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Abstract

In fair machine learning, the trade-off between fairness and utility has been predominantly
studied in static classification settings, neglecting concerns for long-term learning environ-
ments where the population distribution may vary due to the deployment of model policies.
This work investigates whether zero utility deterioration can be achieved in the long run.
We introduce a Markov decision process (MDP) to formulate the interplay between model
decisions and population distribution shifts. A key technical contribution is identifying a
sufficient and necessary condition under which a model policy achieving long-term fairness
does not compromise utility. Inspired by this condition, we propose effective reward functions
that can be combined with online reinforcement learning algorithms, allowing the classifier
to accommodate dynamic control objectives such as inducing population adaptations to
maximize fairness without sacrificing model performance. Experiments on both synthetic and
real-world datasets suggest the effectiveness of the proposed reinforcement learning framework
in the long run and drive a classifier-population system toward a desirable equilibrium where
the identified condition is met.

1 Introduction

The deployment of machine learning models carries a critical need to eliminate algorithmic discrimination
in numerous high-stakes real-world applications, including recommender systems (Li et al., 2023), hiring
processes (Makhlouf et al., 2020), and targeted advertising (Papakyriakopoulos et al., 2022). For example,
facial recognition models have been reported to show deficiencies in recognizing individuals with darker
skin tone (Buolamwini & Gebru, 2018), while recruitment models display bias favoring male candidates
over equally qualified female applicants (Kiritchenko & Mohammad, 2018). In response, researchers have
introduced a number of fairness notions, such as Demographic Parity (DP) (Dwork et al., 2012), Equality of
Opportunity (EqOpt) (Hardt et al., 2016), among others (Dwork et al., 2012; Kusner et al., 2017). However,
enforcing the fairness constraints will inevitably worsen the prediction performance of the decision models,
resulting in a trade-off phenomenon that has been both theoretically characterized and empirically observed
in the literature (Menon & Williamson, 2018; Zhao & Gordon, 2022; Chen et al., 2018; Zhang et al., 2020).
The decline in utility that occurs when fairness constraints are intervened, compared to an unconstrained
model, is referred to as deterioration.

Previous works have adequately studied the utility deterioration in static learning environments. For example,
Dutta et al. (2020) demonstrated that it is impossible to achieve fairness without sacrificing the accuracy
unless the degree of “separability” within the class conditional distribution among two groups is equal.
Rodolfa et al. (2021) proposed that post-processing with a group-specific threshold score can improve fairness
with modest deterioration. Wick et al. (2019) characterized the conditions under which fairness and utility
mutually benefit each other. Nevertheless, it is crucial to recognize that machine learning policies and
populations can mutually adapt to each other, leading to a shift in the underlying data distribution and a
changing environment for the policymaker. This dynamic interplay poses a fundamental research question in
the pursuit of long-term fairness: can we achieve fairness without compromising utility deterioration in a
dynamic environment?

Our work attempts to address the utility deterioration in the long run. When considering the long-term
impact of algorithmic decisions, the underlying population dynamically interacts with the decisions made
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by the decision policies. On one hand, as the population distribution is dynamic and responsive to these
decisions, there is a plausible prospect that employing an apt policy could gradually steer the population
distribution toward a desirable trajectory (e.g., balanced data distributions across groups) that will ultimately
eliminate the fairness-utility trade-off. On the other hand, a core practical difficulty posed in the proposed
problem is the potentially unknown dynamics of the system under control. Even with known dynamics,
identifying such a desired policy remains a formidable challenge. For example, Zhang et al. (2020) examined
the long-term impact of a myopic policy—one that optimizes utility in the short term while adhering to
certain fairness notions —and found that it failed to achieve desirable socio-economic outcomes e.g., high
qualification rates for both groups). Similarly, Tang et al. (2022) demonstrated that even a perfect predictor,
achieving zero error rate at each time step, falls short of achieving long-term fairness goals. We summarize
our contributions as follows:

The concept of utility deterioration. For the observed data, we define the deterioration as the difference
between the optimal utility value of a constrained optimization problem (i.e., maximizing utility subject
to a fairness constraint) and that of an unconstrained optimization problem (i.e., maximizing utility only).
We consider a general notion of utility, which can model the objective quantity considered in some previous
works as special cases (e.g. the reward (Zhang et al., 2020) and accuracy (Dutta et al., 2020)).

A necessary and sufficient condition of zero deterioration. We show that there is no utility deterioration if
and only if qualification rates of different demographic groups are equal, under two realistic assumptions. We
provide the full proof in the supplementary material.

An intervention to prevent the deterioration in the long run. We use Markov Decision Process (MDP)
(Puterman, 1994) to model the interplay between the algorithmic decisions and the underlying population
in a sequential decision-making setting. Guided by the identified condition, we propose effective reward
functions for online reinforcement learning (RL) algorithms. We show that our RL formulation of long-term
fairness-utility trade-off allows an agent to learn to steer the system towards a desirable equilibrium without
utility deterioration.

Simulations on synthetic and real-world examples. We conduct extensive empirical evaluations on both
synthetic and real-world datasets. Experiments show that the proposed method is effective at achieving zero
deterioration in the long run, and flexible to incorporate other long-term goals. We also identify and discuss
the failure cases of our method.

2 Related Work

2.1 Fairness-utility trade-off

The fundamental question of fairness-utility trade-off has been studied predominantly in static settings
and with a narrow utility notion of accuracy. Utility is inherently a broader concept than accuracy, as
it encompasses various factors. The existence of fairness-accuracy trade-off has been observed empirically
supported by prior studies (Žliobaitė, 2015; Zhao et al., 2019; Corbett-Davies et al., 2017), which noted that
the pursuit of fairness often comes at the expense of accuracy. Building on this motivation, (Dutta et al., 2020;
Zhao & Gordon, 2022; Xian et al., 2023) have delved into precisely characterizing the relationship between
fairness and accuracy. For example, Zhao & Gordon (2022) specifically investigated the trade-off between
demographic parity (DP) and classification accuracy. Under the assumption of a noiseless Bayes classifier and
binary classes, they concluded that the inherent trade-off does not exist if and only if the base rates of two
demographic groups are equal. In cases where this equality does not hold, any fair classifier must inevitably
contend with a lower bound on classification error, proportionally linked to the disparity in base rates between
the two demographic groups. Xian et al. (2023) further expanded on this by showing that the classification
error rate for any DP fair classifier can be equated to the solution of a relaxed Wasserstein-barycenter problem.
Importantly, this result applies without relying on the assumptions of a noiseless classifier and binary classes
made in the earlier work by Zhao & Gordon (2022). Dutta et al. (2020) took a slightly different approach by
examining an approximate measure of the trade-off between classification accuracy and equalized opportunity
(EqOpt) fairness. They established that the trade-off is inevitable unless the degree of separability within the
class-conditional distribution among two groups is equivalent.
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2.2 Long-term fairness via reinforcement learning

While the application of fairness constraints is a common strategy to mitigate discrimination and biases
in static scenarios, it can lead to adverse consequences for the population’s well-being in the long term, as
highlighted by the literature (Liu et al., 2018; Zhang et al., 2020; Tang et al., 2022; D’Amour et al., 2020;
Guldogan et al., 2023; Perdomo et al., 2020). The fundamental reason behind this failure is that static
fair classifiers lack an understanding of the temporal evolution of the data distribution, which can result in
unpredictable outcomes for the population’s well-being over an extended duration. Given that long-term
fairness issues entail sequential decision-making, they naturally fit within the framework of RL. Wen et al.
(2021); Yu et al. (2022); Xu et al. (2024) pioneered in proposing the use of RL to address long-term fairness
concerns. Subsequently, Yin et al. (2023) and Deng et al. (2023) independently devised RL algorithms with
step-wise fairness constraints, demonstrating that RL algorithms can discover policies capable of guiding a
responsive population towards states characterized by both higher accuracy and fairness. Yin et al. (2023)
considered a replicator dynamic (Raab & Liu, 2021), while Deng et al. (2023) employed a partially observed
MDP to define the data dynamics, akin to the approach in (Zhang et al., 2020).

Notably, our work differs from prior research in its overarching objective: we aim to understand the fairness-
utility trade-off in the dynamic setting where the algorithmic decisions and the underlying population mutually
adapt to one another. More importantly, we seek to identify the sufficient and necessary conditions and
effective interventions to help eliminate the utility-fairness trade-off in the long run. Consequently, we depart
from the conventional approach of utilizing immediate accuracy and fairness as rewards. Instead, we derive
our reward signal from the identified conditions for achieving a zero trade-off. The outcome is an online RL
framework that considers potential unknown dynamics and steers the population to a desirable socioeconomic
status.

3 Problem Formulation

We consider a standard classification task with binary sensitive attributes, denoted by G ∈ {a, b}. The fraction
of the population in protected group G = g is denoted as pg, i.e., pa = P(G = a) and pb = P(G = b) = 1 − pa.
Each individual in these groups possesses an observed feature X and binary label Y ∈ {0, 1}. We denote the
qualification rate of a group s as αs, which is defined as the probability of an individual in that group having
labels Y = 1, i.e.

αg := P(Y = 1 | G = g). (1)

To shorten the notations, we also represent the group distribution as

ρg(x) = P(X = x | G = g) (2)

We assume that the model has access to the sensitive attributes when making predictions. Let Ŷ denote
the prediction of the classifier, we denote the groupwise policy of the decision model as πg(x) := P(Ŷ = 1 |
X = x, G = g). For ease of notation, we use π = (πa, πb) to denote the aggregated model policy. Under the
long-term setting, each random variable defined above will (by default) change over time following certain
dynamics, we omit the time subscript t here and defer the formal definition of the dynamic for the sake of
notation simplicity.

Throughout this work, we focus on two standard group fairness metrics:
Definition 1 (Demographic parity (Dwork et al., 2012)). A model policy satisfies demographic parity if the
selection rates are equal across groups, i.e.,

P(Ŷ = 1 | G = a) = P(Ŷ = 1 | G = b) (DP)

Definition 2 (Equality of opportunity (Hardt et al., 2016)). A model policy satisfies equality of opportunity
if the true positive rates are equal across groups, i.e.,

P(Ŷ = 1 | Y = 1, G = a) = P(Ŷ = 1 | Y = 1, G = b) (EqOpt)
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We then define a 2 × 2 cost matrix C, where each entry cij captures the loss or gain that the decision-maker
can experience for various combinations of predictions Ŷ = i and ground truth labels Y = j. The utility of a
model policy π is defined as the expectation of cost:

Util(π) :=
∑
i,j

cijP(Ŷ = i, Y = j). (3)

We remark that the utility defined in Eqn (3) is also known as Bayes risk. Accuracy can be instantiated by
assigning c00 = c11 = 1, c01 = c10 = 0. Given its flexibility, utility is more desirable than the accuracy in
many decision-making scenarios.

4 When Is There No Utility Deterioration?

Our central pursuit is to investigate whether there exists a trade-off between fairness and utility. In particular,
we first formulate the definition of utility deterioration, which quantifies the sacrifice in utility that must
be incurred to attain fairness. Our main result (Theorem 3) shows that utility deterioration is completely
avoided (i.e., there is no trade-off between fairness and utility) if and only if the qualification rates across
different demographic groups are identical.

Previousous works (Zhao & Gordon, 2022; Dutta et al., 2020) measured the trade-off between fairness and
accuracy using the accuracy of the optimal fair classifier, assuming the optimal unconstrained classifier (Bayes
Classifier) makes the perfect prediction. Likewise, we define utility deterioration as the (absolute) difference
between the optimal utility value of a fairness-constrained optimization problem (i.e., maximizing utility
subject to a fairness constraint) and that of an unconstrained optimization problem (i.e., maximizing utility
only).
Definition 3 (Utility deterioration). Let π∗ denote the optimal solution to the unconstrained optimization
problem

π∗ = max
π

Util(π), (4)

and π⋄ denote the optimal solution to the fairness-constrained optimization problem

π⋄ = max
π

Util(π) subject to DP or EqOpt holds. (5)

The utility deterioration is defined as

∆ := Util(π∗) − Util(π⋄). (6)

∆ is non-negative due to the optimality of π∗, and there will be no deterioration if and only if Util(π∗) =
Util(π⋄). However, solving the optimization problems defined in Eqn (5) is challenging in practice due to the
enforcement of nonconvex and nondifferentiable parity constraints. A series of prior works (Dwork et al.,
2012; Hardt et al., 2016; Kusner et al., 2017; Dutta et al., 2020) suggested replacing them with their empirical
counterpart estimated from data and proposed different ways to train a classifier that satisfies group fairness.
Although effective, these methods can only at best give an empirical estimation. An exact solution is still
required to identify the condition of ∆ = 0.

It is worth noting that it always suffices to develop a model that takes multivariate features as input and maps
them to a scalar likelihood score. Taking the loan application example, credit bureaus assess an individual’s
credit score based on their profiles and credit reports. Applicants with lower credit scores typically have
a lower probability of default of payments (Y = 0) compared to applicants with higher credit scores. For
the sake of simplicity, we assume the scalar feature X ∈ R and a mild monotonicity condition, allowing the
decision-maker to set a threshold value for making a decision based on that score.
Definition 4 (Monotone likelihood ratio). We say that the feature X is well-behaved if for any group g,
the distributions P(X = x | Y = 1, G = g) and P(X = x | Y = 0, G = g) have the monotone likelihood ratio
property. That is,

∀g ∈ {a, b},
∂

∂x

P(X = x | Y = 1, G = g)
P(X = x | Y = 0, G = g) ≥ 0. (7)
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Note that the above condition is relatively mild, as the likelihood ratio is always monotonic for a Bayes-
optimal classifier. Then we are ready to show that the threshold classifiers are optimal solutions to the above
optimization problems in Eqn (4) and Eqn (5).
Lemma 1. Assuming that the feature is well-behaved, there exist two threshold pairs (µa, µb), (νa, νb), such
that

π∗
a(x) := 1(x ≥ µa), π∗

b (x) := 1(x ≥ µb) (8)

is the optimal policy pair for the unconstrained optimization problem Eqn (4); and

π⋄
a(x) := 1(x ≥ νa), π⋄

a(x) := 1(x ≥ νb) (9)

is the optimal policy pair for the fairness-constrained optimization problem defined in Eqn (5).

Let γg(x) = P(Y = 1|X = x, G = g) denote the real qualification rate. The utility for a threshold classifier
π(x) = 1(x ≥ µ) can be explicitly decomposed as the sum of incurred cost for predicted negative examples
(Ŷ = 0) and that for predicted positive examples (Ŷ = 1). We define the incurred cost U+

g and U−
g as

U+
g =

∫ +∞

µg

(c10(1 − γg(x)) + c11γg(x)) ρg(x)dx (10)

U−
g =

∫ µg

−∞
(c00(1 − γg(x)) + c01γg(x)) ρg(x)dx (11)

By the law of total probability, we have

Util(π) =
∑

g

pg(U−
g + U+

g ) (12)

The above expression enables us to derive the optimal threshold policies.
Lemma 2 (Optimal policy). For any group g, the optimal threshold µg for unconstrained optimization
problem satisfies γg(µg) = γ∗, where

γ∗ = c00 − c10

c00 + c11 − c10 − c01
. (13)

The optimal threshold pair (νa, νb) for the constrained optimization problem satisfies∑
g

pg (γg(νg) − γ∗) = 0, or (DP constrained)

∑
g

pg

(
1 − γ∗

γg(νg)

)
P(Y = 1 | G = g) = 0 (EqOpt constrained)

where pg = P(G = g) represents the population distribution.

Lemma 2 implies that the qualification rate at the unconstrained threshold, γ∗, is a linear combination of the
qualification rates at the corresponding fair thresholds. Given the optimal unconstrained threshold µg and
the fair threshold νg for each group g, the incurred utility deterioration is

∆ =
∑

g

pg∆g, (14)

where
∆g = (c00 + c11 − c01 − c10)

∫ νg

µg

(γg(x) − γ∗) · ρg(x)dx.

Note that the above analysis still holds for multiple sensitive attributes. Next, we describe the separation
assumption which is also used in (Raab & Liu, 2021).
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Definition 5 (Separation). We say that the feature X is well-separated if it is conditional independent of
the sensitive attribute G given the true qualification Y , i.e. X ⊥⊥ G | Y . Specifically, for all values of x ∈ R
and y ∈ {0, 1}, P(X = x | Y = y, G = g) remains the same across different groups g.

The separation condition states that an individual’s feature (e.g. credit score) does not encode any sensitive
attribute (e.g. race) given their qualification status. This assumption is realistic in the sense that all of the
non-sensitive information of an individual fully corresponds to their true qualification. Under such assumption,
we can derive a necessary and sufficient condition for zero deterioration.
Theorem 3. Suppose that the feature X is both well-behaved and well-separated.

1. For DP, there is no utility deterioration if and only if the qualification rates of the two groups are
equal, i.e. αa = αb, if the following equation does not admit other solutions for the specific choices of
population distributions of P(X = x | Y = 1, G = g) and cost matrix cij:∫ ∞

γ−1
a (γ∗)

ρa(x)dx =
∫ ∞

γ−1
b

(γ∗)
ρb(x)dx. (15)

2. For EqOpt, there is no utility deterioration if and only if the qualification rates of the two groups are
equal, i.e. αa = αb.

5 How to Eliminate Utility Deterioration in the Long Term?

Theorem 3 indicates that the identical qualification rates across different groups sufficiently imply no utility
deterioration. In a dynamic learning environment, the deployment of model policy can change the underlying
population distribution over time in turn. In this section, we explore whether there exist specific interventions
(which are instantiated by decisions) that can lead the population distribution to respond in a manner that
progressively brings it closer to a regime where the qualification rates across groups become equal. With
repeated interventions over time, the population distribution could ultimately reach an ideal regime with zero
deterioration. To answer this question, we model this problem as a Markov decision process (MDP) Puterman
(1994), and then naturally we can use an online RL algorithm to tackle the problem.

MDP setup. We consider a MDP environment described by a tuple ⟨S, A,PT , R⟩, where S is the set of
environment states, A is the set of actions the agent can take, PT is the state transition probability, R is
the reward function. Following Yin et al. (2023), we assume that PT , R do not depend on time. The agent
interacts with the environment as follows. The initial state is given by s0. At each time step t, the agent
observes a state st, and chooses an action specified by the policy πt : S → A. Then the agent receives a
reward rt ∼ R(st, at), finally, the environment evolves into a new state st+1 ∼ PT (· | st, at). In the long-term
setting, a classification model makes predictions at each time step, and then the population distribution
shifts in response to the prediction. We identify the population distribution, which is the joint probability
distribution Pt(X, Y, G), as the state at time t. Throughout this section, we will use subscript t to represent
the feature Xt and true qualification Yt of individuals at time step t.

We assume that the group distribution P(G = g) will not change in the transition process. We assume
that the population dynamics is subject to a label shift, which means the data generation distribution
P(X = x | Y = y, G = g) is independent of time t. Both assumptions are realistic in the real world
decision-making process. Notice that the joint distribution can be decomposed as

P(X = x, Y = y, G = g) = P(Y = y | G = g) · P(X = x | Y = y, G = g)P(G = g) (16)

Denote the temporal qualification rate by

αg
t :=

[
P(Y = 0 | G = g, T = t)
P(Y = 1 | G = g, T = t)

]
(17)

Then the vector αg
t captures all the changes in the state and suffices to represent the state st given the priors

of P(X = x | Y = y, G = g) and P(G = g). We remark that while the qualification rates α are not always
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accessible to the policy maker in real-world problems, one can estimate the empirical distribution P(Y ) from
historical observations.

The action A is the set of classifiers P(Ŷ | X = x, G = g). For empirical consideration, we further constrain
the action space to be the set of threshold policies: πg = 1(x ≥ θg), which essentially shrinks the search space
from whole function space to a two-dimensional real space: (θa, θb) ∈ R2.1

Modeling the dynamics. To model the evolution of the population distribution (equivalently, qualification
rates), we follow Zhang et al. (2020) to specify the probability transition matrix T g of an individual from group
G = g becomes qualified (i.e. Yt+1 = 1) after receiving decision/prediction Ŷt. That is, for all y, ŷ ∈ {0, 1},
we have

T g
y,ŷ := P(Yt+1 = 1 | Yt = y, Ŷt = ŷ, G = g). (18)

Then the transition of the state can be instantiated by the following dynamic for each group g:

αg
t+1 = EXt,Yt,G=g

[
αg

t T gŶ g
t

]
, (19)

where Ŷ g
t = [1 − πg(Xt), πg(Xt)]⊺ denotes the model prediction. The above evolution model is more general

than using a specific form of dynamic (e.g. additive dynamic (Liu et al., 2018), multiplicative dynamic (Tang
et al., 2022)).
Corollary 4. Under the above MDP setting, equalizing the qualification rates α at each time step is sufficient
to prevent utility deterioration in the long run.

Reward function. We craft the intermediate reward at time t using the absolute difference of qualification
rate

Rbase(st, at) := 1 − 1√
2

∥αa
t − αb

t∥. (20)

The scale factor 1√
2 is used for normalization to ensure that the range of the reward is between 0 and 1.

Intuitively, using Eqn (20) as a reward function can encourage equal qualification rates between groups, thus
achieving zero utility deterioration. However, we also need to consider the decision made at each time step to
be (1) accurate with the 0-1 loss

ℓacc(st, at) =
∣∣∣∣∣P(X,Y,G)∼st

Ŷ ∼at(X,G)
(Ŷ ̸= Y )

∣∣∣∣∣ , (21)

and (2) fair by penalizing the following fairness violations:

ℓDP(st, at) = |P(Ŷ = 1 | G = a) − P(Ŷ = 1 | G = b)| (22)

ℓEqOpt(st, at) = |P(Ŷ = 1 | Y = 1, G = a) − P(Ŷ = 1 | Y = 1, G = b)| (23)
The above loss function can be easily incorporated into the reward by inserting a regularization term to
Eqn (20) as follows:

R(st, at) = Rbase(st, at) − λ1ℓacc(st, at) − λ2ℓfair(st, at)) (24)
where λ1 > 0 and λ2 > 0 are hyperparameters that can control the strength of accuracy and fairness
regularizer, and ℓfair is one of the DP or EqOpt constraint as shown in Eqn (22) and Eqn (23). We note any
RL algorithms can be applied to find the optimal policy so that the expected cumulative reward E(

∑
t rt) is

maximized, where the expectation is taken with respect to the historical observations.

6 Experiment

6.1 Experimental Setup

Datasets We consider one synthetic dataset and two real-world datasets that are commonly used in the
literature on long-term fairness (e.g. (Zhang et al., 2020; Tang et al., 2022; Liu et al., 2018)) in our study:

1By Theorem 3, there exists a threshold policy that achieves maximum utility with or without fairness constraint, thus
constraining action space to thresholds will not affect the best achievable instantaneous reward.
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Figure 1: Trajectories for qualification rates with different initialization for synthetic Gaussian data (top)
and the FICO dataset (bottom). In each subfigure for the synthetic data, six trajectories are plotted for 20
time steps with different initial qualification rates. The initial base rates for the FICO Score are estimated
from the original data. The maximized utilities subject to fairness constraint EqOpt at every configuration of
(αa, αb) are computed and depicted using a heatmap. Qualification rates near the top-right corner achieve
larger utility subject to EqOpt.

the FICO dataset (Reserve, 2007) and the COMPAS (Angwin et al., 2016) dataset. We generate the
synthetic data as follows: We set Xt | Yt = y, G = g ∼ N (µs

y, (σs
y)2). Specifically, to implement the separation

(Definition 5), we set µa
1 = µb

1 = 5, µa
0 = µb

0 = −5. σs
y = 5, ∀y, s, it can be also verified that the feature

is well-behaved (Definition 4). The transition probabilities are set to the same as Zhang et al. (2020):
T a

00 = 0.1, T a
01 = 0.5, T a

10 = 0.5, T a
11 = 0.7, T b

00 = 0.4, T b
01 = 0.5, T b

10 = 0.5, T b
11 = 0.9.

The FICO score dataset (Reserve, 2007) contains credit score data from non-Hispanic White and Black
cohorts. We use the pre-processed data by Hardt et al. (2016) and simulate the data-generating process
according to the empirical distributions. Specifically, we consider Caucasian group (G = a) and African
American group (G = b), with P(G = a) = 88%,P(G = b) = 12%. We compute the initial qualification rates
from the original data and fit the feature distribution with the beta distribution. The transition probabilities
are set to the same as the synthetic Gaussian dataset.

The COMPAS dataset (Angwin et al., 2016) is a high-dimensional recidivism prediction dataset. It has
10-dimensional feature X and two demographic groups: Caucasian group (G = a) and African American
group (G = b), with P(G = a) = 60%, P(G = b) = 40%. The initial qualification rates (recidivism rate)
are calculated from raw data, which is αa = 0.523, αb = 0.391. To handle the high-dimensional feature, we
first train an optimal classifier using a logistic regression model P(Y = 1 | X = x, G = g), which maps the
high-dimensional feature to one-dimensional. Given a set of transition probabilities, the qualification rates
change at each time step according to the dynamic defined in Eqn (19). Then we resample the dataset based
on the updated qualification rate.

We will use the synthetic data and FICO data to present the primary results. Due to the high complexity of
feature distribution, we use the high-dimensional COMPAS data for the discussion of the effect of altering
transition probabilities.

Models We employ the “Stable-baselines 3” Raffin et al. (2021) implementation of Proximal Policy
Optimization (PPO) Schulman et al. (2017) (can be replaced with any RL framework) for optimization. We
compare the three different rewards:
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Figure 2: The qualification rate dynamics for group a and group b are on synthetic Gaussian data and the
FICO dataset. From left to right: the first plot shows the qualification rate of group a on the synthetic
data, the second plot shows the qualification rate of group b on the synthetic data, the third plot shows the
qualification rate of group a on the FICO dataset, and the rightmost plot shows the qualification rate of
group b on the FICO dataset.

• rbase is the intermediate reward of Rbase(st, at), which only equalizes the qualification rate by setting
λ1 = λ2 = 0.

• rreg = Rbase(st, at) − λ1ℓacc(st, at), which concerns accuracy but ignores the fairness violation.

• rall = Rbase(st, at) − λ1ℓacc(st, at) − λ2ℓfair(st, at), which considers both accuracy and fairness.

In particular, we choose non-zero λ values by performing a grid search over an arithmetic sequence (i.e.,
0.1 to 0.9, spaced 0.1 apart). We set the policy studied in Zhang et al. (2020) which myopically maximizes
instantaneous utility as the baseline. For each RL approach, we run 80,000 time steps to ensure its
convergence. Note that we do not include existing models for long-term fairness as they are not comparable.
The hyperparameters we used are provided in the Appendix.

t00 t01 α∗
a α∗

b rbase (↓)
0.1 0.1 0.100 0.100 0.000
0.1 0.5 0.167 0.167 0.000
0.1 0.9 0.500 0.500 0.000
0.5 0.1 0.357 0.357 0.000
0.5 0.5 0.391 0.523 0.132
0.5 0.9 0.833 0.833 0.000
0.9 0.1 0.500 0.500 0.000
0.9 0.5 0.643 0.643 0.000
0.9 0.9 0.391 0.523 0.132

Table 1: Results of rbase on COMPAS dataset.
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Figure 3: Violation of EqOpt for different policies on synthetic Gaussian data (left) and FICO dataset (right)
at each time step.

6.2 Results

RL is effective at achieving zero deterioration in the long run Fig 1 shows the dynamic of the
qualification rate during a 20-step interplay between algorithmic decision and data distribution, where
different trajectories (red lines with arrows) correspond to different initial qualification rates. Dots on the
black diagonal indicate equal qualification rates across two groups. We have the following observations: (1)
For both synthetic Gaussian and FICO datasets, RL algorithms with reward function rbase can all effectively
drive the qualification rates of two groups to be equal (the diagonal), i.e., no deterioration between utility
and fairness exists in the long run. (2) However, for myopic policy, the qualification rate of one group is
significantly larger than the other group when the RL converges, suggesting the existence of the fairness-utility
trade-off. Indeed, the heatmap shows the optimal utility subject to EqOpt gained by myopic policy is less
than rbase, rreg and rall.

Add regularization to encourage higher utility. The third and fourth columns of Fig 1 show the
dynamic of the qualification rate with the regularized reward function. We observe that using rreg and rall as
a reward achieves equilibrium with higher qualification rates than rbase and myopic policy, as the equilibrium
located is located closer to the top right corner in Fig. 1.

Add regularization to encourage lower fairness violation. Fig 3 shows the fairness violation of EqOpt,
averaged over a 10-split mesh grid on [0, 1]2 as initialization of αa, αb for five steps with 95% confidence
interval, for different policies on synthetic Gaussian and FICO datasets at each step. For synthetic Gaussian
data, RL agent trained with reward function rbase constantly uses a policy that suffers a large violation
of EqOpt, while policies with rreg violate much less. The fairness violation in policies with rall further
decreases. However, they all suffer larger fairness violations than the myopic policy. We believe this is because
although policies chosen by rreg are aware of fairness violations, the qualification rate parts dominate, i.e. the
policy chooses to sacrifice fairness to achieve equalized and large qualification rates. For the FICO dataset,
policies with rewards rbase, racc and rfair suffer similar violations after converging, and all of these policies
achieve smaller violations than the myopic policy, because the distribution of FICO dataset only admits one
equilibrium.

6.3 Discussion

Equilibrium of qualification rate. We are interested in understanding whether the qualification rate for
each demographic group will converge or fluctuate once the reinforcement learning (RL) agent drives the
population to a state with zero utility deterioration. Formally, we say the population distribution reaches
equilibrium if the qualification rate of every demographic group converges, i.e. limt→∞ αg = α0, ∀g ∈ {a, b}.
We compute the average dynamic (averaged over a 10-split mesh grid on [0, 1]2 as initialization of αa, αb) for
5 steps with 95% confidence interval and show the result in Fig 2. We observe that RL agents with reward
function rbase, rreg, rall successfully choose policies that achieve equilibrium with equalized qualification rates,
while the myopic policy attains equilibrium with a large gap between αa and αb. Furthermore, the equilibrium
of myopic policy is achieved more slowly compared to the RL policies.

10
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Effect of transition probabilities. We provide an empirical analysis to show how the RL algorithm will
perform under different dynamics (specified by different transition probabilities). Specifically, we set transition
probabilities in the following way: T 0

00 = T 1
00 = t00, T 0

01 = T 1
01 = t00 × tr, T 0

10 = T 1
10 = t10, T 0

11 = T 1
11 = t10 × tr,

with different configurations of t00 and t10 and a fixed tr = 0.8 (we do not observe difference on performance
when altering tr). We train PPO policies for each setting, and show rbase on COMPAS data in Table 1. It
shows the qualification rates of the two groups and their absolute difference (smaller is better) to which the
model converges. We observed that there were only two cases (highlighted in bold) where the policy failed to
achieve equal qualification rates. This failure arguably occurred because the underlying MDP does not admit
a stationary distribution where the qualification rates for group a (αa) and group b (αb) are equal at any time
step. It is still possible that we may reach an unstable equilibrium in an intermediate state. However, we can
only observe the failure after the deployment since the environment will be unknown to the RL policy.

7 Limitations and Future Work

Our current work only examines the overall utility deterioration for the entire population. However, policy-
makers would likely be more interested in identifying the specific individuals whose utility has worsened due
to enforcing fairness constraints. This phenomenon is also known as infra-marginality (Biswas et al., 2019)
in the context of dynamic learning. Additionally, it is common for the qualification rate to decrease when
fairness constraints are imposed, leading to user churn. We anticipate that future work could extend the
analysis of utility deterioration to provide a more nuanced understanding at the group or individual level.
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A Omitted Proofs

A.1 Proof of Lemma 1

Lemma 1. Assuming that the feature is well-behaved, there exist two threshold pairs (µa, µb), (νa, νb), such
that

π∗
a(x) := 1(x ≥ µa), π∗

b (x) := 1(x ≥ µb)

is the optimal policy pair for the unconstrained optimization problem Eqn (4); and

π⋄
a(x) := 1(x ≥ νa), π⋄

a(x) := 1(x ≥ νb)

is the optimal policy pair for the fairness-constrained optimization problem defined in Eqn (5).

Proof. In the first part of the proof, we show that the threshold policy is optimal for the unconstrained
problem. It is obvious to see that maximizing the pair of (πa, πb) to the total utility

max
π

Util(π) = max
πa,πb

(
paE[Util(πa) | G = a] + pbE[Util(πb) | G = b]

)
is equivalent to maximizing the group-specific utility for each group

∀g ∈ {a, b}, max
πg

E[Util(πg) | G = g].

Then we expand the group-specific utility as

E[Util(πg) | G = g] =
∑

i∈{0,1}
j∈{0,1}

cijP(Ŷ = i, Y = j | G = g)

=
∑

i∈{0,1}
j∈{0,1}

cij

∫
x

P(Ŷ = i, Y = j, X = x | G = g)dx

=
∫

x

P(X = x|S = s)
∑

i∈{0,1}
j∈{0,1}

cijP(Ŷ = i, Y = j | X = x, G = g)dx (25)

Recall that πg(x) = P(Ŷ = i | X = x, G = g) and γg(x) = P(Y = i | X = x, G = g). Since Y ⊥⊥ Ŷ given the
feature X and group membership G,∑

i∈{0,1}
j∈{0,1}

cijP(Ŷ = i, Y = j | X = x, G = g)

=
∑

i∈{0,1}
j∈{0,1}

P(Ŷ = i | X = x, G = g)P(Y = j | X = x, G = g)

=c11πs(x)γs(x) + c10πs(x) (1 − γs(x)) + c01(1 − πs(x))γs(x) + c00(1 − πs(x)) (1 − γs(x))

=c00 + (c01 − c00) γg(x) +
(

(c11 − c10 − c01 + c00)γg(x) + c10 − c00

)
πg(x) (26)

Combining Eqn (25) and Eqn (26), we have

E[Util(πg) | G = g] =

EX=x|G=g

[
c00 + (c01 − c00) γg(x) +

(
(c11 − c10 − c01 + c00)γg(x) + c10 − c00

)
πg(x)

]
(27)
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Note that ∀x, πg(X) ∈ [0, 1]. To maximize the above quantity, we can always assign

π∗
g(x) =

{
0, if γg(x)(c11 − c10 − c01 + c00) + c10 − c00 < 0
1, otherwise

(28)

In other words, π∗
g(x) = 1((c11 − c10 − c01 + c00)γg(x) + c10 − c00 > 0) is the optimal policy. Due to the

monotonicity of γg(x), π∗
g(x) = 1

(
x ≥ γ−1

g ( c00−c10
c11−c10−c01+c00

)
)

is a threshold policy.

To show that threshold policy is also optimal for the constrained optimization problem, it suffices to show
that for an arbitrary pair of policy (π⋄

a, π⋄
b ), there always exists a pair of threshold policy (π̂⋄

a, π̂⋄
b ), where

∀g, π̂⋄
g = 1(x ≥ νg), such that (π̂⋄

a, π̂⋄
b ) also satisfies the fairness constraint, and the utility gained from

threshold policy pair (π̂⋄
a, π̂⋄

b ) is greater than or equal to the utility gained by (π⋄
a, π⋄

b ).

First, following the proof of Lemma 1 in (Zhang et al., 2020), we can show that there always exists a pair
of threshold policies (π̂⋄

a, π̂⋄
b ) that shares the same fairness metric as (π⋄

a, π⋄
b ). Then we may compute the

difference of the corresponding group-specific utility for group g by

Util(π̂⋄
g) − Util(π⋄

g) = EX=x|S=s

[
(π̂⋄

g(x) − π⋄
g(x))

(
(c11 − c10 − c01 + c00)γg(x) + c10 − c00

)]
=

∫ ∞

νg

(
1 − π⋄

g(x)
)

f(x, g)dx −
∫ νg

−∞
π⋄

g(x)f(x, g)dx (29)

where
f(x, g) =

(
(c11 − c10 − c01 + c00)γg(x) + c10 − c00

)
P(X = x | G = g). (30)

Let PC
g (x) denote the distribution related to the fairness metric, where

PDP
g (x) = P(X = x | G = g) (31)

PEqOpt
g (x) = P(X = x | Y = 1, G = g) (32)

Since both the arbitrary pair of policies and the threshold pair of policies satisfy the fairness constraint, i.e.
EX∼PC

g

[
π⋄

g(X)
]

= EX∼PC
g

[
π̂⋄

g(X)
]
, we have∫ ∞

νg

(
1 − π⋄

g(x)
)

PC
g (x)dx =

∫ νg

−∞
π⋄

g(x)PC
g (x)dx (33)

Next, we show that f(x, g)/PC
g (x) is non-decreasing. For DP, it is obvious that

f(x, g)
PDP

g (x) =
(

(c11 − c10 − c01 + c00)γg(x) + c10 − c00

)P(X = x | G = g)
P(X = x | G = g)

= (c11 − c10 − c01 + c00)γg(x) + c10 − c00 (34)

is strictly increasing due to the monotonicity of γg(x). For EqOpt,

f(x, g)
PEqOpt

g (x)
=

(
(c11 − c10)γg(x) − (c00 − c01)(1 − γg(x))

) P(X = x | G = g)
P(X = x | Y = 1, G = g)

= (c11 − c10)P(Y = 1 | X = x, G = g)P(X = x | G = g)
P(X = x | Y = 1, G = g)

− (c00 − c01)P(Y = 0 | X = x, G = g)P(X = x | G = g)
P(X = x | Y = 1, G = g)

= (c11 − c10)P(Y = 1 | G = g)

− (c00 − c01)P(Y = 0 | G = g)P(X = x | Y = 0, G = g)
P(X = x | Y = 1, G = g) (35)
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Based on Definition 4, P(X=x|Y =0,G=g)
P(X=x|Y =1,G=g) is monotonically decreasing, and the negative sign makes the likelihood

ratio strictly increasing. Thus we conclude that f(x, g)/PC
g (x) is strictly increasing for both DP and EqOpt

constraints.

Finally, we have ∫ νg

−∞
π⋄

g(x)f(x, g)dx =
∫ νg

−∞
π⋄

g(x)f(x, g)
PC

g (x) Ps
C(x)dx (36)

≤
∫ νg

−∞
π⋄

g(x)f(νg, g)
PC

g (νg) Ps
C(x)dx (37)

=
∫ ∞

νg

(1 − π⋄
g(x))f(νg, g)

PC
g (νg) Ps

C(x)dx (38)

≤
∫ ∞

νg

(1 − π⋄
g(x))f(x, g)

PC
g (x) Ps

C(x)dx (39)

=
∫ ∞

νg

(1 − π⋄
g(x))f(x, g)dx (40)

The above inequalities are due to the monotonicity of f(x, g)/PC
g (x). Therefore,

∀g ∈ {a, b}, Util(π̂⋄
g) − Util(π⋄

g) =
∫ ∞

νg

(
1 − π⋄

g(x)
)

f(x, g)dx −
∫ νg

−∞
π⋄

g(x)f(x, g)dx ≥ 0.

We finish the proof.

A.2 Proof of Lemma 2

Lemma 2. For any group g, the optimal threshold µg for unconstrained optimization problem satisfies
γg(µg) = γ∗, where

γ∗ = c00 − c10

c00 + c11 − c10 − c01
. (41)

The optimal threshold pair (νa, νb) for the constrained optimization problem satisfies∑
g

pg (γg(νg) − γ∗) = 0, or (DP constrained)

∑
g

pg

(
1 − γ∗

γg(νg)

)
P(Y = 1 | G = g) = 0 (EqOpt constrained)

where pg = P(G = g) represents the population distribution.

Proof. In the proof of Lemma 1, we already have the optimal threshold policy for the unconstrained problem:

∀g, π∗
g(x) = 1(x ≥ µg)

where µg = γ−1
g ( c00 − c10

c00 + c11 − c10 − c01
)

(42)

Thus we can easily get γ(µg) = γ∗.

Next, the parity constraint of the fair threshold policy EX∼PC
a

[π⋄
a(X)] = EX∼PC

b
[π⋄

b (X)] implies∫ ∞

νa

PC
g (x)dx =

∫ ∞

νb

PC
b (x)dx. (43)

Taking the derivative simultaneously, we have

PC
a (νa)dνa = PC

b (νb)dνb. (44)
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The utility of optimal fair policy is

Util(π⋄) =
∑

g∈{a,b}

(
EX=x|G=g [c00 + (c01 − c00) γg(x)]

+ EX=x|G=g

[
((c11 − c10 − c01 + c00)γg(x) + c10 − c00) πg(x)

])
(45)

Note that the first component inside the expectation is a constant. Taking the derivative of the above
equation with respect to the threshold νa, we have

d

dνa
Util(π⋄) = d

dνa

∑
g∈{a,b}

EX=x|G=g

[
((c11 − c10 − c01 + c00)γg(x) + c10 − c00) π⋄

g(x)
]

= d

dνa

(
pa

∫ ∞

νa

f(x, a)dx + pb

∫ ∞

νb

f(x, a)dx

)
= pa

d

dνa

∫ ∞

νa

f(x, a)dx + pb
dνb

dνa

d

dνb

∫ ∞

νb

f(x, a)dx

= −paf(νa, a) − pb
dνb

dνa
f(νb, b) (46)

where f(·, ·) is defined in Eqn (30). The optimal fair policy satisfies that d
dνa

Util(π⋄) = 0. Combining
Eqn (44) and Eqn (46), we have ∑

g∈{a,b}

pg
f(νg, g)
PC

g (νg) = 0 (47)

Substituting Eqn (31) and Eqn (32) respectively, we have for DP,∑
g

pg ((c00 + c11 − c01 − c10)γg(νg) − (c00 − c10)) = 0. (48)

Or equivalently, ∑
g

pg

(
γg(νg) − c00 − c10

c00 + c11 − c01 − c10

)
= 0. (49)

Similarly for EqOpt, we have∑
g

pg

(
γg(νg) − c00 − c10

c00 + c11 − c01 − c10

)
P(X = νg | G = g)

P(X = νg | Y = 1, G = g) = 0. (50)

By Bayes’ rule and the definition of γg(·), we may arrange the above equation as∑
g

pg

(
1 − γ∗

γg(νg)

)
P(Y = 1 | G = g) = 0. (51)

Complete the proof.

A.3 Proof of Theorem 3

Theorem 3. Suppose that the feature X is both well-behaved and well-separated.

(a) For DP, there is no utility deterioration if and only if the qualification rates of the two groups are equal,
i.e. P(Y = 1 | G = a) = P(Y = 1 | G = b), if the following equation does not admit other solutions for the
specific choices of population distributions of P(X = x | Y = 1, G = g) and cost matrix cij :∫ ∞

γ−1
a (γ∗)

P(X = x | G = a)dx =
∫ ∞

γ−1
b

(γ∗)
P(X = x | G = b)dx. (52)
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(b) For EqOpt, there is no utility deterioration if and only if the qualification rates of the two groups are
equal, i.e. P(Y = 1 | G = a) = P(Y = 1 | G = b).

Proof. Taking the partial derivative of Eqn 14 with respect to the optimal fair threshold νg, we have

∂∆
∂νg

= (c00 + c11 − c01 − c10) (γg(νg) − γg(µg))P(X = νg | G = g) (53)

where µg is the optimal threshold for unconstrained problem. When νg < µg, γg(νg) < γg(µg) and ∆ is
decreasing; otherwise, γg(νg) > γg(µg) and ∆ is increasing. This monotonicity analysis tells us that ∆ = 0
if and only if ∀g, µg = νg. That being said, the optimal unconstrained policy also satisfies the fairness
constraints. Let αg = P(Y = 1 | G = g) denote the group-specific qualification rate. Now we will prove αg is
constant across different group g is the sufficient and necessary condition of µg = νg.

Sufficient condition: Suppose that αg is the same for different group g. By Bayes’ rule we have

γg(µg) = P(Y = 1 | X = µg, G = g) = P(X = µg | Y = 1, G = g)
P(X = µg | G = g) P(Y = 1 | G = g). (54)

Then γa(µa) = γb(µb) implies that µa = µb. By the law of total probability,

P(X = x | G = g) = P(X = x | Y = 1, G = g)P(Y = 1, G = g)
+ P(X = x | Y = 0, G = g)(1 − P(Y = 1, G = g))

= αgP(X = x | Y = 1, G = g) + (1 − αg)P(X = x | Y = 0, G = g) (55)

Due to the separation assumption, P(X = x | G = g) remains the same across different group. By µa = µb,
we can obtain that ∫ ∞

µa

P(X = x | G = a)dx =
∫ ∞

µb

P(X = x | G = b)dx, (56)

which means the optimal unconstrained policy also satisfies the DP constraint. Similarly, the parity constraint
for EqOpt also holds:∫ ∞

µa

P(X = x | Y = 1, G = a)dx =
∫ ∞

µb

P(X = x | Y = 1, G = b)dx. (57)

Necessary condition: Suppose that µg = νg. The parity constraints again show that µa = µb. For DP, it is
straightforward to see that a universal solution of Eqn (56) is αa = αb due to the fact that µa = µb and X is
well-separated. It will depend on the specific choice of the distribution P(X = x | Y = 1, G = g) if Eqn (56)
admits another solution αa ̸= αb.

For EqOpt, by Bayes’ rule we have

γg(µg) = P(Y = 1 | X = µg, G = g) = P(X = µg | Y = 1, G = g)
P(X = µg | G = g) P(Y = 1 | G = g) (58)

If αa ̸= αb, it is impossible that both µa = µb and γa(µa) = γb(µb) hold simultaneously. Then it contradicts
with our previous solution γ(µa) = γ(µb) = γ∗. By contradiction, we conclude that αa = αb.

B More Experimental Results

B.1 Computing Infrastructure

We conducted all the experiments on a server with four RTX A6000 GPUs. The average time cost for one
run is roughly five minutes for finding the optimal policy.
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B.2 Experimental Results for DP
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Figure 4: Trajectories for qualification rates with different initialization for synthetic Gaussian data (left)
and the FICO dataset (right). For synthetic Gaussian data, the trajectories converge to a state with slightly
different qualification rate, while the tractories for FICO dataset is similar with EqOpt.

C Hyperparameters for PPO

Value Considered Value
Batch size {8, 16, 32, 64, 128, 256, 512} 8

n_timesteps {8e5} 8e5
n_steps {8, 16, 32, 64, 128, 256, 512, 1024, 2048} 256
gamma {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999} 0.9

learning_rate float 0.0052
n_epochs {1, 5, 10, 20} 5
activation {ReLU, Tanh} ReLU

net_architecture {small, medium} small
vf_coeficient [0,1] 0.2532

max_grad_norm {0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5} 0.3
gae_lambda: {0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0} 0.92

Table 2: Hyperparameters for PPO with reward function rbase for synthetic Gaussian data.
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Value Considered Value
Batch size {8, 16, 32, 64, 128, 256, 512} 512

n_timesteps {8e5} 8e5
n_steps {8, 16, 32, 64, 128, 256, 512, 1024, 2048} 16
gamma {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999} 0.95

learning_rate float 0.0012
n_epochs {1, 5, 10, 20} 5
activation {ReLU, Tanh} ReLU

net_architecture {small, medium} small
vf_coeficient [0,1] 0.5359

max_grad_norm {0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5} 0.6
gae_lambda: {0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0} 0.98

Table 3: Hyperparameters for PPO with reward function rreg for synthetic Gaussian data.

Value Considered Value
Batch size {8, 16, 32, 64, 128, 256, 512} 8

n_timesteps {8e5} 8e5
n_steps {8, 16, 32, 64, 128, 256, 512, 1024, 2048} 256
gamma {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999} 0.9

learning_rate float 0.0052
n_epochs {1, 5, 10, 20} 5
activation {ReLU, Tanh} ReLU

net_architecture {small, medium} small
vf_coeficient [0,1] 0.2532

max_grad_norm {0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5} 0.3
gae_lambda: {0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0} 0.92

Table 4: Hyperparameters for PPO with reward function rall for synthetic Gaussian data.

Value Considered Value
Batch size {8, 16, 32, 64, 128, 256, 512} 16

n_timesteps {8e5} 8e5
n_steps {8, 16, 32, 64, 128, 256, 512, 1024, 2048} 16
gamma {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999} 0.95

learning_rate float 0.0007
n_epochs {1, 5, 10, 20} 10
activation {ReLU, Tanh} ReLU

net_architecture {small, medium} small
vf_coeficient [0,1] 0.3346

max_grad_norm {0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5} 0.9
gae_lambda: {0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0} 0.98

Table 5: Hyperparameters for PPO with reward function rbase for FICO dataset.
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Value Considered Value
Batch size {8, 16, 32, 64, 128, 256, 512} 256

n_timesteps {8e5} 8e5
n_steps {8, 16, 32, 64, 128, 256, 512, 1024, 2048} 16
gamma {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999} 0.98

learning_rate float 0.0007
n_epochs {1, 5, 10, 20} 5
activation {ReLU, Tanh} ReLU

net_architecture {small, medium} small
vf_coeficient [0,1] 0.4989

max_grad_norm {0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5} 0.5
gae_lambda: {0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0} 1.0

Table 6: Hyperparameters for PPO with reward function rreg for FICO dataset.

Value Considered Value
Batch size {8, 16, 32, 64, 128, 256, 512} 8

n_timesteps {8e5} 8e5
n_steps {8, 16, 32, 64, 128, 256, 512, 1024, 2048} 256
gamma {0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999} 0.9

learning_rate float 0.0052
n_epochs {1, 5, 10, 20} 5
activation {ReLU, Tanh} ReLU

net_architecture {small, medium} small
vf_coeficient [0,1] 0.2532

max_grad_norm {0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 5} 0.3
gae_lambda: {0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0} 0.92

Table 7: Hyperparameters for PPO with reward function rall for FICO dataset.
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