
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fact Embedding through Diffusion Model for
Knowledge Graph Completion

Anonymous Author(s)

ABSTRACT
Knowledge graph embedding (KGE) is an efficient and scalable
method for knowledge graph completion tasks. Existing KGE mod-
els typically map entities and relations into a unified continuous
vector space and define a score function to capture the connectiv-
ity patterns among the elements (entities and relations) of facts.
The score on a fact measures its plausibility in a knowledge graph
(KG). However, since the connectivity patterns are very complex
in a real knowledge graph, it is difficult to define an explicit and
efficient score function to capture them, which also limits their
performance. This paper argues that plausible facts in a knowledge
graph come from a distribution in the low-dimensional fact space.
Inspired by this insight, this paper proposes a novel framework
called Fact Embedding through Diffusion Model (FDM) to address
the knowledge graph completion task. Instead of defining a score
function to measure the plausibility of facts in a knowledge graph,
this framework directly learns the distribution of plausible facts
from the known knowledge graph and casts the entity prediction
task into the conditional fact generation task. Specifically, we con-
catenate the elements embedding in a fact as a whole and take it
as input. Then, we introduce a Conditional Fact Denoiser to learn
the reverse denoising diffusion process and generate the target fact
embedding from noised data. Extensive experiments demonstrate
that FDM significantly outperforms existing state-of-the-art meth-
ods in three benchmark datasets. Especially on FB15k-237, FDM
achieves a 16.8% relative improvement in MRR scores compared to
the state-of-the-art methods.

1 INTRODUCTION
Knowledge graphs (KGs) are a type of multi-relational graph that
stores factual knowledge from both the web and the real world.
Due to their high efficiency in storing and representing factual
knowledge, KGs are essential for many applications such as ques-
tion answering [14], information retrieval [41], recommender sys-
tems [46], and natural language processing [44]. Knowledge graphs
are typically stored using theW3C standard RDF (Resource Descrip-
tion Framework) [3], which models knowledge graphs as enormous
facts (triplets). Each fact (ℎ, 𝑟, 𝑡) consists of a head entity ℎ, a re-
lation 𝑟 , and a tail entity 𝑡 , representing resources described on
the Web. However, due to the complexity of the resources on the
Web, knowledge graphs are often incomplete, which restricts their
applications in downstream tasks. Therefore, knowledge graph
completion (KGC) has been proposed to complete missing facts by
inferring from existing ones. Generally, the KGC task is to make
the entity prediction for incomplete facts i.e., (ℎ, 𝑟, ?) or (?, 𝑟 , 𝑡). 1.

Knowledge graph embedding (KGE) is a promising approach for
predicting missing facts. It learns the embeddings of entities and

1The problem (?, 𝑟 , 𝑡 ) is the same. So, this paper only discusses (ℎ, 𝑟, ?)

relations in a low-dimensional vector space and defines score func-
tions in this space to capture the connectivity patterns among the el-
ements (entities and relations) of facts. For instance, TransE [4] rep-
resents relations as translations between two entities in Euclidean
space, which can model the composition patterns. RotatE [32] rep-
resents entities as points in a complex space and relations as ro-
tations, which is able to model symmetry/antisymmetry patterns.
And HAKE [47] maps entities into a polar coordinate system, which
can naturally reflect the hierarchy patterns. Although further works
have successfully defined various score functions in specific vector
space for effectively handling different subsets of patterns, due to
the complexity of real-world knowledge graphs, the connectivity
patterns between the entities and relations are also very complex.
Therefore, it is difficult for traditional KGE methods to model all
patterns solely through an explicit score function in a vector space.

To address these issues, some works attempt to design more com-
plex score functions in specific vector spaces (e.g., non-Euclidean
space, Complex space) to simultaneously capture multiple types of
patterns. Other works try to combine different KGE models to cap-
ture more patterns. For example, [18] proposes to combine different
knowledge graph embeddings through score concatenation to im-
prove the performance in the KGC task. [39] proposes to combine
the scores of different embedding models by using a weighted sum.
A recent work SEA [13] introduces a query attention mechanism
for the combination of the score functions of different KGE models.
Although these methods can model more patterns compared to tra-
ditional KGE methods, the limited number of combination models
still restricts their ability to capture more patterns and improve
knowledge graph completion tasks. How to efficiently embed KGs
and capture the variety of patterns in KGs remains a challenging
problem.

Instead of designing complex score functions or combining dif-
ferent KGEmodels, this paper argues that plausible facts in a knowl-
edge graph come from a distribution in the low-dimensional fact
space. To this end, we propose a novel framework called Fact Em-
bedding through Diffusion Model (FDM). FDM directly learns the
distribution of plausible facts through Denoising Diffusion Proba-
bilistic Models (DDPM) and casts the entity prediction task into the
conditional fact generation task. Specifically, we concatenate the
embeddings of elements in a fact as a whole and take it as input.
Then, we introduce a Conditional Fact Denoiser to learn the reverse
denoising diffusion process and generate the target fact embedding
from noised data. A key challenge in the FDM is that diffusion pro-
cesses typically operate in continuous space, while facts in KGs are
inherently discrete. To address this gap, we propose a learnable Fact
Embedding Module to map facts into vectors and perform diffusion
directly in a continuous vector space. Additionally, to better guide
the generation process in DDPM, we incorporate explicit condi-
tional constraints into the reverse diffusion process and propose a
Conditional Encoder to encode the known condition embeddings

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and learn different connectivity patterns in them. Our contributions
can be summarized as follows.

• We propose a novel framework called FDM, which directly
learns the distribution of plausible facts through Denoising
Diffusion Probabilistic Models (DDPM) and casts the entity
prediction task into the conditional fact generation task.
To the best of our knowledge, FDM is the first attempt to
explore the potential of diffusion models for knowledge
graph completion tasks.

• A learnable Fact Embedding Module is proposed to bridge
the gap between continuous diffusion models and discrete
facts in KGs. Furthermore, we propose a novel Conditional
Fact Denoiser with constraints to learn the reverse diffusion
process and generate the target fact and entity from noised
data.

• Extensive experiments on four benchmark datasets demon-
strate that FDM achieves superior performances in KGC
tasks and significantly outperforms all types of state-of-
the-art methods on three datasets. Especially on FB15k-237,
FDM achieves a 16.8% relative improvement in MRR scores
compared to the state-of-the-art methods.

2 RELATEDWORK
KG embedding methods: Knowledge graph embedding aims
to encode entities and relations into a continuous vector space,
where the embeddings are required to preserve the connectivity
patterns and semantic meaning of the original KG. The general
intuition of these methods is to model and infer the connectivity
patterns such as symmetry/antisymmetry, inversion, composition,
and so on, between entities and relations based on observed facts.
They [4, 6, 32, 43] focus on mapping entities and relations to a gen-
eral or designed space (e.g., non-Euclidean space, Complex space)
and defining a relation-dependent score function 𝑓𝑟 (𝒉, 𝒕) in this
space to model these patterns. For example, DistMult [43] repre-
sents each relation as a diagonal matrix. Its score function captures
pairwise interaction between the same dimension of the head and
tail embedding. Thus, DistMult treats symmetric relations well. Ro-
tatE [32], representing entities as points in a complex space and
relations as rotations, can model relation patterns including sym-
metry/antisymmetry, inversion, and composition. GIE [6] learns
spatial patterns interactively between the Euclidean, hyperbolic,
and hyperspherical spaces. However, there is no single score func-
tion that can model all patterns. So, some works consider how to
integrate different Knowledge Graph Embedding models to support
various connectivity patterns. For instance, [42] has demonstrated
that, under certain conditions, the ensemble model generated from
the combination of multiple runs of low-dimensional embedding
models of the same kind outperforms the corresponding individ-
ual high-dimensional embedding model. [13] utilizes an attention
mechanism to combine the score function from several models in a
unified one to incorporate patterns that are independently captured
by each model. Although these methods can model more patterns
compared to traditional KGE models, due to the complexity of the
real KGs, there are numerous types of connectivity patterns, making
it difficult to model them through limited combinations of models.
In contrast, this paper argues that plausible facts (triplets), as the

fundamental units in Knowledge Graphs, should come from a dis-
tribution in the low-dimensional fact space. Although [37] tries to
model triplet, it learns a triplet distributor for each triplet to trans-
fer the information about entities and relations in different spaces,
rather than modeling the distribution of the facts. In contrast, the
proposed FDM learns the distribution of plausible facts through
DDPM and casts the entity prediction task into the corresponding
conditional fact generation task, without explicitly modeling the
connectivity patterns between entities and relations.

Diffusion Model: The diffusion model utilizes diffusion pro-
cesses to model the generation and defines data sampling as a
gradual denoising process, recovering from a complete Gaussian
noise. The forward process gradually adds Gaussian noise to the
data according to a predefined noise schedule until the time step
𝑇 . In recent years, the class of diffusion-based (or score-based)
deep generative models has shown remarkable performance in
modeling high-dimensional multi-modal distributions [15, 31], and
demonstrated the ability to generate high-quality and diverse sam-
ples [11, 27] on several benchmark generation tasks in the field
of computer vision [11]. To handle discrete data, previous works
have explored text diffusion models in discrete state spaces, which
define a corruption process for discrete data. [1] introduce the
multinomial diffusion for character-level text generation, the for-
ward categorical noise is applied through the Markov transition
matrix. [1] generalize discrete text diffusion models by introducing
the absorbing state ([MASK]). However, discrete diffusion models
may have issues with scaling the one-hot row vectors, and they can
only unconditionally generate text samples in discrete space. [21]
and [12] propose a new language model diffusion on the continu-
ous latent representations and connect the discrete space of texts
with continuous space using different mapping functions. How-
ever, in this paper, we explore the potential of diffusion models
to learn the distribution of plausible facts in knowledge graphs.
Furthermore, the reverse process in traditional DDPM often utilizes
neural networks, such as a UNet [11, 15] or transformer [12, 21]
to parameterize the conditional distribution 𝑝 (𝑥𝑡−1 |𝑥𝑡 ). However,
knowledge graphs are often stored in the form of facts, which is
different from images or text. Therefore, in this work, we propose a
novel MLP-based Conditional Fact Denoiser (CFDenoiser) for facts
in knowledge graphs to learn the reverse diffusion process.

3 METHODOLOGY
3.1 Problem Formulation
Let G = (V, E) be an instance of a knowledge graph, whereV is
the set of nodes and E is the set of edges. Each edge 𝑒 has a relation
type 𝑟 ∈ R. Our goal is to predict the missing entities in G, i.e.,
given an incomplete fact (ℎ, 𝑟, ?), we aim to predict the missing
tail entity 𝑡 . Noticing that the problem (?, 𝑟 , 𝑡) is the same, this
paper only discusses (ℎ, 𝑟, ?). The traditional KGE methods carry
out entity prediction through a ranking procedure. Specifically,
in order to predict the tail entity of an incomplete fact (ℎ, 𝑟, ?), it
makes the prediction 𝒕 by relation-dependent score function 𝑓𝑟 (𝒉)
in vector space. Then they rank the distance between 𝒕 and each
entity 𝒕 in KGs to get the answer. While the proposed FDM uses the
Conditional Fact Denoiser with constraints to generate the target
fact 𝑿𝜏 and get the corresponding tail entity 𝑿𝑡 conditioned on the

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fact Embedding through Diffusion Model for
Knowledge Graph Completion Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

given head entity𝑿ℎ and relation𝑿𝑟 in vector space. Finally, it does
the same ranking process to get the final answer. The following
sections will provide a detailed introduction to the architecture of
FDM and its training objectives.

3.2 The FDM Architecture
Figure 1 illustrates the architecture of the FDM. From a high-level
perspective, FDM can be divided into two stages: forward diffusion
process and reverse diffusion process with conditional denoising.
Specifically, the forward process gradually adds Gaussian noise to
the known facts from a predefined noise schedule until time step
𝑇 . Then, in the reverse diffusion process, FDM learns to model the
Markov transition from Gaussian distribution to the distribution
of plausible facts in the vector space through the Conditional Fact
Denoiser. In the inference stage, we use the trained Conditional
Fact Denoiser to perform the denoising diffusion process and gen-
erate the target fact embedding from noised data. Additionally, to
better guide the reverse process, we incorporate explicit conditional
constraints into the reverse diffusion process and propose a Con-
ditional Encoder to encode the known condition embeddings and
learn different connectivity patterns in them. Finally, we obtain
the corresponding tail entity embedding. Next, we will provide a
detailed introduction to these two processes.

Forward Process. To apply a continuous diffusion model to dis-
crete facts (ℎ, 𝑟, 𝑡). We define a learnable Fact Embedding Module
to map the fact into vector space. Fact Embedding Module includes
two learnable embedding functions: 𝐸𝑀𝐵𝑒 and 𝐸𝑀𝐵𝑟 , which both
are linear layers. They map each entity and relation to vectors 𝑿𝑒

∈ R𝑒 , 𝑿𝑟 ∈ R𝑟 . Next, for the fact 𝜏 = (ℎ, 𝑟, 𝑡), Fact Embedding
Module construct the corresponding fact embedding 𝑿𝜏 as follows:
𝑿𝜏 = [𝑿ℎ ;𝑿𝑟 ;𝑿𝑡 ] ∈ R2×𝑟+𝑒 , where [·; ·] indicates concatenation
on the sequence length dimension and 𝑿ℎ , 𝑿𝑟 , 𝑿𝑡 are the output
of two embedding functions applied to ℎ, 𝑟 , 𝑡 . Our goal is to predict
the 𝑿𝜏 condition on head entity embedding 𝑿ℎ and relation em-
bedding 𝑿𝑟 . Finally, we get the tail entity embedding 𝑿𝑡 from the
𝑿𝜏 . So, during the training stage, 𝑞(𝑿𝜏 |𝑿ℎ,𝑿𝑟 ) is the unknown
target fact distribution. To train the FDM, we define the forward
diffusion process which maps the fact embedding 𝑿𝜏 to pure noise
by gradually adding Gaussian noise at each time step𝑇𝑡 = 𝑖 until at
diffusion step𝑇𝑡 = 𝑇 . Each transition𝑿𝜏

𝑇𝑡−1 → 𝑿𝜏
𝑇𝑡

is parametrized
by:

𝑞(𝑿𝜏
𝑇𝑡
|𝑿𝜏

𝑇𝑡−1) = N(𝑿
𝜏
𝑇𝑡

;
√︃

1 − 𝛽𝑇𝑡𝑿
𝜏
𝑇𝑡−1, 𝛽𝑇𝑡 𝑰 ) (1)

where {𝛽𝑇𝑡 }𝑇𝑇𝑡=1 are forward process variances. This parametriza-
tion of the forward process 𝑞 contains no trainable parameters and
allows us to define a training objective.

Reverse Process. In the second stage, FDM defines the condi-
tional reverse diffusion process 𝑝 (𝑿𝜏

𝑇𝑡−1 |𝑿
𝜏
𝑇𝑡
,𝑿ℎ,𝑿𝑟 ) which per-

forms iterative denoising from pure Gaussian noise to generate
target fact 𝑋𝜏 conditioned on the embedding of known entity 𝑿ℎ

and relation 𝑿𝑟 . Then, the transition between two nearby latent
variables is denoted by:

𝑝𝜃 (𝑿𝜏
𝑇𝑡−1 |𝑿

𝜏
𝑇𝑡
,𝑿ℎ,𝑿𝑟 ) =

N(𝑿𝜏
𝑇𝑡−1; 𝜇𝜃 (𝑿𝜏

𝑇𝑡
,𝑇𝑡 ,𝑿

ℎ,𝑿𝑟 ), 𝜎2
𝑇𝑡
𝑰 ) (2)

where 𝜎𝑇𝑡 is the constant variance following [15], 𝜇𝜃 is the mean
of the Gaussian distribution computed by a denoiser, and 𝜃 is the
parameters of the neural network. As shown in [15], we can repa-
rameterize the mean to make the neural network learn the added
noise at time step𝑇𝑡 instead. In this way, 𝜇𝜃 can be reparameterized
as follows:

𝜇𝜃 (𝑿𝜏
𝑇𝑡
,𝑇𝑡 ,𝑿

ℎ,𝑿𝑟 ) = 1
√
𝛼𝑇𝑡
(𝑿𝜏

𝑇𝑡
−

𝛽𝑇𝑡√︁
1 − 𝛼𝑇𝑡

𝜖𝜃 (𝑿𝜏
𝑇𝑡
,𝑇𝑡 ,𝑿

ℎ,𝑿𝑟 ))

(3)

Where 𝑇𝑡 is the time step, {𝛽𝑇𝑡 }𝑇𝑇𝑡=1 are forward process variances,

𝛼𝑇𝑡 = 1 − 𝛽𝑇𝑡 , and 𝛼𝑇𝑡 =
∏𝑇𝑡

𝑠−1 𝛼𝑠 . 𝜖𝜃 (𝑿
𝜏
𝑇𝑡
,𝑇𝑡 ,𝑿ℎ,𝑿𝑟 ) is the neural

network to predict the added noise conditioned on known condi-
tion embeddings at time step 𝑇𝑡 . The 𝜖𝜃 (𝑿𝜏

𝑇𝑡
,𝑇𝑡 ,𝑿ℎ,𝑿𝑟 ) is called

Conditional Fact Denoiser (CFDenoiser) and we will introduce it in
the next section.

Additionally, unlike the traditional conditional reverse diffusion
process, FDM incorporates explicit conditional constraints (the
known entities and relations) into the reverse diffusion process,
aiming to ensure that the generated target fact embeddings satisfy
the existing constraints as closely as possible. Specifically, for the
tail entity prediction, i.e., (ℎ, 𝑟, ?), the embeddings of the conditions
ℎ and 𝑟 not only serve as the classifier-free diffusion guidance in
equation 3 but also ensure that at each step 𝑝𝜃 (𝑿𝜏

𝑇𝑡−1 |𝑿
𝜏
𝑇𝑡
,𝑿ℎ,𝑿𝑟 )

of generating the target fact embedding 𝑿𝜏
𝑇𝑡
, the corresponding

embeddings of the head entity and relation𝑿ℎ𝑟
𝑇𝑡

= [𝑋ℎ
𝑇𝑡

;𝑋𝑟
𝑇𝑡
] in fact

embedding are as consistent as possible with the known embed-
dings of the head entity and relation 𝑿ℎ𝑟 = [𝑋ℎ ;𝑋𝑟 ]. Finally, we
take the 𝐹 as the objective function and take gradient descent steps
𝑠 = 1, 2, · · · ,𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 at each denoising step:

𝐹 (𝑿ℎ𝑟
𝑇𝑡
,𝑿ℎ𝑟 ) = | |𝑿ℎ𝑟

𝑇𝑡
− 𝑿ℎ𝑟 | |22 (4)

𝑿𝜏
𝑇𝑡

= 𝑿𝜏
𝑇𝑡
− 𝜂∇

𝑋ℎ𝑟
𝑇𝑡

𝐹 (𝑿ℎ𝑟
𝑇𝑡
,𝑿ℎ𝑟 ) (5)

Where 𝐹 is the differentiable objective function (squared 𝐿2 norm),
𝜂 is the fixed learning rate. Since 𝑋ℎ𝑟

𝑇𝑡
is part of 𝑋𝜏

𝑇𝑡
, the gradient of

𝑋 𝑡
𝑇𝑡

in fact embedding is approximated by averaging the gradient
of 𝑋ℎ𝑟

𝑇𝑡
. The number of gradient descent steps 𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 is a hyper-

parameter that will be discussed in the next section.

3.3 Conditional Fact Denoiser
In the reverse process of DDPM, the most important thing is how
to design a suitable denoising model for the data. Currently, most
existing denoising models in DDPM are mainly designed for im-
age or text data. However, knowledge graphs are often stored in
the form of facts (ℎ, 𝑟, 𝑡), which have shorter lengths and less ob-
vious long-range dependencies. Therefore, we propose a simple
and efficient MLP-based Conditional Fact Denoiser (CFDenoiser)
for handling knowledge graphs instead of using transformers as

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

(a) FDM Architecther (b) Conditional Fact Denoiser

Figure 1: (a) Architecture of FDM. It consists of a forward diffusion process and a reverse diffusion process modeled by a
Conditional Fact Denoiser. (b) Architecture of Conditional Fact Denoiser (CFDenoiser).

the backbone. We conduct ablation experiments in the following
sections to demonstrate that transformers are not suitable for the
KG data. The architecture of CFDenoiser is illustrated in Figure 1(b).
Formally, the architecture of CFDenoiser can be described as fol-
lows:

𝑿𝒄 = 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑿ℎ,𝑿𝑟 ) (6)
𝑬 = 𝐶𝐹𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑟𝐵𝑙𝑜𝑐𝑘 (𝑿𝜏

𝑇𝑡
,𝑿𝑇

𝑇𝑡
,𝑿𝒄 ) (7)

𝝐 = 𝐿𝑖𝑛𝑒𝑎𝑟𝐿𝑎𝑦𝑒𝑟 (𝐿𝑁 (𝑬)) (8)

where𝑿ℎ and𝑿𝑟 represent the embeddings of entity ℎ and relation
𝑟 , respectively. 𝑿𝒄 is the final condition embedding calculated by
Condition Encoder. 𝑿𝜏

𝑇𝑡
is the noised fact embedding at step𝑇𝑡 and

𝑿𝑇
𝑇𝑡

denotes the timestep embedding at step 𝑇𝑡 . 𝑬 is intermediate
feature calculated by the CFDenoiser block, and 𝝐 is the noise
predicted by CFDenoiser. Next, we will introduce the Condition
Encoder and the CFDenoiser block.

Condition Encoder. As mentioned above, when generating the
target facts from noise in fact space, CFDenoiser uses the known
embeddings 𝑿ℎ,𝑿𝑟 to guide the generation process in DDPM. Af-
ter the vectorization of conditions, most previous works [16, 21]
concatenate the different conditional embeddings simply and use
them as the final control condition. However, for facts in KGs, the
entities and relations usually have rich patterns and are not indepen-
dent of each other. Inspired by the existing neural network-based
model [10] in modeling the patterns among entities and relations in
KGs, the Condition Encoder utilizes the linear layer in vector space
to learn different patterns, which can better guide the generation
process. The Condition Encoder can be represented as follows:

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑿ℎ,𝑿𝑟 ) = 𝐿𝑖𝑛𝑒𝑎𝑟𝐿𝑎𝑦𝑒𝑟 (𝑿ℎ ⊕ 𝑿𝑟 ) (9)

where ⊕ denotes the Hadamard product in complex vector space
and the addition in real vector space. In FB15k-237, we use the
addition. In WN18RR, Kinship, and UMLS, we use the Hadamard
product. In the subsequent experiments, we conduct ablation stud-
ies to demonstrate that the performance of simply concatenate
conditional embeddings is far inferior compared to using the Con-
dition Encoder.

CFDenoiser Block. Inspired by the success of the transformer
encoder [36] in the graph data domain [17], the CFDenoiser Block
adopts a similar architecture. It consists of alternating layers of MLP.
Layernorm (LN) is applied before every layer and residual connec-
tions are employed around each of the sub-layers [38]. As men-
tioned above, the form of facts (ℎ, 𝑟, 𝑡) is simple with a short length,
and their long-range dependencies are not evident. CFDenoiser
utilizes simple MLP layers instead of multiheaded self-attention
layers. Furthermore, in order to make full use of the conditional em-
beddings for guiding the generation process, we regress dimension-
wise scaling parameters 𝛼 which are applied immediately prior to
every residual connections [25] within the sub-layers as shown in
Figure 1(b).

3.4 Training and Inference
Since negative sampling has been proven quite effective for both
learning knowledge graph embeddings [34] andword embeddings [24].
we use a loss function similar to the negative sampling loss [24]:

𝐿 = −𝑙𝑜𝑔 𝜎 (𝛾 − 𝑑1 (𝑿𝜏 , 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝑿𝜏 )) −
𝑛∑︁
𝑖=1

1
𝑘
𝑙𝑜𝑔 𝜎 (𝑑1 (𝑿𝜏 , 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝑿𝜏𝑖 )) − 𝛾) (10)

where 𝛾 is a fixed margin, 𝜎 is the sigmoid function, and the 𝑑1
is the 𝐿1 distance. The predicted noise and the final denoised re-
sults can convert to each other [15] by 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝑿𝜏 ) = 1√

𝛼𝑇𝑡
𝑿𝜏
𝑇𝑡
−√︃

1
𝛼𝑇𝑡
− 1 𝜖𝜃 (𝑿𝜏

𝑇𝑡
,𝑇𝑡 ,𝑿ℎ,𝑿𝑟 ). And 𝜏𝑖 = (ℎ, 𝑟, 𝑡𝑖 ) is the 𝑖-th negative

fact for the tail entity prediction on the positive sample 𝜏 = (ℎ, 𝑟, 𝑡).
For the head prediction, we replace the corresponding ℎ̄𝑖 .

In the inference stage, when predicting (ℎ, 𝑟, ?), FDM uses the
trained CFDenoiser and corresponding conditions (known embed-
ding of the entity 𝑿ℎ and relation 𝑿𝑟 ) to iteratively denoise from
pure Gaussian noise. Subsequently, it predicts target fact embed-
ding 𝑿𝜏 and obtains the prediction of tail entity 𝑿𝑡

𝑝𝑟𝑒 . Finally, we
rank the distance between 𝑿𝑡

𝑝𝑟𝑒 and each entity 𝑿𝑡 in KGs to get
the final prediction 𝑡 . The training and inference algorithms of FDM
are presented in Algorithm 1 and Algorithm 2 respectively.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fact Embedding through Diffusion Model for
Knowledge Graph Completion Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1: Training Stage
Input: 𝜏 = (ℎ, 𝑟, 𝑡), 𝜏 = (ℎ, 𝑟, 𝑡);
Parameters: 𝐸𝑀𝐵𝑒 , 𝐸𝑀𝐵𝑟 , 𝐶𝐹𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑟 : 𝝐𝜃 ;
repeat

Calculate 𝑿𝜏 and 𝑿𝜏 by Fact Embedding Module.
𝑇𝑡 ∼ Uniform ({1, · · · ,𝑇 });
𝝐 ∼ N(0, I);
𝑿𝜏
𝑇𝑡

=
√︁
𝛼𝑇𝑡𝑿

𝜏 +
√︁

1 − 𝛼𝑇𝑡 𝝐 ;

𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝑿𝜏 ) = 1√
𝛼𝑇𝑡

𝑿𝜏
𝑇𝑡
−
√︃

1
𝛼𝑇𝑡
− 1𝜖𝜃 (𝑿𝜏

𝑇𝑡
,𝑇𝑡 ,𝑿ℎ,𝑿𝑟 );

Take the gradient descent step on:
𝐿 = − log𝜎 (𝛾 − 𝑑1 (𝑿𝜏 , 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝑿𝜏 )) −∑𝑛
𝑖=1

1
𝑘

log𝜎 (𝑑1 (𝑿𝜏 , 𝐷𝑒𝑛𝑜𝑖𝑠𝑒 (𝑿𝜏𝑖 )) − 𝛾);
until converged;

Algorithm 2: Inference Stage
Input: Incomplete fact (ℎ, 𝑟, ?);
Output: Predicted target fact embedding 𝑿𝜏 ;
𝑿𝜏
𝑇𝑡
∼ N(0, I);

𝑿ℎ ← 𝐸𝑀𝐵𝑒 (ℎ), 𝑿𝑟 ← 𝐸𝑀𝐵𝑟 (𝑟 );
for 𝑇𝑡 = 𝑇, · · · , 1 do

z ∼ N(0, I) if 𝑇𝑡 > 1, else z = 0;
𝑿𝜏
𝑇𝑡−1 = 1√

𝛼𝑇𝑡
(𝑿𝜏

𝑇𝑡
− 1−𝛼𝑇𝑡√

1−𝛼𝑇𝑡
𝝐𝜃 (𝑿𝜏

𝑇𝑡
,𝑇𝑡 ,𝑿ℎ,𝑿𝑟 )) +𝜎𝑇𝑡 z;

for 𝑠 = 1, 2, · · · ,𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 do
𝑿𝜏
𝑇𝑡−1 = 𝑿𝜏

𝑇𝑡−1 − 𝜂∇𝑋ℎ𝑟
𝑇𝑡

𝐹 (𝑿ℎ𝑟
𝑇𝑡
,𝑿ℎ𝑟 )

end
end
return 𝑿𝜏

4 EXPERIMENT
4.1 Experiment Setup
Datasets: We select four typical KGC datasets for evaluation, in-
cluding FB15k-237 [33], WN18RR [10], Kinship and UMLS. For
Kinship and UMLS, we use the datasets division in [26]. Statistics
of datasets can be found in the table 1.
Baselines: We compared with the four types of KGC methods fol-
lowing [8]. Knowledge graph embedding methods: TransE [4],
DualE [5], DistMult [43], ComplEx [34], ComplEx-N3 [19], TuckER
[2], ConvE [10], RotatE [32], HAKE [47], GIE [6], ATTH [7], SEA [13],
AnKGE-HAKE [45] and TDN [37]. Path-based methods: RNN-
Logic [26], NeuralLP[44], DRUM [28], PathRank [20], MINERVA [9],
and M-Walk[30].Graph neural networks methods: NBFNet [48],
COMPGCN [35], HKGN [23], DRGI [22], RGCN [29] Instance-
based learning methods: IBLE and CIBLE [8]. For the FB15K-237,
WN18RR, Kinship, and UMLS, we cite results in [8] and [13] for
comparison.
Evaluation Protocols: For each test fact (ℎ, 𝑟, 𝑡), we construct two
queries: (ℎ, 𝑟, ?) and (?, 𝑟 , 𝑡), with the answers 𝑡 and ℎ. The Mean
Rank (MR), Mean Reciprocal Rank (MRR), and H@N are reported
under the filtered setting [32], in line with previous research. Higher
MRR and Hit@N indicate a better performance
Implementation details: Our model is trained on 2 Nvidia A100

GPU. We describe the hyper-parameter, architectures, and more
experimental details in appendix A and appendix B.

Table 1: Statistics of datasets. The symbols Ent and Rel denote
the number of entities and relations respectively.

Dataset Ent Rel Train Validation Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,853 3,034 3,134
Kinship 104 25 3,206 2,137 5,343
UMLS 135 46 1,959 1,306 3,246

4.2 Main Results
The main results are presented in Tables 2, and Table 3. We cat-
egorize the existing KGC methods into two main groups, non-
embedding methods (including Path-based methods, graph neural
networks methods, and Instance-based learning methods) and em-
bedding methods. The non-embedding methods are listed in the
upper section of the table, while the embedding methods are listed
in the lower section of the table. Our observations based on the
results are as follows. First, compared to embedding methods, FDM
shows remarkable improvement across all metrics on four datasets.
Specifically, it achieves a 10% (25.9% relative), 0.6% (1.2% relative),
5.7% (7.3% relative), and 6.2% (7.2% relative) increase in MRR scores
over the best embedding models on the FB15k-237, WN18RR, Kin-
ship, and UMLS respectively. Second, compared to non-embedding
methods, FDM achieves better results for all metrics on the FB15k-
237, Kinship, and UMLS datasets. On the WN18RR, FDM retains
its superiority over other non-embedding methods except for the
NBFNet. Specifically, FDM achieves a 7% (16.8% relative), 7.7% (10.1%
relative), and 8% (9.5% relative) increase in MRR scores over the
best non-embedding models on the FB15k-237, Kinship, and UMLS
datasets, respectively. In conclusion, these results illustrate that by
modeling the distribution of plausible facts in a low-dimensional
fact space and converting the entity prediction into conditional
fact generation, FDM can improve the performance of embedding
methods greatly. Furthermore, we notice that the performance im-
provement of FDM on the WN18RR is not significant. We analyze
that it is caused by the higher entity-to-relation ratio (the number
of entities/ the number of relations) onWN18RR(40943/11) than the
other three datasets: FB15k-237 (14541/237), UMLS (135/46), and
Kinship (104/25). The larger the entity-to-relation ratio implies a
more complex target fact distribution and connectivity patterns,
which are more difficult to model by FDM.

Next, we focus on complex multi-relation scenarios, especially
for the issue of 1-N, N-1, and N-N relations (as shown in Table 4).
This is because, in these complex relation scenarios, the patterns
between entities and relations become more complicated and in-
creasingly challenging to model. We present the experimental re-
sults on different relation types following the [40]. We choose the
FB15k-237 owing to its abundant multi-relations and denser graph
structure. Then, we compare FDM with TransE [4], RotatE [32],
COMPGCN [35] and NBFNet [48]. It is observed that FDM shows a
greater relative improvement in the 1-N, N-1, and N-N types, which
illustrates that compared to other KGE models and GNN-based

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Entity prediction results on FB15k-237 and WN18RR. The best results are in bold and the second best results are
underlined.

Model FB15k-237 WN18RR
MRR ↑ H@1 ↑ H@3 ↑ H@10 ↑ MRR ↑ H@1 ↑ H@3 ↑ H@10 ↑

Non-embedding methods
PathRank [20] 0.087 7.4 9.2 11.2 0.189 17.1 20.0 22.5
NeuralLP [44] 0.237 17.3 25.9 36.1 0.381 36.8 38.6 40.8
DRUM [28] 0.238 17.4 26.1 36.4 0.382 36.9 38.8 41.0

RNNLogic [26] 0.344 25.2 38.0 53.0 0.483 44.6 49.7 55.8
RGCN [29] 0.273 18.2 30.3 45.6 0.402 34.5 43.7 49.4

COMPGCN [35] 0.355 26.4 39.0 53.5 0.479 44.3 49.4 54.6
HKGN [23] 0.365 27.2 40.2 55.2 0.487 44.8 50.5 56.1
NBFNet [48] 0.415 32.1 45.4 59.9 0.551 49.7 57.3 66.6
CIBLE [8] 0.341 24.5 37.7 53.7 0.490 44.6 50.7 57.5

Embedding methods
TransE [4] 0.294 - - 46.5 0.226 - - 50.1
ConvE [10] 0.325 23.7 35.6 50.1 0.430 40.0 44.0 52.0
RotatE [32] 0.338 24.1 37.5 53.3 0.476 42.8 49.2 57.1
ATTH [7] 0.348 25.2 38.4 54.0 0.486 44.3 49.9 57.3
DualE [5] 0.365 26.8 40.0 55.9 0.492 44.4 51.3 58.4
GIE [6] 0.362 27.1 40.1 55.2 0.491 45.2 50.5 57.5
SEA [13] 0.360 26.4 39.8 54.9 0.500 45.4 51.8 59.1

AnKGE-HAKE [45] 0.385 28.8 42.8 57.2 0.500 45.4 51.5 58.7
TDN [37] 0.350 26.3 39.5 54.6 0.481 43.9 50.2 48.1

FDM(Ours) 0.485 38.6 52.9 68.1 0.506 45.6 51.8 59.2

Table 3: Entity prediction results on Kinship and UMLS. The best results are in bold and the second best results are underlined.

Model Kinship UMLS
MRR ↑ H@1 ↑ H@3 ↑ H@10 ↑ MRR ↑ H@1 ↑ H@3 ↑ H@10 ↑

Non-embedding methods
PathRank [20] 0.369 27.2 41.6 67.3 0.197 14.8 21.4 25.2
NeuralLP [44] 0.302 16.7 33.9 59.6 0.483 33.2 56.3 77.5
MINERVA [9] 0.401 23.5 46.7 76.6 0.564 42.6 65.8 81.4
DRUM [28] 0.334 18.3 37.8 67.5 0.548 35.8 69.9 85.4

RNNLogic [26] 0.722 59.8 81.4 94.9 0.842 77.2 89.1 96.5
DRGI [22] 0.760 58.6 84.3 95.9 0.820 77.1 83.8 96.1
NBFNet [48] 0.606 43.5 72.5 93.7 0.778 68.8 84.0 93.8
IBLE [8] 0.615 45.9 71.7 92.8 0.816 71.7 90.0 96.1
CIBLE [8] 0.728 60.3 82.0 95.6 0.831 74.9 89.7 97.0

Embedding methods
DistMult [43] 0.241 15.5 26.3 41.9 0.430 39.0 44.0 49.0
ComplEx [34] 0.247 15.8 27.5 42.8 0.440 41.0 46.0 51.0

ComplEx-N3 [19] 0.605 43.7 71.0 92.1 0.791 68.9 87.3 95.7
TuckER [2] 0.603 46.2 69.8 86.3 0.732 62.5 81.2 90.9
RotatE [32] 0.651 50.4 75.5 93.2 0.744 63.6 82.2 93.9
ConvE [10] 0.685 55.2 78.6 92.8 0.756 69.7 80.7 91.9
TDN [37] 0.780 67.7 86.7 96.5 0.860 82.4 87.3 96.8

FDM(Ours) 0.837 76.1 89.7 96.8 0.922 89.3 94.4 97.0

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Fact Embedding through Diffusion Model for
Knowledge Graph Completion Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Entity prediction results by relation category [40] on FB15k-237 dataset. The best results are in bold and the second
best results are underlined.

TransE RotatE COMPGCN NBFNet FDM

MRR↑ H@10↑ MRR↑ H@10↑ MRR↑ H@10↑ MRR↑ H@10 ↑ MRR↑ H@10↑

Head Pred

1-1 0.498 - 0.487 0.593 0.457 0.604 0.578 - 0.569 0.708
1-N 0.079 - 0.081 0.174 0.112 0.190 0.165 - 0.203 0.370
N-1 0.455 - 0.467 0.674 0.471 0.656 0.499 - 0.559 0.744
N-N 0.224 - 0.234 0.476 0.275 0.474 0.348 - 0.423 0.657

Tail Pred

1-1 0.488 - 0.484 0.578 0.453 0.589 0.600 - 0.519 0.609
1-N 0.744 - 0.747 0.674 0.779 0.885 0.790 - 0.826 0.904
N-1 0.071 - 0.070 0.138 0.076 0.151 0.122 - 0.167 0.301
N-N 0.330 - 0.338 0.608 0.395 0.616 0.456 - 0.543 0.757

Table 5: Ablation on Condition Encoder in the CFDenoiser
in FB15k-237 and Kinship.

Model FB15k-237 Kinship
MRR↑ H@1↑ MRR↑ H@1↑

FDM w/o
Condition Encoder 0.457 35.3 0.781 68.3

FDM w/
Condition Encoder 0.485 38.6 0.837 76.1

Table 6: Ablation on MLP-based architecture of the CFDe-
noiser in FB15k-237 and Kinship.

Model FB15k-237 Kinship
MRR↑ H@1↑ MRR↑ H@1↑

FDM w/
transformer-based 0.318 22.3 0.601 44.2

FDM w/
MLP-based 0.485 38.6 0.837 76.1

models, FDM performs better in handling complex relationships
and excels at modeling patterns in KGs under complex relation
scenarios.

4.3 Ablation Study
MLP-based architecture of the CFDenoiser. First, we conduct
an ablation study to prove that an MLP-based architecture is more
suitable for KGs in the conditional reverse process. We replace the
MLP layers in the CFDenoiser block with a two-layer transformer
and then observe the performance of FDM on the FB15k-237 and
Kinship datasets. The results in Table 6 show that the performance
of FDM decreases by nearly 35% when using transformer layers in
the CFDenoiser block, indicating that the MLP layers are more suit-
able for modeling simple-form facts in knowledge graphs. On the
contrary, a more complex transformer is not suitable for modeling
this relatively simple form of KG data.

Condition Encoder in the CFDenoiser. Next, In this subsection,
we analyze the necessity of the Condition Encoder in the CFDe-
noiser on FB15k-237 and Kinship. We compare the results between
using the Condition Encoder and directly concatenating the con-
ditions embedding. The contributions of the Condition Encoder
are summarized in Table 5. It can be observed that without the
Condition Encoder, the performance of FDM drops by about 6% on
average, illustrating that the entities and relations in KGs are not
independent of each other. Simply concatenating their embeddings
cannot capture the patterns in the facts. By using the Condition
Encoder to learn different patterns, which can better guide the
generation in the reverse diffusion process.
hyper-parameters. Finally, we conduct ablation experiments on
hyper-parameters, including the number of the CFDenoiser block,
the hidden size of the MLP layer in the CFDenoiser block, and
the number of gradient descent steps (𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝) when applying
conditional constraints. Figure 2 reports the results on UMLS and
Kinship in terms of MRR scores. Figure 2(a) indicates the impor-
tance of shallow and proper numbers of CFDenoiser blocks (in
this case, 2). Since the inputs of CFDenoiser are relatively simple,
using a very deep network may result in overfitting and decrease
the performance. Figure 2(b) explores the impact of the hidden
size of the MLP layer in the CFDenoiser block on the model. The
results demonstrate that increasing the hidden size helps improve
the performance of the model, but too large sizes (e.g., 2200) will
lead to a decrease in performance. Lastly, as mentioned earlier, we
hope that the generated fact embeddings can satisfy the conditional
constraints and we achieve this goal through gradient descent at
each denoising step. Figure 2(c) studies the influence of the number
of𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 in the reverse diffusion process. It indicates that a large
number of 𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 does not lead to a significant improvement in
the final result but is more time-consuming. On the other hand, an
appropriate number of 𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 (e.g., 10) can help the generated
results meet the constraints and exhibit a noticeable improvement
efficiently compared to unconstrained results.

4.4 Case Study
Finally, we explore the better performance of FDM on real KGs.
We provide an example from FB15k-237. The fact to be predicted

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Num of CFDenoiser Blocks (b) Hidden Size (c) Num of gradient descent steps

Figure 2: hyper-parameters analysis on UMLS and Kinship (MRR).

(a) Prediction of FDM (b) Prediction of TransE

Figure 3: T-SNE visualization to the predictions of ( Dorothy
Fields, /people/person/profession, ? ) calculated by FDM and
TransE.

is ( Dorothy Fields, /people/person/profession, ? ). For this ques-
tion, the answer is the lyricist. We visualize the prediction embed-
dings calculated by the FDM and the corresponding six entities
closest to the prediction in Figure 3(a). The prediction results calcu-
lated by trained TransE are shown in Figure 3(b). From this visual-
ization, we can observe that the embedding predicted by TransE:
𝑃𝑟𝑒𝑑𝑇𝑟𝑎𝑛𝑠𝐸 (𝒕) = 𝒉 + 𝒓 is closer to other entities such as producer
and composer rather than lyricist. While the prediction of the FDM
is closest to the lyricist. This result illustrates that FDM can effec-
tively model the distribution of target fact and make a more precise
prediction compared to traditional KGE methods like TransE.

5 CONCLUSION
In this paper, we propose a novel framework called Fact Embedding
through Diffusion Model (FDM) to address knowledge graph com-
pletion tasks. Different from most existing KGE models typically
mapping entities and relations to a designed space and defining a
relation-dependent score function to model connectivity patterns,
we argue that plausible facts in a knowledge graph come from a dis-
tribution in the low-dimensional fact space. The FDM is proposed
to directly learn the distribution of plausible facts from a known
knowledge graph and cast the entity prediction task into the condi-
tional fact generation task. Extensive experiments demonstrate that
FDM significantly outperforms existing state-of-the-art methods
on benchmark datasets for KGC tasks.

REFERENCES
[1] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den

Berg. 2021. Structured denoising diffusion models in discrete state-spaces. Ad-
vances in Neural Information Processing Systems 34 (2021), 17981–17993.

[2] Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Tucker: Tensor
factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590
(2019).

[3] Dave Beckett and Brian McBride. 2004. RDF/XML syntax specification (revised).
W3C recommendation 10, 2.3 (2004).

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[5] Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming
Huang. 2021. Dual quaternion knowledge graph embeddings. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 35. 6894–6902.

[6] Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming
Huang. 2022. Geometry interaction knowledge graph embeddings. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 36. 5521–5529.

[7] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-
pher Ré. 2020. Low-dimensional hyperbolic knowledge graph embeddings. arXiv
preprint arXiv:2005.00545 (2020).

[8] Wanyun Cui and Xingran Chen. 2022. Instance-based Learning for Knowledge
Base Completion. arXiv preprint arXiv:2211.06807 (2022).

[9] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,
Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. 2017. Go for a
walk and arrive at the answer: Reasoning over paths in knowledge bases using
reinforcement learning. arXiv preprint arXiv:1711.05851 (2017).

[10] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 32.

[11] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on
image synthesis. Advances in Neural Information Processing Systems 34 (2021),
8780–8794.

[12] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. 2022.
Diffuseq: Sequence to sequence text generation with diffusion models. arXiv
preprint arXiv:2210.08933 (2022).

[13] Cosimo Gregucci, Mojtaba Nayyeri, Daniel Hernández, and Steffen Staab. 2023.
Link prediction with attention applied on multiple knowledge graph embedding
models. In Proceedings of the ACM Web Conference 2023. 2600–2610.

[14] Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and
Jun Zhao. 2017. An end-to-end model for question answering over knowledge
base with cross-attention combining global knowledge. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 221–231.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.

[16] Jonathan Ho and Tim Salimans. 2022. Classifier-free diffusion guidance. arXiv
preprint arXiv:2207.12598 (2022).

[17] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In Proceedings of the web conference 2020. 2704–2710.

[18] Denis Krompaß and Volker Tresp. 2015. Ensemble solutions for link-prediction in
knowledge graphs. In PKDD ECML 2nd Workshop on Linked Data for Knowledge
Discovery.

[19] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical
tensor decomposition for knowledge base completion. In International Conference
on Machine Learning. PMLR, 2863–2872.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fact Embedding through Diffusion Model for
Knowledge Graph Completion Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[20] Sangkeun Lee, Sungchan Park, Minsuk Kahng, and Sang-goo Lee. 2013. PathRank:
Ranking nodes on a heterogeneous graph for flexible hybrid recommender sys-
tems. Expert Systems with Applications 40, 2 (2013), 684–697.

[21] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B
Hashimoto. 2022. Diffusion-lm improves controllable text generation. Advances
in Neural Information Processing Systems 35 (2022), 4328–4343.

[22] Shuang Liang, Jie Shao, Dongyang Zhang, Jiasheng Zhang, and Bin Cui. 2021.
Drgi: Deep relational graph infomax for knowledge graph completion. IEEE
Transactions on Knowledge and Data Engineering (2021).

[23] Xiyang Liu, Tong Zhu, Huobin Tan, and Richong Zhang. 2022. Heterogeneous
graph neural network with hypernetworks for knowledge graph embedding. In
International Semantic Web Conference. Springer, 284–302.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[25] William Peebles and Saining Xie. 2022. Scalable Diffusion Models with Trans-
formers. arXiv preprint arXiv:2212.09748 (2022).

[26] Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang.
2020. Rnnlogic: Learning logic rules for reasoning on knowledge graphs. arXiv
preprint arXiv:2010.04029 (2020).

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 10684–10695.

[28] Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang.
2019. Drum: End-to-end differentiable rule mining on knowledge graphs. Ad-
vances in Neural Information Processing Systems 32 (2019).

[29] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[30] Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. 2018.
M-walk: Learning to walk over graphs using monte carlo tree search. Advances
in Neural Information Processing Systems 31 (2018).

[31] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International Conference on Machine Learning. PMLR, 2256–2265.

[32] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[33] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features
for knowledge base and text inference. In Proceedings of the 3rd workshop on
continuous vector space models and their compositionality. 57–66.

[34] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[35] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-based multi-relational graph convolutional networks. arXiv
preprint arXiv:1911.03082 (2019).

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[37] Jiapu Wang, Boyue Wang, Junbin Gao, Xiaoyan Li, Yongli Hu, and Baocai Yin.
2023. TDN: Triplet Distributor Network for Knowledge Graph Completion. IEEE
Transactions on Knowledge and Data Engineering (2023).

[38] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. 2019. Learning deep transformer models for machine translation.
arXiv preprint arXiv:1906.01787 (2019).

[39] Yinquan Wang, Yao Chen, Zhe Zhang, and Tian Wang. 2022. A probabilistic
ensemble approach for knowledge graph embedding. Neurocomputing 500 (2022),
1041–1051.

[40] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 28.

[41] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking
for academic search via knowledge graph embedding. In Proceedings of the 26th
international conference on world wide web. 1271–1279.

[42] Chengjin Xu, Mojtaba Nayyeri, Sahar Vahdati, and Jens Lehmann. 2021. Multiple
run ensemble learning with low-dimensional knowledge graph embeddings. In
2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[43] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[44] Fan Yang, Zhilin Yang, and William W Cohen. 2017. Differentiable learning
of logical rules for knowledge base reasoning. Advances in neural information
processing systems 30 (2017).

[45] Zhen Yao, Wen Zhang, Mingyang Chen, Yufeng Huang, Yi Yang, and Huajun
Chen. 2023. Analogical inference enhanced knowledge graph embedding. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 4801–4808.

[46] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 353–362.

[47] Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. 2020. Learning
hierarchy-aware knowledge graph embeddings for link prediction. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 34. 3065–3072.

[48] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021.
Neural bellman-ford networks: A general graph neural network framework for
link prediction. Advances in Neural Information Processing Systems 34 (2021),
29476–29490.

APPENDIX
A IMPLEMENTATION DETAILS
We implement our code with Pytorch. For our method, we finetune
the hyper-parameters including batch size ranging from {128, 256,
512, 1024}, negative sampling size ranging from {128, 256, 512},
learning rate ranging from {1𝑒−4, 1𝑒−5, 5𝑒−5, 8𝑒−5}, the margin 𝛾
ranging from {10, 14, 18, 22, 26, 30}, the iteration of gradient de-
scent steps 𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 ranging from {10, 20, 30, 40, 50}, the num-
ber of the CFDenoiser block ranging from {1, 2, 3, 4, 5, 6} and the
hidden size of MLP layer in the CFDenoiser block ranging from
{200, 400, 800, 1200, 1600, 2000, 2400}.We list the best hyper-parameter
setting for each dataset in Table 7. We train the FDM on 2 Nvidia
Quadro RTX 8000 GPUs with standard data parallelism. We select
the best checkpoint on its performance on the validation set and
the selection criteria is MRR. During inference, we generate the
output 20 times and select the best result.

B MORE EXPERIMENTAL RESULTS
In this section, we provide additional experimental results that
are not included in the main text due to space limitations. First,
table 8 shows the results of FDM under different diffusion time
steps. The results indicate that the optimal diffusion time step is
1000. At this step, the proposed FDM demonstrates high prediction
performance and time efficiency. Increasing the number of diffusion
steps is highly time-consuming and does not significantly improve
the performance of FDM. Decreasing the number of steps to 500
results in a decrease in the performance. Therefore, selecting an
efficient diffusion time step is crucial for FDM.

Second, table 9 and table 10 show the performance of all met-
rics during ablation experiments on the Condition Encoder of the
CFDenoiser and the MLP-based architecture of the CFDenoiser
respectively. From the table 9, it can be observed that without the
Condition Encoder, the performance of FDM drops by about 6% on
average, illustrating that the entities and relations in KGs are not
independent of each other. Simply concatenating their embeddings
cannot capture the patterns in the facts. The Condition Encoder can
better guide the generation process. Table 10 shows that the per-
formance of FDM decreases by nearly 35% when using transformer
layers in the CFDenoiser block, indicating that the MLP layers are
more suitable for modeling simple-form facts in knowledge graphs.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: The best hyper-parameter configurations of FDM on different datasets.

Hyper-parameter FB15k-237 WN18RR Kinship UMLS

CFDenoiser number of blocks 3 2 2 2
hidden size 1600 500 2000 2000

Batch positive 512 256 512 256
negative 256 128 256 128

Learning

optimizer Adam Adam Adam Adam
learning rate 8𝑒−5 8𝑒−5 5𝑒−5 8𝑒−5

gamma 27 46 14 10
𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 10 10 10 10

Table 8: Results of different number of diffusion timesteps on FB15k-237.

Diffusion timesteps MRR H@1 H@3 H@10

500 0.462 37.1 50.9 67.2
1000 0.485 38.6 52.9 68.1
2000 0.481 38.4 52.1 67.7
3000 0.486 38.5 52.5 68.9
4000 0.488 38.6 52.7 69.0

Table 9: Ablation on Condition Encoder of the CFDenoiser in FB15k-237 and Kinship.

Model FB15k-237 Kinship
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

FDM w/o
Condition Encoder 0.457 35.3 49.4 64.8 0.781 68.3 84.3 95.9

FDM w/
Condition Encoder 0.485 38.6 52.9 68.1 0.837 76.1 89.7 96.8

Table 10: Ablation on MLP-based architecture of the CFDenoiser in FB15k-237 and Kinship.

Model FB15k-237 Kinship
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

FDM w/
transformer-based 0.318 22.3 32.7 46.3 0.601 44.2 69.5 92.3

FDM w/
MLP-based 0.485 38.6 52.9 68.1 0.837 76.1 89.7 96.8

10


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 The FDM Architecture
	3.3 Conditional Fact Denoiser
	3.4 Training and Inference

	4 Experiment
	4.1 Experiment Setup
	4.2 Main Results
	4.3 Ablation Study
	4.4 Case Study

	5 Conclusion
	References
	A Implementation Details
	B More Experimental Results

