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ABSTRACT

Contrastive learning, along with its variations, has been a highly effective self-
supervised learning method across diverse domains. Contrastive learning measures
the distance between representations using cosine similarity and uses cross-entropy
for representation learning. Within the same framework of cosine-similarity-based
representation learning, margins have played a significant role in enhancing face
and speaker recognition tasks. Interestingly, despite the shared reliance on the same
similarity metrics and objective functions, contrastive learning has not actively
adopted margins. Furthermore, decision-boundary-based explanations are the
only ones that have been used to explain the effect of margins in contrastive
learning. In this work, we propose a new perspective to understand the role of
margins based on gradient analysis. Based on the new perspective, we analyze
how margins affect gradients of contrastive learning and separate the effect into
more elemental levels. We separately analyze each and provide possible directions
for improving contrastive learning. Our experimental results demonstrate that
emphasizing positive samples and scaling gradients depending on positive sample
angles and logits are the keys to improving the generalization performance of
contrastive learning in both seen and unseen datasets, and other factors can only
marginally improve performance.

1 INTRODUCTION

Self-supervised learning (SSL), or unsupervised learning, has attracted a lot of attention, succeeding
in a range of fields Wu et al. (2018); Oord et al. (2018); Devlin et al. (2019); Dosovitskiy et al.
(2021); HaoChen et al. (2021). Contrastive learning Wu et al. (2018); Oord et al. (2018) is one of the
universal SSL frameworks Oord et al. (2018) not relying on domain-specific assumptions. It learns
instance-level relationships between samples using the similarity function (cosine similarity) and
cross-entropy. Pretraining frameworks based on contrastive learning have been applied in various
fields, ranging from the image He et al. (2020); Chen et al. (2020a); Caron et al. (2020); Grill et al.
(2020) to the audio domain Oord et al. (2018); Hsu et al. (2021).

As contrastive learning does, face and speaker recognition tasks share the same cosine similarity
and softmax loss-based losses Zhang et al. (2019); Huang et al. (2020); Meng et al. (2021); Kim
et al. (2022); Boutros et al. (2022); Desplanques et al. (2020). To improve identification accuracy,
these domains usually exploit margins, which are known to increase inter-class distance and decrease
intra-class distance in face and speaker recognition tasks. To be more specific, they add margins
to the decision boundary by adding margins to the angles or the logits of positive samples (Eq. 4).
Based on the commonality, there have been recent attempts to benefit from the characteristic of
margins in contrastive learning Zhan et al. (2022); Zhang et al. (2022). These studies demonstrate
that margins can improve contrastive learning-based tasks. Notwithstanding the difference between
face recognition and contrastive learning, the explanation of how margins work remains solely based
on the explanation from the face recognition domain.

Thus, our work starts with the following question: how do margins affect contrastive learning? It
remains unclear how margins affect contrastive learning in the absence of class labels, which are
commonly used in face recognition tasks to explain the effect of margins. Thus, our work aims to
investigate how margins affect contrastive learning-based representation learning through gradient
analysis without relying on classification- or decision-boundary-based explanations. We use the
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generalized contrastive learning loss Oord et al. (2018) to incorporate margins (Sec. 3.2). Then, we
analyze the gradient of the loss to identify the effect of margins on gradients (Sec. 4).

Through gradient analysis, we found that margins affect representation learning in four ways. First, it
emphasizes positive samples. Second, margins reduce the gradients of distant positive samples. Third,
it scales gradients by the ratio of sums of exponentiated logits without and with margins, which is
affected by both the angle and logits of positive samples. Lastly, margins alleviate the slowdown
effect of gradients when the estimated probability approaches the target probability. Based on the
analysis, we separately explored each effect. We experimentally showed that emphasizing positive
samples and scaling gradients by the ratio of sums of exponentiated logits are important for improving
contrastive learning.

Contrastive learning is based on identity discrimination Wu et al. (2018), relying on the idea that
representations of the same identity should cluster together while those from different identities
should separate. Aside from this core idea, there are a lot of potential directions for improvement. We
believe that understanding how margins affect contrastive learning can provide direction for future
improvement in contrastive learning and SSL, not only helping us exploit margins in contrastive
learning. Not only that, we believe our new perspective on margins could help better understand the
role of margins even in other tasks, including face recognition.

To summarize, our contributions are threefolds:

• We provide a new perspective on the role of margins in cosine similarity-based representation
learning through gradient analysis.

•We show that margins induce a mixture of effects, separate each effect, and experimentally validate
the efficacy of each separated effect and provide its limitations.

• Our experimental results demonstrate that emphasizing positive samples and scaling gradients
based on positive sample angles and logits are the keys to improving the generalization performance
of contrastive learning in both seen and unseen datasets.

2 RELATED WORKS

2.1 CONTRASTIVE LEARNING

Contrastive learning (InfoNCE) Oord et al. (2018) aims to learn instance-level relationships between
samples using a similarity function (cosine similarity) and cross-entropy. Contrastive learning
enforces neural networks to generate close representations for positive samples (different views of
the same image) and distant representations for negative samples (views from different images) Wu
et al. (2018). Several InfoNCE-based SSL methods Chen et al. (2020a); Caron et al. (2020); Grill
et al. (2020); He et al. (2020); Chen & He (2021) have been proposed. For example, MoCo He et al.
(2020); Chen et al. (2020c; 2021) proposed using a teacher model for generating different latent
representations of the same samples. SimCLR Chen et al. (2020a;b) demonstrated that augmentations
play a critical role in contrastive learning frameworks. BYOL Grill et al. (2020), another variety of
InfoNCE, proposed using only positive samples.

Several works have analyzed the properties and limitations of contrastive learning Wang & Liu (2021);
Zhang et al. (2022); Wang et al. (2022); Chuang et al. (2020). Wang & Liu (2021) analyzed the role of
temperature τ in contrastive learning, and found that contrastive learning focuses on nearby samples.
Similarly, Zhang et al. (2022) argue that contrastive learning is robust to long-tail distribution. There
are additional studies to uncover the weak spots of contrastive learning and suggest remedies. Wang
et al. (2022), for example, showed that contrastive learning tends to ignore non-shared information
between views, resulting in performance degradation in some downstream task. Meanwhile, Chuang
et al. (2020) demonstrate that contrastive learning is biased and thus de-biasing contrastive learning
loss can improve representation learning.

2.2 MARGIN SOFTMAX LOSS

Face and speaker recognition tasks determine whether two given samples are representations of
the same identity by comparing extracted feature vectors. These tasks mainly use the same cosine-
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similarity-based softmax loss as contrastive learning, the difference being using known identity
information as class labels during training. Margins have been a successful method for widening
inter-class, or inter-identity, distance and narrowing down intra-class distance Wang et al. (2018);
Deng et al. (2019). To improve recognition performance, several variety of margins have been
proposed, including adaptive Zhang et al. (2019); Huang et al. (2020); Meng et al. (2021); Kim et al.
(2022) and stochastic margins Boutros et al. (2022).

There have been attempts to introduce margins also in contrastive learning (or InfoNCE) Zhan
et al. (2022); Zhang et al. (2022). Zhan et al. (2022) showed that margins can enhance feature
discriminability, and Zhang et al. (2022) showed that margins could be used to reduce population
bias. Yet, no work has delved into gradient levels to analyze how and why margins work, and the
explanations on the role of margins remain in the feature-discriminative aspects of margins. In this
work, we aim to understand the margin through gradient analysis and identify the complex effects
that margins have on contrastive learning.

3 GENERALIZED MARGINS FOR CONTRASTIVE LOSS

In this section, we generalize InfoNCE Oord et al. (2018) loss and include margins in order to analyze
its effect on gradients. For consistency, we will use notations j and k for arbitrary indices, and
notations l and h for positive and negative sample indices, respectively.

3.1 GENERALIZED INFONCE

The InfoNCE loss function can be represented as follows:

q̃ij =
exp(sim(zi, zj)/τ)∑

k∈X exp(sim(zi, zk)/τ)
, L̃i = −

∑
j∈X

pij log q̃ij . (1)

zi denotes a latent feature of input i. X denotes the set of samples in a mini-batch, and pij denotes
the target probability of two identities (i and j) being equal. sim(·, ·) is a similarity function. Given
that cosine similarity is used as a similarity function, q̃ij can be rewritten as follows:

θij = arccos(sim(zi, zj)), δ̃ij = cos(θij)/τ, q̃ij = exp(δ̃ij)/
∑
k∈X

exp(δ̃ik) (2)

θij denotes the angle between two normalized latent features.

Other contrastive learning techniques, like BYOL Grill et al. (2020), that exclusively use positive
samples cannot be covered by Eq. 1. As a result, we generalize the equation by introducing β to the
denominator of q̃ij as proposed in BYOL Grill et al. (2020). By rewriting the equation, we get the
following equation:

L̃i = −
∑
j∈X

pij log
exp(δ̃ij)

β
∑

k∈X exp(δ̃ik)
= −

∑
j∈X

pij δ̃ij + β
∑
j∈X

pij log
∑
k∈X

exp(δ̃ik). (3)

If β is non-zero, the loss uses both positive and negative samples. Otherwise, only positive samples
will be used for training. Therefore, this equation can generalize any contrastive learning-based SSL
method, such as MoCo, SimCLR, and BYOL.

3.2 INCLUDING MARGINS IN INFONCE

There are two types of margins; angular margin m1 and subtractive margin m2. Angular margin m1

is added to the angle between two representations θij , and subtractive margin m2 is subtracted to the
logits. These margins are added only to positive samples. After including margins, we can rewrite
the logits and the estimated probability as follows:

δij = (cos(θij +m1pij)−m2pij)/τ, qij = exp(δij)/
∑
k∈X

exp(δik) (4)

Likewise, Eq. 3 can be rewritten as follows:

Li = −
∑
j∈X

pijδij + β
∑
j∈X

pij log
∑
k∈X

exp(δik). (5)
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Figure 1: Gradient magnitudes of contrastive learning loss without margins (Eq. 3). β, and τ was
set to 1, and 0.25, respectively. q+ and q− denote the estimated probability of positive and negative
samples. θ+ and θ− refer to the angles of positive and negative samples.

Figure 2: The gradient multipliers pertaining to the angular margin m1 (Eq. 6). β, τ , and m1 was set
to 1, 0.25, and 0.4, respectively. The left figure shows the map that applies only to positive samples,
while the right figure illustrates the multiplier map that applies to both positive and negative samples.
The green lines indicate where the weight is 1. Best viewed in color.

Eq. 5 can generalize to various SSL methods, including MoCo, SimCLR and BYOL by simply setting
margins to zeros.

4 GRADIENT ANALYSIS

As Fig. 1 illustrates, the magnitude of the gradient without margins ∂L̃i/∂θij diminishes as the
estimated probabilities qij of both positive and negative samples approach their target probabilities
pij . To examine how margins affect representation learning, we compare the derivative of Eqs. 3
and 5 with respect to the angle θij . We provide proofs of the following theorems and lemmas in the
appendix.

Theorem 4.1 The margins (m1,m2) scale the gradient with respect to an angle θij by sin(θij +
m1pij)/ sin(θij) · (pij − βqij)/(pij − βq̃ij). That is,

∂Li

∂θij
=

∂L̃i

∂θij
· sin(θij +m1pij)

sin(θij)
· pij − βqij
pij − βq̃ij

. (6)

This shows that margins scale gradients through two terms; sin(θij +m1pij)/ sin(θij) and (pij −
βqij)/(pij − βq̃ij).

Lemma 4.2 If β equals one and pij is either zero or one, (pij − βqij)/(pij − βq̃ij) =∑
exp(δ̃ij)/

∑
exp(δij) = (exp(δ̃il)/qil) / (exp(δil) + exp(δ̃il)(1/qil − 1)).

That is, it is equal to the ratio of the sums of exponentiated logits without and with margins. Based
on these, we will analyze how angular margin m1 and subtractive margin m2 affect gradients in the
following subsections.

4.1 ANGULAR MARGIN

As Theorem 4.1 implies, the angular margin m1 multiplies the gradients by two terms: sin(θij +
m1pij)/ sin(θij) and (pij −βqij)/(pij −βq̃ij). The first term (pij −βqij)/(pij −βq̃ij) emphasizes
positive samples and it also de-emphasizes positive samples as the angle θil increases. The second
term sin(θij + m1pij)/ sin(θij) scales gradients of both positive and negative samples. Fig. 2
visualizes these two terms. We will elaborate on them in the following sections and experimentally
verify the efficacy of each component in later sections.
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As shown in Fig. 2, sin(θij + m1pij)/ sin(θij) drastically increases the scale of positive sample
gradients. Moreover, the gradient of a positive sample significantly diminishes as the angle θil widens.
In short, the angular margin m1 forces neural networks to focus on positive samples with small
angles.

The second term (pij −βqij)/(pij −βq̃ij) multiplies gradients of both positive and negative samples
and has several characteristics. First of all, it only relies on the angle (θil or θ+) and the estimated
probability (q̃il or q̃+) of a positive sample only. In addition, the weight increases as θ+ approaches
(π −m)/2 and q̃+ approaches one (pil or p+). Unfortunately, this term cannot be expressed as a
product of two arbitrary functions, f(θ+) and g(q̃+). Therefore, we will use this ratio as it is.

4.2 SUBTRACTIVE MARGIN

The subtractive margin m2 directly suppresses the logits of positive samples δil. This attenuates the
diminishing gradients as the estimated probability of a positive sample q̃il approaches one.

Lemma 4.3 If β is 1 and pij is either zero or one, ∂Li/∂θij can be expressed as follows:

∂Li

∂θij
=

∂L̃i

∂θij

sin(θij +m1pij)

sin(θij)

1

1− (1− exp((cos(θil +m1)− cos(θil)−m2)/τ))q̃il
, (7)

where q̃il denotes the estimated probability of a positive sample l without margins.

Given that 1/(1− (1− exp((cos(θil +m1)− cos(θil)−m2)/τ))q̃il) increases as q̃il increases, m2

gives more weight as q̃il approaches pil, which is one.

Lemma 4.4 As m2 approaches infinity and β is 1, limm2→∞ ∂Li/∂θil = sin(θil +m1)/τ .

That is, the subtractive margin m2 will make positive sample gradients independent of the estimated
probabilities q̃il and thus of other negative samples. Since the gradient multiplier also affects negative
samples, we analyze this effect in Sec. 5.5 in two ways: positive-sample-only and positive-sample-
bound attenuation.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the impact of four effects: emphasizing positive samples (Sec. 5.2),
weighting positive samples differently depending on their angles (Sec. 5.3), scaling gradients by
the ratio (Sec. 5.4), and attenuating the diminishing gradient effect as the estimated probability of
positive sample qil approaches the target probability pil (Sec. 5.5). To this end, we conducted separate
experiments on MoCov3 Chen et al. (2021), SimCLR Chen et al. (2020a), and BYOL Grill et al.
(2020). We also compared with the baselines (MoCo, SimCLR, and BYOL) using linear probing (only
tuning a linear layer on top of the frozen pretrained backbone model) and transfer learning (tuning
the linear layer on different dataset) in Sec. 5.6. Our experiments utilized five different datasets,
including CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), STL-10 Coates
et al. (2011), TinyImageNet Le & Yang (2015), and ImageNet Russakovsky et al. (2015).

5.1 IMPLEMENTATION DETAILS

For four datasets (CIFAR-10, CIFAR-100, STL-10, TinyImageNet), we used a modified ResNet-
18 He et al. (2016) as proposed by Zheng et al. (2021). We basically followed the experimental
settings from ReSSL Zheng et al. (2021). To compare with the baselines, we pretrained networks
for 200 epochs and tuned only a linear layer on top of the frozen pretrained backbone model for
100 epochs (linear probing). Keep in mind that our intention is to examine the three effects on SSL
methods rather than to compare the performance of different SSL methods. Therefore, we fixed the
training hyper-parameters across different SSL methods.

For ImageNet, we used ResNet-50 He et al. (2016) as the backbone model, following other SSL
literature He et al. (2020); Chen et al. (2020a); Grill et al. (2020). We pretrained for 100 epochs and
fine-tuned a linear layer for 90 epochs, consistent with previous works Chen et al. (2021; 2020a). We
did not alter any hyperparameters of the baselines, except for newly introduced hyperparameters (s
and c). Please refer to the appendix for more detailed experimental settings due to page limits.
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Figure 3: Top 1 accuracy when emphasizing positive samples using s (Eq. 8).

Figure 4: Relationship between the batch size and the positive sample gradient multiplier s in
SimCLR. The x axis is for s and is in log scale.

5.2 EMPHASIZING POSITIVE SAMPLES

In this section, we quantitatively measure the effect of emphasizing positive samples. To this end, we
introduce a new hyper-parameter s to scale positive sample gradients as follows:

wij = (1− pij) + s · pij (8)

δscaleij = δijwij + sg(δij) · (1− wij). (9)
wij denotes sample-wise weight, and sg(·) is the stop gradient operation. We trained neural networks
by replacing δij with δscaleij in Eq. 5.

We tested the effect of emphasizing positive samples on both MoCo and SimCLR. BYOL was
excluded because it only uses positive samples and thus emphasizing positive samples is the same as
increasing the learning rate. Fig. 3 visualizes the results.

As the figure shows, scaling up positive sample gradients significantly improves the performance of
MoCo. It shows that lowering the relative weights of negative samples can improve the performance,
but if they get too small, it will rather cause performance degradation. Given that the gradients
of MoCo approach those of BYOL as the scale s approaches infinity (assuming the learning rate
is adjusted accordingly), the presence of negative samples may be rather necessary for better SSL
performance. It is also worth noting that emphasizing positive samples yields higher accuracy than
using margins in the case of MoCo (Tab. 2). This implies that the performance improvement brought
by emphasizing positive samples is offset by other factors, such as curvatures (Sec. 5.3).

Unlike MoCo, SimCLR does not seem to improve by scaling up positive sample gradients. However,
Fig. 4 shows that as the batch size increases, the optimal s increases, as does the performance gap.
The larger the batch size, the more the performance curve becomes similar to that of MoCo. We
believe this is related to the issue that SimCLR requires a large batch size Chen et al. (2020a).

In conclusion, while the peak and slopes are variable, it exhibits a consistent pattern across various
methods and datasets. Considering that many algorithms quickly converge in a few epochs, but there
is no gain in much longer training epochs, we also include the experimental results of MoCo with the
training epochs of 1,000 in the appendix.

5.3 CURVATURE OF THE POSITIVE SAMPLE GRADIENT SCALE

In this section, we analyze the effect of weighting positive samples differently based on their angles
pil. We will refer to a weight curve, a function of the positive sample angle, as a curvature. To
experiment with convex, linear, and concave curvatures, we define a curve γ(x, c) as follows:

γ(x, c) = |(1− xc)1/c|, (10)
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Figure 5: Controlling positive sample gradient scale curvatures using c (Eq. 11). s was set to one.

Figure 6: Controlling both the scale s and curvature c of MoCo (Eq. 11).

where c is a parameter controlling the curvature, and | · | denotes the absolute operation. When c is
infinity, it becomes exactly the same as not controlling the curvature at all. To use Eq. 10 to control
the diminishing rate of the positive samples gradient, we set the weights as follows;

wdim
ij = (1− pij) + γ(θij/π, c) · s · pij . (11)

For experiments, we replaced wij with wdim
ij in Eq. 9. We used three convex (c is 1/3, 0.5, 0.7), three

concave (c is 1.5, 2.5, 5), and linear (c is 1) curves.

Fig. 5 shows how different c affects various SSL methods and datasets, and Fig. 6 shows the
performance of MoCo as both scale s and c change. If s is 1, the performance variation caused by c
is negligible, unless c is extremely small. However, the performance variation caused by c becomes
more pronounced as s increases. While it varies slightly depending on the dataset, in many cases,
c being close to or greater than 1 yields the optimal outcome. Furthermore, considering that the
curvature due to margins is highly convex, this explains partly why using margins might not fully
exploit the advantage of weighting positive samples differently based on their angles.

5.4 THE RATIO OF SUMS OF EXPONENTIATED LOGITS

We also conducted experiments on the effect of the ratio (pij − βqij)/(pij − βq̃ij). To this end, we
only multiply the gradients by the ratio without modifying the objective function. That is, we used
the loss without margins (Eq. 3), while scaling gradients by the ratio. For experiments, we calculated
the ratios using m1 of 0.2, 0.4, 0.8, 1.6, and 3.1. Fig. 7 shows that scaling the gradients by the ratio
can improve performance. Usually, the optimal margin m1 lies somewhere larger than zero. But the
performance curves show less congruent patterns.

5.5 ATTENUATING THE DIMINISHING GRADIENTS

As explained in Secs. 4.1 and 4.2, margins can attenuate the diminishing gradients as qij approaches
pij . Since the scale depends only on the positive sample, we ran experiments on two types of
attenuation scales; type I and II. They are defined as follows:

wI
ij =

∑
k∈X

pik
1− αq̃ik

, wII
ij = (1− pij) +

pij
pij − αq̃ij

. (12)

Figure 7: The 1 accuracy when scaling gradients by the ratio (Sec. 5.4).
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Table 1: The effect of each gradient attenuation type and attenuation magnitude α.
CIFAR10 CIFAR100 STL10 TinyImageNet

method α type I type II type I type II type I type II type I type II

MoCo 0 89.413 60.956 87.629 42.133
0.25 89.376 89.713 60.857 61.217 87.292 87.455 42.420 42.460
1 89.743 89.633 60.997 61.263 87.329 87.442 42.797 42.510

SimCLR 0 89.653 62.655 87.188 44.184
0.25 89.867 89.557 62.407 62.763 87.200 87.042 44.206 44.197
1 89.735 89.767 62.840 62.800 87.300 87.317 44.260 44.260

Table 2: Linear probing. pos. denotes emphasizing positive samples and curv. denotes controlling the
curvature of positive gradient scales.

CIFAR10 CIFAR100 STL10 TinyImageNet

MoCo 89.413 ± 0.109 60.956 ± 0.167 87.629 ± 0.175 42.133 ± 0.225
+ margins 89.840 ± 0.105 61.796 ± 0.254 87.688 ± 0.275 42.860 ± 0.280
+ pos. 90.663 ± 0.159 65.413 ± 0.205 90.357 ± 0.398 48.273 ± 0.405
+ pos. & curv. 90.865 ± 0.025 66.095 ± 0.295 90.361 ± 0.057 48.503 ± 0.270
+ ratio. 90.100 ± 0.017 61.767 ± 0.040 88.000 ± 0.078 43.283 ± 0.031

SimCLR 89.653 ± 0.207 62.655 ± 0.277 87.188 ± 0.145 44.184 ± 0.220
+ margins 90.447 ± 0.191 63.507 ± 0.414 87.430 ± 0.220 44.593 ± 0.410
+ pos. 89.695 ± 0.150 62.917 ± 0.302 87.284 ± 0.248 44.348 ± 0.295
+ pos. & curv. 90.190 ± 0.067 63.503 ± 0.279 87.346 ± 0.156 44.376 ± 0.201
+ ratio. 89.920 ± 0.066 63.437 ± 0.045 87.658 ± 0.029 45.010 ± 0.040

BYOL 90.283 ± 0.109 61.006 ± 0.140 87.546 ± 0.668 41.846 ± 0.097
+ curv. 90.485 ± 0.085 61.170 ± 0.340 88.051 ± 0.230 43.332 ± 0.564

For type I, we multiply 1/(1− αq̃il) to gradients to both positive and negative samples, as m2 does
(Eq. 7). If α equals 1 − exp((cos(θil +m1) − cos(θil) −m2)/τ), type I equals using subtractive
margin m2 (Eq. 7). For type II, we only scale gradients of positive samples only.

Tab. 1 shows the performance as α changes. We exempt BYOL because qij cannot exist without
negative samples. As the table shows, attenuating positive gradients as qil approaches pil does not
significantly improve performance in both cases (types I and II). This might be related to the fact that
many face recognition methods use only the angular margin m1.

5.6 COMPARISON WITH BASELINES

In this section, we compare the baselines with and without margins as well as three other components;
emphasizing positive samples (in short pos.), weighting positive samples differently (abbreviated as
curv.), and scaling by ratios (in short ratio.). We tested each model in two different settings; linear
probing (Tab. 2) and transfer learning (Tab. 3). Experimental details, including exact values of s and
c, are addressed in the appendix.

Table 4: Top 1 accuracy of ResNet-50 when linear probing on ImageNet.
Epoch ImageNet

MoCov3 100 68.9
+ pos. & curv. 100 70.9

SimCLR 100 64.7
+ pos. & curv. 100 65.7
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Table 3: Transfer learning. While freezing the pretrained backbone model, only the linear layer was
tuned to the target dataset. It is expressed in the form of “pretrained dataset −→ target dataset”.

CIFAR100 CIFAR10 TinyImageNet STL10
−→ CIFAR10 −→ CIFAR100 −→ STL10 −→ TinyImageNet

MoCo 75.417 ± 0.241 43.590 ± 0.225 72.013 ± 0.250 31.140 ± 0.130
+ margins 75.380 ± 0.418 43.190 ± 0.255 72.154 ± 0.654 30.543 ± 0.160
+ pos. 78.847 ± 0.244 55.113 ± 0.434 78.100 ± 0.185 41.825 ± 0.431
+ pos. & curv. 78.600 ± 0.042 52.940 ± 0.750 78.734 ± 0.040 41.777 ± 0.690
+ ratio. 76.027 ± 0.074 44.113 ± 0.012 72.567 ± 0.040 32.070 ± 0.050

SimCLR 77.300 ± 0.014 48.845 ± 0.615 75.533 ± 0.026 35.108 ± 0.453
+ margins 76.377 ± 0.301 47.023 ± 0.219 75.617 ± 0.273 34.747 ± 0.430
+ pos. 76.893 ± 0.220 49.090 ± 0.262 75.675 ± 0.194 35.067 ± 0.380
+ pos. & curv. 76.620 ± 0.190 48.683 ± 0.107 75.571 ± 0.220 34.280 ± 0.215
+ ratio. 77.440 ± 0.346 49.903 ± 0.025 75.983 ± 0.029 35.237 ± 0.032

BYOL 75.086 ± 0.156 41.560 ± 0.321 69.433 ± 0.272 30.306 ± 0.309
+ curv. 74.820 ± 0.552 39.445 ± 0.078 72.442 ± 0.366 29.260 ± 0.028

Tabs. 2 and 3 present the linear probing and transfer learning performance on four datasets. In
addition, Tab. 4 shows the linear probing performance on ImageNet. As indicated in Tab. 2, the most
significant improvement of MoCo occurs when positive samples are emphasized. The transfer learning
performance (Tab. 3) demonstrates that this performance improvement is not due to overfitting but
rather reflects enhanced representations capable of generalizing to unseen datasets. While curv.
coupled with pos. can improve performance in seen datasets, it does not consistently enhance
performance in unseen datasets. As mentioned in Sec. 5.2, emphasizing positive samples does not
significantly improve SimCLR on four datasets. On ImageNet (Tab. 4), however, SimCLR shows
improvement, and we believe this pertains to the increased batch size.

Scaling gradients by the ratio consistently improves contrastive learning across various datasets, not
only in seen datasets but also in unseen datasets. The performance improvement is more apparent for
SimCLR. BYOL is structurally less affected by margins or their associated effects. Consequently,
performance improvements are limited. In conclusion, optimizing margins and related effects can
contribute to performance enhancements on the target dataset, and emphasizing positive samples and
scaling by the ratio appear to be important for achieving improved representations that generalize to
unseen datasets.

6 LIMITATIONS AND DISCUSSION

Our work is based on several assumptions; cosine similarity and one-hot target probability pij . Since
not all methods follow these assumptions, our work requires further validation to determine whether
the observations made in this study can be transferred to other contrastive learning methods that
violate these assumptions Chuang et al. (2020); Zheng et al. (2021). Moreover, we could not delve
into the ratio (pij − βqij)/(pij − βq̃ij) due to the fact that it is not a separable function. Considering
the improvement in SimCLR, delving into it can be an interesting direction.

7 CONCLUSION

We proposed a novel view on understanding the role of margins using gradient analysis and not
relying on decision-boundary-based explanations. By analyzing gradients, we discovered that margins
have a mixture of four different effects: emphasizing positive samples, weighting positive samples
differently based on their angles, scaling gradients by the ratio of sums of exponentiated logits,
and alleviating the diminishing gradient effect as the estimated probability approaches the target
probability. We separated each effect and experimentally demonstrated the significance and limits of
each. We hope our analysis of how margins affect the gradients of representation learning will help
improve contrastive learning and possibly margins themselves.
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A PROOFS

A.1 THEOREM 4.1

Recalling that L̃i = −
∑

j∈X pij δ̃ij + β
∑

j∈X pij log
∑

k∈X exp(δ̃ik), the derivative with respect
to δ̃ij can be expressed as follows:

∂L̃i

∂δ̃ij
= −pij + β

exp(δ̃ij)∑
k∈X exp(δ̃ik)

= −pij + βq̃ij . (13)

Similarly, ∂L̃i/∂δij equals −pij + βqij . The derivative of L̃i (Eq. 3) and Li (Eq. 5) with respect to
θij can be represented as follows:

∂L̃i

∂θij
=

∂L̃i

∂δ̃ij

∂δ̃ij
∂θij

= (pij − βq̃ij)
sin(θij)

τ
(14)

∂Li

∂θij
=

∂Li

∂δij

∂δij
∂θij

= (pij − βqij)
sin(θij +m1pij)

τ
(15)

Using Eqs. 14 and 15, we can draw the relationships between two derivatives (Theorem 4.1).
∂Li

∂θij
= (pij − βqij)

sin(θij +m1pij)

τ

pij − βq̃ij
pij − βq̃ij

sin(θij)

sin(θij)
(16)

= (pij − βq̃ij)
sin(θij)

τ

pij − βqij
pij − βq̃ij

sin(θij +m1pij)

sin(θij)
=

∂L̃i

∂δ̃ij

pij − βqij
pij − βq̃ij

sin(θij +m1pij)

sin(θij)
(17)

A.2 LEMMA 4.2

We first assume that β is one and pij is either zero or one. Before proving the lemman, we first
reformulate q̃ij and qij as follows:

q̃ij =
exp(δ̃ij)∑

k∈X exp(δ̃ik)
=

exp(δ̃ij)

exp(δ̃il)/q̃il
(18)

qij =
exp(δij)∑

k∈X exp(δik)
=

exp(δij)

exp(δil)− exp(δ̃il) +
∑

k∈X exp(δ̃ik)
(19)

=
exp(δij)

exp(δil)− exp(δ̃il) + exp(δ̃il)/q̃il
(20)

=
exp(δij)

exp(δil) + exp(δ̃il)(1/q̃il − 1)
. (21)

Using these reformulations, we can express (pij − βqij)/(pij − βq̃ij) as follows:

pij − βqij
pij − βq̃ij

=
(pij(exp(δil) + exp(δ̃il)(1/q̃il − 1))− β exp(δij))/(exp(δil) + exp(δ̃il)(1/q̃il − 1))

(pij exp(δ̃il)/q̃il − β exp(δ̃ij))/(exp(δ̃il)/q̃il)
(22)

=
pij(exp(δil) + exp(δ̃il)(1/q̃il − 1))− β exp(δij)

pij exp(δ̃il)/q̃il − β exp(δ̃ij)

exp(δ̃il)/q̃il

exp(δil) + exp(δ̃il)(1/q̃il − 1)
(23)

For a positive sample l,
pil − βqil
pil − βq̃il

=
exp(δil) + exp(δ̃il)(1/q̃il − 1)− exp(δij)

exp(δ̃il)/q̃il − exp(δ̃ij)

exp(δ̃il)/q̃il

exp(δil) + exp(δ̃il)(1/q̃il − 1)
(24)

=
exp(δ̃il)/q̃il − exp(δ̃ij)

exp(δ̃il)/q̃il − exp(δ̃ij)

exp(δ̃il)/q̃il

exp(δil) + exp(δ̃il)(1/q̃il − 1)
(25)

=
exp(δ̃il)/q̃il

exp(δil) + exp(δ̃il)(1/q̃il − 1)
. (26)
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Using the fact that δih equals δ̃ih for a negative sample h, we can get the following equation:

pih − βqih
pih − βq̃ih

=
− exp(δih)

− exp(δ̃ih)

exp(δ̃il)/q̃il

exp(δil) + exp(δ̃il)(1/q̃il − 1)
=

exp(δ̃il)/q̃il

exp(δil) + exp(δ̃il)(1/q̃il − 1)
(27)

That is, (pij − βqij)/(pij − βq̃ij) equals (exp(δ̃il)/qil) / (exp(δil) + exp(δ̃il)(1/qil − 1)), and it
can also be expressed as

∑
exp(δ̃ij)/

∑
exp(δij).

A.3 LEMMA 4.3

We first assume that there are only one positive sample and other samples are negative. This
assumption holds true for SSL methods we are analyzing. In addition, we also assume that β to one
(which holds true for MoCo and SimCLR). If β is zero, then subtractive margin m2 cannot work.
Eq. 15 can be rewritten as follows:

∂Li

∂θij
= (pij − βqij)

sin(θij +m1pij)

τ
=
−β exp(δij) + pij

∑
k∈X exp(δik)∑

k∈X exp(δik)

sin(θij +m1pij)

τ

(28)

=
−β exp(δij) + pij

∑
k∈X exp(δik)∑

k∈X exp(δ̃ik)

∑
k∈X exp(δ̃ik)∑
k∈X exp(δik)

sin(θij +m1pij)

τ
.

(29)

In addition, we reformualte exp δij as follows,

exp(δij) = exp(
cos(θij)

τ
) exp(

cos(θij +m1pij)− cos(θij)−m2pij
τ

). (30)

= exp(δ̃ij) exp(
cos(θij +m1pij)− cos(θij)−m2pij

τ
) (31)

For brevity, we will use the notation ηij for exp((cos(θij +m1pij)− cos(θij)−m2pij)/τ). We can
rewrite the derivative as follows;

∂Li

∂θij
=
−β exp(δ̃ij)ηij + pij

∑
k∈X exp(δ̃ik)ηik∑

k∈X exp(δ̃ik)

∑
k∈X exp(δ̃ik)∑

k∈X exp(δ̃ik)ηik

sin(θij +m1pij)

τ
. (32)

We will use l to denote the index of a positive sample. Furthermore, we use the fact that ηih of
negative sample h equals one. We can further simplify the equation using this assumption as follows;

∂Li

∂θij
=
−β exp(δ̃ij)ηij + pij(exp(δ̃il)(ηil − 1) +

∑
k∈X exp(δ̃ik))∑

k∈X exp(δ̃ik)

∑
k∈X exp(δ̃ik)∑

k∈X exp(δ̃ik)ηij

sin(θij +m1pij)

τ

(33)

= (pij +
−β exp(δ̃ij)ηij + pij exp(δ̃il)(ηil − 1)∑

k∈X exp(δ̃ik)
)

∑
k∈X exp(δ̃ik)∑

k∈X exp(δ̃ik)ηij

sin(θij +m1pij)

τ

(34)

= (pij − βq̃ijηij + pij q̃il(ηil − 1))

∑
k∈X exp(δ̃ik)∑

k∈X exp(δ̃ik)ηij

sin(θij +m1pij)

τ

(35)

= (pij − βq̃ijηij + pij q̃il(ηil − 1))

∑
k∈X exp(δ̃ik)

exp(δ̃il)(ηil − 1) +
∑

k∈X exp(δ̃ik)

sin(θij +m1pij)

τ

(36)

= (pij − βq̃ijηij + pij q̃il(ηil − 1))
1

1− (1− ηil)q̃il

sin(θij +m1pij)

τ
.

(37)
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Since β to one by the assumption, gradients for a positive sample l can rewritten as follows;

∂Li

∂θil
= (pil + q̃il(pil(ηil − 1)− βηil))

1

1− (1− ηil)q̃il

sin(θil +m1pil)

τ
(38)

= (pil − q̃il)
sin(θil +m1pil)

τ

1

1− (1− ηil)q̃il
. (39)

Similarly, by using ηih equals one, we can get the gradients for a negative sample h as follows;

∂Li

∂θih
= (pih − βq̃ihηih)

1

1− (1− ηil)q̃il

sin(θih +m1pih)

τ
(40)

= (pih − q̃ih)
sin(θih +m1pih)

τ

1

1− (1− ηil)q̃il
. (41)

That is, under the above assumptions, subtractive margin multiplies both positive and negative sample
gradients by 1/(1− (1− ηil)q̃il). If we reformulate the equation, we get the role of the subtractive
margins:

∂Li

∂θij
= (pij − q̃ij)

sin(θij +m1pij)

τ

1

1− (1− ηil)q̃il
(42)

= (pij − q̃ij)
sin(θij)

sin(θij)

sin(θij +m1pij)

τ

1

1− (1− ηil)q̃il
(43)

=
∂L̃i

∂θij

sin(θij +m1pij)

sin(θij)

1

1− (1− exp((cos(θil +m1)− cos(θil)−m2)/τ))q̃il
. (44)

A.4 LEMMA 4.4

As shown in Eq. 41, ∂Li/∂θij can be expressed as follows:

∂Li

∂θij
= (pij − q̃ij)

sin(θij +m1pij)

τ

1

1− (1− exp((cos(θil +m1)− cos(θil)−m2)/τ))q̃il
.

(45)

Therefore, we can get the following equation for a positive sample l:

lim
m2→∞

∂Li

∂θil
= lim

m2→∞
(pil − q̃il)

sin(θil +m1pil)

τ(1− (1− exp((cos(θil +m1)− cos(θil)−m2)/τ))q̃il)
(46)

= (pil − q̃il)
sin(θil +m1pil)

(1− q̃il)τ
=

sin(θil +m1)

τ
. (47)
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Table 5: Margin values for four datasets (Tab. 2).
Method Dataset m1 m2

MoCov3 CIFAR10 0.1 0.4
CIFAR100 0.5 0.7

STL10 0.4 0.6
TinyImageNet 0.1 0.4

SimCLR CIFAR10 0.5 0.4
CIFAR100 0.6 0.6

STL10 0.0 0.2
TinyImageNet 0.0 0.8

Table 6: Scaling factors of pos. only models.
Method Dataset pos. (s)

MoCov3 CIFAR10 20
CIFAR100 20

STL10 40
TinyImageNet 20

SimCLR CIFAR10 1.125
CIFAR100 1.0625

STL10 1.0625
TinyImageNet 1.0625

Table 7: Scaling factors and curvature factors.
Method Dataset pos. (s) curv. (c)

MoCov3 CIFAR10 20 0.7
CIFAR100 40 1

STL10 40 2.5
TinyImageNet 40 2.5

SimCLR CIFAR10 2.5 0.7
CIFAR100 2 0.7

STL10 1.25 0.7
TinyImageNet 1.125 1.0

BYOL CIFAR10 - 1.0
CIFAR100 - 2.5

STL10 - 5.0
TinyImageNet - 2.5

Table 8: Angular margin m1 to calculate the
ratio (Tabs. 2 and 3)

Method Dataset m1

MoCov3 CIFAR10 1.6
CIFAR100 1.6

STL10 0.4
TinyImageNet 1.6

SimCLR CIFAR10 0.2
CIFAR100 0.2

STL10 0.4
TinyImageNet 0.2
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Figure 8: Visualization of (pij − βqij)/(pij − βq̃ij). The green lines indicate where the ratio is one.
m1 and τ are the angular margin and temperature, respectively (Eq. 4).

B VISUALIZATION

Fig. 8 visualizes the weight distributions of the ratios (pij − βqij)/(pij − βq̃ij). Angular margin m1

and temperature τ are from Eq. 4. The figure shows that as m1 increases, the center of emphasis in
θ+ lowers and the emphasizing area broadens.

C IMPLEMEMTATION DETAILS

C.1 EXPERIMENTAL SETTINGS FOR CIFAR-10, CIFAR-100, STL-10, AND TINYIMAGENET

Our experimental settings for these dataset basically follows that of ReSSL. We pretrained each
model on a source dataset for 200 epochs and then fine-tuned it on a target dataset for 100 epochs. We
set the batch size to 256 and τ to 0.25 (for MoCov3 and SimCLR). The latent feature dimension was
set to 128, while the hidden dimension of linear layers (including projection heads and predictors)
was set to 2048. We used SGD with a momentum of 0.9 for both pretraining and evaluation. The
learning rate was set to 0.06 for pretraining the backbone model and 1 for fine-tuning the linear layer.
During evaluation, we employed the cosine annealing learning rate scheduler.

We used two augmentation policies: strong and weak augmentation. The strong augmentation consists
of random resize cropping, horizontal flipping, color jittering, random gray scaling, and Gaussian
blurring. In contrast, the weak augmentation only included random horizontal and random cropping.
For contrastive learning-based SSL methods with a teacher model (MoCov3, BYOL), we used weak
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data augmentation to the teacher model and strong data augmentation to the student model. For
a method without a teacher model (SimCLR), however, we use these two different augmentation
policies to generate two different representations of the same identity.

For projection heads and predictors of MoCov3, SimCLR, and BYOL, we used batch normalization
before the ReLU activation.

During hyperparameter tuning for comparison with baselines, we only adjusted margins (m1 and
m2), s (Eq.9), and c (Eq.11), while keeping other hyperparameters fixed, such as the learning rate.
The hyperparameters used in Sec. 5.6 are specified in Tabs. 5, 8 and 6.

C.2 EXPERIMENTAL SETTINGS FOR IMAGENET

We used the official implementations of both MoCov3 and SimCLR. Due to our computational
budget, we pretrained the networks for 100 epochs. Following the experimental settings of MoCov3
and SimCLR, we fine-tuned the last linear layer for 90 epochs for evaluation. We only modified the
gradient scales using Alg. 3, without making any other changes. When training SimCLR, we used a
two-linear layered projection module. This choice was made because only the official performance
of the two-linear-layered version, pretrained for 100 epochs, was available. For both MoCo and
SimCLR, we use a batch size of 4,096.

The hyperparameters (s and c), used in Tab. 4 are as follows: for MoCov3, we set s to 10 and c to 1.5,
while for SimCLR, s was set to 2 and c to 1.

D ADDITIONAL EXPERIMENTS

We ran additional experiments on MoCov3 for much longer epochs (1,000). Tabs. 9 and 10 show that
emphasizing positive samples improves performance not only in the short run but even in the long
run.

Table 9: Linear Probing of MoCov3.
s epochs CIFAR10 CIFAR100 STL10 TinyImageNet

1 1000 91.142 ± 0.218 65.010 ± 0.215 90.280 ± 0.113 45.682 ± 0.151
10 1000 92.386 ± 0.100 69.136 ± 0.421 90.633 ± 0.244 50.478 ± 0.237
20 1000 92.624 ± 0.161 69.466 ± 0.183 90.860 ± 0.122 51.154 ± 0.184
40 1000 92.648 ± 0.171 69.408 ± 0.342 91.098 ± 0.209 51.138 ± 0.362

Table 10: Transfer Learning of MoCov3.
CIFAR100 CIFAR10 TinyImageNet STL10

s epochs −→ CIFAR10 −→ CIFAR100 −→ STL10 −→ TinyImageNet

1 1000 75.298 ± 0.310 40.696 ± 0.327 71.088 ± 0.361 30.358 ± 0.304
10 1000 79.858 ± 0.255 53.028 ± 0.569 77.533 ± 0.101 38.702 ± 0.420
20 1000 80.144 ± 0.105 54.515 ± 0.235 78.623 ± 0.193 40.464 ± 0.341
40 1000 79.800 ± 0.162 54.612 ± 0.317 78.810 ± 0.198 40.600 ± 0.360

E PSEUDO CODE

In this section, we provide pseudo codes for reproduction. Although contrastive learning-based
baselines do not explicitly utilize angles, as mentioned in the main paper, computing logits using
cosine similarity can be interpreted as obtaining logits using the angles that result from taking the
arccos of the cosine similarity values (Alg. 1). We used Alg. 2 to use margins in contrastive learning
methods. To scale the gradients, it can be accomplished by replacing only the process of converting
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angles to logits from Alg. 1 to Algs. 3, 4, 5, and 6. As the algorithms demonstrate, our modification
does not affect the logit values but solely modifies the gradients. To adjust the curvature of positive
gradient scales in BYOL, it suffices to set p as an all-ones vector since only positive samples are used.

Algorithm 1 Logits as a function of angles: pseudo code of general contrastive learning (Eq. 2)
Inputs:

θ Angles
τ Temperature

logits← cos(θ)/τ
return logits

Algorithm 2 Logits with margins (m1 and m2) (Eq. 4)
Inputs:

θ Angles
τ Temperature
p Target probabilities
m1 Angular margin
m2 Subtractive margin

logits← (cos(θ + p×m1)− p×m2)/τ
return logits

Algorithm 3 Emphasizing positive samples and controlling the curvature of positive gradient scales
(Fig. 6, Tabs. 4 and 2).

Inputs:
θ Angles
τ Temperature
p Target probabilities
s Scaling factor
c Curvature factor

logits← cos(θ)/τ

scales← stop gradient(s× (1− θ
π

c
)1/c)

logits← (1− p)× logits+ p× ((1− scales)× stop gradient(logits) + scales× logits)
return logits

19



Under review as a conference paper at ICLR 2024

Algorithm 4 Scaling gradients by the ratio (Fig. 7).
Inputs:

θ Angles
τ Temperature
p Target probabilities
m1 Angular margin

logits← cos(θ)/τ
new logits← cos(θ + p×m1)/τ
ratio← sum(exp(logits), dim = −1)/sum(exp(new logits), dim = −1)
scales← stop gradient(ratio)
logits← (1− p)× logits+ p× ((1− scales)× stop gradient(logits) + scales× logits)
return logits

Algorithm 5 Attenuating the diminishing gradients (Type I) (Eq. 12)
Inputs:

θ Angles
τ Temperature
p Target probabilities
α Attenuation factor

logits← cos(θ)/τ
q ← softmax(logits)
scales← sum(p/stop gradient(p− α× q), dim = −1)
logits← (1− scales)× stop gradient(logits) + scales× logits
return logits

Algorithm 6 Attenuating the diminishing gradients of positive samples (Type II) (Eq. 12)
Inputs:

θ Angles
τ Temperature
p Target probabilities
α Attenuation factor

logits← cos(θ)/τ
q ← softmax(logits)
scales← 1/stop gradient(p− α× q)
logits← (1− p)× logits+ p× ((1− scales)× stop gradient(logits) + scales× logits)
return logits
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