

000 BEYOND EXTRAPOLATION: KNOWLEDGE UTILIZA- 001 TION WITH BIDIRECTIONALLY INSPIRED AUXILIARY 002 STREAM FOR TIME SERIES FORECASTING 003 004

005 **Anonymous authors**
 006
 007 Paper under double-blind review
 008
 009
 010
 011

ABSTRACT

013 Time-series forecasting is critical in application areas such as energy, transportation,
 014 and public health. Most existing forecasters, however, are designed primarily
 015 around unidirectional inference from **history** to **target**. While this formulation
 016 has achieved strong performance in many practical scenarios, it focuses solely
 017 on the history–target link and leaves unused the structured information in how
 018 trajectories continue after the target, even though such post-target behaviour can
 019 provide a valuable inductive bias for forecasting. In a typical time series, each
 020 training example naturally forms a chain of three segments: “**history** (model in-
 021 put), **target** (ground-truth output), **post-target continuation**”. In this work, we
 022 explicitly use the third segment as a source of auxiliary features and propose
 023 KUP-BI (Knowledge Utilization Paradigm with a Bidirectionally Inspired Aux-
 024 iliary Stream), a simple non-parametric mechanism that distils continuation-style
 025 information from a train-only historical library and injects it into standard fore-
 026 casting backbones. For each training chain, we extract an equal-length history
 027 window and post-target continuation window, apply a simple ratio-style operator
 028 that encodes how the continuation changes relative to its history, and store the re-
 029 sulting transformation together with its history in the library. Given a current input
 030 window, we extract similar historical segments from this library, aggregate their
 031 associated transformations, and apply the aggregated transformation to the current
 032 input to obtain a deterministic continuation-style auxiliary feature that summarises
 033 how similar histories tended to evolve in the training data. The input and auxiliary
 034 streams are encoded separately and fused through a lightweight feature-level gat-
 035 ging module. This design does not introduce information beyond what is already
 036 contained in the training trajectories, but provides a structured inductive bias that
 037 helps backbones exploit typical continuation patterns rather than relying solely on
 038 parametric extrapolation. Across six benchmarks and several state-of-the-art mod-
 039 els, KUP-BI consistently improves forecasting performance with small additional
 040 overhead.

1 INTRODUCTION

042 Time-series forecasting plays an important role in finance (Huang et al. (2024)), traffic (Zeng et al.
 043 (2023b)), weather (Lam et al. (2023)), and energy (Wang et al. (2019)). As the need for accurate
 044 predictions has grown, methods have evolved from single-step to multi-step forecasting horizons
 045 (Zhou et al. (2021); Wu et al. (2021)) and from linear to nonlinear models (Box et al. (2008); Li
 046 et al. (2023); Shao et al. (2025)). Recent work shows that deep learning models can capture complex
 047 nonlinear patterns and improve long-horizon forecasting on real-world data (Kudrat et al. (2025);
 048 Liu et al. (2025)).

049 Although recent deep learning forecasters have made notable progress, they typically operate under
 050 a one-way inference paradigm that focuses on learning the mapping from **history** to **target** in the
 051 natural chain “**history** (model input), **target** (ground-truth output), **post-target continuation**” (Shao
 052 et al., 2025; Wen et al., 2023). This paradigm has been highly successful across many benchmarks,
 053 especially when dynamics are relatively stable and the history is well aligned with the upcoming
 horizon. In more complex settings with local changes or fine-grained variability, the backbone can

still fit the training pairs well: history segments that look similar within the training set are mapped to consistent target segments. At test time, however, inputs that look similar to these training histories can still have slightly different recent dynamics, so the learned mapping from history to target becomes unstable around them and small changes can lead to very different predictions. In such cases, it is beneficial to introduce additional structural cues beyond the input history itself. In supervised forecasting datasets, these structural cues are naturally present in the third part of the chain: the post-target continuation segment. What happens after the target shows how such trajectories usually evolve—for example, whether an upward move tends to keep rising, flatten out, or reverse—and these regularities provide an additional inductive bias. Leveraging how similar training trajectories typically continue, this continuation effectively narrows the space of plausible futures for the current input window, reducing local ambiguity and stabilizing long-horizon predictions. Intuitively, exploiting continuation information makes the forecasting problem less like unconstrained extrapolation from the past alone and more like an interpolation-style task that is guided by how similar histories have actually evolved in the training data. This intuition is related to a classical result in function approximation (Cheney, 1998; DeVore & Lorentz, 1993), which shows that for any L -Lipschitz function, the worst-case error of interpolation (using both past and future samples) is strictly bounded above by that of extrapolation (using past samples only). We derive this error bound formally in Appendix A. Modern deep forecasters do not strictly satisfy the assumptions of this theorem, and in realistic forecasting problems true future values are never observed at test time. We therefore use the interpolation view only as a conceptual motivation: by distilling typical post-target continuation patterns from training chains into an auxiliary stream and fusing it with the backbone representation, we aim to partially recover the stability benefits of interpolation while still operating in a purely predictive setting where only past observations are available at test time.

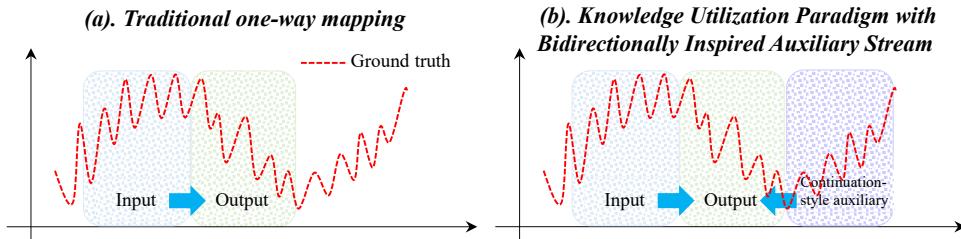


Figure 1: Comparison between (a) a traditional one-way mapping from history to target and (b) our knowledge utilization paradigm with bidirectionally inspired auxiliary Stream.

Building on this perspective, we propose the **Knowledge Utilization Paradigm with Bidirectionally Inspired Auxiliary Stream (KUP-BI)**, which augments the standard **history-to-target** pathway with a continuation-style auxiliary stream constructed from a train-only historical library \mathcal{D} . Rather than conditioning on any true future values at test time, KUP-BI computes a deterministic auxiliary feature $\mathbf{Z} = f(\mathbf{X}, \mathcal{D})$ that summarises how training trajectories with histories similar to the current input \mathbf{X} have tended to continue beyond their targets. To construct \mathbf{Z} , we decompose the training data into “**history–target–post-target continuation**” chains and build a *train-only* library \mathcal{D} in which each entry consists of a history window and the post-target continuation that follows its target. On each aligned history–continuation pair (\mathbf{H}, \mathbf{F}) , we apply a simple ratio-style operator that encodes how the continuation changes relative to its history, and store the resulting history-to-continuation transformation together with its history in the library \mathcal{D} . Given a new input \mathbf{X} , we retrieve similar training histories from this library \mathcal{D} (Han et al., 2025; Ning et al., 2025), aggregate their associated transformations via a temperature-controlled softmax weighting, and apply the aggregated transformation to \mathbf{X} to obtain the continuation-style auxiliary feature \mathbf{Z} . In our framework, the current input and this continuation-style auxiliary feature are processed in two parallel branches and fused after feature extraction through a lightweight gating module, so that the backbone can exploit both the local information in \mathbf{X} and the typical continuation patterns distilled from the library \mathcal{D} . Conceptually, this provides an additional, data-driven inductive bias that encourages forecasts to align with the kinds of post-target evolution commonly observed in the training data, rather than relying solely on parametric extrapolation from the current history. Figure 1 contrasts the conventional one-way mapping with this augmented scheme, highlighting how continuation-style auxiliary streams can act as structural guidance to stabilise predictions under complex dynamics (Kim et al. (2022)). It is important to note that KUP-BI is not bound to any specific mechanism for constructing this continuation-style auxiliary feature. As detailed in Appendix B, one can also obtain such a

108 feature from a predictor-based source, for example by letting the backbone produce a longer horizon
 109 in one shot and using the tail window as an auxiliary input. *The novelty of KUP-BI lies in explicitly
 110 introducing and exploiting continuation-style auxiliary features derived from training chains,
 111 and in demonstrating that injecting such features as a separate stream can consistently improve
 112 forecasting performance across diverse backbones.* Our contributions are as follows:

- 114 • We propose a new perspective for time-series forecasting that explicitly leverages the full
 115 “**history–target–post-target continuation**” chains present in the *training data*. Instead of
 116 relying solely on one-way extrapolation from history to target, we introduce continuation-
 117 style auxiliary features distilled from how training trajectories tend to evolve beyond their
 118 targets, and use them as a structural inductive bias for forecasting.
- 119 • We instantiate this idea with KUP-BI, a simple non-parametric framework that can be
 120 plugged into standard forecasting backbones.
- 121 • We demonstrate the generality of KUP-BI by incorporating it as a plug-in module into
 122 several state-of-the-art backbones across six standard benchmarks. In all cases, the
 123 continuation-style auxiliary stream consistently improves forecasting performance with
 124 small additional overhead, confirming the effectiveness of the proposed design.

126 2 RELATED WORK

127 2.1 TIME SERIES FORECASTING MODELS

130 In recent years, time-series forecasting techniques have developed rapidly to address increasingly
 131 complex prediction demands (Liu et al. (2024); Dai et al. (2024); Huang et al. (2025b)). Different
 132 neural network architectures show distinct advantages: convolution-based models (Wu et al. (2023);
 133 donghao & wang xue (2024)) can efficiently capture local temporal features, Transformer-based
 134 models (Nie et al. (2023); Zhou et al. (2022)) are effective at modeling long-range dependencies,
 135 and MLP-based models (Zeng et al. (2023a); Wang et al. (2024a)) are known for their simplicity and
 136 computational efficiency. With further research, large-scale pre-trained models (Jin et al. (2024);
 137 Niu et al. (2025)) have been explored for time-series forecasting, and these approaches demonstrate
 138 good performance in zero-shot and few-shot scenarios. Existing time-series forecasting models, de-
 139 spite their architectural diversity, still follow the traditional single-stream paradigm, relying solely
 140 on past-to-future mappings. This unidirectional design limits their ability to leverage future continu-
 141 ation streams as external knowledge, and may reduce robustness under distribution shifts (Kim et al.
 142 (2022); Liu et al. (2025)).

143 2.2 INFORMATION UTILIZATION IN FORECASTING

145 Considering information beyond the original input to enhance model performance has long been
 146 a hotspot in time-series forecasting. In the era when statistical forecasting dominated, ARIMAX
 147 (Williams (2001)) and SARIMAX (Vagropoulos et al. (2016))—which incorporate exogenous co-
 148 variates—already outperformed their non-exogenous counterparts. In the deep learning stage,
 149 NBEATSx (Olivares et al. (2023)) and TiDE (Das et al. (2023)) directly take future exogenous
 150 features as inputs, while TimeXer (Wang et al. (2024b)) explicitly models the interaction between
 151 endogenous and exogenous variables within the Transformer framework and addresses issues such
 152 as lag and missing values in exogenous sequences. More recently, ExoLLM (Huang et al. (2025a))
 153 has leveraged large language models (LLMs) to understand and model the multi-grained influence
 154 of exogenous variables, extracting textual knowledge to provide stronger generalization ability.

155 Another prevalent approach is to leverage the outputs of similar patterns to enhance the current
 156 prediction. For example, RAFT (Retrieval-Augmented Forecasting) (Han et al. (2025)) incorporates
 157 the outputs of similar patterns into the current prediction, effectively improving model accuracy.
 158 TS-RAG (Ning et al. (2025)) supplements the representation of the current input by retrieving the
 159 outputs corresponding to similar historical inputs, and feeds them together with the input sequence
 160 representation generated by the TSFM backbone into a Mixture-of-Experts (MoE) module to obtain
 161 richer representations. Such approaches are often implemented through retrieval mechanisms, owing
 to their efficiency and simplicity.

Both exogenous-variable methods and retrieval-based approaches enhance forecasting performance by injecting information beyond the raw inputs, which motivates us to ask how such additional structure can be exploited more systematically. From a broader perspective, retrieval-augmented approaches such as RAFT (Han et al. (2025)) and TS-RAG (Ning et al. (2025)), together with our KUP-BI framework, can also be viewed as non-parametric/meta-learning mechanisms: a train-only trajectory library plays the role of a support set, and test-time predictions are adapted by querying and recombining information from this set rather than by updating the backbone parameters (Hospedales et al., 2022; Vinyals et al., 2016). However, despite this shared reliance on extra information, existing exogenous-variable and retrieval-augmented methods still operate within the first two segments of the natural chain “*history* (model input), *target* (ground-truth output), *post-target continuation*”: they enrich only the mapping between *history* and *target*, whereas KUP-BI explicitly brings the third segment into play by constructing a continuation-style auxiliary feature stream from the *post-target continuation* in the training data.

3 METHODOLOGY

Problem Settings For input sequences $\mathbf{X} = \{x_i\}_{i=0}^{L-1} \in \mathbb{R}^{C \times L}$, where C and L denote the number of channels and the length of the look-back window, respectively. The goal of time-series forecasting is to learn a mapping from historical observations to the ground-truth target sequence, producing predictions $\hat{\mathbf{Y}} = \{\hat{y}_i\}_{i=0}^{T-1} \in \mathbb{R}^{C \times T}$ that approximate the ground-truth series $\mathbf{Y} = \{y_i\}_{i=0}^{T-1} \in \mathbb{R}^{C \times T}$, where T is the forecast horizon. In particular, when $C = 1$ and $T = 1$, the task reduces to the most basic univariate prediction. In time-series forecasting, MAE and MSE are standard evaluation metrics, with lower values reflecting better predictive accuracy. Their definitions are as follows:

$$\mathcal{L}_{MAE} = \frac{1}{CT} \sum_{c=1}^C \sum_{i=0}^{T-1} |y_{c,i} - \hat{y}_{c,i}|, \quad \mathcal{L}_{MSE} = \frac{1}{CT} \sum_{c=1}^C \sum_{i=0}^{T-1} (y_{c,i} - \hat{y}_{c,i})^2.$$

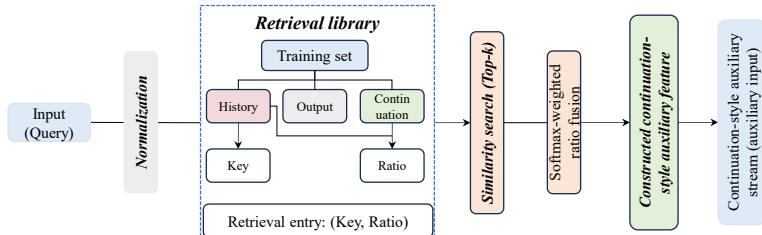


Figure 2: Overview of the proposed continuation-style auxiliary construction.

Structure Overview (Continuation-Style Auxiliary Construction). As shown in Figure 2, we instantiate the continuation-style auxiliary stream via a retrieval-based construction scheme. We represent the training set as a collection of “*history* (model input), *target* (ground-truth output), *post-target continuation*” chains and, for each chain, construct an aligned pair consisting of a history window and a post-target continuation window of the same length. On this aligned pair we derive a ratio matrix \mathbf{R} that characterizes how the continuation changes relative to its history within that chain (e.g., amplitude rescaling, seasonal strengthening or weakening, short-term carry-over).

Given a new input history, we retrieve the Top- k chains whose histories are most similar to it, collect their corresponding ratio matrices, and aggregate them via a temperature-controlled softmax to obtain a fused ratio matrix. We then apply this fused ratio matrix to the current input to obtain a deterministic continuation-style auxiliary sequence, followed by a scale-normalization step. The current stream and this auxiliary stream are encoded into feature representations by separate encoders and then fused at the feature level by a lightweight gating module to form the final predictive representation.

Note that the retrieval library is constructed once from the training set and then fixed; the same train-only library is used to generate continuation-style auxiliary streams for training, validation, and testing, ensuring a consistent setup without any leakage of validation or test futures into the library.

216 **Assumption 1 (Conditional stationarity of continuation patterns).** For a given current history
 217 segment, we assume that its post-target continuation is similar to the post-target continuations of
 218 training history segments that are similar to it under the similarity measure $\text{corr}(\cdot, \cdot)$.

219 This is analogous to exchangeability assumptions commonly made in non-parametric regression and
 220 retrieval-based meta-learning Hospedales et al. (2022); Vinyals et al. (2016).

222 **Retrieval Library.** Given a multivariate time series, each training instance naturally contains a
 223 history segment $\mathbf{H} \in \mathbb{R}^{L \times C}$, its corresponding target segment $\mathbf{Y} \in \mathbb{R}^{T \times C}$ and a subsequent post-
 224 target continuation segment $\mathbf{F} \in \mathbb{R}^{L \times C}$. In our implementation, for each chain we take a history
 225 window and extract a post-target continuation window of the same length that follows the target in
 226 time. To obtain a simple description of how the continuation relates to its history, we compute a
 227 ratio-style representation between \mathbf{H} and \mathbf{F} :

$$228 \quad \mathbf{R} = \frac{\mathbf{F} - \mathbf{H}}{\mathbf{H} + \varepsilon \cdot \text{sign}(\mathbf{H})}, \quad (1)$$

231 where the division is element-wise, $\text{sign}(\cdot)$ is taken element-wise and ε is a small stabiliser that
 232 prevents numerical instability near zero. This matrix \mathbf{R} can be viewed as a heuristic relative-change
 233 descriptor that highlights how the post-target continuation differs from its history (for example,
 234 amplitude rescaling, seasonal strengthening or weakening), rather than as an optimal or unique
 235 statistical operator.

236 We deliberately adopt this closed-form ratio, instead of introducing an additional neural summariser
 237 over the library, for two reasons. First, it keeps the continuation construction strictly non-parametric
 238 and decoupled from the backbone, so that the same library can be reused across different back-
 239 bones (or even non-neural forecasters) without retraining. Second, it avoids giving KUP-BI extra
 240 trainable capacity compared to the baselines, making it easier to attribute performance gains to how
 241 continuation-style information is utilised rather than to a larger model. More flexible learnable en-
 242 coders over the library are orthogonal extensions and are left to future work.

243 Intuitively, for many short-horizon forecasting tasks the target segment \mathbf{Y} is a local continuation of
 244 the history in both scale and shape. In such settings, the way a trajectory tends to change *relative*
 245 to its recent past is often more informative than its absolute level. The ratio-style representation \mathbf{R}
 246 is designed precisely to capture these continuation patterns: it is approximately invariant to global
 247 rescaling and shifts of the raw series, while emphasising per-channel changes in amplitude, trend,
 248 and local oscillations. In other words, \mathbf{R} serves as a compact surrogate for “how this kind of history
 249 typically keeps going”.

250 We then build a retrieval library from the training set as a collection of history-ratio pairs:

$$251 \quad \mathcal{D} = \{(\mathbf{H}_j, \mathbf{R}_j)\}_{j=1}^N, \quad (2)$$

253 where each entry corresponds to one training chain.

254 **Correlation-based candidate selection (channel-wise, offset-anchored).** Given a query (cur-
 255 rent input) window $\mathbf{X}_q \in \mathbb{R}^{L \times C}$, we first apply last-step offsetting (Han et al., 2025) to re-
 256 move local level differences: $\tilde{\mathbf{X}}_q[t, :] = \mathbf{X}_q[t, :] - \mathbf{X}_q[L, :], \tilde{\mathbf{H}}_j[t, :] = \mathbf{H}_j[t, :] - \mathbf{H}_j[L, :], t =$
 257 $1, \dots, L$, where $\mathbf{X}_q[L, :]$ and $\mathbf{H}_j[L, :]$ denote the last time step of each window. We then compute
 258 *channel-wise* Pearson correlations (Benesty et al., 2009) between $\tilde{\mathbf{X}}_q^{(:, c)}$ and all $\tilde{\mathbf{H}}_j^{(:, c)}$: $\text{corr}_{j,c} =$
 259 $\text{Corr}(\tilde{\mathbf{X}}_q^{(:, c)}, \tilde{\mathbf{H}}_j^{(:, c)})$, $c = 1, \dots, C$. For each channel c , we select its Top- k neighbours according
 260 to the largest absolute correlations:

$$262 \quad \mathcal{K}_c(\mathbf{X}_q) = \text{Top-}k(\{|\text{corr}_{j,c}|\}_j). \quad (3)$$

264 **Softmax-weighted ratio fusion (compact, per channel).** For each channel c , we aggregate the
 265 corresponding columns of the history-to-continuation ratio matrices from its Top- k candidates
 266 $\mathcal{K}_c(\mathbf{X}_q)$ using a temperature-controlled softmax over the (absolute) correlations:

$$268 \quad \hat{\mathbf{r}}^{(c)} = \sum_{j \in \mathcal{K}_c(\mathbf{X}_q)} \alpha_{j,c} \mathbf{R}_j^{(:, c)}, \quad \alpha_{j,c} = \frac{\exp((|\text{corr}_{j,c}| - m_c)/\tau)}{\sum_{\ell \in \mathcal{K}_c(\mathbf{X}_q)} \exp((|\text{corr}_{\ell,c}| - m_c)/\tau)}, \quad (4)$$

270 where τ is a temperature parameter and $m_c = \max_{\ell \in \mathcal{K}_c(\mathbf{X}_q)} |\text{corr}_{\ell,c}|$ is subtracted for numerical
 271 stability. Stacking $\{\hat{\mathbf{r}}^{(c)}\}_{c=1}^C$ yields the fused ratio matrix $\hat{\mathbf{R}}_q \in \mathbb{R}^{L \times C}$.
 272

273 We then apply quantile-tanh clipping with the 90th percentile $R'_q = \mathcal{Q}_{0.9}(|\hat{\mathbf{R}}_q|)$:
 274

$$275 \quad \tilde{\mathbf{R}}_q = R'_q \cdot \tanh(\hat{\mathbf{R}}_q / R'_q), \quad (5)$$

276 where the division and tanh are applied element-wise. This softmax-weighted fusion emphasises
 277 candidates that are more strongly correlated with the query while retaining contributions from mul-
 278 tiple neighbours, and the quantile-based tanh clipping provides a simple way to limit extreme ratio
 279 values and improve robustness across datasets.
 280

281 **Continuation-style auxiliary generation.** We apply $\tilde{\mathbf{R}}_q$ to the current input to obtain a
 282 continuation-style auxiliary sequence: $\hat{\mathbf{F}}_q = \mathbf{X}_q + \tilde{\mathbf{R}}_q \odot \mathbf{X}_q$, where \odot denotes element-wise mul-
 283 tiplication. Equivalently, this can be written as $\hat{\mathbf{F}}_q = (1 + \tilde{\mathbf{R}}_q) \odot \mathbf{X}_q$, so $\tilde{\mathbf{R}}_q$ acts as a feature-wise
 284 multiplicative modulation of the current history rather than as a separate source of future values. To
 285 roughly align its scale with the historical stream, we further normalise $\hat{\mathbf{F}}_q$ to match the mean and
 286 (per-channel) standard deviation of \mathbf{X}_q :
 287

$$290 \quad \mathbf{Z} = (\hat{\mathbf{F}}_q - \mu_{\hat{\mathbf{F}}_q}) \oslash (\sigma_{\hat{\mathbf{F}}_q} + \varepsilon) \odot (\sigma_{\mathbf{X}_q} + \varepsilon) + \mu_{\mathbf{X}_q}, \quad (6)$$

293 where \oslash denotes element-wise division, and $\mu_{(\cdot)}$, $\sigma_{(\cdot)}$ are the channel-wise mean and standard
 294 deviation computed over the time dimension.
 295

296 This modulation step is loosely consistent with the ratio definition in (1): it uses the estimated ratio
 297 as a feature-wise scaling of the current history, but we do not treat it as an exact algebraic inverse
 298 of (1). Rather, the modulation and normalisation together form a simple practical heuristic that
 299 injects continuation-style information into the main stream while keeping the auxiliary branch on a
 300 comparable scale.
 301

302 **Gated fusion with harmonic residual.** Let the intermediate features of the historical stream and
 303 the continuation-style auxiliary stream be $\mathbf{X}_{\text{main}} = \text{Fea}(\mathbf{X}_q)$ and $\mathbf{X}_{\text{aux}} = \text{Fea}(\mathbf{Z})$, respectively. We
 304 introduce a learnable gate parameter g , which is passed through a sigmoid to obtain channel-wise
 305 weights $\gamma = \sigma(g)$. The two streams are first combined via gated fusion:
 306

$$307 \quad \tilde{\mathbf{X}} = \gamma \odot \mathbf{X}_{\text{main}} + (1 - \gamma) \odot \mathbf{X}_{\text{aux}}, \quad (7)$$

308 where \odot denotes element-wise multiplication and the same γ is broadcast along the time dimension.
 309

310 To further stabilise training and preserve the dominant role of the main (historical) stream, we apply
 311 a harmonic residual controlled by a coefficient $\alpha \in [0, 1]$: $\mathbf{X}' = \alpha \mathbf{X}_{\text{main}} + (1 - \alpha) \tilde{\mathbf{X}}$.
 312

313 This design ensures that the final representation is always a convex combination of the two streams:
 314 γ adaptively balances the contribution of each channel within the fusion, while α controls the residual
 315 strength of the main stream so that the auxiliary branch acts as a modulation rather than a
 316 replacement. We regard this gating-and-residual fusion as a simple, stable heuristic for injecting
 317 continuation-style information into the backbone.
 318

319 **Complexity Analysis.** The proposed KUP-BI paradigm comprises three components. First,
 320 a correlation-based retrieval stage builds a train-only library and computes correlations offline,
 321 caching per-channel candidate lists so this step does not affect training or inference latency. Sec-
 322 ond, an online continuation-style auxiliary computation (optionally) re-ranks cached candidates,
 323 applies a temperature-scaled softmax, fuses their ratios to form the auxiliary sequence and performs
 324 quantile-plus-tanh clipping with distribution alignment. Third, a lightweight gated fusion combines
 325 the historical stream and the auxiliary stream. Compared to typical backbones (*e.g.*, multi-head
 326 attention), these online operations are negligible in runtime and memory.
 327

324 4 EXPERIMENTS

325 4.1 EXPERIMENT SETTING

326 **Datasets** We conduct experiments on six widely used public benchmarks covering electricity, health-
 327 care, and economics: the ETT family (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021), ILI¹,
 328 and Exchange Rate (Lai et al., 2018). Detailed dataset statistics and preprocessing procedures are
 329 provided in Appendix C.

330 **Backbones** To evaluate the effectiveness and generality of the proposed KUP-BI, we instantiate it
 331 on four strong forecasting backbones with diverse architectures: the Transformer-based PatchTST
 332 (Nie et al., 2023), the MLP-based DLinear (Zeng et al., 2023a), the CNN-based TimesNet (Wu et al.,
 333 2023), and the hybrid dual-stream (MLP+CNN) xPatch (Stitsyuk & Choi, 2025). Backbone-specific
 334 details are summarized in Appendix D.

335 **Fusion point** We keep each backbone architecturally unchanged and only attach a lightweight dual-
 336 stream fusion block at a single feature interface where the historical stream is already formed.
 337 Specifically: (i) DLinear (Zeng et al., 2023a) and xPatch (Stitsyuk & Choi, 2025) both adopt a sea-
 338 sonal–trend two-stream decomposition, and we fuse the historical stream with the continuation-style
 339 auxiliary stream after the decomposition stage; (ii) PatchTST (Nie et al., 2023) fuses the historical
 340 stream and the auxiliary stream after patch projection and before the Transformer encoder; (iii)
 341 TimesNet (Wu et al., 2023) fuses them after the DataEmbedding layer and before the TimesBlocks.
 342 The gate is lightweight (per-channel/per-variable scalars with broadcasting), and the same fusion
 343 rule is used across all backbones.

344 **Setups** To ensure a fair comparison, we follow the default configurations used by the backbone
 345 papers. (1) **Prediction horizons**. For all datasets except ILI, we evaluate prediction lengths
 346 {96, 192, 336, 720}; for ILI we use {24, 36, 48, 60}. (2) **Input length**. The input sequence length
 347 follows the recommended configuration of each backbone model. (3) **Metrics**. We report mean
 348 squared error (MSE) and mean absolute error (MAE) (lower is better). (4) **Data splits**. For the ETT
 349 family (ETTh1/2, ETTm1/2), we adopt the standard 12/4/4-month train/validation/test split; for the
 350 other datasets we use a 7:1:2 chronological split.

351 **Implementation Details** All experiments are implemented in PyTorch (Paszke et al., 2019) and run
 352 on 1 NVIDIA RTX 4090 (24 GB) and 3 NVIDIA RTX 4080 (16 GB each) with driver 525.147.05
 353 and CUDA 12.0. We use the Adam optimizer and MSE loss. For unstable models (TimesNet (Wu
 354 et al. (2023)) and xPatch (Stitsyuk & Choi (2025))), results are averaged over three independent
 355 runs. For xPatch, we conducted experiments by referring to the Settings in the file named *xPatch_fair*
 356 among the three scripts provided by the authors.

357 Table 1: Long-term multivariate forecasting results. Results are averaged from all prediction lengths.
 358 The better results are highlighted in **bold**. Full results are listed in **Appendix F.1**.

359 Model	PatchTST				DLinear				TimesNet				xPatch			
	Ori	+KUP-BI			Ori	+KUP-BI			Ori	+KUP-BI			Ori	+KUP-BI		
Metric	MSE	MAE	MSE	MAE												
ETTh1	0.419	0.432	0.409	0.425	0.445	0.454	0.425	0.437	0.472	0.463	0.453	0.453	0.444	0.438	0.409	0.422
ETTh2	0.330	0.379	0.327	0.376	0.469	0.463	0.394	0.426	0.415	0.426	0.396	0.414	0.342	0.383	0.338	0.381
ETTm1	0.353	0.382	0.350	0.379	0.359	0.381	0.358	0.380	0.415	0.418	0.410	0.417	0.352	0.372	0.350	0.372
ETTm2	0.258	0.315	0.255	0.314	0.283	0.345	0.266	0.330	0.296	0.333	0.293	0.332	0.252	0.308	0.250	0.308
ILI	1.580	0.852	1.496	0.807	2.347	1.089	2.292	1.069	2.438	0.955	2.200	0.888	1.383	0.718	1.365	0.712
Exchange	0.385	0.418	0.367	0.411	0.369	0.418	0.312	0.389	0.415	0.440	0.397	0.432	0.364	0.403	0.359	0.402
Improvement	2.542% (MSE) 1.721% (MAE)				7.395% (MSE) 4.160% (MAE)				4.132% (MSE) 2.420% (MAE)				2.173% (MSE) 0.866% (MAE)			

370 4.2 MAIN RESULTS

371 As shown in Table 1, KUP-BI consistently improves all four backbones (PatchTST, DLinear, Times-
 372 Net, xPatch) on six real-world datasets in terms of both MSE and MAE. Averaged over all pre-
 373 diction horizons and datasets, the relative MSE reductions are largest on DLinear (7.40%, MAE 4.16%),
 374 clear on TimesNet (4.13%, MAE 2.42%), and smaller but steady on PatchTST (2.54%, MAE 1.72%)
 375 and xPatch (2.17%, MAE 0.87%). We observe no degradation on any backbone–dataset combina-
 376

377 ¹<https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>

tion. These results indicate that augmenting standard forecasters with an approximate future continuation stream is generally beneficial across diverse architectures.

Why do gains differ across backbones? We attribute the different gain patterns to three interacting factors: (a) *Capacity and headroom*. Lightweight models such as DLinear have limited capacity to capture complex seasonal and phase structure from history alone. The continuation-style auxiliary stream, distilled from training continuations, provides additional structural cues, leaving more headroom for improvement and yielding larger gains. (b) *Inductive-bias overlap*. TimesNet and xPatch already encode multi-periodicity and seasonality via CNN blocks or seasonal-trend two-stream decompositions. As a result, part of the structure carried by the auxiliary stream overlaps with what the backbone already models, so the marginal benefit is smaller than on DLinear but remains consistent. (c) *Fusion locus and dilution*. We fuse at the feature level. In DLinear/xPatch, fusion happens shallowly after seasonal-trend decomposition, directly steering the prediction heads. In deeper architectures such as PatchTST, the auxiliary features must traverse multiple layers and may be diluted by self-attention, leading to milder but stable improvements.

4.3 COMPARISON WITH SOTA RAFT

Table 2: KUP-BI vs. RAFT across four backbones on ETTh1/ETTh2 and four horizons (MSE/MAE \downarrow). Best results in bold; “Avg” averages across horizons.

Model	PatchTST			DLinear			TimesNet				xPatch			
	KUP-BI	RAFT	KUP-BI	RAFT	KUP-BI	RAFT	KUP-BI	RAFT	KUP-BI	RAFT	KUP-BI	RAFT	KUP-BI	RAFT
ETTh1	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
96	0.364	0.391	0.366	0.392	0.372	0.394	0.402	0.415	0.387	0.412	0.416	0.429	0.359	0.389
192	0.404	0.415	0.405	0.415	0.406	0.415	0.465	0.460	0.446	0.447	0.464	0.458	0.405	0.414
336	0.434	0.440	0.422	0.430	0.443	0.443	0.499	0.492	0.487	0.470	0.494	0.474	0.423	0.428
720	0.432	0.456	0.432	0.455	0.479	0.495	0.587	0.565	0.493	0.483	0.546	0.515	0.450	0.458
Avg	0.409	0.425	0.406	0.423	0.425	0.437	0.488	0.483	0.453	0.453	0.480	0.469	0.409	0.422
ETTh2	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
96	0.272	0.333	0.278	0.337	0.282	0.347	0.441	0.436	0.319	0.362	0.320	0.368	0.274	0.333
192	0.335	0.376	0.340	0.380	0.344	0.393	0.527	0.486	0.395	0.407	0.413	0.422	0.337	0.375
336	0.326	0.377	0.335	0.388	0.400	0.435	0.539	0.498	0.435	0.439	0.453	0.455	0.362	0.398
720	0.375	0.419	0.382	0.424	0.550	0.528	0.662	0.560	0.435	0.449	0.508	0.488	0.381	0.420
Avg	0.327	0.376	0.334	0.382	0.394	0.426	0.542	0.495	0.396	0.414	0.424	0.433	0.338	0.381

We compare KUP-BI with the plug-in version of RAFT (Han et al., 2025) under strictly matched conditions: identical backbones (PatchTST, DLinear, TimesNet, xPatch), the same training/validation/test splits, optimisers, learning-rate schedules, and training budgets. For both methods, the retrieval library is constructed once from the training range only and then fixed; RAFT is given access to exactly the same library and similarity metric as KUP-BI, and neither method ever uses validation or test trajectories inside the library. No extra training data are reserved exclusively for KUP-BI. In particular, the KUP-BI gating/fusion head is trained only on the same supervised pairs (history, target) as the plain backbones and RAFT plug-ins, so that any performance gains can be attributed to how the shared library is utilised rather than to additional data or capacity. RAFT otherwise follows its original design: for each query history, it retrieves the Top- k neighbours from the library and aggregates their targets into a retrieval-enhanced prediction, whereas KUP-BI constructs a continuation-style auxiliary stream from the same neighbours and fuses it with the backbone features at the representation level.

As shown in Table 2, KUP-BI consistently matches or outperforms RAFT across ETTh1 and ETTh2 on three backbones (DLinear, TimesNet, xPatch), and is competitive on PatchTST. On the simpler DLinear and xPatch models, KUP-BI yields clearly lower MSE/MAE on both datasets (e.g., on ETTh1 and ETTh2, KUP-BI improves the average MSE over RAFT for all four horizons), while on the stronger PatchTST backbone KUP-BI is slightly better on ETTh2 and comparable on ETTh1. Overall, these results indicate that explicitly constructing and fusing a future continuation stream is at least as effective as, and often more effective than, reusing retrieved past targets in the RAFT-style convex combination, especially on lightweight backbones with more headroom for improvement.

4.4 ABLATION ON KUP-BI COMPONENTS (DLINEAR BACKBONE)

We ablate the three main components of KUP-BI on ETTm2, ILI and Exchange using DLinear as the backbone. All runs share the same data split, optimiser, schedule and hyperparameters; we only remove the specified component: 1) **w/o distribution alignment**: remove the per-channel

mean/variance matching between the constructed continuation-style auxiliary sequence and the current input history. 2) **w/o ratio**: retrieve Top- k training chains whose histories match the current input and directly use their aligned post-target continuation segments (after mean/variance alignment) as the auxiliary sequence, without applying the ratio-style operator. 3) **w/o α** : drop the residual anchoring term and rely on the learned gate alone for fusion. The results are reported in Table 3, and additional experiments are provided in [Appendix F.3](#).

Table 3: Ablation study of the components of KUP-BI on the ETTm2, ILI and Exchange datasets using DLinear as a backbone. The best results are highlighted in **bold**, and the second-best results are highlighted in underline. Full results are listed in [Appendix F.3](#).

Dataset	Forecast length	ETTm2				ILI				Exchange						
		96	192	336	720	Avg	24	36	48	60	Avg	96	192	336	720	Avg
KUP-BI	MSE	0.166	0.222	0.299	0.377	0.266	2.224	2.225	2.266	2.453	2.292	0.086	0.153	0.355	0.653	0.312
	MAE	0.258	0.300	0.364	0.400	0.330	1.036	1.057	1.060	1.121	1.069	0.207	0.285	0.437	0.628	0.389
w/o distribution	MSE	0.280	0.358	0.384	0.455	0.369	2.238	2.267	2.288	2.507	2.325	0.345	0.796	2.013	1.314	1.117
	MAE	0.338	0.388	0.401	0.443	0.392	1.041	1.064	1.062	1.125	1.073	0.378	0.584	0.934	0.881	0.694
w/o ratio	MSE	0.165	0.221	0.299	0.377	0.266	2.229	2.237	2.253	2.430	2.287	0.085	0.156	0.353	0.669	0.316
	MAE	0.258	0.299	0.363	0.400	0.330	1.038	1.061	1.056	1.114	1.068	0.207	0.287	0.434	0.635	0.391
w/o α	MSE	0.166	0.222	0.302	0.379	0.267	2.482	2.359	2.482	2.658	2.495	0.087	0.154	0.356	0.840	0.359
	MAE	0.259	0.300	0.365	0.401	0.332	1.089	1.075	1.119	1.178	1.115	0.208	0.286	0.438	0.687	0.405

Distribution alignment is critical. Removing distribution alignment causes the largest and most systematic degradation across all datasets and horizons (see Table 3). The effect is especially pronounced on ETTm2 and Exchange, where the scales of the input history and the auxiliary sequence differ substantially; without alignment, the gate sees mismatched distributions and either under-uses or over-trusts the auxiliary stream, hurting both MSE and MAE.

Residual anchoring (α) stabilises fusion. Removing α (gate-only fusion) yields consistent MAE increases and frequent MSE regressions. The residual path keeps the main historical stream dominant and lets the model inject the auxiliary stream only when it is consistent with the history, reducing over-fitting to noisy or partially mismatched auxiliary features.

Ratio versus direct continuation segments. On ETTm2 and ILI, replacing the ratio-style transformation with direct post-target continuation segments from the library (under the same mean/variance alignment) yields results comparable to KUP-BI; by contrast, on Exchange, KUP-BI with the ratio-style operator maintains a clear advantage. Intuitively, the ratio encodes a relative history-to-continuation gain and is applied to the current history, preserving the sample’s shape and phase while primarily modulating amplitude, which can make it more robust to amplitude mismatch and phase drift. Taken together, these results suggest that ratio-based continuation-style auxiliaries can be advantageous, especially on datasets with stronger scale shifts, while also confirming that the overall benefit of KUP-BI does not hinge on a single specific operator and that simpler alternatives can already be competitive on some datasets.

4.5 HYPERPARAMETER SENSITIVITY

We study three hyperparameters in our method: the number of retrieved items (Top- k), the softmax temperature (τ), and the gating coefficient (α). Under a fixed retrieval library, data split, and random seed, we vary one hyperparameter at a time while holding the other two at the setting indicated in each subfigure, and report MSE for horizons 96/192/336/720. Figure 3 summarizes results on ETTh1 (top row) and ETTh2 (bottom row) with PatchTST as the backbone.

1) Top- k . Across both ETTh1 ($\tau = 1.0, \alpha = 0.9$) and ETTh2 ($\tau = 10.0, \alpha = 0.95$), the curves are nearly flat as k increases (2→10), indicating low sensitivity. Very large k tends to dilute structure without gains. Recommendation: keep a small-to-moderate k (3–6). **2) α .** ETTh1 ($\tau = 1.0$, Top- $k=6$): performance improves mildly but consistently as α increases (0.55→0.90), with longer horizons (336/720) benefiting most. A larger α behaves like a conservative controller that down-weights mismatched future continuation streams. ETTh2 ($\tau = 10.0$, Top- $k=8$): curves are essentially flat, that is, very robust to α . **3) τ .** ETTh1 ($\alpha = 0.9$, Top- $k=6$): almost invariant from $\tau = 0.01$ to 10 → low sensitivity. ETTh2 ($\alpha = 0.95$, Top- $k=8$): when τ reaches 0.05, as τ increases, the model’s results remain unchanged, indicating that the model is not sensitive to changes in τ .

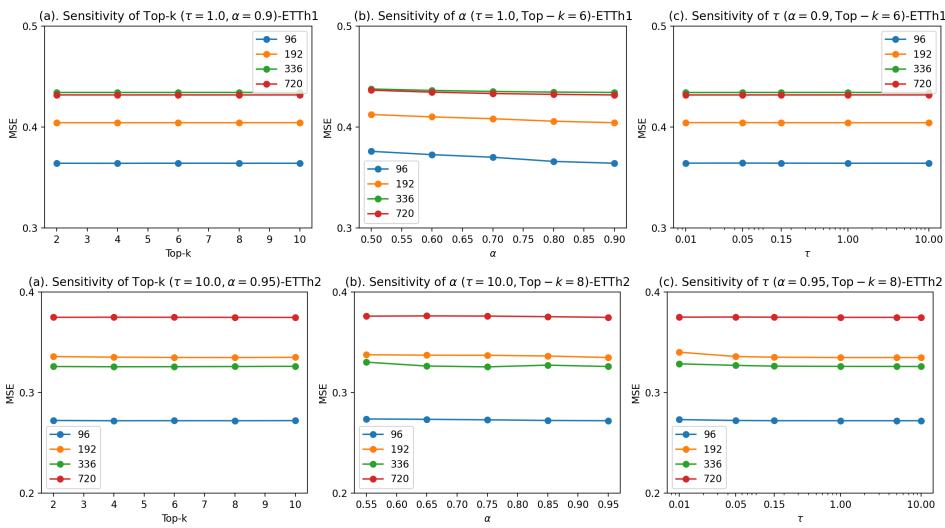


Figure 3: Hyperparameter sensitivity on ETTh1/2 with PatchTST. We vary one hyperparameter while fixing the other two at the best setting and plot MSE for horizons 96/192/336/720.

For PatchTST the three knobs are broadly insensitive, especially Top- k and τ . Using a slightly conservative gate (larger α) and a moderately sharp temperature (small τ) yields stable performance across horizons.

5 CONCLUSION AND FUTURE WORK

We presented KUP-BI, a knowledge-utiliation paradigm that augments time-series forecasting with a continuation-style auxiliary stream. The auxiliary stream is constructed in a non-parametric way from train-only ‘‘history–target–post-target continuation’’ chains via simple history-to-continuation ratio-style transformations, and is fused with the current input stream through a lightweight, feature-level gated module. Across multiple datasets and backbones, KUP-BI yields small but consistent error reductions with modest computational overhead, suggesting that explicitly leveraging post-target continuations from the training data can provide a useful structural bias for forecasting.

From a statistical perspective, KUP-BI can be viewed as a non-parametric, library-based estimator built on top of a backbone model. Providing a rigorous analysis of its statistical properties—including the precise exchangeability conditions under which Assumption 1 holds, its asymptotic consistency and the bias–variance trade-offs induced by the library size, Top- k and temperature—is an important next step. A distilled continuation-based linear variant, outlined in Appendix ??, provides a simple setting in which continuation information can be analysed using standard tools from non-parametric regression; we leave a full statistical treatment and empirical study of this variant to future work. Finally, we believe the insights from KUP-BI—explicitly constructing and utilising continuation-style auxiliary features derived from training chains, rather than relying solely on one-way extrapolation from history to target—can inform the design of retrieval-augmented and LLM-based time-series forecasters at larger scales.

6 ETHICS STATEMENT

This study is limited to time series forecasting and therefore entails no potential ethical risks.

7 REPRODUCIBILITY STATEMENT

In the main text, all details are clearly described through formulas. The experimental details, including dataset descriptions, models, and others, are provided in the appendix. The code will be released after the paper is accepted.

540 REFERENCES
541

542 Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. *Pearson Correlation Coefficient*,
543 pp. 1–4. Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-00296-0_5. URL https://doi.org/10.1007/978-3-642-00296-0_5.

545 Herman J. Bierens. *The Nadaraya–Watson kernel regression function estimator*, pp. 212–247. Cam-
546 bridge University Press, 1994.

548 G.E.P. Box, G.M. Jenkins, and G.C. Reinsel. *Time Series Analysis: Forecasting and Con-
549 trol*. Wiley Series in Probability and Statistics. Wiley, 2008. ISBN 9780470272848. URL <https://books.google.com.hk/books?id=1JnnPQAACAAJ>.

551 E.W. Cheney. *Introduction to Approximation Theory*. AMS Chelsea Publishing Series. AMS
552 Chelsea Pub., 1998. ISBN 9780821813744. URL [https://books.google.com.hk/
553 books?id=OLezcSwX6JoC](https://books.google.com.hk/books?id=OLezcSwX6JoC).

555 Tao Dai, Beiliang Wu, Peiyuan Liu, Naiqi Li, Jigang Bao, Yong Jiang, and Shu-Tao Xia. Periodicity
556 decoupling framework for long-term series forecasting. In *The Twelfth International Confer-
557 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=dp27P5HBBt>.

559 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu.
560 Long-term forecasting with tiDE: Time-series dense encoder. *Transactions on Machine Learn-
561 ing Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=pCbC3aQB5W>.

563 R.A. DeVore and G.G. Lorentz. *Constructive Approximation*. Grundlehren der mathematischen
564 Wissenschaften. Springer Berlin Heidelberg, 1993. ISBN 9783540506270. URL https://books.google.com.hk/books?id=cDqNW6k7_ZwC.

567 Luo donghao and wang xue. ModernTCN: A modern pure convolution structure for general time
568 series analysis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
569 <https://openreview.net/forum?id=vpJMJerXHU>.

570 L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. *A Distribution-Free Theory of Nonparametric
571 Regression*. Springer Series in Statistics. Springer, New York, 2002.

573 Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, and Jinsung Yoon. Retrieval aug-
574 mented time series forecasting. In *Forty-second International Conference on Machine Learning*,
575 2025. URL <https://openreview.net/forum?id=GUDnecJdJU>.

576 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
577 networks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(9):
578 5149–5169, 2022. doi: 10.1109/TPAMI.2021.3079209.

580 Hongbin Huang, Minghua Chen, and Xiao Qiao. Generative learning for financial time series with
581 irregular and scale-invariant patterns. In *The Twelfth International Conference on Learning Rep-
582 resentations*, 2024. URL <https://openreview.net/forum?id=CdjnzwQax>.

583 Qihe Huang, Zhengyang Zhou, Kuo Yang, and Yang Wang. Exploiting language power for time
584 series forecasting with exogenous variables. In *THE WEB CONFERENCE 2025*, 2025a. URL
585 <https://openreview.net/forum?id=dFapOK8Rhb>.

586 Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, and Yang Wang. Timebase:
587 The power of minimalism in efficient long-term time series forecasting. In *Forty-second In-
588 ternational Conference on Machine Learning*, 2025b. URL [https://openreview.net/forum?id=GhTdNOMFOD](https://openreview.net/
589 forum?id=GhTdNOMFOD).

591 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
592 Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
593 by reprogramming large language models. In *The Twelfth International Conference on Learning
Representations*, 2024. URL <https://openreview.net/forum?id=Unb5CVpta>.

594 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
 595 versible instance normalization for accurate time-series forecasting against distribution shift. In
 596 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=cGDAkQo1C0p>.

597

598 Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, and Qinghua Hu. Patch-wise structural loss for
 599 time series forecasting. In *Forty-second International Conference on Machine Learning*, 2025.
 600 URL <https://openreview.net/forum?id=p1KkW2kgDp>.

601

602 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
 603 temporal patterns with deep neural networks. *SIGIR '18*, pp. 95–104, New York, NY, USA, 2018.
 604 Association for Computing Machinery. ISBN 9781450356572. doi: 10.1145/3209978.3210006.
 605 URL <https://doi.org/10.1145/3209978.3210006>.

606

607 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
 608 ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
 609 Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
 610 hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. *Science*,
 611 382(6677):1416–1421, 2023. doi: 10.1126/science.adi2336. URL <https://www.science.org/doi/abs/10.1126/science.adi2336>.

612

613 Bing Li, Wei Cui, Le Zhang, Ce Zhu, Wei Wang, Ivor W. Tsang, and Joey Tianyi Zhou. Differformer:
 614 Multi-resolutional differencing transformer with dynamic ranging for time series analysis. *IEEE
 615 Transactions on Pattern Analysis and Machine Intelligence*, 45(11):13586–13598, 2023. doi:
 616 10.1109/TPAMI.2023.3293516.

617

618 Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-Tao Xia. Time-
 619 bridge: Non-stationarity matters for long-term time series forecasting. In *Forty-second Interna-
 620 tional Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=pyKO0ZZ51z>.

621

622 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 623 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth In-
 624 ternational Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=JePfAI8fah>.

625

626 E. A. Nadaraya. On estimating regression. *Theory of Probability & Its Applications*, 9(1):141–142,
 627 1964. doi: 10.1137/1109020. URL <https://doi.org/10.1137/1109020>.

628

629 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 630 64 words: Long-term forecasting with transformers. In *International Conference on Learning
 631 Representations*, 2023.

632

633 Kanghui Ning, Zijie Pan, Yu Liu, Yushan Jiang, James Y. Zhang, Kashif Rasul, Anderson Schneider,
 634 Lintao Ma, Yuriy Nevmyvaka, and Dongjin Song. Ts-rag: Retrieval-augmented generation based
 635 time series foundation models are stronger zero-shot forecaster, 2025. URL <https://arxiv.org/abs/2503.07649>.

636

637 Wenzhe Niu, Zongxia Xie, Yanru Sun, Wei He, Man Xu, and Chao Hao. Langtime: A language-
 638 guided unified model for time series forecasting with proximal policy optimization. In *Forty-
 639 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=VfoKOD65Zq>.

640

641 Kin G. Olivares, Cristian Challu, Grzegorz Marcjasz, Rafal Weron, and Artur Dubrawski. Neural
 642 basis expansion analysis with exogenous variables: Forecasting electricity prices with nbeatsx.
 643 *International Journal of Forecasting*, 39(2):884–900, 2023. ISSN 0169-2070. doi: <https://doi.org/10.1016/j.ijforecast.2022.03.001>. URL <https://www.sciencedirect.com/science/article/pii/S0169207022000413>.

645

646 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 647 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

648 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 649 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
 650 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 651 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

652

653 Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao Sun,
 654 Guangyin Jin, Xin Cao, Gao Cong, Christian S. Jensen, and Xueqi Cheng. Exploring progress
 655 in multivariate time series forecasting: Comprehensive benchmarking and heterogeneity anal-
 656 ysis. *IEEE Transactions on Knowledge and Data Engineering*, 37(1):291–305, 2025. doi:
 657 10.1109/TKDE.2024.3484454.

658

659 Artyom Stityuk and Jaesik Choi. xpatch: Dual-stream time series forecasting with exponential
 660 seasonal-trend decomposition. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 661 volume 39, pp. 20601–20609, 2025.

662

663 Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Series in Statistics.
 664 Springer, 2009.

665

666 Stylianos I. Vagropoulos, G. I. Chouliaras, E. G. Kardakos, C. K. Simoglou, and A. G. Bakirtzis.
 667 Comparison of sarimax, sarima, modified sarima and ann-based models for short-term pv genera-
 668 tion forecasting. In *2016 IEEE International Energy Conference (ENERGYCON)*, pp. 1–6, 2016.
 doi: 10.1109/ENERGYCON.2016.7514029.

669

670 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
 671 ing networks for one shot learning. In *Proceedings of the 30th International Conference on Neural
 672 Information Processing Systems*, NIPS’16, pp. 3637–3645, Red Hook, NY, USA, 2016. Curran
 673 Associates Inc. ISBN 9781510838819.

674

675 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
 676 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
 677 *The Twelfth International Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=7oLshfEIC2>.

678

679 Xishun Wang, Minjie Zhang, and Fenghui Ren. Learning customer behaviors for effective load
 680 forecasting. *IEEE Transactions on Knowledge and Data Engineering*, 31(5):938–951, 2019. doi:
 10.1109/TKDE.2018.2850798.

681

682 Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
 683 min Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting
 684 with exogenous variables. In *The Thirty-eighth Annual Conference on Neural Information Pro-
 685 cessing Systems*, 2024b. URL <https://openreview.net/forum?id=INAeUQ041T>.

686

687 Geoffrey S. Watson. Smooth regression analysis. *Sankhyā: The Indian Journal of Statistics, Series
 688 A (1961-2002)*, 26(4):359–372, 1964. ISSN 0581572X. URL <http://www.jstor.org/stable/25049340>.

689

690 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
 691 Transformers in time series: A survey. In *International Joint Conference on Artificial Intelli-
 692 gence(IJCAI)*, 2023.

693

694 Billy M. Williams. Multivariate vehicular traffic flow prediction: Evaluation of arimax modeling.
 695 *Transportation Research Record*, 1776(1):194–200, 2001. doi: 10.3141/1776-25. URL <https://doi.org/10.3141/1776-25>.

696

697 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transfor-
 698 mers with Auto-Correlation for long-term series forecasting. In *Advances in Neural Information
 699 Processing Systems*, 2021.

700

701 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 702 Temporal 2d-variation modeling for general time series analysis. In *International Conference on
 703 Learning Representations*, 2023.

702 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 703 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 704 11121–11128, 2023a.

705 Wei Zeng, Chengqiao Lin, Kang Liu, Juncong Lin, and Anthony K. H. Tung. Modeling spatial non-
 706 stationarity via deformable convolutions for deep traffic flow prediction. *IEEE Transactions on*
 707 *Knowledge and Data Engineering*, 35(3):2796–2808, 2023b. doi: 10.1109/TKDE.2021.3112977.

708 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 709 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty-
 710 Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pp.
 711 11106–11115. AAAI Press, 2021.

712 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
 713 enhanced decomposed transformer for long-term series forecasting. In *Proc. 39th International
 714 Conference on Machine Learning (ICML 2022)*, 2022.

717 USE OF GENERATIVE AI.

718 We used a large language model (LLM) to assist with (i) language editing (grammar/wording/typos),
 719 (ii) minor rewriting for clarity, and (iii) refactoring non-novel code utilities (*e.g.*, plotting scripts) that
 720 do not affect scientific claims. All technical ideas, experiment designs, analyses, and conclusions
 721 are authored by the authors. We verified every LLM-assisted snippet and did not rely on the LLM
 722 for data collection, experimental results, or figure generation beyond cosmetic formatting.

725 A PROOF OF ERROR BOUND FOR INTERPOLATION VS. EXTRAPOLATION

726 **Definition 1** (*L*-Lipschitz Continuity). A function $f : [t_0, t_1] \rightarrow \mathbb{R}$ is said to be *L*-Lipschitz continuous if for any $s, t \in [t_0, t_1]$, the following inequality holds:

$$727 |f(s) - f(t)| \leq L |s - t|.$$

728 **Theorem 1** (Error Bound of Interpolation with Future Continuation). Let $f : [t_0, t_1] \rightarrow \mathbb{R}$ be an
 729 *L*-Lipschitz function. For any point $t^* \in (t_0, t_1)$, the following holds:

730 1): Extrapolation error (using only the historical value at t_0): The worst-case error bound is

$$731 |f(t^*) - f(t_0)| \leq L |t^* - t_0| = L\Delta.$$

732 2): Interpolation error (using the historical value at t_0 and a future continuation $\hat{f}(t_1)$ with error
 733 bounded by ε):

734 Let $\hat{f}(t_1)$ be an approximation of $f(t_1)$ such that $|\hat{f}(t_1) - f(t_1)| \leq \varepsilon$. The linear interpolation
 735 estimate is defined as:

$$736 \hat{f} = \alpha f(t_0) + (1 - \alpha) \hat{f}(t_1), \alpha = \frac{t_1 - t^*}{t_1 - t_0}.$$

737 Then the error of this interpolation is bounded by:

$$738 |\hat{f} - f(t^*)| \leq L \frac{t_1 - t_0}{2} + (1 - \alpha)\varepsilon.$$

739 3): Interpolation is always superior to extrapolation.

740 **Proof.** The error bound for extrapolation follows directly from Definition 1.

741 For the interpolation error, we begin by decomposing the error term:

$$\begin{aligned} 742 |\hat{f} - f(t^*)| &= |\alpha f(t_0) + (1 - \alpha) \hat{f}(t_1) - f(t^*)| \\ 743 &= |\alpha(f(t_0) - f(t^*)) + (1 - \alpha)(\hat{f}(t_1) - f(t^*))| \\ 744 &\leq \alpha |f(t_0) - f(t^*)| + (1 - \alpha) |\hat{f}(t_1) - f(t^*)| \end{aligned}$$

756 Since f is L -Lipschitz, we have $|f(t_0) - f(t^*)| \leq L|t_0 - t^*| = L\Delta$, where $\Delta = t^* - t_0$.

757 For the second term, we apply the triangle inequality and the Lipschitz condition again:

759
$$|\hat{f}(t_1) - f(t^*)| \leq |\hat{f}(t_1) - f(t_1)| + |f(t_1) - f(t^*)| \leq \varepsilon + L|t_1 - t^*| = \varepsilon + L\Delta', \Delta' = t_1 - t^*.$$

761 Substituting these inequalities back yields:

763
$$|\hat{f} - f(t^*)| \leq \alpha L\Delta + (1 - \alpha)(\varepsilon + L\Delta') = L(\alpha\Delta + (1 - \alpha)\Delta') + (1 - \alpha)\varepsilon.$$

765 We now simplify the term $\alpha\Delta + (1 - \alpha)\Delta'$. Recalling that $\alpha = \frac{t_1 - t^*}{t_1 - t_0}$ and $1 - \alpha = \frac{t^* - t_0}{t_1 - t_0}$ we have:

768
$$\alpha\Delta + (1 - \alpha)\Delta' = \frac{t_1 - t^*}{t_1 - t_0}\Delta + \frac{t^* - t_0}{t_1 - t_0}\Delta' = \frac{(t_1 - t^*)\Delta + (t^* - t_0)\Delta'}{t_1 - t_0} = \frac{2\Delta\Delta'}{t_1 - t_0}.$$

770 By the inequality of arithmetic and geometric means (AM-GM), we have:

772
$$\Delta\Delta' \leq \left(\frac{\Delta + \Delta'}{2}\right)^2 = \left(\frac{t_1 - t_0}{2}\right)^2.$$

775 Therefore,

776
$$\alpha\Delta + (1 - \alpha)\Delta' \leq \left(\frac{t_1 - t_0}{2}\right)^2 \frac{2}{t_1 - t_0} = \frac{t_1 - t_0}{2}.$$

779 Substituting this back, we obtain the general bound:

780
$$|\hat{f} - f(t^*)| \leq L\left(\frac{t_1 - t_0}{2}\right)^2 \frac{2}{t_1 - t_0} + (1 - \alpha)\varepsilon.$$

783 Since $1 - \alpha = \frac{t^* - t_0}{t_1 - t_0} = \frac{\Delta}{t_1 - t_0} \leq 1$, it follows that $(1 - \alpha)\varepsilon \leq \varepsilon$, namely,

785
$$|\hat{f} - f(t^*)| \leq L\frac{t_1 - t_0}{2} + \varepsilon.$$

787 When $\varepsilon = 0$ or ε is small, $L\frac{t_1 - t_0}{2} < L|t_1 - t_0|$.

789 Therefore, interpolation is always superior to extrapolation.

790 This completes the proof.

793 B PREDICTOR-BASED ALTERNATIVE AUXILIARY CONSTRUCTION (CONCEPT ONLY)

796 **Idea.** The two-stream interface in KUP-BI accepts any proposal that has the same shape as the history \mathbf{H} . Beyond retrieval, a *predictor-based continuation-style auxiliary* can be obtained by making 797 the backbone output a longer horizon in a single forward pass (for example, input length 336 and 798 output length 336+336) and taking the tail window $\hat{\mathbf{Y}}_{336:672}$ as an auxiliary sequence with the same 799 length as the history. This illustrates that our two-stream design is, by construction, agnostic to the 800 specific source used to construct the auxiliary sequence, as long as it is a deterministic function of 801 the current input (and fixed model parameters).

803 Why we do not include it as a comparison experiment.

804 (1) *Modelling complexity.* One-shot longer-horizon prediction typically requires modifying or at 805 least fine-tuning the prediction head to 336+336 and carefully handling timestamps; even a zero- 806 training rolling variant introduces notable runtime variance.

808 (2) *Quality sensitivity.* The tail window of a long-horizon forecast tends to be noisier than the first 809 horizon; without additional phase correction or regularisation, its usefulness as an auxiliary sequence 810 depends on careful gating tuning, which would substantially expand the hyperparameter budget.

810 Table 4: Detailed dataset descriptions.
811

Dataset	Information	Datset Size	Length	Channel	Frequency
ETTh1		(8545, 2881, 2881)	17420		1 hour
ETTh2				7	
ETTm1	Energy	(34465, 11521, 11521)	69680		15 min
ETTm2					
ILI	Healthcare	(617, 74, 170)	966	7	1 Week
Exchange	Finance	(5120, 665, 1422)	7588	8	1 day
Weather	Weather	(36792, 5271, 10540)	52696	21	10 min

812 (3) *Fairness and scope.* Our contribution targets the *form and usage* of continuation-style auxiliary
813 features (for example, simple ratio-style transformations plus gated residual fusion), rather than an
814 exhaustive comparison over all possible auxiliary sources. In this paper we therefore focus on a
815 single, simple retrieval-based instantiation to keep the experimental scope controlled.

816 **Takeaway.** The existence of this predictor-based alternative supports the claim that our two-stream
817 design does not rely on a particular retrieval mechanism: any reasonable continuation-style auxiliary
818 sequence (retrieval-based, predictor-based or hybrid), viewed as a deterministic function of the input
819 and a fixed library or model, can in principle be plugged into the same ratio-style transformation and
820 gated-residual fusion machinery without changing the core framework.

821 C DATASET DESCRIPTIONS

822 In this paper, we consider six datasets to verify the effectiveness of the method proposed in this
823 paper. Their details are as follows.

824 **ETT (Electricity Transformer Temperature)** (Zhou et al. (2021)): The ETT dataset consists of
825 two subsets with an hourly granularity (“h”) and two subsets with a 15-minute granularity (“m”).
826 These datasets contain electricity transformer data collected from two different counties between
827 July 2016 and July 2018, with seven recorded features. The suffixes “1” and “2” distinguish the two
828 regions where the data were collected.

829 **Exchange** (Lai et al. (2018)): It contains the daily exchange rates of eight countries from 1990 to
830 2016, including Australia, the United Kingdom, Canada, Switzerland, China, Japan, New Zealand
831 and Singapore.

832 **ILI**²: The ILI dataset reports the proportion of patients diagnosed with influenza-like illness relative
833 to the total number of patients. It provides weekly records collected by the U.S. Centers for Disease
834 Control and Prevention (CDC) spanning the years 2002 to 2021.

835 The data processing and train-validation-test splitting schemes described in earlier literature (Nie
836 et al. (2023); Zeng et al. (2023a); Wu et al. (2023)) are followed in this paper. For the ETT dataset,
837 the split ratio is 6:2:2, while for the other datasets it is 7:1:2. Details of the datasets are provided in
838 Table 4.

839 D BACKBONE MODELS

840 In this paper, we select one representative state-of-the-art model from each of the three most clas-
841 sic architectures as our backbone: Transformer-based PatchTST (Nie et al. (2023)), MLP-based
842 DLinear (Zeng et al. (2023a)), CNN-based TimesNet (Wu et al. (2023)), and a hybrid dual-stream
843 (MLP+CNN) non-Transformer model xPatch (Stitsyuk & Choi (2025)). We largely follow the offi-
844 cial implementations of these backbones. Specifically, for PatchTST, we fix the batch size and apply
845 Bayesian search to tune the other hyperparameters. For the other two models, our search space
846 covers the most important parameters (e.g., learning rate, batch_size, d_model, etc.).

847 **PatchTST**³: A model based on patch learning that adopts a channel-independent approach for mul-
848 tivariate time-series modeling.

849 ²<https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html>

850 ³<https://github.com/yuqinie98/PatchTST>

864 **DLinear**⁴: A streamlined model whose learning process involves only decomposition and linear
 865 layers.
 866

867 **TimesNet**⁵: It converts one-dimensional time series into two-dimensional representations to model
 868 multi-periodic patterns and leverages CNNs to capture dependencies both across and within periods.
 869

870 **xPatch**⁶: A dual-stream CNN-MLP architecture that applies exponential seasonal-trend decomposi-
 871 tion, patching, and channel-independence to capture both linear and nonlinear patterns in multi-
 872 variate time-series forecasting.
 873

874 E CONCATENATION BASELINE VS. GATED FUSION

875 We compare two ways of utilising the continuation-style auxiliary stream, keeping all other settings
 876 fixed: (1) **Concatenation**. The constructed continuation-style auxiliary sequence is appended after
 877 the current input along the time axis, and the resulting longer sequence is fed into the backbone
 878 as a single stream (with extended time encoding). (2) **Fusion (ours)**. The historical stream and
 879 the continuation-style auxiliary stream are encoded separately, and their feature representations are
 880 fused by the lightweight gated module described in Section 3.
 881

882 Table 5 shows that Fusion consistently outperforms Concatenation across four backbones and all
 883 six datasets in both MSE and MAE, with only rare near-ties (e.g., TimesNet on ETTm2). The gap
 884 is particularly pronounced on simpler models such as DLinear (e.g., ETTh2: MSE 0.394 vs. 0.464;
 885 ILI: MSE 2.292 vs. 2.512), and remains steady on PatchTST, TimesNet, and xPatch. These results
 886 indicate that the way in which the future continuation is integrated into the model matters: naive
 887 concatenation is not sufficient.
 888

889 Table 5: Fusion (ours) vs. Concatenation across ETTh1/ETTh2/ETTm1/ETTm2, ILI, and Exchange
 890 with four backbones (PatchTST, DLinear, TimesNet, xPatch). Results are averaged from all predic-
 891 tion lengths. The better results are highlighted in **bold**. Full results are listed in **Appendix F.2**.
 892

Model	PatchTST+KUP-BI				DLinear+KUP-BI				TimesNet+KUP-BI				xPatch+KUP-BI			
	Fusion		Concatenation		Fusion		Concatenation		Fusion		Concatenation		Fusion		Concatenation	
Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	0.409	0.425	0.427	0.435	0.425	0.437	0.466	0.468	0.453	0.453	0.501	0.475	0.409	0.422	0.412	0.429
ETTh2	0.327	0.376	0.331	0.381	0.394	0.426	0.464	0.463	0.396	0.414	0.404	0.418	0.338	0.381	0.350	0.389
ETTm1	0.350	0.379	0.394	0.407	0.358	0.380	0.377	0.391	0.410	0.417	0.413	0.416	0.350	0.372	0.396	0.404
ETTm2	0.255	0.314	0.263	0.321	0.266	0.330	0.303	0.361	0.293	0.332	0.294	0.332	0.250	0.308	0.296	0.341
ILI	1.496	0.807	1.714	0.885	2.292	1.069	2.512	1.147	2.200	0.888	2.814	1.085	1.365	0.712	1.854	0.874
Exchange	0.367	0.411	0.395	0.424	0.312	0.389	0.392	0.434	0.397	0.432	0.400	0.433	0.359	0.402	0.379	0.410

900 F FULL RESULTS

901 F.1 FULL FORECASTING RESULTS

902 Due to page limits, we summarize the full multivariate forecasting results in Table 6. Under the
 903 same training/evaluation budget, augmenting each backbone with KUP-BI yields consistent im-
 904 provements across all datasets (and most forecast horizons), as evidenced by lower MSE/MAE.
 905

906 F.2 FULL PER-HORIZON RESULTS: FUSION (OURS) VS. CONCATENATION ACROSS 907 BACKBONES AND DATASETS

908 Table 7 summarizes how the two strategies (Concatenation and Fusion) affect model performance.
 909 Across ETTh1/2, ETTm1/2, ILI, and Exchange, Fusion (ours) consistently outperforms Concatena-
 910 tion for all four backbones, with only rare near ties.
 911

912 ⁴<https://github.com/cure-lab/LTSF-Linear>

913 ⁵<https://github.com/thuml/Time-Series-Library>

914 ⁶<https://github.com/stitsyuk/xPatch/tree/main>

918 Table 6: Full results of the long-term forecasting task. Avg means the average results from all four
919 prediction lengths. The better results are highlighted in **bold**.

Model	PatchTST				DLinear				TimesNet				xPatch				
	Ori	+KUP-BI	Ori	+KUP-BI	Ori	+KUP-BI	Ori	+KUP-BI	Ori	+KUP-BI	Ori	+KUP-BI	Ori	+KUP-BI	Ori	+KUP-BI	
ETTh1	96	0.382	0.405	0.364	0.391	0.384	0.405	0.372	0.394	0.396	0.417	0.387	0.412	0.369	0.397	0.359	0.389
	192	0.414	0.421	0.404	0.415	0.443	0.450	0.406	0.415	0.466	0.459	0.446	0.447	0.424	0.426	0.405	0.414
	336	0.431	0.436	0.434	0.440	0.447	0.448	0.443	0.443	0.506	0.477	0.487	0.470	0.450	0.437	0.423	0.428
	720	0.449	0.466	0.432	0.456	0.504	0.515	0.479	0.495	0.521	0.497	0.493	0.483	0.533	0.494	0.450	0.458
	Avg	0.419	0.432	0.409	0.425	0.445	0.454	0.425	0.437	0.472	0.463	0.453	0.453	0.444	0.438	0.409	0.422
ETTh2	96	0.275	0.337	0.272	0.333	0.290	0.353	0.282	0.347	0.336	0.372	0.319	0.362	0.275	0.333	0.274	0.333
	192	0.338	0.378	0.335	0.376	0.388	0.422	0.344	0.393	0.423	0.426	0.395	0.407	0.337	0.375	0.337	0.375
	336	0.329	0.379	0.326	0.377	0.463	0.473	0.400	0.435	0.444	0.444	0.435	0.439	0.365	0.398	0.362	0.398
	720	0.379	0.422	0.375	0.419	0.733	0.606	0.550	0.528	0.457	0.464	0.435	0.449	0.391	0.426	0.381	0.420
	Avg	0.330	0.379	0.327	0.376	0.469	0.463	0.394	0.426	0.415	0.426	0.396	0.414	0.342	0.383	0.338	0.381
ETTm1	96	0.292	0.343	0.295	0.345	0.301	0.345	0.300	0.344	0.338	0.375	0.339	0.378	0.289	0.332	0.289	0.333
	192	0.336	0.371	0.329	0.368	0.336	0.366	0.335	0.366	0.403	0.408	0.385	0.400	0.330	0.357	0.331	0.358
	336	0.366	0.392	0.362	0.387	0.372	0.389	0.373	0.390	0.421	0.424	0.414	0.423	0.364	0.381	0.363	0.382
	720	0.418	0.424	0.413	0.417	0.427	0.423	0.425	0.420	0.498	0.464	0.504	0.467	0.426	0.417	0.419	0.414
	Avg	0.353	0.382	0.350	0.379	0.359	0.381	0.358	0.380	0.415	0.418	0.410	0.417	0.352	0.372	0.350	0.372
ETTm2	96	0.165	0.255	0.165	0.256	0.172	0.267	0.166	0.258	0.188	0.266	0.185	0.266	0.159	0.245	0.160	0.246
	192	0.220	0.292	0.220	0.293	0.237	0.314	0.222	0.300	0.257	0.312	0.251	0.306	0.217	0.286	0.217	0.288
	336	0.278	0.329	0.274	0.327	0.295	0.359	0.299	0.364	0.322	0.350	0.320	0.349	0.275	0.325	0.274	0.325
	720	0.368	0.385	0.362	0.381	0.427	0.439	0.377	0.400	0.419	0.405	0.418	0.406	0.357	0.377	0.348	0.374
	Avg	0.258	0.315	0.255	0.314	0.283	0.345	0.266	0.330	0.296	0.333	0.293	0.332	0.252	0.308	0.250	0.308
ILI	24	1.584	0.840	1.409	0.781	2.280	1.061	2.224	1.036	2.662	0.974	2.531	0.884	1.334	0.699	1.323	0.693
	36	1.442	0.831	1.341	0.765	2.235	1.059	2.225	1.057	2.756	1.010	2.116	0.904	1.329	0.683	1.300	0.675
	48	1.685	0.853	1.596	0.825	2.298	1.079	2.266	1.060	2.299	0.922	2.246	0.892	1.358	0.706	1.373	0.711
	60	1.608	0.886	1.636	0.860	2.573	1.157	2.453	1.121	2.035	0.912	1.907	0.872	1.512	0.785	1.463	0.770
	Avg	1.580	0.852	1.496	0.807	2.347	1.089	2.292	1.069	2.438	0.955	2.200	0.888	1.383	0.718	1.365	0.712
Exchange	96	0.097	0.217	0.089	0.211	0.085	0.209	0.086	0.207	0.108	0.236	0.110	0.238	0.081	0.197	0.085	0.202
	192	0.193	0.313	0.199	0.322	0.162	0.296	0.153	0.285	0.213	0.335	0.203	0.325	0.175	0.296	0.182	0.302
	336	0.364	0.439	0.338	0.421	0.333	0.441	0.355	0.437	0.367	0.439	0.358	0.435	0.343	0.421	0.344	0.422
	720	0.885	0.703	0.841	0.690	0.898	0.725	0.653	0.628	0.971	0.751	0.916	0.731	0.857	0.698	0.825	0.684
	Avg	0.385	0.418	0.367	0.411	0.369	0.418	0.312	0.389	0.415	0.440	0.397	0.432	0.364	0.403	0.359	0.402

F.3 FULL ABLATION RESULTS OF KUP-BI COMPONENTS (W/O RATIO, W/O DISTRIBUTION ALIGNMENT, W/O α)

Tables 8–11 report ablations of KUP-BI on four backbones. Because input-level normalization in PatchTST/TimesNet/xPatch already neutralizes scale mismatches, the distribution-alignment component is only meaningful for DLinear; for the other three backbones we therefore report two ablations: w/o ratio and w/o α . Overall, alpha and ratio are indispensable because the overall performance of the w/o ratio and w/o α methods is not as good as that of the original KUP-BI.

G TRAINING-TIME COST (MS/BATCH) ON ETTH1/2

We measured training time per batch (including forward and backward passes) on ETTh1/2 for four backbones (PatchTST, DLinear, TimesNet, xPatch) and four prediction horizons (96/192/336/720), using the same batch size and a single GPU. The detailed numbers are reported in Table 12.

Averaged over the four horizons on ETTh1, we obtain: 1) PatchTST: 11.6 → 15.4 ms/batch (+3.8 ms); 2) DLinear: 2.28 → 5.08 ms/batch (+2.8 ms); 3) TimesNet: 36.8 → 77.4 ms/batch (+40.7 ms); 4) xPatch: 11.0 → 11.0 ms/batch (essentially unchanged).

On ETTh2, we observe similar trends: PatchTST and xPatch incur at most about 0-20% extra time (\leq 3-4 ms per batch), DLinear shows a larger relative factor but the absolute overhead remains small (around 1–3 ms/batch), and TimesNet shows about a two-fold increase in ms/batch under our current unoptimized retrieval implementation.

Overall, these results show that for typical patch-based backbones (PatchTST, xPatch), KUP-BI behaves as a lightweight plug-in with only a few additional milliseconds per batch. For very small or very heavy models (DLinear, TimesNet), the relative overhead can be higher, which is mainly due to our current prototype of exact correlation-based retrieval over a large library. This cost is not inherent to KUP-BI itself and can be further reduced with standard engineering optimizations.

972 Table 7: Fusion (ours) vs. Concatenation across ETTh1/ETTh2/ETTm1/ETTm2, ILI, and Exchange
973 with four backbones (PatchTST, DLinear, TimesNet, xPatch). Avg means the average results from
974 all four prediction lengths. The better results are highlighted in **bold**.

975	Model	PatchTST+KUP-BI				DLinear+KUP-BI				TimesNet+KUP-BI				xPatch+KUP-BI			
		Fusion	Concatenation	Fusion	Concatenation	Fusion	Concatenation	Fusion	Concatenation	Fusion	Concatenation	MSE	MAE	MSE	MAE		
977	ETTh1	96	0.364 0.391	0.389	0.408	0.372 0.394	0.413	0.425	0.387 0.412	0.408	0.424	0.359 0.389	0.366	0.397			
		192	0.404 0.415	0.418	0.422	0.406 0.415	0.453	0.453	0.446 0.447	0.513	0.476	0.405 0.414	0.412	0.422			
		336	0.434 0.440	0.457	0.453	0.443 0.443	0.467	0.463	0.487 0.470	0.537	0.491	0.423 0.428	0.424	0.431			
		720	0.432 0.456	0.445	0.457	0.479 0.495	0.532	0.531	0.493 0.483	0.544	0.508	0.450 0.458	0.446	0.466			
		Avg	0.409 0.425	0.427	0.435	0.425 0.437	0.466	0.468	0.453 0.453	0.501	0.475	0.409 0.422	0.412	0.429			
980	ETTh2	96	0.272 0.333	0.280	0.341	0.282 0.347	0.311	0.371	0.319 0.362	0.322	0.362	0.274 0.333	0.277	0.338			
		192	0.335 0.376	0.336	0.377	0.344 0.393	0.388	0.418	0.395 0.407	0.407	0.413	0.337 0.375	0.354	0.384			
		336	0.326 0.377	0.326	0.382	0.400 0.435	0.467	0.469	0.435 0.439	0.432 0.438	0.362 0.398	0.374	0.407				
		720	0.375 0.419	0.383	0.423	0.550 0.528	0.690	0.593	0.435 0.449	0.455	0.459	0.381 0.420	0.392	0.427			
		Avg	0.328 0.378	0.331	0.381	0.394 0.426	0.464	0.463	0.396 0.414	0.404	0.418	0.338 0.381	0.350	0.389			
984	ETTm1	96	0.295 0.345	0.349	0.384	0.300 0.344	0.324	0.360	0.339 0.378	0.342	0.375	0.289 0.333	0.342	0.375			
		192	0.329 0.368	0.380	0.403	0.335 0.366	0.356	0.380	0.385 0.400	0.390	0.402	0.331 0.358	0.366	0.389			
		336	0.362 0.387	0.399	0.407	0.373 0.390	0.385	0.395	0.414 0.423	0.424	0.425	0.363 0.382	0.402	0.407			
		720	0.413 0.417	0.448	0.435	0.425 0.420	0.443	0.429	0.504	0.467	0.496 0.461	0.419	0.414	0.472	0.446		
		Avg	0.350 0.379	0.394	0.407	0.358 0.380	0.377	0.391	0.410 0.417	0.413	0.416	0.350 0.372	0.396	0.404			
987	ETTm2	96	0.165 0.256	0.173	0.265	0.166 0.258	0.182	0.280	0.185 0.266	0.190	0.267	0.160 0.246	0.184	0.272			
		192	0.220 0.293	0.227	0.299	0.222 0.300	0.251	0.330	0.251	0.306 0.250	0.307	0.217 0.288	0.256	0.319			
		336	0.274 0.327	0.283	0.335	0.299 0.364	0.301	0.360	0.320 0.349	0.321	0.350	0.274 0.325	0.320	0.359			
		720	0.362 0.381	0.368	0.386	0.377 0.400	0.478	0.474	0.418	0.406 0.416	0.406	0.348 0.374	0.425	0.413			
		Avg	0.255 0.314	0.263	0.321	0.266 0.330	0.303	0.361	0.293 0.332	0.294	0.332	0.250 0.308	0.296	0.341			
991	ILI	24	1.409 0.781	1.687	0.870	2.224 1.036	2.647	1.179	2.531 0.884	2.955	1.123	1.323 0.693	2.207	0.991			
		36	1.341 0.765	1.536	0.846	2.225 1.057	2.476	1.147	2.116 0.904	3.139	1.126	1.300 0.675	1.497	0.757			
		48	1.596 0.825	1.815	0.911	2.266 1.060	2.372	1.116	2.246 0.892	2.693	1.071	1.373 0.711	1.374	0.742			
		60	1.636 0.860	1.817	0.912	2.453 1.121	2.551	1.146	1.907 0.872	2.469	1.021	1.463 0.770	2.339	1.006			
		Avg	1.496 0.807	1.714	0.885	2.292 1.069	2.512	1.147	2.200 0.888	2.814	1.085	1.365 0.712	1.854	0.874			
994	Exchange	96	0.089 0.211	0.094	0.217	0.086 0.207	0.098	0.226	0.110 0.238	0.113	0.240	0.085	0.202 0.084	0.202			
		192	0.199 0.322	0.205	0.324	0.153 0.285	0.195	0.315	0.203 0.325	0.203	0.302	0.179 0.301	0.182	0.302			
		336	0.338 0.421	0.381	0.447	0.355 0.437	0.435	0.497	0.358 0.435	0.366	0.441	0.344	0.422	0.321 0.409			
		720	0.841 0.690	0.901	0.707	0.653 0.628	0.840	0.697	0.916 0.731	0.918	0.728	0.825 0.684	0.933	0.729			
		Avg	0.367 0.411	0.395	0.424	0.312 0.389	0.392	0.434	0.397 0.432	0.400	0.433	0.359 0.402	0.379	0.410			

998 Table 8: Ablation study of the components of KUP-BI on the ETTh2, ETTm2, ILI and Exchange
999 datasets using DLinear as a backbone. The best results are highlighted in **bold**, and the second-best
1000 results are highlighted in underline.

1001	Model	DLinear + KUP-BI				w/o distribution		w/o ratio		w/o α	
		Metric	MSE	MAE	MSE	MSE	MAE	MSE	MAE	MSE	MAE
1003	ETTh2	96	0.282	0.347	0.662	0.528	0.285	0.348	0.282	0.347	
		192	0.344	0.393	0.907	0.608	0.350	0.396	0.345	0.394	
		336	0.400	<u>0.435</u>	1.125	0.692	0.395	0.429	0.399	0.435	
		720	0.550	0.528	1.263	0.763	0.553	0.529	0.550	0.528	
		Avg	0.394	0.426	0.989	0.648	0.396	0.426	0.394	0.426	
1006	ETTm2	96	0.166	0.258	0.280	0.338	0.165	0.258	0.166	0.259	
		192	0.222	0.300	0.358	0.388	0.221	0.299	0.222	0.300	
		336	0.299	0.364	0.384	0.401	0.299	0.363	0.302	0.365	
		720	0.377	0.400	0.455	0.443	0.377	0.400	0.379	0.401	
		Avg	0.266	0.330	0.369	0.392	0.266	0.330	0.267	0.332	
1009	ILI	24	2.224	1.036	2.238	1.041	2.229	1.038	2.482	1.089	
		36	2.225	1.057	2.267	1.064	2.237	1.061	2.359	1.075	
		48	2.266	<u>1.060</u>	2.288	1.062	2.253	1.056	2.482	1.119	
		60	2.453	<u>1.121</u>	2.507	1.125	2.430	1.114	2.658	1.178	
		Avg	2.292	1.069	2.325	1.073	2.287	1.068	2.495	1.115	
1013	Exchange	96	0.086	0.207	0.345	0.378	0.085	0.207	0.087	0.208	
		192	0.153	0.285	0.796	0.584	0.156	0.287	0.154	0.286	
		336	0.355	0.437	2.013	0.934	0.353	0.434	0.356	0.438	
		720	0.653	0.628	1.314	0.881	0.669	0.635	0.840	0.687	
		Avg	0.312	0.389	1.117	0.694	0.316	0.391	0.359	0.405	

H RELATIONSHIP BETWEEN AUXILIARY QUALITY AND FORECASTING

GAINS

1019 In this section, we evaluated the impact of the quality of the auxiliary quality on the forecasting
1020 gains. For each sample, we align the constructed continuation-style auxiliary segment (length L ,
1021 channels C) with its corresponding ground-truth post-target segment (the L steps immediately after
1022 the target window T), flatten both into vectors, and compute the Pearson correlation coefficient r
1023 and the mean squared error of the auxiliary (MSE_{aux}).
1024
1025 Table 13 reports both the forecasting metrics (MSE and MAE) and the auxiliary-quality metrics
1026 (mean $|r|$, MSE_{aux}) on ETTh1/2 and ETTm1/2. To ensure fairness and reproducibility, all hyper-

1026 Table 9: Ablation study of the components of KUP-BI on the ETTh2, ETTm2, ILI and Exchange
 1027 datasets using PatchTST as a backbone. The best results are highlighted in **bold**, and the second-best
 1028 results are highlighted in underline.

Model	PatchTST + KUP-BI		w/o ratio		w/o α		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh2	96	0.272	<u>0.333</u>	0.274	0.336	0.278	0.340
	192	0.335	0.376	0.348	<u>0.382</u>	<u>0.344</u>	0.386
	336	0.326	0.377	0.331	<u>0.387</u>	0.333	0.387
	720	0.375	0.419	0.385	0.427	<u>0.381</u>	0.422
	Avg	0.327	0.376	0.335	0.383	<u>0.334</u>	0.384
ETTm2	96	0.165	0.256	0.166	0.256	0.168	0.258
	192	0.220	<u>0.293</u>	0.222	0.294	0.231	0.302
	336	0.274	<u>0.327</u>	0.274	<u>0.327</u>	0.285	0.334
	720	0.362	0.381	0.363	0.381	0.377	0.390
	Avg	0.255	0.314	0.257	<u>0.314</u>	0.265	0.321
ILI	24	<u>1.409</u>	0.781	1.392	0.772	2.174	1.055
	36	<u>1.341</u>	0.765	1.321	0.758	1.497	0.819
	48	1.596	0.825	1.683	0.836	<u>1.673</u>	0.879
	60	1.636	0.860	1.630	0.859	2.066	0.986
	Avg	1.496	0.807	1.507	0.807	1.852	0.935
Exchange	96	0.089	0.211	0.088	0.209	0.091	0.213
	192	0.199	<u>0.322</u>	0.196	0.317	0.202	0.324
	336	0.338	<u>0.421</u>	0.334	0.418	0.351	0.431
	720	0.841	0.690	0.900	0.708	<u>0.845</u>	0.691
	Avg	0.367	0.411	0.380	<u>0.413</u>	0.372	0.415

1044 Table 10: Ablation study of the components of KUP-BI on the ETTh2, ETTm2, ILI and Exchange
 1045 datasets using TimesNet as a backbone. The best results are highlighted in **bold**, and the second-best
 1046 results are highlighted in underline.

Model	TimesNet + KUP-BI		w/o ratio		w/o α		
Metric	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh2	96	0.319	0.362	0.339	0.373	0.322	0.364
	192	0.395	0.407	0.397	0.408	0.414	0.414
	336	0.435	0.439	0.436	0.440	0.432	0.439
	720	0.435	0.449	0.435	0.450	0.434	0.450
	Avg	0.396	0.414	0.402	0.418	<u>0.401</u>	0.417
ETTm2	96	0.185	0.266	0.189	0.268	0.188	0.269
	192	0.251	0.306	0.251	<u>0.307</u>	0.251	0.308
	336	0.320	<u>0.349</u>	0.312	0.345	0.318	0.349
	720	0.418	0.406	0.418	0.407	0.431	0.415
	Avg	0.293	0.332	0.293	0.332	0.297	0.335
ILI	24	2.531	0.884	<u>2.569</u>	<u>0.920</u>	3.346	1.150
	36	2.116	0.904	<u>2.236</u>	<u>0.929</u>	2.521	1.040
	48	<u>2.246</u>	0.892	2.140	0.881	2.207	0.962
	60	1.907	0.872	1.956	0.883	2.199	0.975
	Avg	2.200	0.888	2.225	0.903	2.568	1.032
Exchange	96	0.110	0.238	0.109	0.236	0.116	0.244
	192	0.203	<u>0.325</u>	0.203	<u>0.327</u>	0.207	0.327
	336	0.358	0.435	0.358	0.436	0.363	0.439
	720	0.916	0.731	0.918	0.731	0.912	0.727
	Avg	0.397	0.432	0.397	<u>0.432</u>	0.400	0.434

1063 parameters (Top- k , τ , L , T , etc.) follow the main experiments, and the retrieval library is built
 1064 only from the training set and kept frozen during evaluation to avoid data leakage; the ground-truth
 1065 post-target segments are used here solely as a diagnostic signal to assess the quality of the auxiliary
 1066 sequence, not as an input to the model.

1067 From Table 13, we observe a clear trend: KUP-BI’s gains are positively associated with the quality
 1068 of the continuation-style auxiliary sequence. Within datasets of the same type and temporal granular-
 1069 ity, a higher-quality auxiliary (larger mean $|r|$, smaller MSE_{aux}) tends to yield larger improvements.
 1070 For example, between ETTh1 and ETTh2, ETTh2 has both higher correlation and lower MSE than
 1071 ETTh1; accordingly, KUP-BI achieves larger error reductions on ETTh2. Overall, the closer the
 1072 auxiliary sequence is to the true post-target continuation, the more reliably KUP-BI reduces fore-
 1073 casting error; in more irregular or high-noise settings, the auxiliary becomes less informative, and
 1074 the benefit correspondingly diminishes.

I ALIGNMENT ASSUMPTION AND POSSIBLE EXTENSIONS

1075 Our current ratio operator assumes elementwise alignment between the history and its post-target
 1076 continuation within each training chain: we pair an equal-length history window and post-target
 1077 continuation window and compute their ratio at the same time index. The fused ratio is then applied

1080 Table 11: Ablation study of the components of KUP-BI on the ETTh2, ETTm2, ILI and Exchange
 1081 datasets using xPatch as a backbone. The best results are highlighted in **bold**, and the second-best
 1082 results are highlighted in underline.

Model	Metric	xPatch + KUP-BI		w/o ratio		w/o α	
		MSE	MAE	MSE	MAE	MSE	MAE
ETTh2	96	0.274	<u>0.333</u>	0.275	0.335	0.290	0.352
	192	0.337	<u>0.375</u>	0.348	<u>0.381</u>	0.357	0.396
	336	0.362	<u>0.398</u>	0.364	0.399	0.366	0.406
	720	0.381	<u>0.420</u>	0.384	0.424	0.407	0.439
	Avg	0.338	<u>0.381</u>	0.343	0.385	0.355	0.398
ETTm2	96	0.160	<u>0.246</u>	0.160	0.246	0.175	0.265
	192	0.217	<u>0.288</u>	0.217	0.288	0.235	0.308
	336	0.274	<u>0.325</u>	0.275	0.325	0.290	0.344
	720	0.348	<u>0.374</u>	0.349	0.374	0.372	0.393
	Avg	0.250	<u>0.308</u>	0.250	0.308	0.268	0.327
ILI	24	<u>1.323</u>	0.693	1.320	0.694	1.592	0.783
	36	1.300	<u>0.675</u>	1.322	0.682	1.547	0.780
	48	1.373	0.711	1.356	0.705	1.437	0.741
	60	1.463	<u>0.770</u>	1.535	0.787	1.842	0.887
	Avg	1.365	<u>0.712</u>	1.383	0.717	1.604	0.798
Exchange	96	0.085	0.202	0.084	0.201	0.093	0.214
	192	0.182	0.302	0.181	0.301	0.193	0.310
	336	0.344	<u>0.422</u>	0.344	0.423	0.370	0.441
	720	0.825	<u>0.684</u>	0.827	0.685	0.883	0.710
	Avg	0.359	<u>0.402</u>	0.359	0.402	0.385	0.418

1088 elementwise to the current input. This simple design keeps the computation cheap and transparent,
 1089 but it is sensitive to phase shifts: when two trajectories have similar shapes but are shifted in time,
 1090 the elementwise ratio can become noisy and reduce the quality of the constructed continuation-style
 1091 auxiliary sequence.

1092 A natural extension is to explicitly align the retrieved segments before forming the ratio. For ex-
 1093 ample, one could (i) search over a small lag window and choose the phase shift that maximizes
 1094 cross-correlation, then align the retrieved history–post-target continuation pair to this lag; (ii) adopt
 1095 a lightweight DTW-style alignment to handle local time misalignment before computing the ratio;
 1096 or (iii) define the ratio in the frequency domain (e.g., based on amplitude spectra), which is inher-
 1097 ently more robust to phase differences. In all of these cases, the overall KUP-BI framework would
 1098 remain unchanged and only the local definition of the ratio operator would become phase-aware.
 1099 We leave a systematic exploration of such phase-aware variants, and their impact on the quality of
 1100 the continuation-style auxiliary sequence, as an interesting direction for future work.

1111 Table 12: Training-time cost (ms/batch) on ETTh1/2 for four backbones.

Model	PatchTST		DLinear		TimesNet		xPatch	
	Ori	KUP-BI	Ori	KUP-BI	Ori	KUP-BI	Ori	KUP-BI
ETTh1	96	11.15	14.79	2.16	6.23	27.97	36.76	9.57
	192	11.06	15.12	2.29	4.21	30.62	51.56	10.52
	336	11.74	15.82	2.14	4.77	35.00	70.39	11.51
	720	12.47	15.95	2.53	5.12	53.54	151.01	12.36
ETTh2	96	11.06	10.09	1.92	2.76	29.25	51.67	6.35
	192	10.92	10.14	2.03	2.87	33.29	61.38	6.51
	336	11.47	10.28	2.06	2.90	38.66	75.20	6.64
	720	12.21	10.64	2.22	3.01	65.41	165.50	7.25

1120 Table 13: Effect of Retrieved Continuation-style Auxiliary on Forecasting Accuracy (DLinear, Test
 1121 Set).

Dataset	DLinear		DLinear+KUP-BI		Improvement		$mean r $	MSE_{pr}
	MSE	MAE	MSE	MAE	MSE	MAE		
ETTh1	0.445	0.454	0.425	0.437	4.403%	3.848%	0.588	0.803
ETTh2	0.469	0.463	0.394	0.426	15.887%	8.096%	0.883	0.342
ETTm1	0.359	0.381	0.358	0.380	0.181%	0.176%	0.471	1.252
ETTm2	0.283	0.345	0.266	0.330	5.930%	4.179%	0.926	0.222

1129 J A SIMPLE CONTINUATION-BASED LINEAR MODEL

1130
 1131 In this appendix we sketch a mathematically simpler variant of our continuation-based idea that
 1132 removes the deep backbone and keeps only a basic continuation summary and a linear predictor.
 1133 This toy model is not part of our main experiments, but it illustrates in a clean way how information
 1134 from post-target continuations can be incorporated into a coherent estimator.

1134 **Setup.** We consider a univariate time series $\{x_t\}_{t=1}^T$ and one-step-ahead forecasting. Fix a history
 1135 length $L \geq 1$. From the training sequence we construct triples of the form
 1136

$$1137 \quad (\mathbf{H}_j, y_j, \mathbf{F}_j) = \left((x_j, x_{j+1}, \dots, x_{j+L-1}), x_{j+L}, (x_{j+L+1}, \dots, x_{j+2L}) \right), \quad j = 1, \dots, N.$$

1138

1139 Here $\mathbf{H}_j \in \mathbb{R}^L$ is the history window, $y_j \in \mathbb{R}$ is the one-step target, and $\mathbf{F}_j \in \mathbb{R}^L$ is a post-
 1140 target continuation segment of the same length. This realises the natural ‘‘history–target–post-target’’
 1141 continuation decomposition at a minimal scale.

1142 **Continuation summary.** For each training triple $(\mathbf{H}_j, y_j, \mathbf{F}_j)$ we define a scalar continuation summary
 1143

$$1144 \quad s_j = \frac{1}{L} \sum_{i=1}^L (F_j[i] - H_j[i]),$$

1145

1146 that is, the average increment between the aligned continuation and history entries. Intuitively,
 1147 $s_j > 0$ indicates that, on average, the trajectory tends to keep moving upwards after the target, while
 1148 $s_j < 0$ indicates a downward tendency, and $s_j \approx 0$ corresponds to approximately flat continuation.
 1149 We then form a library of history–continuation summaries

$$1151 \quad \mathcal{D}_{\text{CS}} = \{(\mathbf{H}_j, s_j)\}_{j=1}^N.$$

1152

1153 **Linear continuation model.** As a simple generative model, we posit that the target y_j can be
 1154 expressed as a local adjustment of the last history value by the typical continuation tendency:

$$1155 \quad y_j = x_{j+L-1} + \beta s_j + \epsilon_j,$$

1156

1157 where $\beta \in \mathbb{R}$ is an unknown coefficient and ϵ_j is a zero-mean noise sequence with $\mathbb{E}[\epsilon_j | \mathbf{H}_j, s_j] = 0$. In this toy setting the continuation summary s_j acts as a one-dimensional feature that modulates
 1158 how the last history value should be adjusted. Given $(\mathbf{H}_j, y_j, s_j)_{j=1}^N$, the least-squares estimate of
 1159 β is

$$1160 \quad \hat{\beta} = \arg \min_{\beta \in \mathbb{R}} \sum_{j=1}^N (y_j - x_{j+L-1} - \beta s_j)^2,$$

1161

1162 which has a closed-form solution in terms of the sample covariance between s_j and the residual
 1163 $y_j - x_{j+L-1}$.

1164 **Non-parametric estimation of continuation for new histories.** At test time, given a new history
 1165 window $\mathbf{X} = (x_1, \dots, x_L) \in \mathbb{R}^L$, we no longer have access to its true post-target continuation.
 1166 However, we can estimate a typical continuation summary for histories similar to \mathbf{X} by nonpara-
 1167 metrically smoothing the values $\{s_j\}$ in the library \mathcal{D}_{CS} . Specifically, we use a Nadaraya–Watson
 1168 kernel regressor (Nadaraya, 1964; Watson, 1964; Bierens, 1994):

$$1169 \quad w_j(\mathbf{X}) = \frac{K(\|\mathbf{X} - \mathbf{H}_j\|/h)}{\sum_{i=1}^N K(\|\mathbf{X} - \mathbf{H}_i\|/h)}, \quad \hat{s}(\mathbf{X}) = \sum_{j=1}^N w_j(\mathbf{X}) s_j,$$

1170

1171 where $K : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is a bounded kernel (e.g. Gaussian) and $h > 0$ is a bandwidth. Here $\hat{s}(\mathbf{X})$
 1172 estimates the conditional mean $\mathbb{E}[s | \mathbf{H} = \mathbf{X}]$ based on the training library.

1173 **Resulting predictor.** Combining the linear model with the non-parametric estimate of the continu-
 1174 ation summary, we obtain the following simple continuation-based predictor:

$$1175 \quad \hat{y}(\mathbf{X}) = x_L + \hat{\beta} \hat{s}(\mathbf{X}),$$

1176

1177 where x_L is the last entry of the history window \mathbf{X} . In words, $\hat{s}(\mathbf{X})$ captures how histories similar
 1178 to \mathbf{X} have typically continued beyond the target in the training data, and $\hat{\beta}$ determines how strongly
 1179 this continuation tendency should influence the next-step prediction.

1180 Under standard assumptions from non-parametric regression and linear models—such as Lipschitz
 1181 continuity of the regression function $\mathbf{X} \mapsto \mathbb{E}[s | \mathbf{H} = \mathbf{X}]$, bounded support of the histories, a
 1182 regular kernel K , and a bandwidth schedule with $h \rightarrow 0$ and $Nh^d \rightarrow \infty$ —the Nadaraya–Watson
 1183 estimator $\hat{s}(\mathbf{X})$ is a consistent estimator of $s^*(\mathbf{X}) = \mathbb{E}[s | \mathbf{H} = \mathbf{X}]$, and the induced predictor

1188 $\hat{y}(\mathbf{X})$ can be analysed within the same framework in terms of bias–variance trade-offs as $N \rightarrow \infty$
1189 (Tsybakov, 2009; Györfi et al., 2002). A full statistical treatment of this distilled variant is beyond
1190 the scope of this paper, but we hope this toy model clarifies how continuation-style information
1191 can be incorporated into a mathematically coherent estimator “in the same vein” as KUP-BI, while
1192 abstracting away from the architectural details of modern deep backbones.

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241