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Abstract

The field of spoken language processing is undergoing a shift from training custom-built,
task-specific models toward using and optimizing spoken language models (SLMs) which
act as universal speech processing systems. This trend is similar to the progression toward
universal language models that has taken place in the field of (text) natural language pro-
cessing. SLMs include both “pure” language models of speech—models of the distribution
of tokenized speech sequences—and models that combine speech encoders with text lan-
guage models, often including both spoken and written input or output. Work in this area
is very diverse, with a range of terminology and evaluation settings. This paper aims to
contribute an improved understanding of SLMs via a unifying literature survey of recent
work in the context of the evolution of the field. Our survey categorizes the work in this area
by model architecture, training, and evaluation choices, and describes some key challenges
and directions for future work.

1 Introduction

In the last few years, the field of natural language processing (NLP) has evolved from (1) training many
task-specific models from scratch, to (2) combining pre-trained multi-purpose contextual representation
models (such as BERT (Devlin et al., 2019)) with a small number of task-specific parameters, to (3) training
generative universal, large language models (LLMs (Brown et al. [2020; |OpenAl et al., 2024)@ that perform
arbitrary text tasks given natural language instructions (prompts) and can generalize to unseen domains
and tasks (Wei et al., 2022a; |Liu et al., 2023), and finally to (4) dialogue / chatbot systems that function as
assistants and perform tasks while directly interacting with the user.

The field of speech processing has been undergoing a similar evolution, although with some lag, and has
mainly focussed on stages (1) and (2). The current state of the art (SOTA) for common specialized speech
tasks—including automatic speech recognition (ASR), speech translation (ST), spoken language understand-
ing (SLU) tasks, and speaker identification (SID)—involves combining a pre-trained self-supervised encoder
model (Mohamed et al.,|2022)) with a task-specific prediction “head”. For some very common tasks—namely,
ASR and ST—in relatively high-resource languages, large supervised models (Radford et al., [2023; |[Peng
et al.l [2023b)) also have consistently good (if not SOTA) performance.

Recent work has begun to develop spoken language models (SLMs), analogous to text LLMs, which are in
principle capable of performing arbitrary speech tasks given natural language instructions. However, the
term “SLM” has not been standardized in the literature and has been used to refer to a wider range of
model types than text language models. Several common classes of models have emerged, all referred to
as SLMs: (1) pure SLMs: models of the distribution of speech, p(speech), typically trained on unlabeled
tokenized speech data only with a next-token prediction objective (similarly to the pre-training phase in text
LLMs) (Lakhotia et al. |2021); (2) speech+text SLMs: models of the joint distribution of speech and the
corresponding text p(text, speech), typically trained using paired (speech, text transcription) data, which can
be viewed as a direct extension of class (1) (Nguyen et al.,|2025); and (3) speech-aware text LMs: models that
combine text LLMs with pre-trained speech encoders to retain the instruction-following (IF) characteristics

IThroughout the paper, we use the terms LLMs and LMs interchangeably to refer to modern language models.



Under review as submission to TMLR

Table 1: Typology of text and spoken LMs. We use a loose notation here, where speech and text are
to be interpreted in context; for example, p(text|text) in post-trained text LMs corresponds to modeling
some desired ouptut text given an input text instruction or prompt. “Post-training” refers to any form of
instruction-tuning and/or preference-based optimization of the SLM. Please see the sections below for details
and references for the example models.

Type of LM Training Strategy Model distribution Examples

pure text LM pre-training p(text) GPT, Llama

pure text LM post-training p(text|text) ChatGPT, Llama-Instruct

pure speech LM pre-training p(speech) GSLM, AudioLM, TWIST

pure speech LM post-training p(speech|speech) Align-SLM

speech+text LM pre-training p(text, speech) SpiRit-LM, Moshi (pre-trained)
speech-+text LM post-training p(text, speechltext, speech) Moshi (post-trained), Mini-Omni
speech-aware text LM post-training p(text|speech, text) SALMONN, Qwen-Audio-Chat

of the text LLMs and reason about the input speech or audio recordings (Tang et al., 2024; |Chu et al., 2023)).
Approaches in category (3) model a conditional distribution, p(text|speech, text), of desired output text in
response to the input speech and text instruction.

Following the text LLMs analogy, models in categories (1) and (2) can be viewed as analogues to pre-trained
LLMs. Like text LLMs, these models can be post-trained—rvia instructions, preferences, or other means—to
learn the distributions of desired output speech (for category (1)) or output speech+text (category (2)) given
desired inputs (speech or speech+text, respectively). Models in category (3) typically start with fine-tuned
LLMs, but involve some additional post-training to both align the speech and text representations and enable
the model to perform new speech-specific tasks. Table [1| provides a typology of these categories along with
example models from the recent literature. The Appendix provides additional models and a timeline of their
development (Table 3| and Figure @

Although existing models have been applied to different tasks using different priors and modeling techniques,
all of the three categories of SLMs mentioned above form steps on the way to universal speech processing
systems. For the purposes of this paper, we define a universal speech processing system as a model that
satisfies the following criteria:

1. Tt has both spoken input and spoken output with optional text input and/or output. The spoken
input may serve as either an instruction or a context.

2. It is intended to be “universal”; that is, it should in principle be able to address arbitrary spoken
language tasks, including both traditional tasks and more complex reasoning about spoken data.

3. Tt takes instructions or prompts in the form of natural language (either speech or text), and not, for
example, only task specifiers (Radford et al.| [2023)) or soft prompts (Chang et al., 2024)).

This is a functional definition, and does not restrict the form of the model. We also note that most of the
models in the current literature, and therefore in this survey, do not satisfy all of these criteria; for example,
many do not have speech as both input and output, and many are trained and evaluated on a fairly limited
set of tasks. However, the models we include can all be seen as steps toward the same goal of eventually
developing SLMs that can serve as universal speech processing systems, in the same way that pre-trained
and post-trained text LLMs have served as steps toward universal written language processing systems.

One may wonder whether a better path to universal speech processing is to combine speech recognition,
text LLMs, and speech synthesis in series. This is indeed a strong baseline approach for many tasks (Huang
et al.} [2025; |Yang et al.,|2024b). However, some tasks require access to aspects of the audio signal beyond the
word string, such as properties of the speaker, their emotional state, prosody, or other acoustic properties.
In addition, even for tasks that are in principle addressable using the word string alone, an end-to-end SLM
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approach can avoid the compounding of errors and inefficiencies that can occur when combining ASR, text
LLMs, and TTS systems in series.

The past few years have seen a major acceleration in work on SLMs. However, there have been limited
efforts to perform an in-depth survey of the design and modeling choices made in this work. Additionally,
these models are often evaluated on very different tasks and datasets, making it difficult to assess the
relative performance of different approaches. As part of this survey, we collect and organize many of the
existing evaluations (though standardized evaluation is still one of the remaining challenges in this research
area). Lastly, as SLMs have been viewed and defined differently depending on the intended applications and
modeling choices, we provide a unified formulation and terminology for describing SLMs (Section .

This survey is intended to serve as a snapshot of the current moment in the evolution of the field, providing
a review of the recent literature and a unified definition of SLMs and their components. While new SLMs
are being proposed at a steady pace, we hope that this survey of the research landscape will help readers
more easily place new models in context. We aim to provide an improved understanding of the successes and
remaining limitations of SLMs developed thus far, along the path to SLMs as universal speech processing
systems.

Scope of this survey. Although the ultimate goal is task-independent models that can be instructed with
natural language, many LM-inspired approaches thus far have been task-specific (for example, special cases
of conditional p(text|speech) models for speech recognition and translation such as Whisper (Radford et al.,
2023) and OWSM (Peng et al. |2023b)), and conditional p(speech|text) models for text-to-speech synthesis
such as VALL-E (Chen et al.l 2025b|) and VoiceBox (Le et al. 2024)), and some have been more general
but rely on task tokens or soft prompts (e.g., Qwen-Audio (Chu et al.l [2023) and SpeechPrompt (Chang
et al., [2024) respectively). In this survey, we focus on models that are at least in principle task-independent
(although they may have been tuned on a relatively small set of tasks) and that take natural language as
input rather than task tokens or soft prompts. We will, however, discuss some of the important task-specific
models as they relate to the more general models.

In addition, as discussed in Section [2] SLMs often comprise several components including a speech encoder,
speech decoder, speech-text alignment module (when applicable), and sequence modeling component. In this
survey, we provide relatively brief descriptions of speech encoding and decoding; these have been covered
well in previous surveys (e.g., Wu et al| (2024a))), and our main focus is on the aspects that are specific to
SLMs, such as sequence modeling and speech-text alignment.

Finally, music and general audio share many properties with speech. A number of language modeling
approaches have been developed specifically for music and general audio (e.g., (Copet et al., [2023; |Agostinelli
et al., 2023)), and some SLM research combines speech and other audio (e.g., (Gong et al., [2023b))). In this
survey we include non-speech audio only to the extent that it is used in the context of SLMs.

Related surveys. To place this paper in context, we note that several other recent surveys have addressed
aspects of SLMs. |Zhang et al.| (2024a)); Chen et al| (2024a) review multi-modal LLMs, including a limited
subset of SLMs. By focusing on SLMs as our main subject, we survey a substantially larger set of models in
greater detail and explore speech-specific issues. [Latif et al.| (2023)) provide a survey on large audio models.
This survey covers a much larger space of audio language models (including environmental sounds, music,
and other audio) and therefore does not present SLMs in as much detail, nor include recent instruction-
following (IF') models of the past year. Another recent survey (Wu et al. 2024al) provides an overview of
neural audio codecs and codec-based (Section [3) models, which mainly focuses on speech tokenization rather
than the full range of SLMs. |Guo et al.| (2025]) also survey tokenization methods. \Ji et al|(2024) provide a
survey of SLMs, but their main focus is on spoken dialogue systems. Another related SLM survey paper by
Peng et al.| (2024a)) focuses on speech-aware text LMs but leaves out other types of SLMs. Finally, there is
also concurrent work by |Cui et al.|(2024) that surveys a similar range of SLMs; we provide a complementary
view of the landscape with a different historical focus and categorization of models.

Outline. In the remaining sections, we begin by outlining a general formulation of SLMs (Section ,
followed by a discussion of various design choices (Section , including speech encoders and decoders,
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Figure 1:  Overview of SLM architecture. See Sections [3] and [4] for more detailed descriptions of the
components and training methods, respectively.

modality adapters, and sequence modeling. We then describe the multiple optimization pipelines used for
training SLMs (Section [4). In Section 5| we review and categorize some of the notable recent models.
In Section @ we discuss how SLMs have been adapted for dialogue (“full duplex”) mode. In Section
we present existing approaches for evaluating SLMs. Finally, we conclude by discussing the limitations of
current approaches and provide some suggestions for future research (Section .

2 Overall architecture

We start by providing a general formulation (shown in Figure [1)) of SLMs, which takes either/both speech
and text as input and generates either/both speech and text (where at least one of the input or output
includes speech). Although SLMs differ in many of their design choices, this unifying description subsumes
all of the models we cover [

Let X*™* € V* and X®P € R* denote the input text and speech, respectively. That is,
X = {t1,ty, ..., tn}

is a sequence of text tokens t; of arbitrary length N drawn from a vocabulary V. The speech input is a
waveform, that is a sequence
XSp = {51,82,...78']“}

of real-valued samples of arbitrary length T', where typically 7" > N. The speech waveform is long and
complex, and is therefore typically further processed before being modeled by the sequence model. We first
map X°P using the speech encoder Enc®() to a sequence of speech representations H®P:

H*P = Enc®®(X*P). (1)

2We do make some assumptions, for example, that the sequence model is autoregressive, which in principle need not hold
but in practice do hold for current models.
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The resulting speech representations, H* = {hy, ha,...,hr}, can take one of two forms. In one case, H®P
is a sequence of continuous vectors h; € R%. Alternatively, they can be sequences of discrete tokens h; € D
drawn from a learned codebook D.

The speech representations HP are further transformed through a modality adapter
Adp™(H*®) € RT

where typically L’ < L. This transformation is intended to improve the alignment of the speech representa-
tions with the sequence model. In addition, the inherent length disparity between speech and text sequences
can be addressed at this stage by applying temporal adjustments in Adp°?(). The text token sequence X *™**
is also transformed into a sequence of vector representations, with the same dimensionality d’, via an adapter

Adptxt(tht) c Rd/XN/.

The text adapter is typically simply an embedding table, and therefore N’ = N E| After the adapters,
therefore, the text and speech are mapped to the same representation space with dimension d’, but the text
and speech representation sequences are still not necessarily the same length (i.e., L’ and N’ need not be
identical).

Next, given the adapted input text and/or speech representations, a sequence model, denoted Seq(), generates
outputs, typically in an autoregressive manner. Here, we assume that each invocation of Seq() corresponds
to one generation step. For the model types described in Table [1] the formulations are as follows:

Pure Speech LMs The output of Seq() is a speech representation
h' = Seq(Adp*P (H®P)).

The input to Seq() is a sequence of representations of the generated speech so far, with shape d’ x L’ and the
output speech representation h' is either a continuous vector (in ]Rd) or a discrete token (in D). Following
the usual autoregressive generation formulation, h’ is then appended to H®P, increasing its length by one,
Seq() then generates the next output, and so on. All of the generated outputs b’ together form a sequence
AP = {hi,hb, ... R} with sequence length L”. Finally, the speech decoder Dec®™ converts the output
speech representations AP to a waveform Y®P:

VP = Dec®P(AP). (2)

Speech-aware Text LMs In this type of model, the sequence model Seq() generates a text token ¢’
according to

' = Seq(Adp™(H*), Adp™(X*))

Here, the input to Seq() is a concatenation of the adapted speech representation Adp®*P(H®P) and the text
representation Adp™*(X "), forming a tensor with shape d’ x (L’ + N’). The output is a text token t' € V.
This generated token is then appended to X®* and the process is repeated to generate subsequent tokens.
Finally, the sequence of all generated tokens forms the output text sequence Y*P.

Speech+Text LMs In this more complex scenario, speech and text are modeled jointly:
h/7 t/ _ Seq(AdpSp(HSp), Adptxt(tht))

Here both the inputs and outputs are “hybrid” representations consisting of a combination of speech and
text representations. There are multiple approaches for generating such hybrid speech+text representations,
which will be discussed in Section [3.3.2]

The encoder, decoder, and sequence model Seq() are often pre-trained separately. The modality adapter is
typically trained from scratch, sometimes along with fine-tuning of the sequence model. The encoder and
decoder parameters are usually fixed after pre-training. Section [3] provides more detailed information about
the model components, while Section [4] describes typical training methods.

3We are not aware of any SLMs that use any text adapters besides the typical embedding table, nor models where N’ # N,
but we allow this possibility in the definition for maximal generality.
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Figure 2: A general pipeline for speech encoders. Note that different encoders use different components of
the pipeline. See Section for more details.

Temporal Compression (Section 3.1.3 )

3 SLM components

3.1 Speech Encoder

In text LMs, text is typically tokenized into subword units, generated through methods like byte pair encoding
(BPE) (Gage, [1994)), and these tokens are then represented as vector embeddings. In contrast, speech is a
continuous waveform with no obvious tokenization and no separation between linguistic information and other
acoustic aspects. The task of the speech encoder, shown in Figure[2] is to extract meaningful representations
from the waveform.

The first part of the encoder is a speech representation model, which transforms the speech signal into
continuous features (vectors). These continuous features can either be used directly as input to the speech
modality adapter Adp®P(-) or quantized into discrete units (using, e.g., k-means or VQ-VAE (van den Oord
et al [2017)). In general, pure speech LMs and speech+text LMs tend to use discrete speech tokens, whereas
speech-aware text LMs tend to use continuous representations (with some exceptions; e.g., Flow-Omni (Yuan
et al} 2024) is a speech+text LM that generates continuous speech representations, and DiscreteSLU (Shon
et al.| 2024) is a speech-aware text LM that uses discrete speech token input). Finally, temporal compression
(e.g., deduplication or BPE) is optionally applied to reduce the sequence length.

3.1.1 Continuous Features

To extract informative representations from raw waveforms, a speech representation model—either a learned
encoder or a digital signal processing (DSP) feature extractor—converts speech into continuous features.
These continuous features may include:

1. Traditional spectrogram features, such as mel filter bank features (Huang et al.l |2001]).

2. Hidden representations from self-supervised learning-based (SSL) speech encoders, such as wav2vec
2.0 (Baevski et al, 2020), HuBERT (Hsu et al., [2021), or WavLM (Chen et al., [2022).

3. Hidden representations from supervised pre-trained models, such as Whisper (Radford et al.| |2023])
or USM (Zhang et al.| |2023b).

4. Hidden representations from neural audio codec models, such as SoundStream (Zeghidour et al.,
2022)) or EnCodec (Défossez et al.| [2023)).
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3.1.2 Discrete Tokens

We divide discrete speech tokens into two main categories, “phonetic tokens” and “audio codec tokens”,
based on how they are learned and their perceived propertiesEl

Phonetic Tokens Phonetic tokens are most commonly derived by quantizing self-supervised speech rep-
resentations (Mohamed et all, [2022) or, occasionally, supervised encoders from a pre-trained ASR model
(as in Cosyvoice (Du et al., 2024), GLM-4-voice (Zeng et al., [2024a)), and WhisperSpeech
2024)). These quantized representations have been shown to capture linguistic information and have strong
correlation with phonetic units (Sicherman & Adi, [2023). The pioneering pure speech LM, GSLM
, treated these tokens as “pseudo text,” allowing the model to function similarly to text-based
LMs and to generate phonetically coherent speech. These tokens, learned directly from raw speech, formed
a foundation for subsequent research, often described as “textless NLP” (Polyak et al. 2021} [Lakhotia et al.
[2021} [Kharitonov et al., 2022b} [Nguyen et al., |2023} [Hassid et al., [2023)).

The process of deriving phonetic tokens involves several design decisions, such as selecting a pre-trained
representaiton model, which layer’s representations to quantize, and the number of clusters. Different lay-
ers in SSL speech models tend to encode different types of information (Hsu et al. 2021} Mousavi et al.
[2024Db; [Pasad et al. 2023). Representations from layers rich in phonetic information are typically chosen for
extracting phonetic tokens. The number of clusters is also a key hyperparameter, and is often optimized
based on downstream task performance, or the ABX task (Schatz et all 2013)) which is a good proxy for
downstream performance. Too few clusters may result in a loss of fine-grained phonetic information, while
too many clusters may risk encoding undesirable speaker-specific features (Lakhotia et al., [2021; Kharitonov|

2022a).

Audio Codec Tokens In contrast to phonetic tokens, audio codec tokens are intended to capture more
detailed acoustic characteristics. These tokens are derived from neural codec models, which were originally
designed for audio compression and therefore for faithful reconstruction of audio from its encoding
let all |2022} [Défossez et all 2023). Although audio codecs were initially intended for compression, their
intermediate discrete representations have proven valuable as tokens in SLMs (Borsos et al.l [2023a)).

Neural codecs comprise three components: an encoder that converts raw audio into frame-level features,
a vector quantization (VQ) module that converts these features into discrete tokens, and a decoder that
reconstructs audio from the codec tokens. Typically, the main encoder-decoder backbone is a convolution-
dominant architecture (e.g., Encodec (Défossez et al., [2023))), but some recent work has introduced trans-
formers as intermediate layers (e.g., Mimi (Défossez et al.|[2024)) or transformer-only architectures to reduce
computation (e.g. TS3-Codec (Wu et al., 2024d).

For the VQ module, a commonly used approach is residual vector quantization (RVQ) (Grayl, |1984; [Zeghi-|
[dour et al., [2022), which generates several discrete tokens for each time step, corresponding to multiple
(hierarchical) levels of granularity (with the first level encoding most of the information, and the remaining
levels encoding residual information). Decoding such multi-codebook speech tokens typically requires ad-
ditional design considerations for the SLM architecture and decoding strategy (Borsos et al., |2023a; |Chen|
et all 2025b; Yang et al., |2024al). Alternatively, several single-codebook quantization codecs (Wu et al.),
2024d} Xin et al., [2024) have been developed to simplify decoding in SLMs. Section [3.3] describes decoding
strategies in detail.

Comparison of token types Early SLMs, such as GSLM, typically used phonetic tokens, which reduce
speaker-specific information (Polyak et al., 2021)). This reduction allows language models to focus primarily
on spoken content, making them more effective for understanding tasks like detecting words vs. nonwords
or syntactic correctness (Lakhotia et al.| [2021; [Hassid et all 2023) and for applications such as speech-to-

4In some literature, phonetic tokens are referred to as “semantic tokens” (Borsos et al.| [2023a)). However, it’s important
to clarify that “semantic” in this context does not imply the traditional linguistic meaning, as these tokens are more akin to
phonetic units (Sicherman & Adil 2023) and do not typically carry semantic content. Therefore, we use the term “phonetic
tokens” throughout this paper.
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speech translation (Lee et all 2022a3b). In contrast, audio codec tokens are frequently used in tasks where
preserving speaker identity and acoustic details is crucial (Chen et al., [2025b)).

The development of speech tokenization methods has attracted increasing attention. In SLMs, two important
factors are the token bitrate, which impacts efficiency, and the token quality, which relates to generation
quality and suitability for downstream tasks. Several benchmarks have been established to evaluate different
types of tokens (Shi et al.,|2024; Wu et al.| [2024c; |Mousavi et al., [2024a; [Wu et all |2024b). Codec-SUPERB
(Wu et all 2024c), the first neural audio codec benchmark, evaluates the quality of resynthesized audio,
using subjective metrics and pre-trained downstream models for comparison. DASB (Mousavi et al., 2024a))
evaluates tokenization methods by using the extracted tokens for various downstream tasks. ESPnet-Codec
(Shi et al.| |2024)) is an open-source framework that functions as both a toolkit for neural codec training and
a platform for evaluation in a controlled setting. Designing efficient and effective tokens for SLMs remains
an active area of research (Guo et al., [2025)).

3.1.3 Temporal Compression

Quantized speech feature sequences are often very long due to the high frame rate of speech signals. To
mitigate the challenges this poses for language modeling, several techniques are typically applied within the
encoder to reduce the sequence length. One such technique is “deduplication”, which merges consecutive
identical tokens into a single token (as shown in Figure . However, this approach loses information about
the duration of individual tokens. To address this issue, some approaches (Nguyen et al., |2023) use multi-
stream modeling to capture token duration in a separate stream, while others introduce duration prediction
when generating output speech (Kreuk et al.| [2022; Maimon & Adi, 2023; [Lee et al., [2022a)). Additionally,
byte pair encoding (BPE) (Gage, [1994) is also sometimes applied to the discrete token sequences (Wu et al.
2023a; Shen et al. 2024) to capture recurring patterns.

3.2 Speech Modality Adapter

In many SLMs (especially speech-aware text LMs), the speech encoder (Section and the sequence model
(Section are initially developed separately and then combined. It is therefore necessary to somehow
align the output of the speech encoder with the expectations of the sequence model, and this is the role
of the modality adapter. The modality adapter is typically trained on downstream tasks or, in the case of
speech+text LMs, as part of pre-training (see Section [4| for more details on training).

If the output sequence of the speech encoder is not very long, the modality adapter can be as simple as a linear
layer, which transforms the encoder output into the embedding space of the sequence model. This typically
occurs when the encoder produces discrete tokens with temporal compression. On the other hand, if the
output of the encoder is too long, the adapter is typically also responsible for shortening the sequence. This
usually happens when the encoder produces continuous representations without discretization or temporal
compression. Shortening the input sequence simplifies both training and inference for the sequence model.
Furthermore, since the sequence model often processes both text and speech inputs, it is helpful for the
token rate of the speech sequence to roughly match that of the text sequence.

Common adapters include:

Linear Transformation / Vocabulary Expansion A straightforward way to integrate speech into a
pre-trained sequence model is by applying a linear transformation to the speech representation H®P. In this
approach, the adapter Adp®P() is defined as a linear transformation. This method is commonly used when
the speech encoder produces discrete token outputs. This approach can be interpreted as vocabulary expan-
sion, where the speech tokens are treated as additional tokens in the sequence model’s vocabulary. Their
embeddings are then learned during subsequent task-oriented training. For example, in SpeechGPT (Zhang
et al.l 2023a)), the vocabulary of the sequence model LLaMA (Touvron et al., [2023a)) is expanded to in-
clude HuBERT-based phonetic tokens. Similarly, in Mini-Omni2 (Xie & Wul, |2024b)), the sequence model
Qwen (Bai et al., [2023) incorporates eight layers of acoustic codec tokens alongside standard text tokens.
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CNN with strides: Convolution layers with strides reduce the sequence length while preserving temporal
information (Lu et al.| |20244a)), which is essential for tasks that require such information, like ASR (Wu et al.,
2023bf). A special case of this adapter type is pooling layers with strides (Chu et al., [2023)).

Connectionist Temporal Classification (CTC)-based compression: This method compresses HP
(Eq. |1)) according to the posterior distribution from a CTC-based speech recognizer (Gaido et al., 2021)).
CTC (Graves et al.l [2006]), a commonly used approach for ASR, assigns each time step a probability distri-
bution over a set of label tokens, including a blank (“none of the above”) symbol. The time steps with high
non-blank probabilities indicate segments that are likely to carry important linguistic information. CTC
compression aggregates the frame-level labels, specifically by merging repeated non-blank labels and remov-
ing blanks. This approach produces a compressed representation intended to retain the relevant content of
the original sequence while significantly reducing its length (Wu et al., [2023b} [Tsunoo et al., [2024]).

Q-Former: The Q-Former (Li et all [2023)) is an adapter that produces a fixed-length representation by
encoding a speech representation sequence of arbitrary length into M embedding vectors, where M is a
hyperparameter (Lu et al.| [2024b).

Let the input speech representation sequence be:
X:{xhz%"wxl/}v miGRdv (3)
where L' is the sequence length and d’ is the dimension of the embeddings.

To achieve a fixed-length representation, Q-Former introduces M trainable query embeddings:

Q:{(IMQQ»'--,(IM}, inRdl. (4)

These queries interact with X via a cross-attention mechanism:

QWo(XWk)T
Vd'

where Wg, Wk, and Wy are learnable projection matrices. The result is a sequence of M embeddings.

Attn(Q, X) = softmax ( ) XWy, (5)

In some approaches, instead of directly encoding the entire utterance into M vectors, a window-level Q-
Former is applied (Yu et al., 2024} |[Pan et al, [2024; Tang et al.l [2024)) to retain temporal information. In the
window-level Q-Former, the input embedding sequence is segmented, and the Q-Former is applied to each
segment.

Lu et al.| (2024al) compare the Q-Former with CNN-based modality adapters in a speech-aware text LM,
finding that the Q-Former produces better performance on the Dynamic-SUPERB benchmark (Huang et al.,
2024)) (see Section [7] for more on this and other SLM benchmarks).

AlignFormer: AlignFormer (Fan et al.| [2024)) combines a CTC compressor (Gaido et al., [2021) with a Q-
Former (Li et al.||2023)). When the LLM backbone is frozen, [Fan et al.| (2024) find that AlignFormer enables
zero-shot instruction-following capabilities for speech QA tasks using only ASR training data. Additionally,
AlignFormer surpasses Q-Former in instruction-following performance across multiple datasets and tasks,
including SQA and speech translation.

Others: Several other methods have been developed for the modality adapter. For example, LTU-AS uses
time and layer-wise transformers (TLTR) (Gong et al.| 2023al), WavLLM (Hu et al., 2024b)) uses a bottleneck
adapter (Houlsby et al.l|2019), and other approaches uses multi-layer perceptron (MLP) adapters (Fang et al.,
2025 Microsoft et al., [2025]).

3.3 Sequence Model

In principle, generating speech tokens is similar to generating text tokens. However, there are some important
differences. Unlike text tokens, audio tokens may include a mix of coarse and fine tokens — for example, pho-
netic tokens as coarse tokens and audio codec tokens as fine tokens. For TTS models, using phonetic tokens
as an intermediate representation rather than directly mapping text to audio codec tokens provides better
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Figure 3: Hierarchical generation strategies (see Section [3.3.1)).

supervision and reduces modelling complexity. For example, SPEAR-TTS (Kharitonov et al., [2023), which
uses phonetic tokens, has similar performance to VALL-E (Chen et al.l 2025b)) while requiring significantly
less parallel text-to-speech training data. The same concept applies to SLMs, as described in Section
below. In addition to generating multiple speech token types, some SLMs combine text and speech token
generation to enhance the linguistic quality of the generated speech, as described in Section [3.3.2

3.3.1 Hierarchical Token Generation

There are several decoding strategies for hierarchical modeling of multiple types of tokens of different granu-
larity, shown in Figure Phonetic tokens and first-layer codec tokens (e.g. Mimi (Défossez et al.l |2024)) and
SpeechTokenizer (Zhang et all |2024b)) can be regarded as coarse tokens in Figure [3] while the remaining
layers of codec tokens can be regarded as fine-grained and finer tokensE] We categorize common decoding
strategies into the following types:

Coarse first, then fine-grained (Figure (3| (a)): In this approach, coarse tokens for all time steps are
generated first, followed by fine-grained tokens conditioned on the coarse tokens, and finally the finer tokens.
For example, AudioLM (Borsos et al., [2023a)) uses such a three-stage autoregressive process (which can be
modeled by different LMs), first predicting phonetic tokens (the coarse tokens in Figure [3| (a)), then first-
layer audio codec tokens (the fine-grained tokens in Figure [3| (a)) conditioned on the phonetic tokens, and
finally the remaining-layer codec tokens (the finer audio codec tokens in Figure 3| (a)). SoundStorm (Borsos
et al.||2023b|) replaces the second and third stages of AudioLM with a non-autoregressive prediction approach
inspired by MaskGIT (Chang et al.l 2022)), which begins with masked tokens and then non-autoregressively
predicts a portion of them in rounds based on confidence scores. Similarly, VALL-E (Chen et al., 2025b)) uses
an autoregressive model to predict the first-layer audio codec tokens based on the corresponding phoneme
transcriptions, and then uses a non-autoregressive model to generate the remaining codec token sequences.

Interleaved coarse and fine tokens (Figure (3| (b)): In this decoding strategy, the three types of
tokens——coarse, fine-grained, and finer—are aligned along the time axis and interleaved for generation.
When predicting tokens for time step ¢, the coarse, fine-grained, and finer tokens corresponding to t are gen-
erated sequentially. SpiRit-LM (Nguyen et al., 2025)) applies this interleaved structure (interleaved phonetic,

5In Figure and in running examples, we assume 3 granularity levels. In practice, a sequence model can include a smaller
or larger number of levels, and this number is also an important design choice.
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Figure 4: Text and speech hybrid generation, expemplified by four representative models (a)-(d) (see Sec-
tion [3.3.2). Green and yellow boxes represent text and audio tokens, respectively.

pitch and style tokens) to enhance speech expressiveness, and it also incudes text tokens in addition to the
multiple types of speech tokens.

Temporal generation plus depth generation (Figure |3| (c)): This strategy employs a large Trans-
former LM (indicated in blue) to model inter-frame information along the time axis and a small Transformer
head (indicated in green) to capture intra-frame correlations. The small Transformer head predicts multi-
layer tokens——where fine-grained and finer tokens correspond to different layers of audio codec tokens—
—within the same time step. For example, UniAudio (Yang et al., 2024a)) adopts this approach, inspired by
RQ-Transformer (Lee et al} [2022c) and the MegaByte Transformer model (Yu et al., 2023]). Moshi (Défossez
et al.l |2024)) also adopts a similar strategy as UniAudio.

Delay pattern (Figure(3|(d)): In this approach, there are time delays (of 1 or more time steps, depending
on the design) between coarse and fine tokens. Such time delays allow the model to utilize look-ahead, that
is to use future coarse tokens as conditions when generating fine tokens. Figure [3[ (d) shows an example
where the delay is 1. The large blue LM in Figure 3| (d) autoregressively outputs the temporal embeddings
and feeds them into the green prediction head, which then predicts the coarse token and the delayed fine
token in parallel. For example, pGSLM (Kharitonov et al., 2022b)) introduces a delay between the phonetic
tokens and the “expressive” (pitch and duration) tokens.

Using multiple stages of prediction can achieve both high audio quality and long-term consistency (Borsos
et al.l 2023a). However, this approach makes the decoding strategy complex and increases latency, making
it less suitable for real-time applications like spoken dialogue generation. To address this drawback, there is
a growing literature on tokenization methods that reduce the number of tokenization layers. One example
is to combine the generation of phonetic and audio codec tokens into a single tokenizer by distilling the
information from phonetic tokens directly into the audio codec (Défossez et al., [2024; [Zhang et al.| [2024b)).

3.3.2 Text and speech hybrid generation

Some sequence generation models use text tokens as the first-layer tokens, followed by speech tokens (either
phonetic or audio codec tokens). This approach allows the SLM to leverage the knowledge from a pretrained
text LM, which is typically trained on much larger-scale data than the available speech data, to improve the
factuality and linguistic quality of generated speech. As shown by |Défossez et al.|(2024), this approach can
improve language modeling quality, as measured by negative log-likelihood scores measured by an external
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text LME Another advantage to this approach is that during the process of developing the SLM, it is
straightforward to separately evaluate both the correctness of the output content and the speech generation
quality.

Text and speech tokens operate on different scales: speech has a fixed sampling rate (unless tokenized into
tokens of different durations), whereas text tokens do not. A text token sequence is also usually shorter than
the corresponding speech token sequence. Hybrid decoding needs to address the issue of differing lengths
and, ideally, also to achieve temporal alignment (synchronization). There are four main types of text-speech
hybrid generation used in recent SLMs, shown in Figure [dl We use four representative models to illustrate
the ideas.

The first type (Figure 4| (a)) addresses the mismatch in sequence lengths by adding padding tokens after
the text token sequence. In this setup, the text sequence ends first, and the generated text then guides the
generation of the speech token sequence, making the process similar to text-to-speech (T'TS). A representative
example is Mini-Omni (Xie & Wul 2024a)), which adopts a delayed decoding approach (Copet et al.l [2023]).

The second type (Figure 4| (b)) involves adding fixed padding tokens after each text token to extend the
text token sequence. Padding tokens are also added between speech tokens so that both sequences have the
same length. An example of this approach is LLaMA-Omni (Fang et al., [2025)): After predicting the text
tokens (padded with fixed-length padding tokens), it then predicts the phonetic token sequence based on
the padded text (where the phonetic token sequence is shorter than the padded text token sequence), and
finally the CTC loss is applied to the phonetic token sequence to guide training.

The third type (Figure |4| (c)) dynamically adjusts the number of padding tokens between text tokens. The
generative model learns to insert these dynamic padding tokens to make the text and speech sequences
the same length. During training, time-aligned text-speech paired data is used to construct padded text
sequences that match the lengths of the speech sequences. Moshi (Défossez et al.l [2024) is an example of
this model type.

The fourth type (Figure [4] (d)) interleaves speech and text tokens in a single sequence, with text-speech
token alignments derived in advance. SpiRit-LM (Nguyen et all |2025) is an example of this approach,
using time-aligned text-speech paired data for training. GLM-4-Voice (Zeng et al., [2024ajb) uses a pre-
trained text-to-token model to generate audio tokens from text, and interleaves the generated audio with
text tokens.

3.4 Speech Decoder

The speech decoder converts speech representations—whether continuous features, phonetic tokens, or audio
codec tokens——back into waveforms. The speech decoder can take various forms:

1. Vocoder (Kong et al., 2020) for continuous features, similar to those used in traditional synthesis sys-
tems. For instance, in Spectron (Nachmani et al.l |2024)), a generated mel spectrogram is synthesized
into audio using the WavFit vocoder (Koizumi et al., |2023).

2. Unit-based vocoder (Polyak et al., 2021) based on HiFi-GAN (Kong et all [2020) for phonetic to-
kens. These vocoders take phonetic tokens as inputs and optionally combine them with additional
information to improve synthesis quality. For example, when phonetic tokens are deduplicated, a
duration modeling module is often included in the vocoder (Lakhotia et al., [2021]).

3. Codec decoder (Guo et al.l 2025). When the SLM generates audio codec tokens, these tokens can
be input directly into the corresponding pre-trained audio neural codec decoder (without additional
training) to get the waveform.

61n this case, LiteLlama-460M-1T, https://huggingface.co/ahxt/LiteLlama-460M-1T
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4 Training Strategies

We divide the training phases of SLMs into pre-training and post-training, analogously (but not identically)
to the typical division in text LLM training. For text LMs, pre-training refers to training a model of
p(text) with a next-token prediction objective, whereas post-training is task-oriented and directly facilitates
alignment and improved performance on tasks. Since many SLMs start with a post-trained text LLM, we
consider this to be a part of SLM pre-training. More precisely, we define pre-training and post-training of
SLMs as follows:

Pre-training: We define pre-training as any training strategy that does not have the explicit goal of
enabling the model to perform a wide variety of downstream tasks. In particular, pre-training does not
directly aim to make a model a universal speech processing system (but, as described below, it can include
training for specific tasks). In the context of SLMs, which handle multiple modalities, pre-training often
involves a multi-stage process. This may include initial next-token-prediction training on text, followed by
continual training on speech continuation tasks using large unlabeled speech corpora. Continual training
may enhance the capabilities of SLMs for specific tasks, but the resulting pre-trained SLMs remain limited
in scope and are still far from being universal models. Text LLM post-training before adding the speech
modality is also considered pre-training of the SLM, since it does not target universal speech processing.

Post-training: Post-training refers to training strategies focused on wvariety of downstream tasks, with a
goal of producing a more or less universal speech processing system. The tasks can be either predefined
with specific task specifiers or dynamically defined through text or spoken language prompts. Instruction
tuning (Tang et al.l |2024; |Pan et al., |2024; [Shu et al., |2023) and preference optimization (Lin et al., [2024b))
are examples of post-training.

4.1 Pre-training strategies

Here we focus on speech-specific pre-training strategies; that is, we do not discuss the training of any text
LM that is included in SLM pre-training.

4.1.1 Generative pre-training

Pure speech pre-training p(speech) Pure speech pre-training refers to training a model of p(speech)
from unlabeled speech (a pure speech LM in Table , typically by tokenizing the speech and modeling the
token sequences with an autoregressive model trained to perform next speech token prediction. The success
of SSL speech representation models Mohamed et al.| (2022) facilitated the development of pure speech
LMs, because SSL models provided high-quality representations that could easily be quantized to produce
tokenized speech. Pure speech LMs, such as GSLM (Lakhotia et al. 2021, typically use discrete phonetic
speech tokens as the basic language modeling units, but non-phonetic information—such as duration and
pitch—can also be incorporated (Kharitonov et al.l[2022b; Nguyen et al., [2023) to enhance prosody modeling.
Section [5.1] expands on pure speech LMs.

Joint speech and text pre-training p(text, speech) This approach refers to pre-training SLMs on aligned
speech and text to model p(text, speech) (speech+text LM in Table [1) (Chou et al. 2023; Nguyen et al.l
2025} \Défossez et al.l [2024)). The speech and text sequences may be interleaved (Chou et al.l 2023} Nguyen
et all 2025) or treated as dual channels (Défossez et all, [2024)), as detailed in Section [3.3.2]

Continual pre-training following text pre-training p(text) Continual pre-training (Ke et al.l 2023)
refers to the process of further training a pre-trained model on additional data that is domain- or modality-
specific, but still not task-oriented. This intermediate step allows the model to adapt to new domains or
datasets while (hopefully) retaining its general-purpose capabilities (Tang et all 2024; |Chu et al.l 2023;
Hassid et al., |2023). A common example of continual pre-training for SLMs is to start with a text LLM
pre-trained with a next token prediction objective (a pure text LM in Table[l)) and then further pre-train it
with speech data to improve its performance on the speech continuation task (Hassid et al., |2023]).
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4.1.2 Conditional pre-training p(text|speech)

While generative pre-training is the most common form of pre-training, it is also in principle possible to
initialize SLM training from a conditional model. For example, the pre-trained conditional model could
be an encoder-decoder speech recognizer |Chan et al.| (2016f), or a joint speech recognition and translation
model like Whisper Radford et al.| (2023) or OWSM [Peng et al.| (2023b; [2024¢) that uses task specifier tokens
to indicate the desired task. Such models can be trained on massive amounts of transcribed speech, and
therefore have already learned to align the speech and text modalities. Although these models are trained
for very specific tasks, they have shown promise as an initialization for instruction-following models that
perform a wider range of understanding tasks (Lai et al., [2023; |Arora et al., [2024]).

4.1.3 Aligning speech and text modalities

For SLMs that combine pre-trained text LMs and speech encoders, another pre-training strategy is to align
the speech and text modalities in a task-independent way.

Implicit alignment Speech and text modalities can be implicitly aligned through techniques such as the
“modal-invariance trick” (Fathullah et al.,[2024)) or behavior alignment (Wang et al.,|2023al). The idea is that
the model should produce identical responses regardless of the input modality, provided the input conveys
the same meaning. This approach often utilizes ASR datasets. The text transcript is input to a text LLM to
generate a text response, while the corresponding speech recording is input into the SLM, which is trained
to generate the same text response. Another idea found to be useful for implicit alignment is training spoken
LLMs for audio captioning, where a spoken LLM takes audio as input and outputs its description. It has
been observed that training a spoken LLM solely through audio captioning can generalize to tasks it has
never seen during training (Lu et al.l 2024ajjb)).

Explicit alignment Speech and text modalities can also be explicitly aligned by matching speech features
to corresponding text embeddings, via optimization of appropriate distance/similarity measures. For exam-
ple, Wav2Prompt (Deng et al.l |2024) and DiVA (Held et al., 2024) align modalities by minimizing the Lo
distance between speech features and the token embeddings of their transcripts in a text LLM while keeping
the text embeddings fixed.

4.2 Post-training strategies

The pre-training of LLMs and SLMs in Section [4.1] enables the modeling of the general data distributions of
text p(text) or speech p(speech), the joint distribution of speech and text p(text, speech), or a conditional
distribution p(text|speech) based on specific pre-training tasks. However, pre-trained models still often
lack the capability to solve a large range of downstream spoken language tasks, to follow natural language
instructions, or both. In the post-training phase, carefully curated datasets are used to bias SLMs toward
generating desired outputs or performing tasks, typically specified using natural language instructions.

4.2.1 Task-specific training

While the eventual goal is to handle arbitrary tasks within a single model via instructions, some
SLM approaches begin with a simpler post-training setting: multi-task training with task specifiers
p(-|speech, (taskspecifier)). In this approach, the pre-trained SLM is fine-tuned for a predefined set of
target tasks. Qwen-Audio is an example of such an approach (Chu et all 2023). Task-specific training can
then be followed by instruction tuning or other post-training approaches, described below.

4.2.2 Instruction tuning p(:|speech, instruction)

Instruction tuning of SLMs has been inspired by, and closely follows, successful approaches for text LLM
instruction tuning. Instruction-tuning data typically consists of a speech recording, an instruction that
describes the speech task, and the ground-truth output. During instruction tuning, the instructions are
appended to the speech recording as inputs to the SLM, which is trained to generate the correspond-

14



Under review as submission to TMLR

Task Examples of Instructions

Recognize the speech and give me the transcription. (Tang et al.||[2024)

Speech recognition Repeat after me in English. (Grattafiori et al.|[2024)

Translate the following sentence into English. (Grattafiori et al.|[2024)

Speech translation Recognize the speech, and translate it into English (Chu et al.|[2023)

Speaker recognition  How many speakers did you hear in this audio? Who are they? (Tang et al.||2024)

Describe the emotion of the speaker. (Tang et al.|[2024)
Can you identify the emotion? Categorise into: sad, angry, neutral, happy (Das et al.| |2024)

What happened to this person? (Wang et al.|2023b)
Question answering  Generate a factual answer to preceding question (Das et al.|[2024)
What medicine is mentioned? Briefly introduce that medicine. (Peng et al.| [2024b)

Emotion recognition

Table 2: Examples of instructions for speech-related tasks used in SLM instruction tuning.

ing ground-truth output. Depending on the model design, the instruction can be in either text (Tang
et al., 2024} [Pan et al [2024), i.e., p(:|speech, textinstruction), or speech format (Shu et al., [2023)), i.e.,
p(+|speech, speechinstruction). In both cases, it has been found that SLMs trained on diverse instruction-
tuning data can perform tasks unseen during the instruction-tuning phase (Tang et al., |2024; Das et al.|
2024; Peng et al.l|2024b)). [Table 2[shows examples of instructions for various speech tasks taken from existing
instruction tuning sets.

Instruction-tuning data can be generated through various methods:

Conversion of task-specific data to instructions Task-specific data (Sec. [4.2.1)) can be adapted to
the instruction-tuning format by replacing task-specific tags with natural language instructions (Tang et al.
2024). LLMs can be used to rephrase those instructions to increase diversity (Arora et al.l |2024)).

Speech-based question answering (SQA) data Such data is typically generated using LLMs such as
ChatGPT. In this process, the transcript of a speech recording is provided as input to an LLM, which is
instructed to generate a question-answer pair in text format (Tang et al.l|2024;|Gong et al.| 2024} [Peng et al.|
2024b)). To incorporate additional context, supplementary textual descriptions about attributes such as the
speaker, gender, age, emotion, and noise level may also be provided to the LLM (Yang et al., |2024b). During
training, the speech recording and the corresponding LLM-generated question are provided as inputs, and
the model learns to predict the LLM-generated answer.

Synthesis of text instruction-tuning data Speech instruction-tuning data can also be created by
applying TTS to existing textual instruction-tuning or user-assistant conversation datasets (Peng et al.
2024b)). In this approach, either a subset or the entirety of the user’s input is converted to speech. This type
of data encompasses a wide variety of instruction types and response styles. The answers tend to be more
descriptive than the ones in SQA and are presented in diverse textual formats, such as markdown.

Compositional instructions Instructions for individual tasks can be combined to form more complex
instructions, which improves the performance on more challenging tasks. For example, an SLM can be
instructed to first perform speech recognition and then speech translation conditioned on the ASR hypoth-
esis (Hu et al. 2024a)).

4.2.3 Chat SLM training

In addition to the general post-training methods mentioned above, an important specific application setting
that is gaining attention is chat SLMs, which require carefully curated training data and tailored training
strategies. The development of chat SLMs has involved two main directions: (1) building a speech-aware text
LM based on a text LM with chat capabilities, and (2) creating a pure speech LM or a speech+text LM that
can handle speech-input-to-speech-output conversations. For (1), one approach is to use a more powerful
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text LLM to generate text-based conversations centered around a speech recording and use this pseudo-
conversation data to fine-tune the SLM (Chu et all [2023). For (2), a common approach is to use a TTS
system to generate speech conversation data from text datasets (Zhang et al.|2023a; Défossez et al., 2024]). If
available, real speech conversation data can be used to provide more natural, spontaneous behaviors—such
as pauses and interruptions—that occur in real conversations, though such data is often noisier and requires
careful preprocessing (Défossez et al.| |2024])). Section |§| addresses conversational SLMs in greater detail.

4.3 Otbher training details

Aside from the basic strategies discussed in Sections and [£:2] several additional training methods have
proven useful for building universal SLMs, including:

Parameter-efficient fine-tuning (PEFT) Since pre-training equips LMs with strong text or speech
generation capabilities, it is possible to not update the entire LM during the fine-tuning phase. Common
strategies include: (1) freezing both the sequence model Seq and the speech encoder Enc®® (see Figure 1))
and updating only the parameters of the adaptor Adp®? (Wang et al.l 2023b)), and (2) adding to the sequence
model a set of parameter-efficient trainable adapter modules, which are trained alongside Adp®® (Tang et al.)
2024]).

Progressive fine-tuning A key objective in training speech-aware LMs and speech+text LMs is to align
the hidden representations of speech and text, in order to leverage the generation and reasoning capabilities
of the pre-trained LLM. To achieve this goal, it is common to kick off post-training with content-heavy tasks,
such as ASR, and gradually progress to tasks that require a more comprehensive understanding of additional
information embedded in speech (e.g. emotion recognition) (Tang et al.,[2024)) or tasks composed of multiple
sub-tasks (Hu et al., [2024b)). To stabilize training, a small number of components is updated during the
initial training stage, while more are updated later.

A similar strategy is adopted by conversational SLMs (Défossez et all [2024). The intrinsic properties of
human conversations present several challenges for building such SLMs. For instance, speech from different
speakers often overlaps, rather than following a strictly turn-based structure. Therefore, training on real
human conversations is essential. However, collecting spoken human-human conversation datasets is difficult,
and publicly available datasets are often limited in size. To address these challenges, these models may be first
trained on multichannel audio data before being fine-tuned on real human conversation data. See Section [6]
for more details about such models.

Experience replay of pre-training data during post-training To prevent the catastrophic forgetting
phenomenon (Kirkpatrick et all [2017)), reusing pre-training data during the post-training stage can help
the SLM retain important capabilities learned during pre-training, such as the reasoning abilities of LLMs
associated with text instruction-tuning (Peng et al., 2024b|). Another approach to prevent forgetting is to
use data generated by the original text LLM during post-training (Lu et al.| [2024b)).

Preference optimization Reinforcement learning from human feedback (RLHF) (Ouyang et all 2022)
has become a key method for aligning LLM generations with human preferences. This method was used in
Qwen2-Audio (Chu et al., 2024]) to improve the quality of responses generated by the speech-aware text LM.
On the other hand, Align-SLM (Lin et al., |2024b|) was the first to apply this method to a pure SLM and
used Al-generated feedback as a substitute for human evaluation to make the process more cost-efficient.
Recently, [Maimon et al.| (2025) analyzed the performance of pure SLM fine-tuning using direct prefenrece
optimization as a function of fine-tuning examples.

5 Survey of representative SLMs

The previous sections have described the components, design choices, and training strategies for SLMs. In
this section, we review how these choices have been instantiated in existing SLMs in the literature, categorized
according to the classes in Table [} For each category, we provide a brief review of the model design and
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highlight example models in the literature. Note that, aside from the examples listed, there are many SLMs
with similar configurations in each category which we are unable to introduce in detail; Table [3| provides
a more extensive catalogue of models and references, and Figure [6] provides a timeline to place them in
historical context.

We also note that some of the multi-modal LLMs developed by industry groups, such as GPT-40 (OpenAl,
2024) and Gemini (Gemini Team et all [2024]), can also be seen as generalizations of speech+text LMs or
speech-aware text LMs. These models have conversation capabilities and include text, speech, general audio,
and visual inputs and outputs. However, details of their model configurations and training strategies have
not been publicly released, and rigorous evaluations of these models have focused on limited speech tasks
such as ASR and ST. For these reasons, it is important that future work complements these high-impact
industry models with open-source, reproducible approaches.

5.1 Pure Speech LM

Pure speech LMs are trained on unlabelled speech data to model p(speech), and are the spoken analogue
of pre-trained generative text LMs like GPT (Radford et al., 2019; Brown et all [2020). In order to apply
the next-token-prediction objectives of LM training to continuous speech data, pure speech LMs typically
use discrete speech representations (Section as the units for sequence modeling. One of the earliest
approaches in this category is the generative spoken language modeling (GSLM) work of |Lakhotia et al.
(2021). GSLM relies on a pre-trained HuBERT model Enc®() to convert speech signals into phonetic tokens
H®P and uses an embedding layer Adp®() to map token IDs to continuous vectors. The model is trained
to autoregressively predict the ID of the next speech token, and the predicted tokens are converted back
to audio by a unit-based vocoder Dec®(). GSLM’s demﬂ shows anecdotally that this initial model can
generate speech continuations with locally acceptable syntax given a speech prompt of a few seconds, but
does not in general produce coherent long-form speech.

Since GSLM initiated this line of research, follow-up work has improved on it in several ways. For example,
the prosody-aware generative spoken language model (pGSLM) (Kharitonov et al.l [2022b]) predicts prosodic
information like pitch and duration jointly with phonetic tokens for better expressiveness. TWIST (Hassid
et al.,|2023) is similar to GSLM but the model is initialized with a pre-trained text LLM (OPT (Zhang et al.,
2022))), which improves lexical and syntactic language modeling performance, as measured by the sWUGGY
and sBLIMP metrics (see Section for more details of the evaluation). Another approach (Algayres
et all [2023) uses longer lexical units instead of phonetic tokens, significantly reducing memory consump-
tion. AudioLM (Borsos et al.l 2023a) introduced hierarchical generation of multiple types of tokens for
pure speech LMs, using a coarse-to-fine strategy that generates phonetic tokens and audio codec tokens
in order (Section |3.3.1). SpeechSSM (Park et al.| 2024) uses a state-space model (Gu et al. [2022)) rather
than a Transformer, producing more natural and semantically consistent long-form (minutes-long) speech
generation.

5.2 Speech+Text LM

Speech+text LMs (Nachmani et al., [2024; [Nguyen et al. 2025 |Défossez et al., |2024) are SLMs that jointly
model the distribution of speech and text p(text, speech), and can therefore understand and generate both
modalities. Such models often start with generative speech+text pre-training (Section , and can then be
post-trained in a variety of ways.

A notable example of this approach is the Moshi model (Défossez et all 2024), which is the first open-
source speech-in-speech-out SLM-based dialogue system with real-time inference capability. Moshi takes
time-aligned text and discrete speech representations as inputs and generates outputs in both text and
speech forms. Moshi’s text processing components—Enc™"(), Adp™*(), and Dec"™*(), and the LM backbone
Seq()—are initialized from a pre-trained Helium text LLM (Défossez et al., [2024). After text pre-training,
the LM is continually trained on jointly predicting the next speech and text tokens, followed by post-training
in duplex mode (described in detail in Section @ on conversation data. Moshi’s training strategy produces

"https:/ /speechbot.github.io/gslm
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a model that can generate consistent speech across long (several-minute) monologues and can engage in
multi-turn conversations (Défossez et al., 2024)).

Speech+text LMs vary widely in their decoding methods and approaches to constructing speech and text
inputs/outputs. For example, SpiRit-LM (Nguyen et al.| [2025) uses interleaved sequences of text and discrete
speech tokens as both inputs and outputs, focusing solely on pre-training without doing any task-specific post-
training. Compared to pure speech LMs, SpiRiT-LM has improved semantic understanding, as measured
by the StoryCloze test (see Section for more details). A precursor of this idea, SUTLM (Chou et al.,
2023)), modeled interleaved speech and text units of various sizes, but did not include a waveform synthesizer
and was evaluated mainly on spoken language understanding tasks, with the main goal of enabling cross-
modality transfer. [Zeng et al,| (2024b) scale up the idea of interleaved speech-text training by using a
speech synthesizer to generate massive datasets of interleaved speech-text sequences. As alternatives to
time-aligned or interleaved speech and text sequences, SpeechGPT (Zhang et al., 2023a) outputs a sequence
of text followed by corresponding speech, while Mini-Omni (Xie & Wu, 2024ajb) and LLaMA-Omni (Fang
et all 2025) generate text and speech using separate output channels with a delay pattern in the speech
token prediction (see Section. All three of these models (SpeechGPT, Mini-Omni, and LLaMA-Omni),
unlike Moshi, focus on a traditional turn-taking structure and therefore have limited capability to model
spontaneous turn-taking behavior (see Section |§| for more on conversation modeling).

5.3 Speech-aware text LM

Models in this category combine text LMs with speech encoders, and usually take both speech and text
as inputs and generate responses in text form. The text input X®** can include instructions asking the
model to perform tasks related to the speech input X®P, possibly including tasks for which the model is
not specifically trained. This type of SLM is typically initialized with a text LLM (which has often already
been post-trained with instruction tuning or RLHF) so as to inherit its linguistic knowledge and instruction-
following capabilities. After combining the text LLM with a speech encoder and modality adapter, it is
common to apply training methods that encourage better alignment between the speech and text modalities
(Section or to start post-training with an ASR task (Section to help extract content information
from speech inputs. The following post-training typically uses speech instruction-tuning datasets with diverse

instructions (Section [4.2.2)).

WavPrompt (Gao et all, [2022) represents the first example of this line of research. WavPrompt combines
a wav2vec 2.0 (Baevski et al,, |2020) SSL speech encoder with a GPT-2 text LM and is trained for speech
classification tasks, keeping the LM backbone frozen and updating only the speech encoder. Although
WavPrompt can improve over ASR+text model baselines on certain tasks, it is not evaluated on any unseen
task. Since then, many models in this category have been proposed.

SALMONN (Tang et al} |2024) is another early and impactful approach. The model is built on a pre-trained
Vicuna LM backbone (Zheng et al.,[2023)). During post-training, the model is first trained on ASR and audio
captioning and later on a more diverse set of speech understanding tasks. SALMONN’s post-training keeps
most of the parameters frozen—only the speech modality adapter and LoRA (Hu et al.l |2022)) adapters for
the LM are learned—but the model is still able to generalize to unseen tasks with various natural language
prompts.

Several other speech-aware text LMs were developed nearly simultaneously with SALMONN, facilitated by
the release of open-source LLMs like LLaMA (Touvron et al.,|2023a) and Vicuna (Zheng et al.;|2023)), often
post-trained and evaluated on different tasks (Gong et al,|2023b; \Wang et al.,|2023b; |Chu et al.| [2023; |Chen
et al.l 2024d)). For example, LTU-AS (Gong et al., |2023b)) combines spoken content understanding with
paralinguistic analysis tasks (e.g., emotion recognition). SLM (Wang et al. |2023b) generalizes to unseen
tasks specified by natural language prompts even while the LM backbone and speech encoder are both frozen,
and only the speech adapter is optimized during instruction-based training, but focuses only on content-
heavy tasks. Qwen-Audio (Chu et al., [2023) shares similar post-training tasks to those of SALMONN;, but
includes learning of the speech encoder and LM backbone (sequence model) weights. During post-training,
Qwen-Audio starts with a more diverse task set instead of the single ASR task, including both content and
paralinguistics, followed by a chat-based supervied fine-tuning stage that improves the model’s robustness
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to variation in input prompts. The follow-up work, Qwen2-Audio (Chu et all [2024) also applies direct
preference optimization Rafailov et al.| (2023)) after supervised fine-tuning. On the other hand, the more
recent DeSTA (Lu et all) |2024al) and DeSTA 2 (Lu et all |2024b) propose a single descriptive speech-text
alignment post-training task which requires the model to both recognize the spoken content and describe
paralinguistic attributes. Table [4] summarizes and compares a representative set of these models’ training
and evaluation choices. One key consideration is the tradeoff between preserving knowledge acquired through
text pre-training and learning new speech tasks, especially those requiring non-textual information such as
speech emotion. An important design choice, therefore, is which of the pre-trained parameters to freeze or
update, and this issue has not yet been thoroughly explored.

In addition to the multiple post-training approaches, speech-aware text LMs also include some differences
in architecture choices. For example, WavLLM (Hu et al.] |2024b]) combines both SSL and supervised pre-
trained speech encoders, and BESTOW (Chen et al., 2024e) experiments with a sequence-to-sequence model
in addition to the common decoder-only LM architecture. While most models in this category are initialized
with pre-trained text LLMs, UniverSLU (Arora et all |2024) starts from a Whisper model for conditional
pre-training (see Section and is then fine-tuned for various understanding tasks first by prepending
new task specifiers and then by adding natural language instructions to the input.

6 Duplex speech dialogue

As discussed in the previous sections, most SLMs to date assume that dialogue with a user follows a turn-
by-turn structure, where a user provides an input, and the SLM generates a response. However, natural
speech dialogue is duplez: Both speakers can simultaneously send and receive information. Compared to
text-based interaction, duplex dialogue presents unique challenges. Figure [5[ (a) shows an example of a full-
duplex dialogue. The SLM must determine whether the user has finished their utterance before starting to
speak. Backchannel signals (e.g., saying “mm-hmm,” “I see,” or “okay”) and non-verbal vocalization (e.g.,
laughter) are often used to facilitate smoother conversation. Additionally, the SLM may be interrupted while
talking and must respond appropriately to maintain the flow of dialogue. None of these characteristics exist
in text-based dialogue. Over the years, researchers have explored various methods to enable duplex dialogue
in speech systems (Masumura et al., 2018} [Roddy et al., 2018; |Skantze}, |2017; Meena et al., 2014; Ekstedt &
Skantze, 2020)E| Rather than reviewing all prior work on spoken duplex dialogue, we focus specifically on
end-to-end SLM approaches.

Dual Channel One way to achieve full-duplex dialogue is by using dual channels (Nguyen et al., 2023;
Défossez et al. [2024} [Ma et al., |2024; Meng et al. 2024)), as shown in Fig. [5| (b). The SLM has two
input channels: the listening channel (the sequence with red blocks) which continuously receives input, and
the speaking channel (the sequence with blue blocks) where the spoken output from the SLM is directed,
allowing the model to track what it has said. The model produces output at each step, including tokens
representing speech or silence (blocks with a dotted outline). In this way, an SLM can listen to the user’s
words while generating output simultaneously. An early representative model for this method is the dialogue
GSLM (dGSLM) (Nguyen et al., |2023)); Moshi has also implemented this strategy (Défossez et al.l [2024).
One challenge when using the dual-channel approach is that, instead of a typical autoregressive model, a
specialized architecture is required. dGSLM (Nguyen et al.| |2023)) uses a dual-tower transformer architecture,
where two transformers handle the two channels, using cross-attention to exchange information. Other
models (Défossez et al., [2024; Ma et al. 2024; |Meng et al.| [2024)) modify the input structure of the transformer
to accommodate the dual-channel inputs.

Time Multiplexing Fig. [5| (c) and (d) illustrate the time multiplexing approach. In this approach, the
SLM has only one channel, so it must switch between listening and speaking modes. During the listening
mode, the SLM takes input from the user (red blocks) without generating output. During the speaking
mode, the SLM generates speech representations (blue blocks) and takes its own output as input in an

8There is an extensive amount of older related literature, including on rule-based dialogue modeling; here, we only cite a
few machine learning-based approaches.
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Figure 5: Full-duplex speech conversation. (a) An example of full-duplex speech conversation between a
user and an SLM. (b) Dual-channel approach. (c¢) Time-multiplexing approach (with equal chunks). (d)
Time-multiplexing approach (where the SLM controls the switching between listening and speaking modes).

autoregressive manner. The strength of this approach is that the sequence model can be a typical decoder-
only autoregressive model, and can therefore be initialized with a text LLM.

The core challenge is determining how to switch between listening and speaking modes. One approach, shown
in Figure[5| (c), is to alternate between processing a fixed-duration time slice from the user’s input and then
switching to the speaking mode (Zhang et all 2024c). This approach has been adopted in Synchronous
LLM (Veluri et all [2024)) and OmniFlatten (Zhang et al., 2025).

Another approach allows the model to determine when to switch modes (Wang et al., 2024b; [ Xu et al., |2024;
Wang et al, 2024c), as shown in Figure [5| (d). In listening mode, while processing the user’s input, at each
time step the model predicts whether to initiate a response. This decision is signalled by the prediction of a
special token ([speak], as shown in the figure). The model processes its generated output auto-regressively
until it produces the [listen] token, which triggers a switch back to listening mode. Users can continue
providing input during speaking mode, dynamically influencing the model’s responses. In particular, user
input influences the [listen] token generation, enabling users to interrupt the model’s output when desired.
This interaction is implemented by interleaving the model’s responses with user input, using some special
tokens or embeddings to distinguish between the two sourcesﬂ

9Theoretically, there is always some input, even when no one is speaking. Here, we assume that a voice activity detection
(VAD) system is in place, so only the tokens representing actual user speech are sent to the SLM during speaking mode.

20



Under review as submission to TMLR

7 Benchmarking and Evaluating SLMs

Like text language models, SLMs may possess a broad array of capabilities. In addition (and in contrast
to text LMs), they also involve a variety of design choices that differ significantly across models. These
properties can make it difficult to compare SLMs, and more important to assess them from multiple angles
and training stages. Below, we outline commonly used evaluation methods and benchmarks, categorized
into three primary subgroups: (1) likelihood-based evaluation metrics; (2) generative metrics; and (3) trust-
worthiness evaluations. Traditional task-specific speech evaluation methods (e.g., ASR, TTS, ST) are also
frequently used to assess SLM performance. However, we exclude them from this survey, as they are well-
established and extensively covered in the existing literature.

7.1 Likelihood-Based Evaluation

As described above, the general SLM architecture comprises three main components: (1) speech (and op-
tionally text) encoding; (2) sequence modeling of speech, text, or both; and (3) speech and/or text decoding.
Likelihood-based evaluation metrics (Dunbar et al.l [2021) are designed to assess the sequential speech mod-
eling capabilities of SLMSE Such evaluation metrics are therefore more suitable for the pre-training stage
of pure speech LMs and joint speech+text LMs (Lakhotia et all 2021} Hassid et al., 2023 [Borsos et al.
2023a; |[Défossez et al., [2024]).

It is crucial to emphasize that speech encoding (i.e., speech tokenization), an active area of research (Messica
& Adil [2024; Turetzky & Adi, |2024; Zhang et al., 2024b), plays a significant role in shaping speech modeling
capabilities and therefore cannot be disregarded. For instance, utilizing tokens generated by a self-supervised
learning model such as HuBERT significantly outperforms the quantization of log mel spectrograms (Lakhotial
et all [2021)). Likewise, employing speech tokenizers with higher compression rates (i.e., sampled at lower
frequency in the latent space) yields better performance in speech modeling (Borsos et al., |2023a} [Hassid
et al} [2023). While this subsection discusses speech modeling tasks with a focus on the LM, we believe that
in the context of SLMs, the research community should evaluate both components collectively rather than
treating them as separate entities.

In likelihood-based evaluations, the pre-trained SLM is typically provided with two input sequences: one
representing a natural speech sequence (positive example) and the other an unnatural sequence relative to a
specific property (negative example). We then calculate the percentage of instances where the SLM assigns
a higher likelihood to the positive example than to the negative one. This type of evalution has also been
popular in the NLP community until very recently (Zellers et al., [2019; [Mostafazadeh et al., |2016; |Touvron,
et al., 2023b; |(Gemma Team et al., [2024; LCM team et al.,[2024). Due to significant model improvements this
type of NLP benchmark has saturated and significantly more complex ones have emerged (Jimenez et al.|
2023; |Srivastava et al., [2023]).

Metrics in this category are designed to evaluate a model’s capacity to represent various speech characteris-
tics. For example, sSWUGGY (Dunbar et al., 2021 evaluates the lexical capabilities of models by presenting
them with pairs of utterances, one consisting of a real word and the other a similar non-word (e.g., ‘brick’
vs. ‘blick’), and measuring the model’s ability to assign a higher probability to the real word (where nonwords
were obtained from the text WUGGY task (Keuleers & Brysbaert, [2010))). Similarly, sSBLIMP (Dunbar et al.,
2021) (which was adapted from the text-based BLIMP (Warstadt et all, 2020)) evaluates the ability of the
network to model syntactic properties. The network is presented with a matched pair of grammatically cor-
rect and incorrect sentences. Hassid et al.| (2023) expanded this method to evaluate semantic understanding
of spoken text. They generated two spoken adaptations of the StoryCloze text paragraph story completion
task (Mostafazadeh et al.,|2016]). In the first adaptation, they adhered to the original StoryCloze setup, while
in the second, they randomly sampled negative examples, resulting in a simplified version primarily requir-
ing an understanding of the general topic of the paragraph. ProsAudit (de Seyssel et al., 2023|) constructs
negative examples by inserting pauses in unnatural positions in utterances to evaluate SLMs’ sensitivity to
speech prosody. Lastly, Maimon et al.| (2024) proposed the SALMon evaluation suite, which, unlike the

10Such evaluation metrics can be considered as an analogue to perplexity (PPL) for text LLMs. Since there is no standard
method for speech tokenization, the speech “vocabulary” may change between pure SLMs. Therefore, PPL cannot be directly
applied. Instead, likelihood-based metrics introduce an alternative approach of comparing sequence likelihoods.

21



Under review as submission to TMLR

previously mentioned benchmarks, focuses on a variety of non-lexical acoustic and prosodic elements (e.g.,
speaker identity, speaker sentiment, background noise and room acoustics) at two levels of complexity: One
measures the consistency across time of a given acoustic element, whereas the other measures alignment
between the acoustic details and the semantic, spoken content.

7.2 Generative Metrics

Unlike likelihood-based metrics, which assess a model’s capacity to assign higher likelihoods to in-domain
samples than out-of-domain ones, generative metrics focus on evaluating the model’s ability to produce
meaningful continuations or responses based on a given prompt or instruction. Such evaluation methods can
be suitable for all SLM types (pure speech LMs, speech+text LMs, or speech-aware text LMs).

Intrinsic quality metrics For SLMs that generate spoken output, the quality of the generated response
can be evaluated along several axes: (1) speech quality, using subjective tests or objective metrics such as
MOSNet (Lo et al., [2019); (2) speaker, acoustic, and/or sentiment consistency using human judges or pre-
trained classifiers (Nguyen et al., 2025); and (3) quality of the spoken content, evaluated by either comparing
to a target response or transcribing the speech and using a judge or text LLM to score the content.

For pure SLMs, a common evaluation metric is the generative perplexity, in which we transcribe the generated
speech and measure its perplexity (PPL) using a pre-trained text LLM (Lakhotia et all 2021)). However, a
known problem with this metric is that text LLMs tend to assign high probability to repeated content (Holtz-
man et al., [2020)). To mitigate this issue, [Lakhotia et al.| (2021)) propose the VERT metric, which balances
between quality and diversity of the generated response. VERT uses a linear combination of the text PPL
and the auto-BLEU metric of within-sentence diversity (Lakhotia et al., [2021)).

Task-based evaluation For joint speech+text LMs and speech-aware text LMs, a common approach is to
evaluate the model’s ability to perform question answering and follow instructions. Nachmani et al.| (2024)
proposed two spoken question answering benchmarks: LLaMA-Questions, derived from a text LLM, and a
synthesized version of the WebQuestions (Berant et al.,[2013) textual benchmark. Défossez et al.| (2024) built
upon this approach and developed a synthesized version of TriviaQA (Joshi et all 2017). To evaluate SLM
responses on these question-answering benchmarks, the generated speech is transcribed and the accuracy
is measured against the target answer. |Chen et al. (2024c) proposed VoiceBench, an extended question-
answering dataset consisting of (1) open-ended QA; (2) reference-based QA; (3) multiple-choice QA; and
(4) instruction-following evaluations. VoiceBench also evaluates the model’s ability to handle background
noise and speaker variability. [Fang et al.| (2025)) proposed to evaluate the instruction-following capabilities
of SLMs using LLM-as-a-judge methods. In this approach, an external text LLM rates the quality of the
responses considering both content and style.

Recently, there have been several efforts to develop evaluations of speech-aware text LMs on a broader range
of tasks and instruction data. In these evaluations, each task consists of text instructions, speech utterances,
and text labels. Huang et al| (2024]) introduced the Dynamic-SUPERB evaluation suite, designed as a
dynamic bechmark allowing for community contributions of tasks, analogously to BIG-bench (Srivastava
et al.l [2023)) for text LMs. The initial phase of Dynamic-SUPERB focused on classification tasks related to
content, speaker characteristics, semantics, degradation, paralinguistics, and non-speech audio information.
Phase 2 of Dynamic-SUPERB (Huang et all 2025)) significantly expanded the task set to include regression
and sequence generation tasks, making it the largest benchmark for speech and audio evaluation. [Yang et al.
(2024b) proposed AIR-Bench, which includes both classification and open-ended chat-style questions. Both
Dynamic-SUPERB Phase-2 and AIR-Bench use LLM-as-a-judge evaluation. [Sakshi et al.| (2025) introduced
MMAU, a benchmark for audio understanding and reasoning using natural language. MMAU includes both
information extraction tasks (e.g., “Which word appears first?”) and reasoning tasks (e.g., “What are the
roles of the first and second speakers in the conversation?”), formulated as multiple-choice questions. Finally,
AudioBench (Wang et all [2024a)) includes eight speech and audio tasks based on 26 datasets, focusing on
speech understanding (e.g., ASR, spoken QA, speech instruction), audio scene comprehension (e.g., audio
captioning, audio scene question answering), and voice analysis (e.g., accent recognition, gender recognition,
emotion recognition).
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While the benchmarks above include a large variety of tasks, some recent benchmarks focus specifically on
speech characteristics that exploit the new abilities of SLMs. For example, StyleTalk (Lin et al. 2024a))
assesses SLMs’ ability to generate text responses that align with specific speaking styles, such as intonation
and emotion. The evaluation compares the generated output with a target response using standard text
generation metrics (BLEU, ROUGE, and others). Similarly, the E-chat200 dataset (Xue et al., |2024) also
assesses a model’s ability to generate responses that align with the speaker’s emotion. The dataset was
synthetically created using an expressive T'TS, while the text-based questions and responses were generated
by an external LLM. SD-Eval (Ao et al.l 2024) goes beyond emotion alignment to include alignment with
paralinguistic features (e.g., accent, age, prosody, timbre, volume) as well as environmental context.

7.3 Evaluating Trustworthiness

The benchmarks discussed thus far focus on the performance of SLMs. Next, we consider evaluations that
measure their trustworthiness. Since SLMs generate word sequences (whether directly as text or within the
spoken output), all trustworthiness considerations related to text-based LLMs also apply to SLMs. However,
in addition to this content information, non-content information in the generated speech creates additional
aspects of trustworthiness that need to be considered.

7.3.1 Hallucination

Text-based LLMs often suffer from hallucinations, or outputs that are inconsistent with the given context or
other knowledge considered to be fact. In addition to such content hallucinations, SLMs may also generate
audio hallucinations. For example, consider an audio clip without a dog barking. If you ask an SLM to
describe it, it would most likely not mention anything related to a dog barking. However, if you directly
ask the model, “Is there a dog barking?” it might answer, “Yes,” even though it can provide accurate audio
captions when explicitly prompted to do so (Kuan & Lee, [2024)).

Kuan & Lee| (2024) study whether SLMs can accurately perform three types of tasks without hallucination:
(1) identify the presence of an object (e.g., “Is there a dog barking?”), (2) determine the temporal order of
sound events (e.g., “Is the dog barking before someone laughs?”), and (3) recognize the source of a sound
event (e.g., “Who is laughing, a man or a woman?”). The main finding is that all of the evaluated SLMs
hallucinate more than a simple cascade model that combines audio captioning with text LLMs. This issue
may arise because, while SLMs can generate accurate audio captions, they struggle to understand specific
questions Kuan et al.| (2024)). The authors also proposed a method that mitigates hallucination by prompting
the model to produce output in multiple steps (similarly to chain-of-thought prompting (Wei et al. [2022b))),
by first describing the audio and then responding to the instruction based on that description.

7.3.2 Toxicity

Prevention of harmful, offensive, or inappropriate output is a crucial issue for text LLMs, and the same
challenge also applies to SLMs. Both Meta’s SpiRit-LM (Nguyen et al. 2025) and OpenAI’s GPT-4o
voice mode (OpenAll |2024)) evaluate the toxicity of their models’ responses. These evaluations typically
involve using specific prompts to elicit speech responses from the SLMs and assessing the toxicity of the
text transcriptions of those responses. These evaluations therefore consider only verbal toxicity, i.e. toxicity
within the word sequence. The evaluation of non-verbal toxicity (e.g., toxic sarcasm) has yet to be widely
studied.

7.3.3 Bias

Similarly to toxicity, all bias measures used for text LLMs can also be applied to SLMs. For SLMs that
produce spoken output, text-based methods can still be used to analyze their transcriptions (Lin et al.
2024d). In addition, because speech conveys information beyond the textual content, there may be factors
outside the text that indicate bias. |Lin et al.| (2024c) investigate such biases by providing an SLM with
input utterances that share identical content but differ in speaker characteristics (such as gender and age) to
assess whether these traits influence its responses. The results suggest that the tested SLMs exhibit minimal
bias. However, this may be because current models lack sufficient sophistication to recognize differences in
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speaker characteristics, and therefore do not respond differently based on them. OpenAl report in a blog
post (OpenAl, [2024) on their efforts to ensure consistency across user voices by post-training GPT-40 with a
diverse set of voices and on a bias evaluation, which found no significant variation in model behavior across
voices. While such findings are encouraging, regular and thorough bias benchmarking is needed to track the
evolution of SLM bias as this field matures.

7.3.4 Deepfakes

Current SLMs can mimic a variety of voices to a level indistinguishable from human speech (Chen et al.,
2025b)). Unfortunately, malicious actors may exploit this technology, leading to misuse and security concerns,
such as deepfake attacks (for example, creating fake news using the voice of a public figure). To address this
issue, (Wu et al., [2024e; Du et al., [2025) introduced CodecFake, a deepfake audio dataset, and found that
detection models trained on CodecFake can counter fake audio generated by existing SLMs.

8 Challenges and future work

This survey has covered some of the key milestones that have been achieved in SLM research: the first pure
speech language models that could generate convincing-sounding stretches of English speech (GSLM (Lakho-
tia et al|2021)); the first generation of models that could perform a variety of tasks with reasonable accuracy
given natural language instructions (Gao et al.;2022;|Gong et al.,|2023b} Wang et al.,|2023b); models that can
converse in “full duplex” mode (Défossez et al., |2024); and benchmarks tailored for evaluating the modeling
and instruction-following capabilities of SLMs (Dunbar et al., [2021; [Huang et al., 2025)).

While research in this area has produced many SLMs and exciting outcomes, it is safe to say that we are not
yet close to the goal of truly universal speech processing systems. This section highlights several categories
of challenges and open questions, which suggest directions for future research.

Model architecture The optimal representation of speech within SLMs remains unclear. Speech repre-
sentations in SLMs include both discrete and continuous varieties, derived from a wide range of encoders.
This design choice can also influence other architectural choices in an SLM, for example depending on the
information rate of the encoder and whether it encodes more phonetic or other types of information.

Another open question is determining the best method to combine speech and text, which applies to all as-
pects of SLM modeling and training. We have described various choices of modality adapters and approaches
for interleaving speech and text. These have not been thoroughly compared, so the effect of each modeling
choice is still unclear.

A final architectural challenge is that current SLMs are large and slow, making them impractical for real-time
and on-device settings. To some extent this is because various compression algorithms (e.g., (Lai et al.; 2021}
Peng et al., [2023a; Ding et al., 2024))) and alternative architectures (e.g., |[Park et al.| (2024])) have not been
widely applied to SLMs. However, there is also an inherent efficiency challenge that arises when combining
multiple pre-trained components, sometimes with different architectures and frame rates.

Training There is a lack of public high-quality training data, particularly for instruction tuning and chat-
based training. |Zeng et al.| (2024b)) showed that scaling synthetic data generation enhances the performance
of pure speech LMs; similar research efforts could be directed toward instruction tuning and chat-based
spoken data. Additionally, SLMs are trained on diverse datasets (including some proprietary datasets),
making it difficult to analyze whether performance differences are caused by architecture design choices
or training data. Thorough ablation studies focusing on the various model design choices (Section [3) and
training strategies (Section are also essential and still lacking. Finally, scaling studies for SLMs are needed
in order to better understand how SLMs scale with model and data. Such studies would hopefully produce
new scaling laws and help to speed up the development cycle |Cuervo & Marxer| (2024) conducted the first
such investigation for pure SLMs. More recently, Maimon et al.| (2025]) presented a through empirical analysis
of the optimization process for pure speech LMs, showing how one can train a high-quality pure SLMin 24
hours using a single GPU. It remains uncertain whether scaling findings apply also to speech+text LMs or
speech-aware text LMs.
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Evaluation Thus far, different SLMs have typically been evaluated on different datasets and tasks. Recent
efforts to collect large numbers of tasks and standardize benchmarking (Huang et al., 2024; Yang et al.
2024b; Huang et al.l|2025)) are promising, but as of this writing they are not yet widely adopted for evaluating
new models. Existing benchmarks also do not cover the full range of spoken language tasks. The largest
current benchmarking effort, Dynamic-SUPERB Phase-2 (Huang et al.| 2025, includes 180 tasks, which is
similar to the size of the BIG-Bench suite of text LLM tasks (Srivastava et al.l 2023). However, the range
of spoken language tasks is arguably much larger than that of text tasks, since speech tasks include the vast
majority of text tasks (the ones that don’t relate explicitly to the textual form, such as transliteration) and in
addition include a variety of speech-specific tasks related to speaker properties, accents, or prosody-specific
content. In addition, there is a lack of standardized benchmarking for speech generation tasks.

Open research Very few SLMs are fully open-source—including code, model checkpoints, and training
data—which makes a comprehensive comparison between approaches virtually impossible. There has been
progress in this direction, with some models having at least publicly available weights (see Fig. @, and
some support in open-source toolkits (Tian et all 2025). Many of the items on the wish list above, such as
controlled comparisons between multiple design decisions, will be infeasible to accomplish until more fully
open models are released.

Improving inclusiveness and safety SLM research has, thus far, understandably focused on high-
resource languages and settings. As SLMs become more performant and enter commercial products in daily
use, it will be critical to make them accessible to as broad a range of users as possible, including a variety
of languages, dialects, and speech-related medical conditions. Research in this area will likely follow the
arc of text LLM research, but again, there are speech-specific challenges that arise from speaker variation.
Similarly, the area of safety and trustworthiness has only begun to be explored, and will require speech-
specific solutions to speech-specific challenges like deepfakes and speaker type-related bias.
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Table 3: Spoken language models. P.: Phonetic token. A.: Acoustic token. C.: Continuous feature. For
components not explicitly cited in the table, please see the following references: SSE |Algayres et al.| (2022
USM (Zhang et al.,|2023b), SNAC (Siuzdak et al.,|2024), SenseVoice (An et al.,[2024)), and Canary (Puvvada
et al., |2024)) for speech representation models, and Tacotron 2 (Shen et al., 2018), WaveFit (Koizumi et al.
@D, and Cosy Voice for speech decoders. Modalities other than text or speech (e.g.,
vision) are omitted. T: Pre-trained ASR encoder.

Model

Input Representation Speech Decoder  Modality Adapter

— Output Representation
Pure Speech LM

GSLM (Lakhotia et al.||[2021) HuBERT (P)) Tacotron 2 X
pGSLM (Kharitonov et al.||2022b HuBERT (P.) + FO + dura- HiFi-GAN X
tion
dGSLM (Nguyen et al.| 2023 HuBERT (P.) + duration HiFi-GAN X
tGSLM (Algayres et al.|[2023) SSE (P.) + HuBERT (P.) Tacotron 2 X
AudioLM (Borsos et al.|2023a w2v-BERT (P.) — Sound- SoundStream X
Stream (A.)
TWIST (Hassid et al.| [2023) HuBERT (P.) HiFi-GAN X
SoundStorm (Borsos et al.|[2023b w2v-BERT (P.) — Sound- SoundStream X
Stream (A.)
Align-SLM (Lin et al.| 2024D) HuBERT(P.) HiFi-GAN X
Speech+Text LM
AnyGPT (Zhan et al.l 2024b Text + SpeechTokenizer (A.)  SpeechTokenizer Vocabulary Expansion
SpeechGPT (Zhang et al.| 2023a} Text + mHuBERT (P.) HiFi-GAN Vocabulary Expansion
VoxtLM (Maiti et al.[[2024 Text + HuBERT (P.) HiFi-GAN Vocabulary Expansion
Spectron (Nachmani et al.|[2024 Text + Mel-Spectrogram (C.) WaveFit MLP
SpiRit-LM (Nguyen et al.|[2025) Text + HuBERT (P.) HiFi-GAN Vocabulary Expansion
Moshi (Défossez et al.[[2024) Text + Mimi (A.) Mimi Vocabulary Expansion
MiniOmni (Xie & Wu/| [2024a Text + Whisper! (C.) — Text SNAC MLP & Vocabulary Ex-
+ SNAC (A) pansion
LLaMA-Omni (Fang et al.|[|2025 Whisper (C.) — Text + Hu- HiFi-GAN MLP
BERT (P.)
SLAM-Omni (Chen et al.||2024b Text + Whisper! (P.) Cosy Voice Linear
GLM-4-Voice (Zeng et al.|[2024a Text + Whisper! (P.) Cosy Voice Vocabulary Expansion
MinMo ((Chen et al.||2025a Text + SenseVoice! (C.) —  CosyVoice Transformer + CNN
Text + SenseVoice! (P.)
Speech-Aware Text LM
WavPrompt (Gao et al.|[2022 Text + Wav2vec 2.0 (C.) - X CNN
Text
X-LLM (Chen et al.||2023 Text + Conformer’ (C.) — X CIF + Transformer
Text
LTU-AS (Gong et al.||2023b Text + Whisper! (C.) — Text X TLTR
COSMICqﬂmr 2024 Text + Whisper (C.) — Text X Window-level Q-Former
SALMONN (Tang et al.| 2024 Text + Whisper! (C) + X Window-level Q-Former
BEATS (C.) — Text
Speech-LLaMA (Wu et al.|[2023b Mel-Spectrogram(C.) — Text X CTC compressor + Trans-
former
SLM (Wang et al.|2023b) Text + USM' (C.) — Text X Transformer
LLaSM (Shu et al.| 2023 Text + Whisper (C.) — Text X Linear
SALM (Chen et al.||2024d Text + Conformer Encoderf X Conformer
(C.) — Text
Qwen-Audio (Chu et al.[[2023) Text + Whisper (C.) — Text X Pooling layer
DiscreteSLU (Shon et al.| 2024 Text + WavLM (P.) — Text X Embedding + CNN +
Transformer + Linear
SpeechVerse (Das et al.|[2024) Text + Whisper! (C.) — Text X CNN
DeSTA (Lu et al.|[2024a Text + Whisper! (C.) — Text X Q-Former
WavLLM (Hu et al.|[2024b Text + Whispert (C) + X CNN  +  Bottleneck
WavLM (C.) — Text adapter + Linear
VoiceTextBlender (Peng et al.||2024b Text 4+ Canary Encoderf (C.) X Conformer
— Text
Phi-4-Multimodal (Microsoft et al.|[2025) Text + Conformer En- X MLP
coder(C.) — Text
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On The Landscape of Spoken Language Models: A Comprehensive Survey

Figure 6: Development timeline of spoken language models.

“Publicly available” refers to models with
publicly released weights (but not necessarily code, data, or other artifacts). “Commercial SLM” include

some systems that handle additional (non-linguistic) modalities, such as images. For more details and
references, see the main article and Table
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Table 4: A representative set of training and evaluation strategies for speech-aware text language models,
along with key tasks, details on the training data, and key insights for further context.

Model Training Training Tasks Evaluation Tasks Training Data Findings
Strategy
1T ASR, ST, Alpaca tasks ASR, ST, contextual multilingual ASR, ST Fine-tuning only a

SLM
(20235

biasing, open-ended

QA

datasets, Alpaca with
TTS (93k hrs)

lightweight adapter is
sufficient.

SALMONN

Pre-training
— 1T

ASR, AAC, 15 audio and
speech tasks

8 seen audio and
speech task + 7
unseen ST and SLU
tasks

ASR, ST and SLU
datasets (4k hrs)

Performs complex reasoning
tasks like audio-based
storytelling in zero-shot
setting.

LTU-AS |Gong 3-stage Classification, general QA audio and speech Open-ASQA dataset Single IF model on both
(2023b training tasks, open-ended QA (9.6M QA pairs) speech and audio tasks is
feasible.
COSMIC IT ASR, QA ASR, SQA, ST, TED-LIUM 3 (452 hours) ~ Shows few-shot in-context
(2024 contextual biasing, learning ability.
ASR (out of domain)
LTU |Gong et al. 4-stage Classification + cesc., Classification, AQA (5M QA pairs) Performs open-ended audio
(2024 training close-ended QA, general captioning, tasks.
QA open-ended QA
SALM [Chen et al.]l IT ASR, ST ASR, ST, keyword LibriSpeech (960h), Biases the model to predict

2024d}

boosting

TWSLT 2023 (4.8k hrs)

keywords in instruction.

Qwen-Audio

Pre-training
— IT

speech, audio and music
tasks, audio dialogue

Speech, audio and
music tasks,
qualitative examples
of audio

No details (30k hrs for

ASR, >123k hrs in total)

Performs chat-based training
to learn conversational
ability.

analysis/editing
DeSTA2 m IT Audio captioning Dynamic- Mixture of several Training only on audio
(2024b SUPERB datasets (155 hours) captioning can generalize to
(2024), other tasks
AIR-Bench
2024})'
IT ASR, SQA, sentiment WER, S2ST Tedlium-3 (Hernandez Discrete speech token input

2024

DiscreteSLU

analysis, NER

et al.] 2018) &

SLUE (Shon et al.| 2022

can be competitive with
continuous representations,
in both seen and unseen
speech domains, even in a
zero-shot setting.
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