init ⊙ (1−Mj),

where Mj is a binary mask that indicates where the dispersed weights land. Further details on the exact
implementation of Fusion for Convolutional and Linear layers are provided in Supplementary Materials 8.4.

6

Under review as submission to TMLR

Advantages of Retaining Unaltered Weights. By copying the weights from the trained pruned model θ∗
p

into their corresponding locations within the untrained original model θ, and leaving the remaining weights
of θ yet to be trained, we create a unique blend. The weights from θ∗

p encapsulate the knowledge acquired
during training, providing a warm-start (better initialization). Meanwhile, the rest of the untrained weights
in θ offer an element of randomness. We consider various initialization strategies for the remaining weights
after fusion, including retaining initial weights, zero initialization and random re-initialization (implemented
in PruneFuse) and ablation is provided in Table 18 of the Supplementary Materials. Fig. 2 illustrates the
conceptual transformation in training trajectories resulting from the fusion process. We empirically validate
this in Fig. 4, where this fused initialization in the dense model θF results in better performance than training
the original model in isolation.

Table 1: Components of PruneFuse.

Component Required

Pruning at Initialization ✓

Fusion (weight transfer) ✓

Synchronization interval (T_sync) Optional

Knowledge Distillation Optional

It is important to highlight that fusion is fundamentally different from
Knowledge Distillation (KD), where the information is transferred
iteratively through an auxiliary training objective on outputs/logits
from a teacher to a student model. In contrast, fusion in PruneFuse
is a one-shot initialization technique that uniquely integrates the
training compute spent on the selector into the target via aligned
weight reuse. Based on the strategy discussed until now, we show
that PruneFuse already outperforms baseline AL (results provided
in the Supplementary Materials 8.7). However, since our trained pruned model can act as a teacher for the
target model, it is natural to integrate KD in PruneFuse. Hence, we use KD as an optional refinement in
PruneFuse to further leverage the insights learned during the selection process.

4.5 Refinement of the Fused Model

During the fine-tuning of the fused model θF , we use: i) Cross-Entropy Loss, which quantifies the divergence
between the predictions of θF and the actual labels in dataset L, and ii) Distillation Loss (optional), which
measures the difference in the softened logits of θF and θ∗

p. These softened logits are derived by tempering
logits of θ∗

p, which in our case is the teacher model, with a temperature parameter before applying the
softmax function. The composite loss for the fine-tuning phase is formulated as a weighted average of both
losses. The iterative enhancement of θF is governed by: θ

(t+1)
F = θ

(t)
F − α∇

θ
(t)
F

(λLCross Entropy(θ(t)
F , L) + (1−

λ)LDistillation(θ(t)
F , θ∗

p)). Here, α represents the learning rate, while λ functions as a coefficient to balance the
contributions of the two losses. Incorporating KD in the fine-tuning phase aims to harness the insights of the
pruned model θ∗

p. By doing so, our objective is to ensure that the fused model θF not only retains the trained
weights of the pruned model but also reinforces this knowledge iteratively, optimizing the performance of θF

in subsequent tasks.

4.6 Iterative Pruning of Fused Model

PruneFuse introduces a strategy to dynamically update the pruned model, θp, from the trained fused model
θ∗

F at predefined intervals Tsync. In each AL cycle, the pruned model θp, obtained by pruning a randomly
initialized network, is trained on the labeled dataset L and subsequently employed to score the unlabeled
data U . At every Tsync cycle, the pruned model θp is obtained by pruning the trained fused model θ∗

F ,
which is then fine-tuned with L to get θ∗

p and later employed to score the U in the subsequent rounds. By
periodically synchronizing the pruned model with the fused model at regular Tsync intervals, PruneFuse
effectively balances computational efficiency with data selection precision. This iterative refinement process
enables the pruned model to leverage the robust architecture of the fused model, allowing it to evolve
dynamically with each cycle and leading to continuous performance improvements. As a result, PruneFuse
achieves a better trade-off between accuracy and efficiency, enhancing the AL process while maintaining
computational viability.Fig. 1 summarizes the core components of the PruneFuse pipeline, distinguishing
essential elements from optional design choices. Pruning at initialization and weight-aligned fusion form the
core of PruneFuse, while synchronization frequency and knowledge distillation are optional components that
trade off computation and performance in practice.

7

Under review as submission to TMLR

5 Error Decomposition for PruneFuse

We analyze a standard subset representativeness gap on the finite pool D (akin to coreset-style analyses in
active learning (Sener & Savarese, 2018b)). Let θ t denote the dense target model at cycle t (i.e., the dense
model after fusion/fine-tuning when synchronization is performed), let θ t

p denote the pruned selector used
for acquisition at cycle t, and let sp ⊆ D be the subset it selects, with |D| = n and |sp| = m. We study the
discrepancy between the average loss of θ t on sp and on the full dataset D:

∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈Dl(x, y; θ t)

∣∣ =

∣∣∣∣∣∣ 1
m

∑
(xi,yi)∈sp

l(xi, yi; θ t)− 1
n

n∑
i=1

l(xi, yi; θ t)

∣∣∣∣∣∣ . (3)

Assumption 5.1. The loss function l(x, y; θ) is Lipschitz continuous with respect to the model parameters θ,
i.e., there exists L ≥ 0 such that

|l(x, y; θ1)− l(x, y; θ2)| ≤ L∥θ1 − θ2∥. (4)

This regularity condition is assumed to hold locally on the region of parameter space explored during training
(e.g., between θ t and θ t

p), and is used only to relate parameter mismatch to loss mismatch.

Assumption 5.2. At cycle t, the subset sp ⊆ D returned by the acquisition rule using the pruned selector θ t
p

is a δ–core-set for D with respect to θ t
p (in terms of average loss), i.e. there exists δ ≥ 0 such that∣∣E(x,y)∈sp

[
l(x, y; θ t

p)
]
− E(x,y)∈D

[
l(x, y; θ t

p)
]∣∣ ≤ δ, (5)

with probability at least 1− η over any randomness in the selection procedure.

Assumption 5.3. After each synchronization step, the pruned selector θ t
p used for data acquisition is derived

from the dense target model θ t such that:
∥θ t

p − θ t∥ ≤ ρt, (6)

for some nonnegative quantity ρt (which may depend on t, the pruning ratio, and the synchronization policy).

Theorem 5.1. Under Assumptions 5.1–5.3, with probability at least 1− η,∣∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈Dl(x, y; θ t)

∣∣∣ ≤ δ + 2Lρt. (7)

The bound decomposes the representativeness error into two terms: an intrinsic acquisition error (δ) and an
additional proxy–target mismatch term (2Lρt). PruneFuse uses synchronization to promote proxy–target
alignment and help control this mismatch, so that the selection by the pruned model more closely resembles
selection performed with the target model. A proof of the bound, along with further discussion and empirical
validation, is provided in the Supplementary Materials (Sec. 8.2 and Table 8).

6 Experiments

6.1 Experimental Setup

Datasets. The effectiveness of our approach is assessed on different image classification datasets: CIFAR-10
(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet-200 (Le & Yang, 2015), and
ImageNet-1K (Deng et al., 2009). CIFAR-10 is partitioned into 50,000 training and 10,000 test samples,
CIFAR-100 contains 100 classes and has 500 training and 100 testing samples per class, whereas TinyImageNet-
200 contains 200 classes with 500 training, 50 validation, and 50 test samples per class. ImageNet-1K consists
of 1,000 classes with approximately 1.2 million training images and 50,000 validation images, providing

8

Under review as submission to TMLR

Table 2: Performance comparison of Baseline and PruneFuse on CIFAR-10, CIFAR-100, Tiny ImageNet-200
and ImageNet-1K. This table summarizes the top-1 test accuracy of the final model (original in case of AL and
Fused in PruneFuse) and computational cost of the data selector (in terms of FLOPs) for various pruning ratios (p)
and labeling budgets(b). Params corresponds to the number of parameters of the data selector model. All results
use Least-Confidence sampling with Tsync =0. ResNet-56 is utilized for CIFAR-10/100, while ResNet-50 is used for
Tiny-ImageNet and ImageNet-1K. Results better than the Baseline are highlighted in Bold.

↑ Accuracy (%) ↓ Computation (×1016)

Budget (b) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Method Params CIFAR-10

Baseline (AL) 0.85 M 80.53±0.20 87.74±0.15 90.85±0.11 92.24±0.16 93.00±0.11 0.31 1.76 4.64 8.94 14.66
PruneFuse p=0.5 0.21 M 80.92±0.41 88.35±0.33 91.44±0.15 92.77±0.03 93.65±0.14 0.08 0.44 1.16 2.24 3.67
PruneFuse p=0.6 0.14 M 80.58±0.33 87.79±0.20 90.94±0.13 92.58±0.31 93.08±0.42 0.05 0.28 0.74 1.43 2.35
PruneFuse p=0.7 0.08 M 80.19±0.45 87.88±0.05 90.70±0.21 92.44±0.24 93.40±0.11 0.03 0.16 0.42 0.80 1.32
PruneFuse p=0.8 0.03 M 80.11±0.28 87.58±0.14 90.50±0.08 92.42±0.41 93.32±0.14 0.01 0.07 0.18 0.36 0.58

Method Params CIFAR-100

Baseline (AL) 0.86 M 35.99±0.80 52.99±0.56 59.29±0.46 63.68±0.53 66.72±0.33 0.31 1.77 4.67 9.00 14.76
PruneFuse p=0.5 0.22 M 40.26±0.95 53.90±1.06 60.80±0.44 64.98±0.40 67.87±0.17 0.08 0.44 1.17 2.26 3.70
PruneFuse p=0.6 0.14 M 37.82±0.83 52.65±0.40 60.08±0.22 63.70±0.25 66.89±0.46 0.05 0.28 0.75 1.44 2.36
PruneFuse p=0.7 0.08 M 36.76±0.63 52.15±0.53 59.33±0.17 63.65±0.36 66.84±0.43 0.03 0.16 0.42 0.81 1.34
PruneFuse p=0.8 0.04 M 36.49±0.20 50.98±0.54 58.53±0.50 62.87±0.13 65.85±0.32 0.01 0.07 0.19 0.37 0.60

Method Params Tiny-ImageNet-200

Baseline (AL) 23.9 M 14.86±0.11 33.62±0.52 43.96±0.22 49.86±0.56 54.65±0.38 0.50 2.73 7.11 13.64 22.32
PruneFuse p=0.5 6.10 M 18.71±0.21 39.70±0.31 47.41±0.20 51.84±0.10 55.89±1.21 0.13 0.70 1.81 3.48 5.69
PruneFuse p=0.6 3.92 M 19.25±0.72 38.84±0.70 47.02±0.30 52.09±0.29 55.29±0.28 0.08 0.45 1.16 2.23 3.66
PruneFuse p=0.7 2.24 M 18.32±0.95 39.24±0.75 46.45±0.58 52.02±0.65 55.63±0.55 0.05 0.26 0.67 1.28 2.09
PruneFuse p=0.8 1.02 M 18.34±0.93 37.86±0.42 47.15±0.31 51.77±0.40 55.18±0.50 0.02 0.12 0.30 0.58 0.95

Method Params ImageNet-1K

Baseline (AL) 25.5 M 52.97±0.20 64.52±0.46 69.30±0.15 71.98±0.11 73.56±0.16 6.88 37.34 97.28 186.70 305.60
PruneFuse p=0.5 6.91 M 55.03±0.33 65.12±0.31 69.72±0.17 72.07±0.28 73.86±0.55 1.86 10.10 26.30 50.47 82.62
PruneFuse p=0.6 4.59 M 54.69±0.93 65.13±0.55 69.74±0.38 72.48±0.33 74.00±0.68 1.24 6.71 17.47 33.53 54.88
PruneFuse p=0.7 2.74 M 53.73±0.71 64.43±0.65 68.95±0.41 71.81±0.31 73.84±0.29 0.74 4.00 10.43 20.01 32.76
PruneFuse p=0.8 1.35 M 53.08±0.22 64.00±0.17 69.00±0.90 71.79±0.81 73.64±0.52 0.36 1.97 5.14 9.86 16.14

a comprehensive benchmark for evaluating large-scale image classification models. We also extend our
experiments to text datasets (Amazon Review Polarity and Amazon Review Full) (Zhang & LeCun, 2015;
Zhang et al., 2015) and to out-of-distribution (OOD) benchmark to assess generalization (results provided in
Supplementary Materials 8.5).
Implementation Details. We used various model architectures: ResNet (ResNet-50, ResNet-56, ResNet-110,
and ResNet-164), Wide-ResNet, VDCNN, and Vision Transformers (ViT) in our experiments. We pruned
these architectures using the Torch-Pruning library (Fang et al., 2023) for different pruning ratios p =
0.5, 0.6, 0.7, and 0.8 to get the pruned architectures. We ran these experiments for 181 epochs following the
setup in Coleman et al. (2020) for CIFAR-10 and CIFAR-100 and for 100 epochs for TinyImageNet-200 and
ImageNet-1K. We used a mini-batch of 128 for CIFAR-10 and CIFAR-100 and 256 for TinyImageNet-200 and
ImageNet-1K. Further details are provided in Supplementary Materials 8.3. We consider AL as a baseline for
the proposed technique. Initially, we start by randomly selecting 2% of the data. For the first round, we add
8% from the unlabeled set, then 10% in each subsequent round, until the required budget b is met. After each
round, we retrain the models from scratch, as described in the methodology. All experiments were carried out
independently three times, and the mean is reported. Detailed experiments on various model architectures,
datasets, labeling budgets, and data selection metrics are provided in Supplementary Materials 8.5. We also
provide detailed Complexity Analysis and Error Analysis for PruneFuse in Supplementary Materials 8.1 and
8.2, respectively.

6.2 Results and Discussions

Main Experiments. Table 2 benchmarks PruneFuse against the standard AL pipeline across different
datasets. PruneFuse attains comparable or higher top-1 accuracy while consuming only a fraction of the

9

Under review as submission to TMLR

0 2 4 6 8 10 12 14 16
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse (T

sync
=0)

PruneFuse (T
sync

=1)

0 2 4 6 8 10 12 14 16
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse (T

sync
=0)

PruneFuse (T
sync

=1)

0 2 4 6 8 10 12 14 16
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse (T

sync
=0)

PruneFuse (T
sync

=1)

0 2 4 6 8 10 12 14 16
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse (T

sync
=0)

PruneFuse (T
sync

=1)

(a) p = 0.5 (b) p = 0.6 (c) p = 0.7 (d) p = 0.8

Figure 3: Accuracy-cost trade-off for PruneFuse. This figure illustrates the total number of FLOPs utilized by
PruneFuse for data selection, compared to the baseline Active Learning method, for Tsync=0, 1 with labeling budgets
b = 10%, 30%, 50%. The experiments are conducted on the CIFAR-10 dataset using the ResNet-56 architecture.
Subfigures (a), (b), (c), and (d) correspond to different pruning ratios of 0.5, 0.6, 0.7, and 0.8, respectively.

Table 3: Comparison with baselines: Final top-1 test accuracy and cumulative selector cost for different label
budgets compared with baselines for ResNet-56 on CIFAR-10.

Method Params ↑ Accuracy (%) ↓ Computation (×1016 FLOPs)

Budget (b) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Baseline (AL) 0.85 M 80.53±0.20 87.74±0.15 90.85±0.11 92.24±0.16 93.00±0.11 0.31 1.76 4.64 8.94 14.66
SVP 0.26 M 80.76±0.70 87.31±0.56 90.77±0.45 92.59±0.25 92.95±0.33 0.10 0.56 1.47 2.84 4.66

PruneFuse (Tsync=0) 0.21 M 80.92±0.41 88.35±0.33 91.44±0.15 92.77±0.03 93.65±0.14 0.08 0.44 1.16 2.24 3.67
PruneFuse (Tsync=2) 0.21 M 80.90±0.21 88.40±0.46 91.55±0.63 93.05±0.36 93.74±0.44 0.08 1.17 1.89 5.14 6.58
PruneFuse (Tsync=1) 0.21 M 81.02±0.46 88.52±0.37 91.76±0.08 93.15±0.18 93.78±0.45 0.08 1.17 3.34 6.60 10.94

BALD 0.85 M 80.61±0.24 88.11±0.41 91.21±0.56 92.98±0.81 93.36±0.62 0.34 1.81 4.71 9.03 14.77
PruneFuse (Tsync=1) + BALD 0.21 M 80.71±0.46 88.38±0.37 91.44±0.55 93.16±0.21 93.58±0.07 0.08 1.18 3.36 6.62 10.97

ALSE 0.85 M 80.73±0.32 88.13±0.41 90.99±0.56 92.58±0.63 93.13±0.75 0.41 1.96 4.92 9.29 15.08
PruneFuse (Tsync=0) + ALSE 0.21 M 80.80±0.51 88.17±0.35 91.43±0.45 93.02±0.55 93.19±0.61 0.10 0.49 1.23 2.32 3.70

computational resources measured in terms of FLOPs when computed for the whole training duration of the
pruned network and the selection process for different label budgets. On CIFAR-10, with a pruned model
(p=0.7), PruneFuse achieves similar or superior performance compared to the baseline, while reducing selector
cost by more than 90% (e.g. 1.32 vs. 14.66×1016 FLOPs at b=50%). Similarly, on CIFAR-100 with (p = 0.5
at b=50%), PruneFuse outperforms baseline’s accuracy by 1% while reducing 73% of the computational costs.
The advantage becomes even more pronounced on the larger benchmarks. For Tiny-ImageNet, an aggressively
pruned selector (p=0.8) lifts accuracy from 54.65% to 55.18% while reducing selector computation by 96%.
Similarly, on ImageNet-1K, with the same pruning ratio, PruneFuse attains 73.64% (baseline 73.56%) yet
requires 95% less computation. These results show that PruneFuse achieves a superior accuracy–cost trade-off
compared to a typical AL pipeline.

We further investigated how the synchronization interval Tsync shapes the accuracy–cost trade-off. Fig. 3
plots top-1 accuracy versus cumulative selector FLOPs for four pruning ratios using Tsync = 0, 1 (the pruned
selector is updated from the finetuned fused model after every AL round). In all cases, PruneFuse lies on
a superior accuracy–cost curve compared with the AL baseline. Even the lightest variant (p=0.8) achieves
baseline-level accuracy while spending only one-tenth of the computation, and the configuration with Tsync = 1
delivers the best overall trade-off.

While PruneFuse introduces additional engineering components, such as structured pruning(at initialization
or synchronization) and fusion during training, their associated costs are explicitly bounded and amortized
over multiple active learning rounds (Section 8.1). In practice, this overhead is outweighed by substantial
reductions in cumulative selector cost together with improved accuracy, as evidenced by the results in Table
2, Table 3 and Fig. 3.

Comparison with Baselines.

Table 3 compares PruneFuse with several prominent active learning baselines, including SVP, ALSE (Jung
et al., 2023), and BALD. We evaluate all methods under a canonical protocol: they share the same target
architecture (e.g. ResNet-56) for final training and evaluation, the same labeled budgets, and the same
target training schedule. Baselines follow the acquisition procedures described in the original works and

10

Under review as submission to TMLR

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

10

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

10

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

(a) p = 0.5 (b) p = 0.6 (c) p = 0.7

Figure 4: Impact of Model Fusion on PruneFuse performance: This figure compares the accuracy over epochs
for different training variants within the PruneFuse framework on CIFAR-10 with ResNet-56. We compare fusion only,
knowledge distillation (KD) only, fusion with KD, and training without fusion and KD. Subfigures (a), (b), and (c)
correspond to p = 0.5, 0.6, and 0.7, respectively, for b = 30%.

Table 4: Evaluation on Coreset Selection task: Baseline vs. PruneFuse (p = 0.5 and Tsync = 0) with Various
Selection Metrics including Forgetting Events (Toneva et al., 2019), Moderate (Xia et al., 2023), and CSS (Zheng
et al., 2023) on CIFAR-10 dataset using ResNet-56 architecture.

Method
Model Params Selection Metric
Data Target Budget Entropy Least Forgetting Moderate CSSSelector Model (b) Conf. Events

Baseline 0.85M 0.85M 25% 86.13±0.41 86.50±0.21 86.01±0.71 86.27±0.65 87.21±0.68
PruneFuse 0.21M 0.85M 86.71±0.44 86.68±0.42 87.84±0.09 87.63±0.31 88.85±0.29

Baseline 0.85M 0.85M 50% 91.41±0.21 91.28±0.35 93.31±0.76 90.97±0.55 90.68±0.35
PruneFuse 0.21M 0.85M 92.24±0.45 92.75±0.65 93.40±0.19 91.08±0.49 90.79±0.51

are adapted only to fit this shared pipeline. The methods therefore differ only in the selector used for
acquisition, as defined by each approach: SVP uses a smaller proxy network, whereas BALD and ALSE use
the full target model as the selector. Specifically, SVP employs ResNet-20 (0.26M parameters) as the closest
(parameter-wise) standard proxy to PruneFuse, which uses a 50% pruned ResNet-56 (0.21M parameters) as
its selector. ALSE utilizes 5 snapshots of the data selector model at various training steps for data selection,
and BALD uses Bayesian uncertainty with the full target model for selection. demonstrate that PruneFuse
consistently outperforms SVP across all label budgets. For example, PruneFuse peaks at 93.65% at b=50%
compared to SVP with 92.95%, while having significantly lower computational costs (21% lower than SVP
and 75% lower than the baseline). PruneFuse with iterative pruning of the fused model shows even better
performance, reaching 93.78% and 93.74% accuracy with Tsync = 1 and 2 at 50% label budget, respectively,
offering a trade-off between computational efficiency and accuracy. BALD demonstrates competitive results at
higher label budgets (e.g., 93.36% at b=50%). However, BALD can be seamlessly integrated with PruneFuse.
Capitalizing on the strengths of both methods, PruneFuse + BALD yields improved performance of 93.58%
at 50% label budget while consuming 26% less computation. Similarly, PruneFuse + ALSE also results in
better performance while having 4× less computation compared to ALSE.

Table 4 compares the performance of PruneFuse on the Coreset Selection task against various recent works.
In this setup, the network is first trained on the entire dataset and then identifies a representative subset
of data (coreset) based on the selection metric. The accuracy of the target model trained on that selected
coreset is reported. The results show that PruneFuse seamlessly integrates with these advanced selection
metrics, achieving competitive or superior performance compared to the baselines while being computationally
inexpensive. This highlights the versatility of PruneFuse in enhancing existing coreset selection techniques.

Additional Experiments and Ablation Studies. Table 5 demonstrates results for Vision Transformers
(21M params). Results show that PruneFuse consistently outperforms AL baseline across all label budgets
for both CIFAR-10 and CIFAR-100, despite using small selector models. On CIFAR-10, PruneFuse with
p=0.5 yields strong gains at low budgets (e.g., +5.69 points at b=10%) and maintains improvements even at
higher budgets (e.g., +3.05 points at b=50%). The gains are more visible on CIFAR-100 (+10.25 points at
b=10%) and offers consistent 3–4 point improvements at larger budgets.

11

Under review as submission to TMLR

Table 5: Performance Comparison of Baseline and PruneFuse on
CIFAR-10 and CIFAR-100 with Vision Transformers (ViT). This
table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p) and labeling
budgets (b).

CIFAR-10 CIFAR-100
Method Label Budget (b) Label Budget (b)

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Baseline (AL) 53.63 65.62 71.09 76.86 80.59 36.59 52.19 58.59 63.8 64.02

PruneFuse (p = 0.5) 59.32 71.63 75.61 81.50 83.64 46.84 57.16 62.56 65.8 67.75
PruneFuse (p = 0.6) 57.80 70.45 75.22 80.22 82.77 45.60 56.04 61.09 65.01 67.24
PruneFuse (p = 0.7) 56.17 69.25 73.87 79.47 82.15 44.46 55.36 60.99 64.47 66.85

We also extend our evaluation beyond
vision tasks. Table 6 delineates experi-
ments on text classification using VDCNN
for Amazon Review Polarity and Amazon
Review Full. PruneFuse again improves
on the AL baseline in all pruning ratios
and label budgets. In the case of Ama-
zon Review Polarity, PruneFuse delivers
consistent gains (e.g., 94.13→94.66% at
b=10%, and 95.71→ 95.87% at b=50%).
On the other hand, the improvements are
greater for the Amazon Full dataset: with
p=0.5, PruneFuse improves the baseline
by 0.8–1.0 points across all budgets, and
even with p=0.8 it continues to match or
surpass the unpruned model.

Table 6: Performance comparison of Baseline and PruneFuse on
Amazon Review Polarity Dataset and Amazon Review Full Dataset
with VDCNN Architecture. This table summarizes the test accuracy
of final models (original in case of AL and Fused in PruneFuse) for
various pruning ratios (p) and labeling budgets (b).

Amazon Review Polarity Amazon Review Full
Method Label Budget (b) Label Budget (b)

10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Baseline (AL) 94.13 95.06 95.54 95.73 95.71 58.46 60.65 61.50 62.20 62.43

PruneFuse (p = 0.5) 94.66 95.45 95.71 95.87 95.87 59.45 61.28 62.02 62.66 62.84
PruneFuse (p = 0.6) 94.62 95.38 95.69 95.82 95.88 59.28 61.14 62.08 62.62 62.81
PruneFuse (p = 0.7) 94.47 95.43 95.71 95.83 95.84 59.42 61.05 61.98 62.48 62.85
PruneFuse (p = 0.8) 94.33 95.37 95.63 95.79 95.85 59.24 61.05 61.94 62.45 62.77

Fig. 4 provides a joint component abla-
tion that disentangles the effects of weight-
aligned fusion and knowledge distillation
(KD). Specifically, for each pruning ratio,
we train the same dense target model un-
der an identical training schedule on the
data selected by the pruned model, and
compare four variants: (i) No fusion / No
KD. (ii) KD only, (iii) Fusion w/o KD,
and (iv) Fusion + KD. Across pruning ratios, fusion (with or without KD) consistently accelerates convergence
relative to training from scratch on the same selected subset, indicating that the primary gain arises from
reusing the trained selector parameters as a warm-start initialization. KD provides an additional, complemen-
tary improvement in several settings, but is not required for PruneFuse to outperform training-from-scratch
on the same selected subset. Further implementation details and additional ablations are provided in the
Supplementary Materials (Sec. 8.6)

Table 7: Effect of Pruning techniques and Pruning
criteria on PruneFuse (p = 0.5) on CIFAR-10 with ResNet-
56.

Method Pruning Criteria Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) - 80.53 87.74 90.85 92.24 93.00

PruneFuse (Tsync = 0) Magnitude Imp. 79.73 87.16 91.08 92.29 93.19
GroupNorm Imp. 80.10 88.25 91.01 92.25 93.74

(Dynamic Pruning) LAMP Imp. 81.51 87.45 90.64 92.41 93.25

PruneFuse (Tsync = 0) Magnitude Imp. 80.92 88.35 91.44 92.77 93.65
GroupNorm Imp. 80.84 88.20 91.19 93.01 93.03

(Static Pruning) LAMP Imp. 81.10 88.37 91.32 93.02 93.08

PruneFuse (Tsync = 1) Magnitude Imp. 81.23 88.52 91.76 93.15 93.78
GroupNorm Imp. 81.09 88.77 91.77 93.19 93.68

(Static Pruning) LAMP Imp. 81.86 88.51 92.10 93.02 93.63

Table 7 demonstrates the impact of different pruning
techniques (e.g., static pruning, dynamic pruning)
and pruning criteria (e.g., L2 norm, GroupNorm Im-
portance, LAMP Importance Fang et al. (2023)) on
the performance of PruneFuse. Static pruning in-
volves pruning the entire network at once at the start
of training, whereas dynamic pruning incrementally
prunes the network in multiple steps during train-
ing. In our implementation of dynamic pruning, the
network is pruned in five steps over the course of
20 epochs. Results indicate that PruneFuse exhibits
only minor performance variations (generally within
1–2% across label budgets), demonstrating that PruneFuse is highly flexible to various pruning strategies and
criteria while maintaining strong performance in data selection tasks.

7 Conclusion
In this work, we present PruneFuse, a novel strategy that integrates pruning with network fusion to optimize
the data selection pipeline for deep learning. PruneFuse leverages a small pruned model for data selection,
which then seamlessly fuses with the original model, providing faster training, better generalization, and
significantly reduced computational costs. It consistently outperforms existing baselines while offering a
scalable, practical, and flexible solution in resource-constrained settings.

12

Under review as submission to TMLR

References
Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,

Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. The
Eighth International Conference on Learning Representations, 2020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4943–4953, 2019.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. Advances in neural information processing systems, 30, 2017.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq-v2:
Hessian aware trace-weighted quantization of neural networks. Advances in neural information processing
systems, 33:18518–18529, 2020.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any structural
pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16091–16101, 2023.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neural networks
at initialization: Why are we missing the mark? The Ninth International Conference on Learning
Representations, 2021.

Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential examples: Active learning with
expected model output changes. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pp. 562–577. Springer, 2014.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1183–1192. JMLR.
org, 2017.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances in neural
information processing systems, 29, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. The forth International Conference on Learning
Representations, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2704–2713,
2018.

13

Under review as submission to TMLR

Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish Tendulkar, Rishabh Iyer, and Abir De. Efficient data
subset selection to generalize training across models: Transductive and inductive networks. Advances in
Neural Information Processing Systems, 36, 2023.

Seohyeon Jung, Sanghyun Kim, and Juho Lee. A simple yet powerful deep active learning with snapshots
ensembles. In The Eleventh International Conference on Learning Representations, 2023.

Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Active and continuous exploration
with deep neural networks and expected model output changes. arXiv preprint arXiv:1612.06129, 2016.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-
match: Gradient matching based data subset selection for efficient deep model training. In International
Conference on Machine Learning, pp. 5464–5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Subramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: A general-
ization based data selection framework for efficient and robust learning. AAAI, 2021b.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acquisition for
deep bayesian active learning. Advances in neural information processing systems, 32, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning based on
connection sensitivity. The Seventh International Conference on Learning Representations, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Proceedings of the IEEE international conference on
computer vision, pp. 2736–2744, 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440, 2015.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey. Faster
cnns with direct sparse convolutions and guided pruning. The Fifth International Conference on Learning
Representations, 2017.

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of magnitude-
based pruning. The Eighth International Conference on Learning Representations, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28, 2015.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural network
pruning. The Eighth International Conference on Learning Representations, 2020.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. The
Sixth International Conference on Learning Representations, 2018a.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018b.

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6(1):1–114,
2012.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379–423, 1948.

14

Under review as submission to TMLR

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod, and Animashree Anandkumar. Deep active
learning for named entity recognition. In Proceedings of the 2nd Workshop on Representation Learning for
NLP. Association for Computational Linguistics, 2018.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness
of data in deep learning era. In Proceedings of the IEEE international conference on computer vision, pp.
843–852, 2017.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks without
any data by iteratively conserving synaptic flow. Advances in neural information processing systems, 33:
6377–6389, 2020.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
Gordon. An empirical study of example forgetting during deep neural network learning. arXiv preprint
arXiv:1812.05159, 2019.

Joost van Amersfoort, Milad Alizadeh, Sebastian Farquhar, Nicholas Lane, and Yarin Gal. Single shot
structured pruning before training. arXiv preprint arXiv:2007.00389, 2020.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu, Matthew
Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for spatial and channel
dimensions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.

Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning from
scratch. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 12273–12280,
2020.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal method
of data selection for real-world data-efficient deep learning. In The Eleventh International Conference on
Learning Representations, 2023.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language models via
importance resampling. Advances in Neural Information Processing Systems, 36:34201–34227, 2023.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and
Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8715–8724, 2020.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. Advances in neural information processing
systems, 32, 2019.

Yang Yu, Kai Han, Hang Zhou, Yehui Tang, Kaiqi Huang, Yunhe Wang, and Dacheng Tao. LLM data
selection and utilization via dynamic bi-level optimization. In Forty-second International Conference on
Machine Learning, 2025.

Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient pretraining
with data influence models. Advances in Neural Information Processing Systems, 37:108735–108759, 2024.

Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint arXiv:1502.01710, 2015.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
Advances in neural information processing systems, 28, 2015.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high pruning
rates. arXiv preprint arXiv:2210.15809, 2023.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

15

Under review as submission to TMLR

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

16

Under review as submission to TMLR

8 Supplementary Materials

This Supplementary Material provides additional details, analyses, and results to complement the main paper.
The content is organized into the following subsections:

1. Complexity Analysis (8.1): A detailed breakdown of the computational complexity of PruneFuse
and its components.

2. Error Analysis for PruneFuse (8.2): An error analysis outlining theoretical guarantees for the
proposed framework.

3. Implementation Details (8.3): Specific details about the experimental setup, hyperparameters,
and configurations used in our experiments.

4. Details of the Fusion Process (8.4): Specific details about the fusion process of PruneFuse.

5. Performance Comparison with Different Datasets, Selection Metrics, and Architectures
(8.5): Results demonstrating PruneFuse’s adaptability across datasets and architectures.

6. Ablation Study of Fusion (8.6): Analysis of the impact of the fusion process on PruneFuse’s
performance.

7. Ablation Study of Knowledge Distillation in PruneFuse (8.7): An evaluation of the role of
knowledge distillation in improving performance.

8. Comparison with SVP (8.8): A comparison highlighting differences and improvements over the
SVP baseline.

9. Ablation Study on the Number of Selected Data Points (k) (8.9): Investigation of how
varying k affects PruneFuse’s performance.

10. Impact of Early Stopping on Performance (8.10): Evaluation of the utility of early stopping
when integrated with PruneFuse.

11. Performance Comparison Across Architectures and Datasets (8.11): Additional results
comparing PruneFuse’s performance on various architectures and datasets.

12. Performance at Lower Pruning Rates (8.12): Results demonstrating PruneFuse’s effectiveness
at lower pruning rates.

13. Comparison with Recent Coreset Selection Techniques (8.13): Evaluation of PruneFuse’s
performance with recent coreset selection methods.

14. Effect of Various Pruning Strategies and Criteria (8.14): Analysis of different pruning
techniques and criteria on PruneFuse’s performance.

15. Detailed Runtime Analysis of PruneFuse (8.15): A detailed runtime analysis of PruneFuse
compared to baseline methods.

Each section provides additional insights, evaluations, and experiments to further validate and explain the
effectiveness of the proposed approach.

17

Under review as submission to TMLR

8.1 Complexity Analysis

Given P and N represent the total number of parameters in the pruned and dense model, where P ≪ N , the
computational costs can be summarized as follows:

Initial Training on s0:

PruneFuse: O (|s0| × P × T) + O (P × log P) one time pruning cost
Baseline AL: O (|s0| ×N × T)

Data selection round with current labeled pool L:

PruneFuse: O (|L| × P × T) + O (|U | × P) selection
Baseline AL: O (|L| ×N × T) + O (|U | ×N) selection

Training of the final model on the final labeled set L:

PruneFuse: O (|L| ×N × T) + O (P) one time fusion cost
Baseline AL: O (|L| ×N × T)

Total training complexity:

PruneFuse: O (|s0| × P × T) + O (P × log P) + R× [O (|L| × P × T) + O (|U | × P)]
+ Fsync ∗ [O (|L| ×N × T) + O(P) + O (|L| × P × T) + O (P × log P)]
+ O (|L| ×N × T) + O(P)

Baseline AL: O (|s0| ×N × T) + R× [O (|L| ×N × T) + O (|U | ×N)] + O (|L| ×N × T)

Here T represents the total number of epochs for a training round of AL which in our case is set to 181. U is
the whole unlabeled dataset and R represents the total number of AL rounds. Fsync represents the frequency
of iterative pruning based on the fused model.

We can see that the major training costs in Active Learning (AL) arise from the repeated use of a large,
dense model, which significantly increases computational expenses, especially across multiple rounds of data
selection. By using a smaller surrogate (pruned model) for these rounds, as implemented in PruneFuse, the
training cost and overall computation are reduced substantially. This approach leads to a more efficient
and cost-effective data selection process, allowing for better resource utilization while maintaining high
performance.

8.2 Error Decomposition for PruneFuse

This section provides the proof and additional discussion for Theorem 5.1 in the main paper.

Setup. Let D = {(xi, yi)}n
i=1 be the finite pool and let sp ⊆ D be the subset of size m selected at cycle t

by the pruned selector θ t
p . Let θ t denote the dense target model at cycle t (after fusion/fine-tuning when

synchronization is performed). We analyze the representativeness gap∣∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈Dl(x, y; θ t)

∣∣∣. (8)

Assumption 1. The loss function l(x, y; θ) is Lipschitz continuous with respect to the model parameters θ,
i.e., there exists L ≥ 0 such that

|l(x, y; θ1)− l(x, y; θ2)| ≤ L∥θ1 − θ2∥. (9)

18

Under review as submission to TMLR

This regularity condition is assumed to hold locally on the region of parameter space explored during training
(e.g., between θ t and θ t

p), and is used only to relate parameter mismatch to loss mismatch.
Assumption 2 (δ-coreset under the proxy selector). At cycle t, the subset sp ⊆ D returned by the acquisition
rule using the pruned selector θ t

p is a δ–core-set for D with respect to θ t
p , i.e. there exists δ ≥ 0 such that∣∣E(x,y)∈sp

[
l(x, y; θ t

p)
]
− E(x,y)∈D

[
l(x, y; θ t

p)
]∣∣ ≤ δ, (10)

with probability at least 1− η over any randomness in the selection procedure.
Assumption 3 (Soft synchronization: selector–target proximity). Assume the pruned selector θ t

p used for
data acquisition is close to the dense target model θ t:

∥θ t
p − θ t∥ ≤ ρt, (11)

for some nonnegative quantity ρt.
Theorem 8.1. Under Assumptions 1–3, with probability at least 1− η,∣∣∣E(x,y)∈sp

l(x, y; θ t)− E(x,y)∈Dl(x, y; θ t)
∣∣∣ ≤ δ + 2Lρt. (12)

Proof. Fix a cycle t. Add and subtract expectations under the pruned selector θ t
p and apply the triangle

inequality: ∣∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈Dl(x, y; θ t)

∣∣∣
≤

∣∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈sp

l(x, y; θ t
p)

∣∣∣
+

∣∣∣E(x,y)∈sp
l(x, y; θ t

p)− E(x,y)∈Dl(x, y; θ t
p)

∣∣∣
+

∣∣∣E(x,y)∈Dl(x, y; θ t
p)− E(x,y)∈Dl(x, y; θ t)

∣∣∣.
By Assumption 2, the middle term is at most δ with probability at least 1 − η. By Lipschitz continuity
(Assumption 1), for every (x, y),

|l(x, y; θ t)− l(x, y; θ t
p)| ≤ L∥θ t − θ t

p∥.

Taking expectation over (x, y) ∈ sp yields∣∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈sp

l(x, y; θ t
p)

∣∣∣ ≤ L∥θ t − θ t
p∥.

Applying the same argument over (x, y) ∈ D yields∣∣∣E(x,y)∈Dl(x, y; θ t
p)− E(x,y)∈Dl(x, y; θ t)

∣∣∣ ≤ L∥θ t − θ t
p∥.

Combining the three bounds, with probability at least 1− η,∣∣∣E(x,y)∈sp
l(x, y; θ t)− E(x,y)∈Dl(x, y; θ t)

∣∣∣ ≤ δ + 2L∥θ t − θ t
p∥.

Finally, Assumption 3 implies ∥θ t − θ t
p∥ ≤ ρt, which gives δ + 2Lρt.

Interpretation. The bound in Theorem 8.1 decomposes the representativeness error into two intuitive terms.
The first term, δ, captures the intrinsic selection error of the acquisition rule itself: even when selection is
performed using the target model, uncertainty- or diversity-based active learning methods typically incur
a nonzero approximation gap relative to the full dataset. The second term, 2Lρt, is an additional penalty
arising from performing selection with a proxy model rather than the target. This term quantifies the effect of
proxy–target mismatch and becomes small when the proxy is well aligned with the target. (See section 8.2.1)
Fusion and synchronization in PruneFuse are therefore justified as mechanisms to help control ρt, ensuring
that proxy-based selection behaves similarly to selection performed directly with the target model.

19

Under review as submission to TMLR

8.2.1 Empirical Proxy-Target Alignment

Assumption 3 states that the acquisition proxy remains reasonably aligned with the current target. To assess
this alignment empirically, at cycle t we compare the synchronized proxy θ t

p (obtained by pruning the current
dense target θ t and fine-tuning) against a fresh pruned proxy θ̃ t

p trained from scratch at cycle t on the same
labeled set. Let V be a held-out validation set and let AccV (·) denote top-1 validation accuracy. We report
the target gaps

∆sync
t :=

∣∣AccV (θ t)−AccV (θ t
p)

∣∣ , ∆fresh
t :=

∣∣AccV (θ t)−AccV (θ̃ t
p)

∣∣ .

Our results confirm that the synchronized proxy remains closer to the target than the fresh proxy:

∆sync
t ≤ ∆fresh

t . (13)

This provides an empirical sanity check supporting the proxy–target proximity premise and is consistent
with PruneFuse outperforming other proxy-based AL, where acquisition relies on a fresh proxy trained from
scratch and not kept aligned with the evolving target.

Table 8: Empirical Proxy–Target Alignment This table summarizes performance comparison between the
pruned selector and the fused dense model across label budgets, with and without synchronization on CIFAR-10 with
ResNet-56 for pruning ratio p = 0.5. The rest of experimental setup is held same for fair comparison.

Method Label Budget (b)
10% 20% 30% 40% 50%

Data Selector (θ̃P) 78.09 84.62 88.08 89.60 90.44
Data Selector (θP) 79.90 87.35 90.08 91.28 91.55
Target Model (θ) 81.00 88.54 91.77 93.12 93.77

∆fresh
t 2.61 3.27 3.34 3.24 3.04

∆sync
t 1.10 1.19 1.69 1.84 2.22

Table 8 reports accuracies of the pruned selector and the fused dense model, along with their gap, across
label budgets. It can be noted that the synchronization reduces the proxy–target gap, providing empirical
evidence that synchronization helps maintain proxy–target alignment as assumed in Assumption 3.

8.3 Implementation Details

We used ResNet-50, ResNet-56, ResNet-110, ResNet-164, Wide-ResNet, VDCNN, and Vision transformers
architectures in our experiments. We pruned these architectures using the Torch-Pruning library (Fang et al.,
2023) for different pruning ratios p = 0.5, 0.6, 0.7, and 0.8 to get the pruned architectures. For CIFAR-10
and CIFAR-100, the models were trained for 181 epochs, with an epoch schedule of [1, 90, 45, 45], and
corresponding learning rates of [0.01, 0.1, 0.01, 0.001], using a momentum of 0.9 and weight decay of 0.0005.
For TinyImageNet-200 and ImageNet-1K, the models were trained over an epoch schedule of [1, 1, 1, 1, 1, 25,
30, 20, 20], with learning rates of [0.0167, 0.0333, 0.05, 0.0667, 0.0833, 0.1, 0.01, 0.001, 0.0001], a momentum
of 0.9, and weight decay of 0.0001. We use the mini-batch of 128 for CIFAR-10 and CIFAR-100 and 256 for
TinyImageNet-200 and ImageNet-1K. We also extend our experiments to text datasets: Amazon Review
Polarity and Full (Zhang & LeCun, 2015; Zhang et al., 2015). Amazon Review Polarity has 3.6 million
reviews split evenly between positive and negative ratings, with an additional 400,000 reviews for testing.
Amazon Review Full has 3 million reviews split evenly between the 5 stars with an additional 650,000 reviews
for testing. For Amazon Review Polarity and Full, the models were trained over an epoch schedule of [3,
3, 3, 3, 3], with learning rates of [0.01, 0.005, 0.0025, 0.00125, 0.000625], a momentum of 0.9, weight decay
of 0.0001, and a mini-batch size of 128. For all the experiments SGD is used as an optimizer. We set the
knowledge distillation coefficient λ to 0.3. We took Active Learning (AL) as a baseline for the proposed
technique and initially, we started by randomly selecting 2% of the data. For the first round, we added 8%
from the unlabeled set, then 10% in each subsequent round, until reaching the label budget, b. After each
round, we retrained the models from scratch, as described in the methodology. All experiments are carried
out independently 3 times and then the average is reported.

20

Under review as submission to TMLR

8.4 Additional Details of the Fusion Process

Convolutional layers. Let W (j) ∈ RC
(j)
out×C

(j)
in ×kh×kw denote the dense weights of layer j, and W

(j)
p∗ ∈

R|Ij |×|Ij−1|×kh×kw the trained pruned weights. The weight-aligned fusion copies the trained sub-tensor into
the matching coordinates of the dense tensor and keeps all remaining entries at their initial values:

W
(j)
F [Ij , Ij−1, :, :]←W

(j)
p∗ ,

W
(j)
F [Ij , Ij−1, :, :]←W

(j)
init[Ij , Ij−1, :, :],

W
(j)
F [Ij , :, :, :]←W

(j)
init[Ij , :, :, :],

with the same coordinate replacement for biases (if present) and normalization parameters (γ, β, µ, σ2) on
the indices Ij .

Linear layers. For W (j) ∈ RC
(j)
out×C

(j)
in , the output dimension (e.g., number of classes) is unchanged; fusion

aligns on the input channels:

W
(j)
F [:, Ij−1]←W

(j)
p∗ , W

(j)
F [:, Ij−1]←W

(j)
init[:, Ij−1].

8.5 Performance Comparison with different Datasets, Selection Metrics, and Architectures

To comprehensively evaluate the effectiveness of PruneFuse, we conducted additional experiments comparing
its performance with baseline utilizing other data selection metrics such as Least Confidence, Entropy, and
Greedy k-centers. Results are shown in Tables 9, 10, 11 and 12 for various architectures and labeling budgets.
In all cases, our results demonstrate that PruneFuse mostly outperforms the baseline using these traditional
metrics across various datasets and model architectures, highlighting the robustness of PruneFuse in selecting
the most informative samples efficiently.

We further performed experiments on ViT, MobileNet for Vision task in Table 13, 14 and VDCNN for NLP
tasks in Table 15, 16, to underscore PruneFuse’s consistent efficiency and robust accuracy across different
architectures and domains. Moreover, we demonstrated that PruneFuse does not degrade performance on
OOD datasets in Table 17, reinforcing PruneFuse’s stability.

21

Under review as submission to TMLR

Table 9: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with ResNet-56
architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse)
for various pruning ratios (p), labeling budgets (b), and data selection metrics.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 ± 0.20 87.74 ± 0.15 90.85 ± 0.11 92.24 ± 0.16 93.00 ± 0.11
Entropy 80.14 ± 0.41 87.63 ± 0.10 90.80 ± 0.36 92.51 ± 0.34 92.98 ± 0.03
Random 78.55 ± 0.38 85.26 ± 0.21 88.13 ± 0.35 89.81 ± 0.15 91.20 ± 0.05
Greedy k 79.63 ± 0.83 86.46 ± 0.27 90.09 ± 0.20 91.9 ± 0.08 92.80 ± 0.08

PruneFuse
p = 0.5

Least Conf 80.92 ± 0.41 88.35 ± 0.33 91.44 ± 0.15 92.77 ± 0.03 93.65 ± 0.14
Entropy 81.08 ± 0.16 88.74 ± 0.10 91.33 ± 0.04 92.78 ± 0.04 93.48 ± 0.04
Random 80.43 ± 0.27 86.28 ± 0.37 88.75 ± 0.17 90.36 ± 0.02 91.42 ± 0.12
Greedy k 79.85 ± 0.68 86.96 ± 0.38 90.20 ± 0.16 91.82 ± 0.14 92.89 ± 0.14

PruneFuse
p = 0.6

Least Conf 80.58 ± 0.33 87.79 ± 0.20 90.94 ± 0.13 92.58 ± 0.31 93.08 ± 0.42
Entropy 80.96 ± 0.16 87.89 ± 0.45 91.22 ± 0.28 92.56 ± 0.19 93.19 ± 0.26
Random 79.19 ± 0.57 85.65 ± 0.29 88.27 ± 0.18 90.13 ± 0.24 91.01 ± 0.28
Greedy k 79.54 ± 0.48 86.16 ± 0.60 89.50 ± 0.29 91.35 ± 0.06 92.39 ± 0.22

PruneFuse
p = 0.7

Least Conf 80.19 ± 0.45 87.88 ± 0.05 90.70 ± 0.21 92.44 ± 0.24 93.40 ± 0.11
Entropy 79.73 ± 0.87 87.85 ± 0.25 90.94 ± 0.29 92.41 ± 0.23 93.39 ± 0.20
Random 78.76 ± 0.23 85.50 ± 0.11 88.31 ± 0.19 89.94 ± 0.24 90.87 ± 0.17
Greedy k 78.93 ± 0.15 85.85 ± 0.41 88.96 ± 0.07 90.93 ± 0.19 92.23 ± 0.08

PruneFuse
p = 0.8

Least Conf 80.11 ± 0.28 87.58 ± 0.14 90.50 ± 0.08 92.42 ± 0.41 93.32 ± 0.14
Entropy 79.83 ± 1.13 87.50 ± 0.54 90.52 ± 0.24 92.24 ± 0.13 93.15 ± 0.10
Random 78.77 ± 0.66 85.64 ± 0.13 88.45 ± 0.33 89.88 ± 0.14 91.21 ± 0.43
Greedy k 78.23 ± 0.37 85.59 ± 0.25 88.60 ± 0.19 90.11 ± 0.11 91.31 ± 0.08

(a) CIFAR-10 using ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 ± 0.80 52.99 ± 0.56 59.29 ± 0.46 63.68 ± 0.53 66.72 ± 0.33
Entropy 37.57 ± 0.51 52.64 ± 0.76 58.87 ± 0.38 63.97 ± 0.17 66.78 ± 0.27
Random 37.06 ± 0.64 51.62 ± 0.21 58.77 ± 0.65 62.05 ± 0.02 64.63 ± 0.16
Greedy k 38.28 ± 1.11 52.43 ± 0.24 58.96 ± 0.16 63.56 ± 0.30 66.30 ± 0.31

PruneFuse
p = 0.5

Least Conf 40.26 ± 0.95 53.90 ± 1.06 60.80 ± 0.44 64.98 ± 0.4 67.87 ± 0.17
Entropy 38.59 ± 1.67 54.01 ± 1.17 60.52 ± 0.19 64.83 ± 0.27 67.67 ± 0.33
Random 39.43 ± 0.99 54.60 ± 0.64 60.13 ± 0.96 63.91 ± 0.39 66.02 ± 0.3
Greedy k 39.83 ± 2.44 54.35 ± 0.41 60.40 ± 0.23 64.22 ± 0.25 66.89 ± 0.16

PruneFuse
p = 0.6

Least Conf 37.82 ± 0.83 52.65 ± 0.4 60.08 ± 0.22 63.7 ± 0.25 66.89 ± 0.46
Entropy 38.01 ± 0.79 51.91 ± 0.56 59.18 ± 0.31 63.53 ± 0.25 66.88 ± 0.18
Random 38.27 ± 0.81 52.85 ± 1.22 58.68 ± 0.68 62.28 ± 0.22 65.2 ± 0.48
Greedy k 38.44 ± 0.98 52.85 ± 0.74 59.36 ± 0.57 63.36 ± 0.75 66.12 ± 0.38

PruneFuse
p = 0.7

Least Conf 36.76 ± 0.63 52.15 ± 0.53 59.33 ± 0.17 63.65 ± 0.36 66.84 ± 0.43
Entropy 36.95 ± 1.03 50.64 ± 0.33 58.45 ± 0.36 62.27 ± 0.27 65.88 ± 0.28
Random 37.30 ± 1.24 51.66 ± 0.21 58.79 ± 0.13 62.67 ± 0.29 65.08 ± 0.08
Greedy k 38.88 ± 2.18 52.02 ± 0.77 58.66 ± 0.19 61.39 ± 0.11 65.28 ± 0.65

PruneFuse
p = 0.8

Least Conf 36.49 ± 0.20 50.98 ± 0.54 58.53 ± 0.50 62.87 ± 0.13 65.85 ± 0.32
Entropy 36.02 ± 1.30 51.23 ± 0.23 57.44 ± 0.11 62.65 ± 0.46 65.76 ± 0.30
Random 37.37 ± 0.85 52.06 ± 0.47 58.19 ± 0.30 62.19 ± 0.45 64.77 ± 0.29
Greedy k 37.04 ± 0.09 49.84 ± 0.49 56.13 ± 0.20 60.24 ± 0.42 62.92 ± 0.44

(b) CIFAR-100 using ResNet-56 architecture.

22

Under review as submission to TMLR

Table 10: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with ResNet-110
architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse)
for various pruning ratios (p), labeling budgets (b), and data selection metrics.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 80.74 ± 0.04 87.80 ± 0.09 91.50 ± 0.09 93.19 ± 0.14 93.68 ± 0.17
Entropy 79.81 ± 0.18 88.46 ± 0.30 91.30 ± 0.15 92.83 ±0.30 93.47 ± 0.31
Random 79.99 ± 0.10 85.63 ± 0.03 88.07 ± 0.31 90.40 ± 0.42 91.42 ± 0.26
Greedy k 78.69 ± 0.58 87.46 ±0.20 90.72 ± 0.14 92.55 ±0.14 93.44 ± 0.07

PruneFuse
p = 0.5

Least Conf. 81.24 ± 0.43 88.70 ± 0.15 92.02 ± 0.10 93.32 ± 0.13 94.07 ± 0.06
Entropy 81.45 ± 0.39 88.90 ± 0.11 92.13 ± 0.15 93.49 ± 0.16 94.07 ± 0.05
Random 80.08 ± 0.86 86.52 ± 0.14 89.48 ± 0.16 90.82 ± 0.21 91.79 ± 0.04
Greedy k 80.40 ± 0.09 87.77 ± 0.13 90.74 ± 0.09 92.48 ± 0.22 93.53 ± 0.22

PruneFuse
p = 0.6

Least Conf. 81.12 ± 0.34 88.33 ± 0.31 91.57 ± 0.03 93.25 ± 0.21 93.90 ± 0.17
Entropy 80.02 ± 0.41 88.49 ± 0.18 91.51 ± 0.14 93.03 ± 0.11 93.94 ± 0.12
Random 78.55 ± 0.42 85.94 ± 0.34 88.77 ± 0.10 90.66 ± 0.20 92.02 ± 0.03
Greedy k 79.44 ± 0.28 87.05 ± 0.63 90.30 ± 0.15 92.15 ± 0.12 93.22 ± 0.04

PruneFuse
p = 0.7

Least Conf. 79.93 ± 0.06 88.04 ± 0.23 91.51 ± 0.34 92.90 ± 0.02 93.82 ± 0.09
Entropy 80.16 ± 0.27 87.78 ± 0.52 91.21 ± 0.13 92.99 ± 0.13 93.81 ± 0.12
Random 79.41 ± 0.36 86.14 ± 0.44 88.86 ± 0.11 90.35 ± 0.08 91.35 ± 0.24
Greedy k 78.58 ± 0.91 86.37 ± 0.36 89.70 ± 0.33 91.71 ± 0.18 92.97 ± 0.10

PruneFuse
p = 0.8

Least Conf. 80.34 ± 0.39 88.00 ± 0.13 91.22 ± 0.07 92.89 ± 0.23 93.80 ± 0.23
Entropy 79.61 ± 0.35 88.12 ± 0.00 90.94 ± 0.13 92.76 ± 0.14 93.54 ± 0.24
Random 78.94 ± 0.49 86.20 ± 0.10 89.11 ± 0.34 90.50 ± 0.22 91.42 ± 0.23
Greedy k 78.41 ± 0.76 85.90 ± 0.73 89.57 ± 0.51 91.38 ± 0.32 92.21± 0.22

(a) CIFAR-10 using ResNet-110 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 38.61 ±0.32 54.47 ±0.56 61.46 ±0.25 65.96 ±0.48 68.91 ± 0.40
Entropy 38.00 ± 0.99 54.71 ±0.83 60.82 ±0.15 66.19 ± 0.31 68.79 ± 0.50
Random 37.88 ± 1.03 52.84 ±0.11 59.41 ±0.34 64.11 ± 0.11 67.22 ± 0.36
Greedy k 37.41 ± 0.98 53.86 ±0.55 61.44 ±0.26 65.73 ± 0.50 68.17 ± 0.46

PruneFuse
p = 0.5

Least Conf. 41.42 ± 0.51 55.91 ± 0.36 62.43 ± 0.32 66.95 ± 0.20 69.79 ± 0.26
Entropy 40.83 ± 0.59 56.29 ± 0.83 62.62 ± 0.45 66.91 ± 0.02 69.96 ± 0.39
Random 40.36 ± 0.74 55.48 ± 0.25 61.14 ± 0.68 65.03 ± 0.42 67.85 ± 0.53
Greedy k 41.22 ± 0.46 55.70 ± 0.54 62.27 ± 0.02 66.20 ± 0.14 68.86 ± 0.14

PruneFuse
p = 0.6

Least Conf. 38.52 ± 1.49 54.90 ± 0.32 61.50 ± 0.77 66.14 ± 0.68 69.03 ± 0.24
Entropy 38.78 ± 1.35 53.13 ± 0.30 61.42 ± 0.14 65.62 ± 0.43 68.89 ± 0.09
Random 40.24 ± 0.90 53.38 ± 0.68 59.93 ± 0.12 64.70 ± 0.15 66.62 ± 0.24
Greedy k 39.99 ± 1.56 54.91 ± 2.23 61.04 ± 0.25 64.69 ± 0.63 67.60 ± 0.08

PruneFuse
p = 0.7

Least Conf. 37.83 ± 1.02 53.08 ± 0.25 61.41 ± 0.21 65.77 ± 0.43 68.03 ± 0.14
Entropy 36.53 ± 0.97 52.97 ± 0.76 59.82 ± 0.63 64.97 ± 0.13 68.64 ± 0.54
Random 39.46 ± 0.59 52.89 ± 0.77 59.92 ± 0.55 63.69 ± 0.25 66.30 ± 0.15
Greedy k 40.44 ± 0.13 52.56 ± 0.28 59.83 ± 0.45 64.50 ± 0.29 66.99 ± 0.50

PruneFuse
p = 0.8

Least Conf. 38.33 ± 0.58 52.89 ± 0.49 60.08 ± 0.32 65.12 ± 0.60 68.06 ± 0.56
Entropy 35.34 ± 0.98 51.88 ± 0.74 59.80 ± 0.82 64.58 ± 0.43 68.02 ± 0.17
Random 38.22 ± 0.39 53.37 ± 0.72 59.84 ± 0.43 64.31 ± 0.33 67.23 ± 0.25
Greedy k 37.72 ± 0.70 50.55 ± 1.79 57.39 ± 0.93 61.79 ± 0.53 65.21 ± 0.24

(b) CIFAR-100 using ResNet-110 architecture.

23

Under review as submission to TMLR

Table 11: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with ResNet-164
architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse)
for various pruning ratios (p), labeling budgets (b), and data selection metrics.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 81.15 ± 0.52 89.4 ± 0.27 92.72 ± 0.10 94.09 ± 0.14 94.63 ± 0.18
Entropy 80.99 ± 0.44 89.54 ± 0.18 92.45 ± 0.16 94.06 ± 0.05 94.49 ± 0.09
Random 80.27 ± 0.18 87.00 ± 0.08 89.94 ± 0.13 91.57 ± 0.09 92.78 ± 0.04
Greedy k 80.02 ± 0.42 88.33 ± 0.47 91.76 ± 0.24 93.39 ± 0.22 94.40 ± 0.18

PruneFuse
p = 0.5

Least Conf. 83.03 ± 0.09 90.30 ± 0.06 93.00 ± 0.15 94.41 ± 0.08 94.63 ± 0.13
Entropy 82.64 ± 0.22 89.88 ± 0.27 93.08 ± 0.25 94.32 ± 0.12 94.90 ± 0.13
Random 81.52 ± 0.54 87.84 ± 0.15 90.14 ± 0.08 91.94 ± 0.18 92.81 ± 0.12
Greedy k 81.70 ± 0.13 88.75 ± 0.33 91.92 ± 0.07 93.64 ± 0.04 94.22 ± 0.09

PruneFuse
p = 0.6

Least Conf. 82.86 ± 0.38 90.22 ± 0.18 93.05 ± 0.10 94.27 ± 0.06 94.66 ± 0.08
Entropy 82.23 ± 0.39 90.18 ± 0.11 92.91 ± 0.15 94.28 ± 0.14 94.66 ± 0.14
Random 81.14 ± 0.26 87.51 ± 0.26 90.05 ± 0.20 91.82 ± 0.22 92.43 ± 0.20
Greedy k 81.11 ± 0.10 88.41 ± 0.18 91.66 ± 0.18 92.94 ± 0.12 94.17 ± 0.02

PruneFuse
p = 0.7

Least Conf. 82.76 ± 0.29 89.89 ± 0.17 92.83 ± 0.08 94.10 ± 0.08 94.69 ± 0.13
Entropy 82.59 ± 0.69 89.81 ± 0.24 92.77 ± 0.07 94.20 ± 0.20 94.74 ± 0.02
Random 80.88 ± 0.38 87.54 ± 0.26 90.09 ± 0.08 91.57 ± 0.26 92.64 ± 0.10
Greedy k 81.68 ± 0.40 88.36 ± 0.56 91.64 ± 0.40 93.02 ± 0.42 93.97 ± 0.51

PruneFuse
p = 0.8

Least Conf. 82.66 ± 0.09 89.78 ± 0.27 92.64 ± 0.14 94.08 ± 0.10 94.69 ± 0.17
Entropy 82.01 ± 0.88 89.77 ± 0.44 92.65 ± 0.09 94.02 ± 0.17 94.60 ± 0.18
Random 80.73 ± 0.49 87.43 ± 0.44 90.08 ± 0.12 91.40 ± 0.07 92.53 ± 0.18
Greedy k 79.66 ± 0.60 87.56 ± 0.12 90.79 ± 0.07 92.30 ± 0.12 93.17 ± 0.14

(a) CIFAR-10 using ResNet-164 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 38.41 ± 0.73 51.39 ± 0.30 65.53 ± 0.31 70.07 ± 0.17 73.05 ± 0.11
Entropy 36.65 ± 0.76 57.58 ± 0.63 64.98 ± 0.30 69.99 ± 0.17 72.90 ± 0.15
Random 39.31 ± 1.22 57.53 ± 0.26 63.84 ± 0.14 67.75 ± 0.14 70.79 ± 0.07
Greedy k 39.76 ± 0.58 57.40 ± 0.20 65.20 ± 0.31 69.25 ± 0.40 72.91 ± 0.29

PruneFuse
p = 0.5

Least Conf 42.88 ± 1.11 59.31 ± 0.70 66.95 ± 0.30 71.45 ± 0.42 74.32 ± 0.58
Entropy 42.99 ± 0.18 59.32 ± 1.25 66.83 ± 0.29 71.18 ± 0.40 74.43 ± 0.34
Random 43.72 ± 1.05 58.58 ± 0.61 64.93 ± 0.43 68.75 ± 0.57 71.63 ± 0.40
Greedy k 43.61 ± 0.91 58.38 ± 0.24 66.04 ± 0.21 69.83 ± 0.16 73.10 ± 0.39

PruneFuse
p = 0.6

Least Conf 41.86 ± 0.70 58.97 ± 0.50 66.61 ± 0.39 70.59 ± 0.11 73.60 ± 0.10
Entropy 42.43 ± 0.95 58.74 ± 0.80 65.97 ± 0.39 70.90 ± 0.48 73.70 ± 0.09
Random 42.53 ± 0.46 58.33 ± 0.42 65.00 ± 0.26 68.55 ± 0.30 71.46 ± 0.32
Greedy k 42.71 ± 0.91 58.41 ± 0.18 65.43 ± 0.69 69.57 ± 0.14 72.49 ± 0.25

PruneFuse
p = 0.7

Least Conf 42.00 ± 0.20 57.08 ± 0.36 66.41 ± 0.30 70.68 ± 0.29 73.63 ± 0.29
Entropy 41.01 ± 1.66 57.45 ± 0.50 65.99 ± 0.10 70.07 ± 0.54 73.45 ± 0.04
Random 42.76 ± 1.00 57.31 ± 0.07 64.12 ± 0.57 68.07 ± 0.24 70.88 ± 0.25
Greedy k 42.42 ± 0.32 57.58 ± 0.52 65.18 ± 0.51 68.55 ± 0.10 71.89 ± 0.16

PruneFuse
p = 0.8

Least Conf 41.19 ± 1.07 57.98 ± 9.70 65.22 ± 0.44 70.38 ± 0.22 73.17 ± 0.26
Entropy 39.78 ± 1.16 57.30 ± 0.41 65.19 ± 0.63 69.40 ± 0.34 72.82 ± 0.03
Random 42.08 ± 1.55 57.23 ± 0.47 64.05 ± 0.40 67.85 ± 0.19 70.62 ± 0.06
Greedy k 42.20 ± 1.21 57.42 ± 0.50 64.53 ± 0.21 68.01 ± 0.40 71.29 ± 0.14

(b) CIFAR-100 using ResNet-164 architecture.

24

Under review as submission to TMLR

Table 12: Performance Comparison of Baseline and PruneFuse on Tiny ImageNet-200 with ResNet-50
architecture, including test accuracy and corresponding standard deviations. This table summarizes the test accuracy
of final models (original in case of AL and Fused in PruneFuse) for various pruning ratios (p) and labeling budgets (b).

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 14.86 ± 0.11 33.62 ± 0.52 43.96 ± 0.22 49.86 ± 0.56 54.65 ± 0.38
PruneFuse (p = 0.5) 18.71 ± 0.21 39.70 ± 0.31 47.41 ± 0.20 51.84 ± 0.10 55.89 ± 1.21
PruneFuse (p = 0.6) 19.25 ± 0.72 38.84 ± 0.70 47.02 ± 0.30 52.09 ± 0.29 55.29 ± 0.28
PruneFuse (p = 0.7) 18.32 ± 0.95 39.24 ± 0.75 46.45 ± 0.58 52.02 ± 0.65 55.63 ± 0.55
PruneFuse (p = 0.8) 18.34 ± 0.93 37.86 ± 0.42 47.15 ± 0.31 51.77 ± 0.40 55.18 ± 0.50

Table 13: Performance Comparison of Baseline and PruneFuse on CIFAR-10 with MobileNetV2 Architecture.
This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse) for various
pruning ratios (p) and labeling budgets (b).

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 81.63 89.47 91.25 91.54 91.85
PruneFuse (p = 0.5) 84.49 90.07 92.63 93.49 93.55
PruneFuse (p = 0.6) 84.16 90.22 92.56 93.34 93.43
PruneFuse (p = 0.7) 84.10 90.21 92.46 93.29 93.22

Table 14: Performance Comparison of Baseline and PruneFuse on CIFAR-10 with Vision Transformers (ViT).
This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse) for various
pruning ratios (p) and labeling budgets (b).

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 53.63 65.62 71.09 76.86 80.59
PruneFuse (p = 0.5) 59.32 71.63 75.61 81.50 83.64
PruneFuse (p = 0.6) 57.80 70.45 75.22 80.22 82.77
PruneFuse (p = 0.7) 56.17 69.25 73.87 79.47 82.15

Table 15: Performance Comparison of Baseline and PruneFuse on Amazon Review Polarity Dataset with
VDCNN Architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused
in PruneFuse) for various pruning ratios (p) and labeling budgets (b).

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 94.13 95.06 95.54 95.73 95.71
PruneFuse (p = 0.5) 94.66 95.45 95.71 95.87 95.87
PruneFuse (p = 0.6) 94.62 95.38 95.69 95.82 95.88
PruneFuse (p = 0.7) 94.47 95.43 95.71 95.83 95.84
PruneFuse (p = 0.8) 94.33 95.37 95.63 95.79 95.85

8.6 Ablation Study of Fusion

The fusion process is a critical component of the PruneFuse methodology, designed to integrate the knowledge
gained by the pruned model into the original network. To isolate the effect of fusion on optimization dynamics,
we evaluate fusion vs. no fusion and also against knowledge distillation under a controlled, matched training

25

Under review as submission to TMLR

Table 16: Performance Comparison of Baseline and PruneFuse on Amazon Review Full Dataset with
VDCNN Architecture. This table summarizes the test accuracy of final models (original in case of AL and Fused
in PruneFuse) for various pruning ratios (p) and labeling budgets (b).

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 58.46 60.65 61.50 62.20 62.43
PruneFuse (p = 0.5) 59.45 61.28 62.02 62.66 62.84
PruneFuse (p = 0.6) 59.28 61.14 62.08 62.62 62.81
PruneFuse (p = 0.7) 59.42 61.05 61.98 62.48 62.85
PruneFuse (p = 0.8) 59.24 61.05 61.94 62.45 62.77

Table 17: Results of CIFAR-10 (in-distribution, ID) and CIFAR-10-C (OOD corruptions) using a
ResNet-56 backbone.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) (ID) 48.67 58.95 65.23 72.30 73.23
PruneFuse (p = 0.5) (ID) 51.20 64.68 67.52 73.28 77.71

Baseline (AL) (OOD) 42.95 48.56 53.62 57.27 58.32
PruneFuse (p = 0.5) (OOD) 44.58 52.44 54.60 58.36 63.37

Table 18: Initialization schemes for Fused Model. Performance comparison of initializing the remaining weights
of the Fused model after fusion with pruned model via 1) retaining weights from first initialization during pruned
model initialization, 2) zero weights and 3) random re-initialization (PruneFuse) on ResNet-56 with CIFAR-10 dataset.

PruneFuse Method Label Budget (b)
10% 20% 30% 40% 50%

Zero initialization 79.96 87.01 90.32 91.80 92.52
Retained Initial Weights 80.61 88.22 91.19 92.75 93.66

Random re-Initialized Weights 80.92 88.35 91.44 92.77 93.65

protocol. For each pruning ratio p and labeling budget b, we first run PruneFuse to obtain a selected labeled
subset L. We then train the same dense target architecture (ResNet-56) on L under two conditions: (i) No
fusion / No KD: randomly initialized target trained with cross-entropy, (ii) KD only: no fusion; randomly
initialized target trained with KD from θp, (iii) Fusion w/o KD: target initialized via θF = Fuse(θ, θp) and
trained with cross-entropy, and (iv) Fusion + KD: fused initialization trained with cross-entropy and KD
(full PruneFuse). Importantly, the architecture, subset size, optimizer, learning-rate schedule, batch size, and
total number of epochs are identical across the two conditions. In all fusion ablations, we train for 180 epochs
with learning rate 0.01. Therefore, per-epoch compute is matched and using epoch as the x-axis provides a
fair comparison of convergence behavior.

Figs. 5, 6, and 7 show the resulting learning curves for different pruning ratios. In the reported settings
(budgets b ∈ {10%, 30%, 50%} and pruning ratios p ∈ {0.5, 0.6, 0.7}), fusion (with or without KD) consistently
converges faster and reaches higher final accuracy than training from scratch on the same selected subset L.
These results provide direct empirical evidence that fusion improves both convergence and final performance
under a matched training budget.

Additionally, in Table 18 we study how the initialization of the remaining (previously untrained) weights after
fusion affects performance. We compare three schemes: (i) retaining the original dense-model initialization
for the non-copied weights, (ii) zero initialization, and (iii) random re-initialization. Results show that while
fusion provides the primary performance gains, zeroing the remaining weights is suboptimal, and simple

26

Under review as submission to TMLR

randomized initializations, either retained or re-initialized, are sufficient to support effective post-fusion
training.

Epoch
0 50 100 150

Ac
cu
ra
cy
(%
)

10

20

30

40

50

60

70

80

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

10

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

(a) p = 0.5, b = 10% (b) p = 0.5, b = 30% (c) p = 0.5, b = 50%

Figure 5: Ablation Study of Fusion on PruneFuse (p = 0.5). Experiments are performed on ResNet-56
architecture with CIFAR-10.

Epoch
0 50 100 150

Ac
cu
ra
cy
(%
)

10

20

30

40

50

60

70

80

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150
Ac
cu
ra
cy
(%

)
20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

(a) p = 0.6, b = 10% (b) p = 0.6, b = 30% (c) p = 0.6, b = 50%

Figure 6: Ablation Study of Fusion on PruneFuse (p = 0.6). Experiments are performed on ResNet-56
architecture with CIFAR-10.

Epoch
0 50 100 150

Ac
cu
ra
cy
(%
)

10

20

30

40

50

60

70

80

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

10

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

Epoch
0 50 100 150

Ac
cu
ra
cy
(%

)

20

30

40

50

60

70

80

90

Fusion	only
KD	only
Fusion+KD
w/o	Fusion+KD

(a) p = 0.7, b = 10% (b) p = 0.7, b = 30% (c) p = 0.7, b = 50%

Figure 7: Ablation Study of Fusion on PruneFuse (p = 0.7). Experiments are performed on ResNet-56
architecture with CIFAR-10.

27

Under review as submission to TMLR

8.7 Ablation Study of Knowledge Distillation in PruneFuse

Table 19 demonstrates the effect of Knowledge Distillation on the PruneFuse technique relative to the baseline
Active Learning (AL) method across various experimental configurations and label budgets on CIFAR-10 and
CIFAR-100 datasets, using different ResNet architectures. The results indicate that PruneFuse consistently
outperforms the baseline method, both with and without incorporating Knowledge Distillation (KD) from a
trained pruned model. This superior performance is attributed to the innovative fusion strategy inherent to
PruneFuse, where the original model is initialized using weights from a previously trained pruned model. The
proposed approach gives the fused model an optimized starting point, enhancing its ability to learn more
efficiently and generalize better. The impact of this strategy is evident across different label budgets and
architectures, demonstrating its effectiveness and robustness.

8.8 Comparison with SVP

Table 21 delineates a performance comparison of PruneFuse with SVP techniques, across various labeling
budgets b for the efficient training of a Target Model (ResNet-56). SVP employs a ResNet-20 as its data
selector, with a model size of 0.26 M. In contrast, PruneFuse uses a 50% pruned ResNet-56, reducing its
data selector size to 0.21 M. Performance metrics show that as the label budget increases from 10% to
50%, the PruneFuse consistently outperforms SVP across all label budgets. Specifically on the target model,
PruneFuse initiates at an accuracy of 82.68% with a 10% label budget and peaks at 93.69% accuracy at
a 50% budget, whereas SVP achieves 80.76% at 10% label budget and achieves 92.95% accuracy at 50%.
Notably, while the data selector of PruneFuse achieves a lower accuracy of 90.31% at b = 50% compared
to SVP’s 91.61%, the target model utilizing PruneFuse-selected data attains a superior accuracy of 93.69%,
relative to 92.95% for the SVP-selected data. This disparity underscores the distinct operational focus of the
data selectors: PruneFuse’s selector is optimized for enhancing the target model’s performance, rather than
its own accuracy. Fig. 8(a) and (b) show that target models ResNet-14 and ResNet-20, when trained with
the data selectors of the PruneFuse achieve significantly higher accuracy while using significantly less number
of parameters compared to SVP. These results indicate that the proposed approach does not require an
additional architecture for designing the data selector; it solely needs the target model (e.g. ResNet-14). In
contrast, SVP necessitates both the target model (ResNet-14) and a smaller model (ResNet-8) that functions
as a data selector.

Table 20 demonstrates the performance comparison of PruneFuse and SVP for small model architecture
ResNet-20 on CIFAR-10. SVP achieves 91.88% performance accuracy by utilizing the data selector having
0.074 M parameters whereas PruneFuse outperforms SVP by achieving 92.29% accuracy with a data selector
of 0.066 M parameters.

2 3 4 5 6 7 8

Number of Parameters of Data Selector 104

90.8

90.9

91

91.1

91.2

91.3

91.4

91.5

A
cc

ur
ac

y
(%

)

Accuracy vs Model Size (Parameters)

R8

R14(p=0.5)

R14(p=0.6)

Proposed
SVP

3 4 5 6 7 8

Number of Parameters of Data Selector 104

91.7

91.8

91.9

92

92.1

92.2

92.3

92.4

A
cc

ur
ac

y
(%

)

Accuracy vs Model Size (Parameters)

R8

R20(p=0.5)

R20(p=0.6)

Proposed
SVP

(a) Target Model = ResNet-14 (b) Target Model = ResNet-20

Figure 8: Comparison of PruneFuse with SVP. Scatter plot shows final accuracy on target model against the
model size for different ResNet models on CIFAR-10, b = 50%. (a) shows ResNet-14 (with p = 0.5 and p = 0.6) and
ResNet-8 models are used as data selectors for PruneFuse and SVP, respectively. While in (b), PruneFuse utilizes
ResNet20 (i.e. p = 0.5 and p = 0.6) and SVP utilizes ResNet-8 models.

28

Under review as submission to TMLR

Table 19: Ablation Study of Knowledge Distillation on PruneFuse presented in a, b, and c with different architectures
and datasets.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 87.74 90.85 92.24 93.00
Entropy 80.14 87.63 90.80 92.51 92.98
Random 78.55 85.26 88.13 89.81 91.20
Greedy k 79.63 86.46 90.09 91.90 92.80

PruneFuse
p = 0.5

(without KD)

Least Conf 81.08 88.71 91.24 92.68 93.46
Entropy 80.80 88.08 90.98 92.74 93.43
Random 80.11 85.78 88.81 90.20 91.10
Greedy k 80.07 86.70 89.93 91.72 92.67

PruneFuse
p = 0.5

(with KD)

Least Conf 80.92 88.35 91.44 92.77 93.65
Entropy 81.08 88.74 91.33 92.78 93.48
Random 80.43 86.28 88.75 90.36 91.42
Greedy k 79.85 86.96 90.20 91.82 92.89

(a) CIFAR-10 using ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 81.15 89.4 92.72 94.09 94.63
Entropy 80.99 89.54 92.45 94.06 94.49
Random 80.27 87.00 89.94 91.57 92.78
Greedy k 80.02 88.33 91.76 93.39 94.40

PruneFuse
p = 0.5

(without KD)

Least Conf 83.82 90.26 93.15 94.34 94.90
Entropy 82.72 90.42 93.18 94.68 95.00
Random 81.94 88.04 90.37 91.93 92.67
Greedy k 81.99 89.04 92.14 93.40 94.44

PruneFuse
p = 0.5

(with KD)

Least Conf. 83.03 90.30 93.00 94.41 94.63
Entropy 82.64 89.88 93.08 94.32 94.90
Random 81.52 87.84 90.14 91.94 92.81
Greedy k 81.70 88.75 91.92 93.64 94.22

(b) CIFAR-10 using ResNet-164 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78
Random 37.06 51.62 58.77 62.05 64.63
Greedy k 38.28 52.43 58.96 63.56 66.30

PruneFuse
p = 0.5

(without KD)

Least Conf 39.27 54.25 60.6 64.17 67.49
Entropy 37.43 52.57 60.57 64.44 67.31
Random 40.07 52.83 59.93 63.06 65.41
Greedy k 39.25 52.43 59.94 63.94 66.56

PruneFuse
p = 0.5

(with KD)

Least Conf 40.26 53.90 60.80 64.98 67.87
Entropy 38.59 54.01 60.52 64.83 67.67
Random 39.43 54.60 60.13 63.91 66.02
Greedy k 39.83 54.35 60.40 64.22 66.89

(c) CIFAR-100 using ResNet-56 architecture.

8.9 Ablation Study on the Number of Selected Data Points (k)

Table 22 and 23 present ablation studies analyzing the effect of varying k on the performance of PruneFuse
with Tsync = 0 and Tsync = 1, respectively, on CIFAR-10 using the ResNet-56 architecture and least confidence
as the selection metric. The results demonstrate that the choice of k significantly impacts the quality of
data selection and the final performance of the model. As k increases, the selected subset quality diminishes
as can be seen by comparing performance of the target network in both tables. This study highlights the
importance of tuning k to achieve an optimal trade-off between computational efficiency and model accuracy.

29

Under review as submission to TMLR

Table 20: Comparison of SVP and PruneFuse on Small Models.

Techniques Model Architecture Params Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-8 0.074 77.85 83.35 85.43 86.83 86.90
Target ResNet-20 0.26 80.18 86.34 89.22 90.75 91.88

PruneFuse Data Selector ResNet-20 (p = 0.5) 0.066 76.58 83.41 85.83 87.07 88.06
Target ResNet-20 0.26 80.25 87.57 90.20 91.70 92.29

Table 21: Comparison with SVP.

Method Model Architecture Params Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-20 0.26 81.07 86.51 89.77 91.08 91.61
Target ResNet-56 0.85 80.76 87.31 90.77 92.59 92.95

PruneFuse Data Selector ResNet-56 (p = 0.5) 0.21 78.62 84.92 88.17 89.93 90.31
Target ResNet-56 0.85 82.68 88.97 91.63 93.24 93.69

Table 22: Ablation study of k on Cifar-10 using ResNet-56 architecture and least confidence as a selection matric.

(a) k = 7.5K.

Method Label Budget (b)
15% 30% 45% 60% 75%

Baseline (AL) 84.63 90.59 92.77 93.12 93.94
PruneFuse (p = 0.5) 85.80 91.13 93.72 93.84 94.10

(b) k = 5K.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 80.53 87.74 90.85 92.24 93.00
PruneFuse (p = 0.5) 80.92 88.35 91.44 92.77 93.65

Table 23: Ablation study of k on Cifar-10 using ResNet-56 with p = 0.5 and Tsync = 1.

Method Selection Label Budget (b) Selection Label Budget (b)
Size (k) 20% 40% 60% Size (k) 20% 40% 60%

Baseline (AL) 5,000 88.51 93.04 93.83 10,000 86.92 92.51 93.81
PruneFuse 5,000 88.52 93.15 93.90 10,000 87.49 93.11 94.04

8.10 Impact of Early Stopping on Performance

Table 24 explores the effect of utilizing an early stopping strategy alongside PruneFuse (p = 0.5) on CIFAR-10
with the ResNet-56 architecture. The results indicate that early stopping not only reduces training time of
the fused model but also maintains comparable performance to fully trained models. This highlights the
compatibility of PruneFuse with training efficiency techniques such as early stopping and showcases how
the expedited convergence enabled by the fusion process further enhances its practicality, particularly in
resource-constrained environments.

Table 24: Performance Comparison when Early Stopping strategy is utilized alongside PruneFuse (p = 0.5).
Experiments are performed with Resnet-56 on CIFAR-10.

Method Epochs Label Budget (b)
10% 20% 30% 40% 50%

Least Conf. 181 80.92±0.409 88.35±0.327 91.44±0.148 92.77±0.026 93.65±0.141
110 80.51±0.375 87.64±0.222 90.79±0.052 92.11±0.154 93.00±0.005

Entropy 181 81.08±0.155 88.74±0.103 91.33±0.045 92.78±0.045 93.48±0.042
110 80.51±0.401 87.46±0.416 90.97±0.116 92.2±0.108 92.88±0.264

Random 181 80.43±0.273 86.28±0.367 88.75±0.17 90.36±0.022 91.42±0.125
110 79.29±0.355 84.99±0.156 87.86±0.323 89.99±0.090 90.85±0.012

Greedy k. 181 79.85±0.676 86.96±0.385 90.20±0.164 91.82±0.136 92.89±0.144
110 79.36±0.274 86.36±0.455 89.67±0.319 91.19±0.302 91.91±0.021

30

Under review as submission to TMLR

8.11 Performance Comparison Across Architectures and Datasets

In Table 25, we present the performance comparison of Baseline and PruneFuse across various architectures
and datasets. These results demonstrate the adaptability of PruneFuse to different network architectures,
including ResNet-18, ResNet-50, and Wide-ResNet (W-28-10), as well as datasets such as CIFAR-10, CIFAR-
100, and ImageNet. The experiments confirm that PruneFuse consistently improves performance over the
baseline, highlighting its generalizability and robustness across diverse scenarios.

Table 25: Performance Comparison of Baseline and PruneFuse presented in a, b, and b with different
architectures and datasets.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 83.12 90.07 92.71 94.07 94.81
PruneFuse (p = 0.5) 83.29 90.56 93.17 94.56 95.08

(a) ResNet-18 architecture on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 84.74 91.48 94.17 95.24 95.75
PruneFuse (p = 0.5) 85.65 92.27 94.65 95.73 96.24

(b) Wide-ResNet architecture on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 52.97 64.52 69.30 71.98 73.56
PruneFuse (p = 0.5) 55.03 65.12 69.72 72.07 73.86

(c) ResNet-50 architecture on ImageNet-1K.

8.12 Performance at Lower Pruning Rates

Table 26 provides a performance comparison of Baseline and PruneFuse with a lower pruning rate of p = 0.4
on CIFAR-10 and CIFAR-100 using the ResNet-56 architecture. Least Confidence and Entropy were used
as selection metrics for these experiments. The results show that even at a lower pruning rate, PruneFuse
effectively selects high-quality data subsets, maintaining strong performance in both datasets. These findings
validate the method’s effectiveness across different pruning rates.

8.13 Comparison with Recent Coreset Selection Techniques

Table 27 compares the performance of Baseline (Coreset Selection) and PruneFuse (p = 0.5) using various
recent selection metrics, including Forgetting Events (Toneva et al., 2019), Moderate (Xia et al., 2022), and
CSS (Zheng et al., 2022) on the CIFAR-10 dataset with the ResNet-56 architecture.

To incorporate these recent score metrics, which are specifically designed for coreset-based selection, we
utilized the coreset task setup. In this setup, the network is first trained on the entire dataset to identify a
representative subset of data (coreset) based on the selection metric. The accuracy of the target model trained
on the selected coreset is then reported. The results demonstrate that PruneFuse seamlessly integrates with
these advanced selection metrics, achieving competitive or superior performance compared to the baseline
while maintaining computational efficiency. This highlights the versatility of PruneFuse in adapting to and
enhancing existing coreset selection techniques.

31

Under review as submission to TMLR

Table 26: Performance Comparison of Baseline and PruneFuse(p = 0.4) on Cifar-10 and Cifar-100 using
ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) Least Confidence 80.53 87.74 90.85 92.24 93.00
Entropy 80.14 87.63 90.80 92.51 92.98

PruneFuse (p = 0.4) Least Confidence 81.12 88.16 91.35 92.89 93.20
Entropy 80.94 88.27 91.09 92.73 93.38

(a) CIFAR-10

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) Least Confidence 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78

PruneFuse (p = 0.4) Least Confidence 38.73 54.35 60.75 64.80 67.08
Entropy 38.35 54.19 60.79 65.00 67.47

(b) CIFAR-100

Table 27: Performance Comparison of Baseline (Coreset) and PruneFuse (p = 0.5) for Various selection
metrics including Forgetting Events (Toneva et al., 2019), Moderate (Xia et al., 2023), and CSS (Zheng et al., 2023)
on Cifar-10 dataset using ResNet-56 architecture.

Method Selection Metric Data Selector’s Target Model’s Accuracy
Params Params (b = 25%)

Baseline

Entropy 86.13
Least Confidence 86.50
Forgetting Events 0.85 Million 0.85 Million 86.01

Moderate 86.27
CSS 87.21

PruneFuse

Entropy 86.71
Least Confidence 86.68
Forgetting Events 0.21 Million 0.85 Million 87.84

Moderate 87.63
CSS 88.85

8.14 Effect of Various Pruning Strategies and Criteria

In Table 28, we evaluate the impact of different pruning techniques (e.g., static pruning, dynamic pruning)
and pruning criteria (e.g., L2 norm, GroupNorm Importance, LAMP Importance [Fang et al. (2023)]) on the
performance of PruneFuse (p = 0.5) on CIFAR-10 using the ResNet-56 architecture.

Static pruning involves pruning the entire network at once at the start of training, whereas dynamic pruning
incrementally prunes the network in multiple steps during training. In our implementation of dynamic
pruning, the network is pruned in five steps over the course of 20 epochs.

The results demonstrate that PruneFuse is highly adaptable to various pruning strategies, consistently
maintaining strong performance in data selection tasks. This flexibility underscores the robustness of the
framework across different pruning approaches and criteria.

8.15 Runtime Comparison of Data Selector Networks and Detailed Breakdown of the Training
Runtime for each Component of PruneFuse

Table 29 compares the training runtimes of the data selector network (pruned network for PruneFuse and
dense network for the baseline) across various network architectures. The reported times correspond to the
training phase of the data selector network prior to the final selection of the subset (at b = 50%, label budget).
Note that the variation in runtimes across different datasets is due to the experiments being conducted on
different servers, each equipped with specific GPUs (e.g., 2080Ti, 3090, or A100). The results show that

32

Under review as submission to TMLR

Table 28: Effect of Pruning techniques and Pruning criteria on PruneFuse (p = 0.5) on CIFAR-10 dataset
with ResNet-56.

Method Pruning Technique Pruning Criteria Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) - - 80.53 87.74 90.85 92.24 93.00

PruneFuse Magnitude Imp. 79.73 87.16 91.08 92.29 93.19
Dynamic Pruning GroupNorm Imp. 80.10 88.25 91.01 92.25 93.74

(Tsync = 0) LAMP Imp. 81.51 87.45 90.64 92.41 93.25

PruneFuse Magnitude Imp. 80.92 88.35 91.44 92.77 93.65
Static Pruning GroupNorm Imp. 80.84 88.20 91.19 93.01 93.03

(Tsync = 0) LAMP Imp. 81.10 88.37 91.32 93.02 93.08

PruneFuse Magnitude Imp. 81.23 88.52 91.76 93.15 93.78
Static Pruning GroupNorm Imp. 81.09 88.77 91.77 93.19 93.68

(Tsync = 1) LAMP Imp. 81.86 88.51 92.10 93.02 93.63

PruneFuse significantly reduces training time due to the efficiency of the pruned network as compared to
baseline, making it well suited for resource-constrained environments.

Table 30 provides a detailed breakdown of the training run time for each component of PruneFuse, including
the data selector training time, the selection time, and the target network training time. These measurements
offer a comprehensive view of the computational requirements of PruneFuse, demonstrating its efficiency
compared to the baseline methods. The breakdown highlights that the pruned network and the fusion process
contribute to significant computational savings without compromising performance.

Table 29: Training Runtime of data selector network i.e. pruned network in the case of PruneFuse and dense
network for baseline, for various network architectures. The reported time is the training time when the network is
trained before selecting final subset of the data (b = 50%).

Datasets Data Selectors Training Runime
(Selection Models) (Minutes)

CIFAR-10 ResNet-56 (Baseline) 127.67
ResNet-56 (PruneFuse (p = 0.5)) 72.55
ResNet-56 (PruneFuse (p = 0.8)) 67.23
ResNet-18 (Baseline) 85.68
ResNet-18 (PruneFuse (p = 0.5)) 61.15
Wide ResNet (Baseline) 122.43
Wide ResNet (PruneFuse (p = 0.5)) 75.48

CIFAR-100 ResNet-164 (Baseline) 129.23
ResNet-164 (PruneFuse (p = 0.5)) 83.52
ResNet-164 (PruneFuse (p = 0.8)) 78.55
ResNet-110 (Baseline) 95.80
ResNet-110 (PruneFuse (p = 0.5)) 80.42
ResNet-110 (PruneFuse (p = 0.8)) 69.50

TinyImagenet-200 ResNet-50 (Baseline) 248.48
ResNet-50 (PruneFuse (p = 0.5)) 147.47
ResNet-50 (PruneFuse (p = 0.8)) 94.42

ImageNet-1K Resnet-50 (Baseline) 2081.3
ResNet-50 (PruneFuse (p = 0.5)) 951.17

33

Under review as submission to TMLR

Table 30: Detailed Training time of Baseline and PruneFuse(p = 0.5) for TinyImageNet-200 for Resnet-50
using Least Confidence as selection metric.

Datasets
Label Budget Data Selectors Data Selection Time Target Model

(b) (Training Time) (Minutes) (Training Time)
(Minutes) (Minutes)

Baseline (AL) 10% 48.80 4.43 48.80
20% 99.23 3.50 99.23
30% 145.32 3.15 145.32
40% 195.38 2.72 195.38
50% 248.48 2.38 248.48

PruneFuse 10% 32.17 1.57 49.50
20% 61.70 1.67 99.99
30% 88.53 1.52 146.25
40% 117.10 1.37 196.28
50% 147.47 1.18 249.58

Table 31: Results with ResNet20 and ResNet56 on CIFAR-10 (Least Confidence & Entropy) using
ALSE Jung et al. (2023).

Model / Selection Metric Method with ALSE 10% 20% 30% 40% 50%

ResNet20 / Least Conf.

Baseline 80.24 86.28 89.07 90.27 91.09
PruneFuse (p = 0.4) 81.05 86.82 90.02 90.89 91.54
PruneFuse (p = 0.5) 80.72 86.65 89.79 90.79 91.51
PruneFuse (p = 0.6) 80.53 86.68 89.56 90.81 91.32

ResNet56 / Least Conf.

Baseline 80.73 88.13 90.99 92.58 93.13
PruneFuse (p = 0.4) 80.86 88.28 91.36 93.15 93.44
PruneFuse (p = 0.5) 80.80 88.17 91.43 93.02 93.19
PruneFuse (p = 0.6) 80.76 87.80 91.29 92.73 93.20

ResNet20 / Entropy

Baseline 80.12 86.01 88.96 90.68 91.21
PruneFuse (p = 0.4) 80.64 86.99 89.65 91.27 91.46
PruneFuse (p = 0.5) 80.39 86.59 89.49 90.97 91.42
PruneFuse (p = 0.6) 80.29 86.24 88.94 90.75 91.24

ResNet56 / Entropy

Baseline 80.59 88.11 90.88 92.52 93.06
PruneFuse (p = 0.4) 81.05 88.49 91.38 92.95 93.44
PruneFuse (p = 0.5) 80.97 88.37 91.31 92.87 93.32
PruneFuse (p = 0.6) 80.77 88.09 91.08 92.71 93.20

34

	Introduction
	Related Work
	Background and Motivation
	Subset Selection Framework
	Network Pruning and Its Relevance

	PruneFuse
	Pruning at Initialization
	Data Selection via Pruned Model
	Training of Pruned Model
	Fusion with the Original Model
	Refinement of the Fused Model
	Iterative Pruning of Fused Model

	Error Decomposition for PruneFuse
	Experiments
	Experimental Setup
	Results and Discussions

	Conclusion
	Supplementary Materials
	Complexity Analysis
	Error Decomposition for PruneFuse
	Empirical Proxy-Target Alignment

	Implementation Details
	Additional Details of the Fusion Process
	Performance Comparison with different Datasets, Selection Metrics, and Architectures
	Ablation Study of Fusion
	Ablation Study of Knowledge Distillation in PruneFuse
	Comparison with SVP
	Ablation Study on the Number of Selected Data Points (k)
	Impact of Early Stopping on Performance
	Performance Comparison Across Architectures and Datasets
	Performance at Lower Pruning Rates
	Comparison with Recent Coreset Selection Techniques
	Effect of Various Pruning Strategies and Criteria
	Runtime Comparison of Data Selector Networks and Detailed Breakdown of the Training Runtime for each Component of PruneFuse

