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Abstract

Retrieval-Augmented Large Language Mod-001
els (LLMs), which integrate external knowl-002
edge, have shown remarkable performance in003
medical domains, including clinical diagno-004
sis. However, existing RAG methods often005
struggle to tailor retrieval strategies to diag-006
nostic difficulty and input sample informative-007
ness. This limitation leads to excessive and008
often unnecessary retrieval, impairing compu-009
tational efficiency and increasing the risk of010
introducing noise that can degrade diagnos-011
tic accuracy. To address this, we propose012
ICA-RAG (Information Completeness Guided013
Adaptive Retrieval-Augmented Generation), a014
novel framework for enhancing RAG reliabil-015
ity in disease diagnosis. ICA-RAG utilizes an016
adaptive control module to assess the neces-017
sity of retrieval based on the input’s informa-018
tion completeness. By optimizing retrieval and019
incorporating knowledge filtering, ICA-RAG020
better aligns retrieval operations with clinical021
requirements. Experiments on three Chinese022
electronic medical record datasets demonstrate023
that ICA-RAG significantly outperforms base-024
line methods, highlighting its effectiveness in025
clinical diagnosis.026

1 Introduction027

Large Language Models (LLMs) (Achiam et al.,028

2023; Saab et al., 2024) have demonstrated ex-029

ceptional capabilities in medical tasks, including030

clinical diagnosis (Zhou et al., 2024a). How-031

ever, their adoption faces challenges such as hal-032

lucination—the generation of plausible but incor-033

rect information (Maynez et al., 2020; Huang034

et al., 2023b)—and the resource-intensive nature035

of knowledge updates (Zhang et al., 2023b; Ka-036

sai et al., 2024). Retrieval-augmented generation037

(RAG) (Lewis et al., 2020) offers a solution by in-038

tegrating trustworthy external documents to reduce039

hallucinations and ensure up-to-date information.040

While researchers have extensively explored041

(a). Standard RAG Method

(b). Adaptive-RAG Based on LLM Output Distribution

(c). Adaptive-RAG Based on Classification Models

LLM

Retrieval

Patient Info

Patient Info

Retrieval
Overconfidence

…

Wrong Decision

LLM

Patient Info
Classifier

LLM prob

Retrieval

No Execution Control

  Low Efficiency

Irrelevant Information 

Low Retriv Usefullness

Complex Structure

Wrong Decision

Figure 1: Illustration of three different RAG paradigms
for solving clinical diagnosis task.

RAG to enhance LLM accuracy in high-risk do- 042

mains (Zhou et al., 2024b), not all medical cases 043

require this approach. Many common diseases 044

or cases with mild symptoms and clear diagnoses 045

can be accurately addressed by LLMs without re- 046

trieval (Jeong et al., 2024). However, most ex- 047

isting RAG methods lack selective retrieval logic, 048

instead performing retrievals for all queries indis- 049

criminately. This approach not only increases com- 050

putational and time costs but may also introduce 051

errors through low-quality retrievals (as shown in 052

Figure 1.a), potentially degrading rather than im- 053

proving performance. 054

To improve the efficiency of retrieval sys- 055

tems, researchers have proposed adaptive RAG 056

paradigms (Jeong et al., 2024; Su et al., 2024; Yao 057

et al., 2024), which establish control logic to acti- 058

vate the retrieval system only when certain condi- 059

tions are met. There are two common approaches 060

in these paradigms: (1) setting judgment conditions 061

based on LLM’s output text or probability distribu- 062
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tions (Yao et al., 2024; Su et al., 2024); (2) training063

a relatively smaller judgment model to determine064

whether to perform retrieval at a lower cost (Jeong065

et al., 2024). Figure 1-(b) and (c) provide corre-066

sponding examples of these approaches.067

However, the former approach has limitations as068

LLMs tend to be overconfident, generating high-069

confidence probability distributions even when070

lacking relevant knowledge (Huang et al., 2023a;071

Xu et al., 2024). Additionally, these methods typi-072

cally require access to LLM output probability dis-073

tributions (logits), limiting adaptability for API ser-074

vices or closed-source model applications. While075

the latter approach relies heavily on input content076

characteristics. For instance, Jeong et al. (Jeong077

et al., 2024) define "simple questions" as single-078

hop queries (e.g., "When is Michael F. Phelps’s079

birthday?") and "difficult questions" as multi-hop080

queries (e.g., "What currency is used in Bill Gates’s081

birthplace?"). Such question-answering tasks have082

distinct difficulty gradients, making them relatively083

easy for models to differentiate.084

Unlike single-hop or multi-hop question answer-085

ing tasks, input texts in the medical domain typi-086

cally do not exhibit obvious structural patterns that087

can be captured, making it extremely challenging088

for smaller language models to understand the diffi-089

culty of answering them. Therefore, the successful090

experiences from this approach cannot be directly091

transferred to other tasks.092

Based on above analysis, we proposed a disease093

diagnosis approach ICA-RAG, using adaptive re-094

trieval decision optimization, specifically tailored095

for complex structured and long-context medical096

texts. The core innovation introduces a retrieval097

decision optimization module based on input in-098

formation completeness. This module segments099

long inputs into text units, employs a classification100

model to predict each unit’s importance, and calcu-101

lates global information completeness to determine102

retrieval necessity. Since the classifier already iden-103

tifies important text units, these can be prioritized104

during retrieval, minimizing interference from ir-105

relevant information. Through a single prediction106

round, this module achieves both retrieval decision107

optimization and query selection, effectively ad-108

dressing the limitations in existing RAG paradigms.109

Our main contributions are as follows:110

• We propose ICA-RAG, a framework for adap-111

tive retrieval-augmented disease diagnosis112

without the need for tuning backbone LLMs.113

• We desgined a novel data annotation method- 114

ology that employs masking operations to 115

elicit varied responses from LLMs, thereby 116

acquiring label information. Concurrently, we 117

have optimized the retrieval process to better 118

accommodate clinical scenarios with complex 119

context. 120

• We conducted extensive experiments on three 121

Chinese EMR datasets to demonstrate the ef- 122

fectiveness of our ICA-RAG framework. 123

2 Related Work 124

2.1 RAG in Clinical Disease Diagnosis 125

To improve diagnostic accuracy, model reliability, 126

and reduce hallucination issues without retraining, 127

recent studies widely adopt Retrieval-Augmented 128

Generation (RAG) to integrate external medical 129

knowledge (Wen et al., 2023; Wu et al., 2024; Shi 130

et al., 2023; Thompson et al., 2023; Zhao et al., 131

2024b). Most research uses basic retrieval meth- 132

ods (Ge et al., 2024; Shi et al., 2023; Zhang et al., 133

2023a; Zhao et al., 2024b; Oniani et al., 2024), 134

typically leveraging embedding models to encode 135

external knowledge and task queries into vector 136

representations. Relevant knowledge is retrieved 137

via vector similarity and used in LLMs through 138

tailored prompts for diagnosis generation. Besides, 139

knowledge graphs are also widely employed (Wen 140

et al., 2023; Wu et al., 2024; Gao et al., 2023). 141

2.2 Adaptive-RAG 142

Adaptive Retrieval-Augmented Generation (RAG) 143

dynamically determines whether a large language 144

model (LLM) requires external knowledge re- 145

trieval to mitigate inaccuracies. FLARE (Jiang 146

et al., 2023b) and DRAGIN (Su et al., 2024) ac- 147

tivate search engines when the LLM generates 148

low-confidence tokens. Wang et al. (Wang et al., 149

2024a) use a prompting mechanism for LLMs to 150

autonomously decide on retrieval. Self-Awareness- 151

Guided Generation (Wang et al., 2023c) trains 152

a classifier to assess output authenticity, while 153

Adaptive-RAG (Jeong et al., 2024) evaluates query 154

complexity to determine retrieval necessity. Mallen 155

et al. (Mallen et al., 2023) propose activating re- 156

trieval based on entity frequency in queries, though 157

this may fail for complex, multi-step reasoning 158

tasks. Asai et al. introduce Self-RAG (Asai et al., 159

2023), which trains a model to dynamically re- 160

trieve, critique, and generate text. 161
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Figure 2: The overall architecture of our proposed framework ICA-RAG. It consists of three stages. Stage(a)
involves inference & Retrieval Decision Making Based on Fine-Grained Information Density. Stage (b) focuses on
knowledge retrieval and integration. Note that Stage (b) and (c) is activated only when the score computed in Stage
(a) falls below a predefined threshold.

3 Methods162

In this section, we first present the formal definition163

of disease diagnosis task and the task settings for164

adaptive-RAG-based disease diagnosis. Then we165

will introduce the details of each components of166

our proposed ICA-RAG framework.167

3.1 Preliminaries168

Direct Disease Diagnosis via LLM: Given a token169

sequence x = [x1, x2, . . . , xn] representing input170

text, LLM-based text generation can be formalized171

as y = LLM(x, prompt), where prompt is a task-172

specific template and y = [y1, y2, . . . , yn] is the173

generated output. For disease diagnosis, the input174

x is patient information Q, and the output y is175

the predicted diagnosis D̂, formalized as: D̂ =176

LLM(Q, prompt).177

RAG-based Disease Diagnosis: This approach178

retrieves relevant knowledge d from an exter-179

nal knowledge source K using a retrieval mod-180

ule Retriever. The diagnosis is then gener-181

ated by incorporating this knowledge: D̂ =182

LLM(Q, d, prompt), where d = Retriever(K,Q).183

In this paper, we use a document knowledge base184

KB as the external knowledge source, detailed in185

Appendix C.1. 186

Adaptive-RAG-based Disease Diagnosis: This 187

paradigm introduces a control function F that eval- 188

uates input Q to determine whether retrieval is nec- 189

essary: 190

D̂ =

{
LLM(Q, prompt), if F (Q) = ⟨Activate⟩
LLM(Q, d, prompt), otherwise

(1) 191

where d = Retriever(K,Q). The control function 192

F can be implemented through various approaches, 193

such as LLM token probability distributions, confi- 194

dence levels, or a smaller trained decision model. 195

3.2 Retrieval Decision Optimization Based on 196

Input Information Completeness 197

3.2.1 Calculation of Input Information 198

Completeness 199

Although smaller language models can evaluate the 200

complexity of input questions and make retrieval 201

decisions (Jeong et al., 2024), they struggle with 202

long, complex medical diagnostic contexts. These 203

models often rely on superficial features rather than 204

semantic understanding when processing extensive 205

inputs. Training larger models specifically for this 206
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Figure 3: Details of our proposed annotation strategy. During the annotation process, we adopt different annotation
strategies based on the responses generated by the LLM.

purpose (Asai et al., 2023) is resource-intensive207

and contradicts RAG paradigm objectives.208

To address this limitation, we segments the input209

Q into manageable text units (defaulting to sen-210

tences): Q = {si}ni=1, and trains a language model211

Classifier to predict each unit’s importance. As212

shown in the left half of Figure 2.Stage (a):213

li = Classifier(si) ∀i ∈ {1, 2, ..., n} (2)214

This approach transforms complex document com-215

prehension into simpler sentence-level tasks. Each216

text unit si receives one of three labels {A,B,C}:217

A for information critical to diagnostic decisions,218

B for information that positively contributes to re-219

trieval without directly inferring the correct result,220

and C for relatively unimportant information.221

Based on the classification results, we calculate222

the global information completeness of input Q as223

follows:224

Inorm(Q) =
1

α · n

n∑
i=1

(
α · I(li = A) (3)225

+ β · I(li = B) + γ · I(li = C)
)

(4)226

where li is the classification result of text unit si, α,227

β, and γ are weights for the three category labels,228

and I(·) is an indicator function that returns 1 when 229

the condition is true and 0 otherwise. The denomi- 230

nator α ·n in the equation represents the maximum 231

information completeness (when all sentences are 232

classified as A), serving as normalization. Inputs 233

with more critical clues increase the LLM’s poten- 234

tial for accurate diagnosis. When Inorm exceeds θ1, 235

the input contains sufficient information for direct 236

diagnosis: 237

Dfinal = LLM(Q, promptdiag) (5) 238

If Inorm falls between θ1 and θ2, the retrieval 239

program activates (see Section 3.3). When Inorm 240

is below θ2, a warning signal is issued alongside 241

normal retrieval and reasoning, indicating sparse 242

critical information and potential misdiagnosis risk. 243

3.2.2 Annotation Method for Classifier 244

Training Data Based on Masking 245

Strategy 246

In the first part of this subsection, we detailed the 247

implementation approach of the retrieval decision 248

optimization module based on input information 249

completeness. However, due to the lack of anno- 250

tated datasets meeting our requirements for train- 251

ing importance classification models, we propose a 252
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simple yet effective strategy to construct and anno-253

tate training datasets. Inspired by dynamic token254

deletion from single-stage Weakly Supervised Ra-255

tionale Extraction (Jiang et al., 2023a), we annotate256

the importance category of each text unit by sequen-257

tially masking them, as illustrated in Figure 3.258

For a given input Q, we set the doctor’s259

diagnostic result R̄ as the reference answer,260

then segment Q into multiple text units Q =261

[s1, s2, . . . , sn]. We sequentially mask each262

text unit si to obtain the masked input Q′ =263

[s1, s2, . . . , si−1, si+1, . . . , sn]. The LLM then per-264

forms diagnostic reasoning based on both Q and265

Q′ to generate predicted diagnoses:266

D̂ = LLM(Q, promptdiag) (6)267

D̂′ = LLM(Q′, promptdiag) (7)268

where D̂ and D̂′ represent the diagnostic results269

based on the complete and masked inputs, respec-270

tively. The prompt template promptdiag is detailed271

in Table 7 in Appendix G. By comparing these di-272

agnostic results with the standard answer R̄, we273

present two annotation strategies:274

Annotation Strategy (1). If D̂ ≈ R̄ (the LLM275

makes correct predictions with complete input): If276

D̂′ ≈ R̄ also holds, indicating that masking si does277

not significantly impact the reasoning process, then278

si is labeled as C (non-critical information). If D̂′279

differs from D̂ resulting in an incorrect diagnosis,280

si is labeled as A (critical diagnostic information).281

This strategy is illustrated in the upper part of Fig-282

ure 3.283

Annotation Strategy (2). If D̂ ≠ R̄ (the LLM284

cannot make correct predictions with complete in-285

put): In this case, we implement annotation by286

searching the knowledge base. We use si as the287

retrieval query with the BM25 method. If docu-288

ments corresponding to the disease in R̄ can be289

retrieved, si is labeled as B (valuable diagnostic290

information). Otherwise, si is labeled as C (low im-291

portance). This strategy is illustrated in the lower292

part of Figure 3.293

3.3 Knowledge Retrieval and Reranking294

Based on Document Segmentation and295

Mapping296

Considering the complex structures, large con-297

text spans, and semantic discontinuities in clinical298

texts, we adapt the RAG process following Zhao et299

al. (Zhao et al., 2024a). This approach divides doc-300

uments in the knowledge base KB into text chunks301

with length restrictions, using sentences as the min- 302

imum segmentation unit (details in Appendix C.1). 303

Figure 2.Stage-b illustrates our retrieval and rerank- 304

ing workflow. 305

Given an input text Q = {si}ni=1 with n sen- 306

tences, we first perform sentence-level importance 307

classification and calculate overall information 308

completeness Inorm as described in Section 3.2.1 309

(1). When Inorm falls below a preset threshold, the 310

retrieval module Stage-b activates. To optimize 311

retrieval efficiency, we only retain sentences with 312

label = A and label = B, excluding those with 313

label = C (shown on the left side of Figure 2.Stage- 314

b). This exclusion is justified as label = C sen- 315

tences typically contain non-pathological descrip- 316

tions that contribute minimally to retrieval and may 317

introduce noise. 318

The retrieval algorithm operates on knowl- 319

edge base KB through chunk-level retrieval and 320

document-level reranking. Each sentence si ∈ Q 321

serves as a query to retrieve the top m relevant text 322

chunks: 323

Ci = Retriever(si,m) ∀i ∈ {1, 2, . . . , n} (8) 324

where Ci = {ci,j}mj=1, and ci,j is the j-th chunk re- 325

trieved using si. All text chunk sets are merged into 326

C =
⋃n

i=1 Ci. Each chunk c ∈ C is mapped to its 327

original document doc ∈ KB. For each document 328

doc, a score Sdoc counts the number of retrieved 329

chunks from that document: 330

Sdoc =
∑
c∈C

I(c ∈ doc) (9) 331

where I(·) is the indicator function, returning 1 if 332

c belongs to doc and 0 otherwise. Documents are 333

reranked based on Sdoc, and the top k documents 334

with highest scores are selected as the final retrieval 335

results: Krerank = {doc(1), doc(2), . . . , doc(k)}, 336

where doc(l) represents the document with the l-th 337

highest score. 338

3.4 Knowledge Filtering and Diagnosis 339

Generation Based on Prompt Guidance 340

Despite optimizing the retrieval process, retrieved 341

documents may not always be relevant, particularly 342

in clinical diagnostic tasks requiring complex rea- 343

soning. Drawing inspiration from medical "differ- 344

ential diagnosis" procedures, where doctors exam- 345

ine potentially confusing diseases based on patient 346

symptoms and test results, we designed a prompt 347

template promptdiff to filter irrelevant information. 348
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This template guides the LLM to identify conflicts349

between patient information and document descrip-350

tions, determining which documents to retain. The351

process is illustrated in Figure 2.Stage-c, with the352

complete prompt template detailed in Table 9 in353

Appendix G.354

Given the reranked knowledge document set355

Krerank = {doc(1), doc(2), . . . , doc(k)}, we fil-356

ter documents by evaluating their relevance357

to the diagnosis. The filtering function358

V (Q, doc(i), promptdiff) is defined as:359

V (Q, doc(i), promptdiff) =

{
True, if ⟨support⟩
False, otherwise

(10)360

where ⟨support⟩ represents the LLM output when361

provided with query Q, document doc(i), and362

prompt template promptdiff. The term ⟨support⟩363

indicates that the LLM determines doc(i) is critical364

for diagnosis. The final reference knowledge docu-365

ment set K∗ retains only documents that satisfy the366

filtering condition:367

K∗ = {doc(i) ∈ Krerank | V (·, doc(i), ·) = True}
(11)368

The final RAG-based diagnostic process is for-369

malized as:370

Dfinal = LLM(Q,K∗, promptrag) (12)371

where promptrag represents the RAG-based diag-372

nostic prompt template. The complete content of373

this prompt template can be found in Table 8 in374

Appendix G.375

4 Experimental Setup376

4.1 Datasets377

We evaluated our framework using three Chinese378

EMR datasets: CMEMR (Jia et al., 2025), Clini-379

calBench (Yan et al., 2024), and CMB-Clin (Wang380

et al., 2023a), to assess its ability in analyzing com-381

plex clinical information and making accurate di-382

agnoses. For the task setup, all three datasets are383

configured into end-to-end diagnostic tasks, where384

patient information (such as chief complaints, med-385

ical history, and examination findings) serves as386

input, with physicians’ diagnostic conclusions as387

ground-truth labels. Details can be found in Ap-388

pendix B.389

4.2 Baseline Methods390

We compare our approach with three categories391

of methods. Details of all the baselines below are392

shown in Appendix A. 393

Non-Retrieval methods: We include Chain-of- 394

Thought (CoT) (Wei et al., 2022a), Self-Consistent 395

Chain of Thought(Sc-CoT) (Wang et al., 2023b) 396

and Atypical Prompting (Qin et al., 2024). 397

Standard-Retrieval methods: We include two 398

representative RAG methods: RAG2 (Rationale- 399

Guided RAG)(Sohn et al., 2024) and Lon- 400

gRAG (Zhao et al., 2024a). 401

Adaptive-Retrieval methods: We include 402

Adaptive-RAG (Jeong et al., 2024), DRAGIN (Su 403

et al., 2024), and SEAKR (Yao et al., 2024). 404

4.3 Evaluation Metric 405

Following (Fan et al., 2024), we use the Interna- 406

tional Classification of Diseases (ICD-10) (Percy 407

et al., 1990) to standardize disease terminologies. 408

We extract disease entities from diagnostic results 409

and EMR labels, then perform fuzzy matching with 410

a threshold of 0.5 to link them to ICD-10, creating 411

normalized sets SD̂ and SR. These sets are used 412

to calculate set-level metrics Precision, Recall, and 413

F1-score. Details are shown in Appendix D. 414

4.4 Implementation Details 415

We choose qwen2.5-7B-instruct as the backbone 416

model for inference in our experiments by de- 417

fault. For the classifier we choose BERT-base- 418

Chinese (Devlin et al., 2019). For the retriever 419

we use BM25(Robertson et al., 2009) by de- 420

fault. For the external knowledge corpus we use 421

CMKD (Clinical Medicine Knowledge Database)1. 422

Detailed settings of each module and hyperparame- 423

ters are provided in Appendix C. 424

5 Results and Analyses 425

5.1 Overall Performance 426

Our experiments evaluate the framework against 427

baselines on three Chinese EMR datasets. Table 1 428

highlights key findings: 429

(1) ICA-RAG demonstrates consistent perfor- 430

mance across all benchmark datasets, achieving 431

optimal or near-optimal F1 scores compared to 432

baseline methods. 433

(2) Compared to LongRAG, a superior conven- 434

tional retrieval approach, ICA-RAG improves Set- 435

level F1 values by 1.81%, 1.54%, and 1.72% re- 436

spectively on the three datasets. This indicates 437

that standard RAG methods without retrieval deci- 438

sion optimization rely excessively on knowledge 439

1 http://cmkd.juhe.com.cn/
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Method
CMEMR ClinicalBench CMB-Clin

R (%) P (%) F1 (%) R (%) P (%) F1 (%) R (%) P (%) F1 (%)

Non Retrieval Methods
CoT 49.09 48.56 48.82 44.12 34.09 38.46 68.03 42.27 52.14
SC-CoT 49.49 48.21 48.84 42.74 33.41 37.50 69.27 43.43 53.39
ATP 49.68 47.72 48.68 43.01 33.82 37.87 70.83 44.73 54.83

Standard Retrieval Methods
RAG2 47.13 44.34 45.69 42.43 34.57 38.10 58.33 35.29 43.98
LongRAG 49.85 48.31 49.07 44.65 35.02 39.25 69.44 41.32 51.81

Adaptive Retrieval Methods
DRAGIN 47.09 46.92 47.00 43.67 35.54 39.19 59.72 36.13 45.03
Adaptive-RAG 50.23 48.35 49.27 42.23 34.61 38.04 65.37 45.20 53.44
SEAKR 47.37 45.90 46.62 40.66 33.13 36.51 59.60 34.34 43.57
ICA-RAG (ours) 53.42 48.58 50.88 46.63 36.24 40.79 71.62 42.74 53.53

Table 1: Experimental results on CMEMR, ClinicalBench and CMB-Clin datasets. Bold indicates the best
performances and the second-best performances are underlined.

base quality in complex disease diagnosis scenarios.440

They initiate retrieval even when LLMs can inde-441

pendently complete diagnoses, reducing efficiency442

and potentially introducing errors.443

(3) ICA-RAG outperforms other adaptive RAG444

methods significantly. Compared to the best-445

performing Adaptive-RAG method, ICA-RAG ex-446

hibits enhanced robustness when handling struc-447

turally complex and long context inputs due to its448

adaptive decision-making based on local-to-global449

information completeness calculations. Most other450

baselines, on the other hand, are designed primar-451

ily for simpler question answering tasks, so their452

performance fluctuations when applied to disease453

diagnosis without appropriate adaptations.454

5.2 Ablation Study455

Table 2: Ablation study on CMEMR dataset. w/o de-
notes removing the corresponding module.

Method R (%) P (%) F1 (%)
ICA-RAG 53.42 48.58 50.88
w/o Decision 49.74 46.52 48.07
w/o Chunk 52.26 47.53 49.78
w/o M-rerank 52.22 47.20 49.59
w/o Diff 52.70 47.29 49.85

To analyze the contribution of different modules456

in ICA-RAG to its performance, we conducted ab-457

lation experiments on the CMEMR dataset: (a) w/o458

Decision: removing the retrieval decision optimiza-459

tion module; (b) w/o Chunk: replacing ICA-RAG’s 460

document segmentation and mapping-based knowl- 461

edge retrieval with direct retrieval of complete doc- 462

uments; (c) w/o M-rerank (Mapping-based Rerank): 463

replacing ICA-RAG’s text chunk mapping-based 464

reranking with the bge-reranker-v2-m3 model; (d) 465

w/o Diff: removing the LLM knowledge filtering 466

module based on differential diagnosis prompting. 467

The results are shown in Table 2, leading to the 468

following conclusions: 469

(1) Without the retrieval decision optimization 470

module, ICA-RAG’s F1 value dropped by 2.81%. 471

This occurs because all inputs undergo retrieval 472

indiscriminately, forcing samples that LLM could 473

diagnose independently to undergo unnecessary 474

retrieval, reducing efficiency and increasing error 475

risk from irrelevant information. 476

(2) Replacing ICA-RAG’s document segmen- 477

tation and mapping-based retrieval with original 478

retrieval decreased F1 by 1.1%. This demonstrates 479

that general RAG methods struggle with sparse in- 480

formation distribution and semantic incoherence 481

in clinical texts, hampering accurate matching be- 482

tween inputs and knowledge base documents. 483

(3) Substituting ICA-RAG’s reranking method 484

with the bge-reranker-v2-m3 model reduced per- 485

formance, validating ICA-RAG’s reranking design. 486

ICA-RAG’s approach relies solely on numerical 487

calculations from retrieval results without addi- 488

tional models, reducing memory overhead while 489

maintaining higher compatibility with the retrieval 490

7
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Figure 4: A Comparative Analysis of Computational
Time Expenditure and Diagnostic Performance Between
the Proposed Method and Selected Baseline Methods
on the CMEMR Dataset.

workflow.491

(4) Removing the differential diagnosis-based492

knowledge filtering mechanism meant all retrieved493

documents were provided to the LLM without dis-494

crimination. This increased the difficulty of LLM’s495

reasoning and raised the probability of exceeding496

input length limits, negatively impacting overall497

performance.498

5.3 Analysis of Retrieval Decision499

Optimization Effects500

We compare our method with other retrieval-based501

baselines in terms of efficiency and diagnostic per-502

formance, as shown in Figure 4. Based on the503

experimental results, the following conclusions can504

be drawn: 505

(1) As illustrated in Figure 4.a, our method 506

demonstrates significant time efficiency advantages 507

compared to non-adaptive RAG methods (RAG2 508

and LongRAG), reflecting the improvements from 509

decision optimization. 510

(2) Compared to adaptive RAG methods 511

(SEAKR, DRAGIN, and Adaptive-RAG), our ap- 512

proach shows competitive time consumption, only 513

slightly higher than Adaptive-RAG but lower than 514

SEAKR and DRAGIN. Unlike SEAKR and DRA- 515

GIN, which require access to LLMs’ output proba- 516

bility distributions, our method maintains adaptabil- 517

ity for closed-source LLMs and API-based deploy- 518

ments. While both Adaptive-RAG and our method 519

employ classifiers for decision optimization, our 520

BERT-Base classifier (110M parameters) is more 521

lightweight than Adaptive-RAG’s T5-Large (770M 522

parameters). 523

(3) Figure 4.b demonstrates that our method 524

achieves superior diagnostic performance. Overall, 525

the proposed approach better balances efficiency 526

and performance compared to baseline methods. 527

6 Conclusion 528

In this paper, we propose ICA-RAG, an adaptive 529

retrieval decision optimization method for disease 530

diagnosis that addresses the rigid retrieval strategy 531

issue in traditional retrieval-augmented methods. 532

ICA-RAG establishes a decision mechanism based 533

on input information completeness to flexibly deter- 534

mine retrieval necessity, and introduces a retrieval 535

and reranking strategy using document segmenta- 536

tion and mapping. Experimental results demon- 537

strate ICA-RAG’s strong adaptability in complex 538

clinical scenarios. Future work may explore fur- 539

ther optimization of the retrieval process and ICA- 540

RAG’s application to other medical tasks. 541

Limitations 542

Although our classification data annotation strategy 543

is straightforward and effective, it still exhibits cer- 544

tain shortcomings in practical application. Due to 545

the potential presence of repetitive content within 546

the input patient information, LLMs may still ar- 547

rive at a correct diagnosis even after masking a 548

critical sentence. This can result in inaccurate anno- 549

tation labels, necessitating manual inspection and 550

revision on top of our proposed annotation strat- 551

egy. Moreover, clinical medical texts, particularly 552

EMRs, often contain abbreviations, synonyms, and 553

8



aliases. And the manner in which identical pa-554

tient information is recorded can vary significantly555

among different physicians, leading to a high de-556

gree of inconsistency. This issue to some extent557

hampers the search accuracy of our retrieval system.558

In the future, we aim to explore more effective pre-559

processing strategies for medical texts to enhance560

retrieval quality.561

Ethical Consideration562

In this paper, we focus on the medical domain,563

specifically on enhancing the reliability and effi-564

ciency of retrieval-augmented generation (RAG)565

systems for disease diagnosis using large language566

models (LLMs). Our goal is to support better-567

informed decision-making by adaptively determin-568

ing the necessity of information retrieval based569

on the information completeness of the input data.570

While our results demonstrate significant improve-571

ments in diagnostic accuracy and efficiency with572

the ICA-RAG framework, we need to stress that573

LLMs, even when augmented with retrieval mech-574

anisms, should not be solely relied upon without575

the oversight of a qualified medical expert. The in-576

volvement of a physician or an expert is essential to577

validate the model’s recommendations and ensure578

a safe and effective decision-making process.579

Moreover, we acknowledge the profound ethical580

implications of deploying AI in healthcare. It is cru-581

cial to recognize that LLMs are not infallible and582

can produce erroneous outputs, even with advanced583

retrieval mechanisms. Transparency in how these584

models, including the decision-making process of585

ICA-RAG (e.g., why retrieval was or was not trig-586

gered), reach their conclusions, and incorporating587

continuous feedback from healthcare profession-588

als are vital steps in maintaining the integrity and589

safety of medical practice.590

References591

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama592
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,593
Diogo Almeida, Janko Altenschmidt, Sam Altman,594
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.595
arXiv preprint arXiv:2303.08774.596

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and597
Hannaneh Hajishirzi. 2023. Self-rag: Learning to598
retrieve, generate, and critique through self-reflection.599
arXiv preprint arXiv:2310.11511.600

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and601
Kristina Toutanova. 2019. BERT: Pre-training of602

deep bidirectional transformers for language under- 603
standing. In Proceedings of the 2019 Conference of 604
the North American Chapter of the Association for 605
Computational Linguistics: Human Language Tech- 606
nologies, Volume 1 (Long and Short Papers), pages 607
4171–4186. 608

Zhihao Fan, Jialong Tang, Wei Chen, Siyuan Wang, 609
Zhongyu Wei, Jun Xi, Fei Huang, and Jingren Zhou. 610
2024. Ai hospital: Interactive evaluation and collabo- 611
ration of llms as intern doctors for clinical diagnosis. 612
arXiv preprint arXiv:2402.09742. 613

Yanjun Gao, Ruizhe Li, Emma Croxford, Samuel 614
Tesch, Daniel To, John Caskey, Brian W Patterson, 615
Matthew M Churpek, Timothy Miller, Dmitriy Dli- 616
gach, et al. 2023. Large language models and med- 617
ical knowledge grounding for diagnosis prediction. 618
medRxiv, pages 2023–11. 619

Jin Ge, Steve Sun, Joseph Owens, Victor Galvez, Ok- 620
sana Gologorskaya, Jennifer C Lai, Mark J Pletcher, 621
and Ki Lai. 2024. Development of a liver disease- 622
specific large language model chat interface using 623
retrieval augmented generation. Hepatology, pages 624
10–1097. 625

Jie Huang, Xinyun Chen, Swaroop Mishra, 626
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 627
ing Song, and Denny Zhou. 2023a. Large language 628
models cannot self-correct reasoning yet. arXiv 629
preprint arXiv:2310.01798. 630

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, 631
Zhangyin Feng, Haotian Wang, Qianglong Chen, 632
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 633
2023b. A survey on hallucination in large language 634
models: Principles, taxonomy, challenges, and open 635
questions. ACM Transactions on Information Sys- 636
tems. 637

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju 638
Hwang, and Jong C Park. 2024. Adaptive-rag: Learn- 639
ing to adapt retrieval-augmented large language mod- 640
els through question complexity. In Proceedings of 641
the 2024 Conference of the North American Chap- 642
ter of the Association for Computational Linguistics: 643
Human Language Technologies (Volume 1: Long Pa- 644
pers), pages 7029–7043. 645

Mingyi Jia, Junwen Duan, Yan Song, and Jianxin Wang. 646
2025. medikal: Integrating knowledge graphs as 647
assistants of llms for enhanced clinical diagnosis 648
on emrs. In Proceedings of the 31st International 649
Conference on Computational Linguistics, COLING 650
2025, Abu Dhabi, UAE, January 19-24, 2025, pages 651
9278–9298. Association for Computational Linguis- 652
tics. 653

Han Jiang, Junwen Duan, Zhe Qu, and Jianxin Wang. 654
2023a. You only forward once: Prediction and ratio- 655
nalization in a single forward pass. arXiv preprint 656
arXiv:2311.02344. 657

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, 658
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie 659

9

https://aclanthology.org/2025.coling-main.624/
https://aclanthology.org/2025.coling-main.624/
https://aclanthology.org/2025.coling-main.624/
https://aclanthology.org/2025.coling-main.624/
https://aclanthology.org/2025.coling-main.624/


Callan, and Graham Neubig. 2023b. Active retrieval660
augmented generation. In Proceedings of the 2023661
Conference on Empirical Methods in Natural Lan-662
guage Processing, pages 7969–7992.663

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Akari664
Asai, Xinyan Yu, Dragomir Radev, Noah A Smith,665
Yejin Choi, Kentaro Inui, et al. 2024. Realtime qa:666
what’s the answer right now? Advances in Neural667
Information Processing Systems, 36.668

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio669
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-670
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-671
täschel, et al. 2020. Retrieval-augmented generation672
for knowledge-intensive nlp tasks. Advances in Neu-673
ral Information Processing Systems, 33:9459–9474.674

Dingkun Long, Qiong Gao, Kuan Zou, Guangwei Xu,675
Pengjun Xie, Rui Guo, Jianfeng Xu, Guanjun Jiang,676
Luxi Xing, and P. Yang. 2022. Multi-cpr: A multi677
domain chinese dataset for passage retrieval. In Pro-678
ceedings of the 45th International ACM SIGIR Con-679
ference on Research and Development in Information680
Retrieval, SIGIR 22.681

Ilya Loshchilov and Frank Hutter. 2019. Decoupled682
weight decay regularization. In 7th International683
Conference on Learning Representations, ICLR 2019,684
New Orleans, LA, USA, May 6-9, 2019. OpenRe-685
view.net.686

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,687
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.688
When not to trust language models: Investigating689
effectiveness of parametric and non-parametric mem-690
ories. In Proceedings of the 61st Annual Meeting of691
the Association for Computational Linguistics (Vol-692
ume 1: Long Papers), pages 9802–9822.693

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and694
Ryan McDonald. 2020. On faithfulness and factu-695
ality in abstractive summarization. In Proceedings696
of the 58th Annual Meeting of the Association for697
Computational Linguistics, pages 1906–1919.698

David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit699
Kapoor, Shravan Kooragayalu, Katelyn Polanska,700
and Yanshan Wang. 2024. Enhancing large lan-701
guage models for clinical decision support by incor-702
porating clinical practice guidelines. arXiv preprint703
arXiv:2401.11120.704

Constance Percy, Valerie van Holten, Calum S Muir,705
World Health Organization, et al. 1990. International706
classification of diseases for oncology. World Health707
Organization.708

Jeremy Qin, Bang Liu, and Quoc Nguyen. 2024. En-709
hancing healthcare llm trust with atypical presenta-710
tions recalibration. In Findings of the Association711
for Computational Linguistics: EMNLP 2024, pages712
2520–2537.713

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 714
probabilistic relevance framework: Bm25 and be- 715
yond. Foundations and Trends® in Information Re- 716
trieval, 3(4):333–389. 717

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, 718
David Stutz, Ellery Wulczyn, Fan Zhang, Tim 719
Strother, Chunjong Park, Elahe Vedadi, et al. 2024. 720
Capabilities of gemini models in medicine. arXiv 721
preprint arXiv:2404.18416. 722

Wenqi Shi, Yuchen Zhuang, Yuanda Zhu, Henry Iwin- 723
ski, Michael Wattenbarger, and May Dongmei Wang. 724
2023. Retrieval-augmented large language models 725
for adolescent idiopathic scoliosis patients in shared 726
decision-making. In Proceedings of the 14th ACM 727
International Conference on Bioinformatics, Com- 728
putational Biology, and Health Informatics, pages 729
1–10. 730

Jiwoong Sohn, Yein Park, Chanwoong Yoon, Sihyeon 731
Park, Hyeon Hwang, Mujeen Sung, Hyunjae Kim, 732
and Jaewoo Kang. 2024. Rationale-guided retrieval 733
augmented generation for medical question answer- 734
ing. arXiv preprint arXiv:2411.00300. 735

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, 736
and Yiqun Liu. 2024. Dragin: Dynamic retrieval aug- 737
mented generation based on the real-time informa- 738
tion needs of large language models. arXiv preprint 739
arXiv:2403.10081. 740

Will E Thompson, David M Vidmar, Jessica K De Fre- 741
itas, John M Pfeifer, Brandon K Fornwalt, Ruijun 742
Chen, Gabriel Altay, Kabir Manghnani, Andrew C 743
Nelsen, Kellie Morland, et al. 2023. Large lan- 744
guage models with retrieval-augmented generation 745
for zero-shot disease phenotyping. arXiv preprint 746
arXiv:2312.06457. 747

Keheng Wang, Feiyu Duan, Peiguang Li, Sirui Wang, 748
and Xunliang Cai. 2024a. Llms know what they need: 749
Leveraging a missing information guided framework 750
to empower retrieval-augmented generation. arXiv 751
preprint arXiv:2404.14043. 752

Liang Wang, Nan Yang, Xiaolong Huang, Binxing 753
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, 754
and Furu Wei. 2024b. Text embeddings by weakly- 755
supervised contrastive pre-training. arXiv preprint 756
arXiv:2212.03533. 757

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, 758
Zuyi Bao, Liwei Peng, and Luo Si. 2020. Structbert: 759
Incorporating language structures into pre-training 760
for deep language understanding. In 8th Interna- 761
tional Conference on Learning Representations. 762

Xidong Wang, Guiming Hardy Chen, Dingjie Song, 763
Zhiyi Zhang, Zhihong Chen, Qingying Xiao, Feng 764
Jiang, Jianquan Li, Xiang Wan, Benyou Wang, et al. 765
2023a. Cmb: A comprehensive medical benchmark 766
in chinese. arXiv preprint arXiv:2308.08833. 767

10



Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.768
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-769
hery, and Denny Zhou. 2023b. Self-consistency im-770
proves chain of thought reasoning in language mod-771
els. In The Eleventh International Conference on772
Learning Representations.773

Yile Wang, Peng Li, Maosong Sun, and Yang Liu. 2023c.774
Self-knowledge guided retrieval augmentation for775
large language models. In Findings of the Associa-776
tion for Computational Linguistics: EMNLP 2023,777
pages 10303–10315.778

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten779
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,780
et al. 2022a. Chain-of-thought prompting elicits rea-781
soning in large language models. Advances in neural782
information processing systems, 35:24824–24837.783

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten784
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,785
et al. 2022b. Chain-of-thought prompting elicits rea-786
soning in large language models. Advances in neural787
information processing systems, 35:24824–24837.788

Yilin Wen, Zifeng Wang, and Jimeng Sun. 2023.789
Mindmap: Knowledge graph prompting sparks graph790
of thoughts in large language models. arXiv preprint791
arXiv:2308.09729.792

Jiageng Wu, Xian Wu, and Jie Yang. 2024. Guiding793
clinical reasoning with large language models via794
knowledge seeds. arXiv preprint arXiv:2403.06609.795

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-796
nighoff, Defu Lian, and Jian-Yun Nie. 2024. C-pack:797
Packed resources for general chinese embeddings. In798
Proceedings of the 47th international ACM SIGIR799
conference on research and development in informa-800
tion retrieval, pages 641–649.801

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming802
Pan, Lei Li, and William Yang Wang. 2024. Perils of803
self-feedback: Self-bias amplifies in large language804
models. arXiv e-prints, pages arXiv–2402.805

Weixiang Yan, Haitian Liu, Tengxiao Wu, Qian Chen,806
Wen Wang, Haoyuan Chai, Jiayi Wang, Weishan807
Zhao, Yixin Zhang, Renjun Zhang, et al. 2024. Clini-808
callab: Aligning agents for multi-departmental clin-809
ical diagnostics in the real world. arXiv preprint810
arXiv:2406.13890.811

Zijun Yao, Weijian Qi, Liangming Pan, Shulin Cao,812
Linmei Hu, Weichuan Liu, Lei Hou, and Juanzi813
Li. 2024. Seakr: Self-aware knowledge retrieval814
for adaptive retrieval augmented generation. arXiv815
preprint arXiv:2406.19215.816

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-817
marking zero-shot text classification: Datasets, eval-818
uation and entailment approach. In Proceedings of819
the 2019 Conference on Empirical Methods in Natu-820
ral Language Processing and the 9th International821
Joint Conference on Natural Language Processing822
(EMNLP-IJCNLP), pages 3914–3923.823

Haodi Zhang, Jiahong Li, Yichi Wang, and Yuan- 824
feng Songi. 2023a. Integrating automated knowl- 825
edge extraction with large language models for ex- 826
plainable medical decision-making. In 2023 IEEE 827
International Conference on Bioinformatics and 828
Biomedicine (BIBM), pages 1710–1717. IEEE. 829

Zhuosheng Zhang, Hanqing Zhang, Keming Chen, 830
Yuhang Guo, Jingyun Hua, Yulong Wang, and Ming 831
Zhou. 2021. Mengzi: Towards lightweight yet in- 832
genious pre-trained models for chinese. Preprint, 833
arXiv:2110.06696. 834

Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza 835
Namazi-Rad, and Jun Wang. 2023b. How do large 836
language models capture the ever-changing world 837
knowledge? a review of recent advances. In Proceed- 838
ings of the 2023 Conference on Empirical Methods 839
in Natural Language Processing, pages 8289–8311. 840

Qingfei Zhao, Ruobing Wang, Yukuo Cen, Daren Zha, 841
Shicheng Tan, Yuxiao Dong, and Jie Tang. 2024a. 842
Longrag: A dual-perspective retrieval-augmented 843
generation paradigm for long-context question an- 844
swering. In Proceedings of the 2024 Conference on 845
Empirical Methods in Natural Language Processing, 846
pages 22600–22632. 847

Wenting Zhao, Zhongfen Deng, Shweta Yadav, and 848
Philip S Yu. 2024b. Heterogeneous knowledge 849
grounding for medical question answering with re- 850
trieval augmented large language model. In Com- 851
panion Proceedings of the ACM on Web Conference 852
2024, pages 1590–1594. 853

Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu, 854
Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang, 855
Kaishuai Xu, Yi Fang, et al. 2024a. Large language 856
models for disease diagnosis: A scoping review. 857
arXiv preprint arXiv:2409.00097. 858

Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu, 859
Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang, 860
Kaishuai Xu, Yi Fang, et al. 2024b. Large language 861
models for disease diagnosis: A scoping review. 862
ArXiv preprint, abs/2409.00097. 863

A Details of Baseline Methods 864

In this section, we provide a detailed introduction to 865

the three categories of baseline methods used in this 866

paper, namely Non-Retrieval methods, Standard- 867

Retrieval methods and Adaptive-Retrieval methods, 868

Their methodological descriptions and implemen- 869

tation details are listed below. 870

A.1 Non-Retrieval Methods 871

These methods do not rely on external knowl- 872

edge, but rather leverage the internal knowledge 873

of LLMs through prompt optimization for rea- 874

soning. This chapter selects the classic Chain 875
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of Thought (CoT) (Wei et al., 2022b) and Self-876

Consistent Chain of Thought (SC-CoT) (Wang877

et al., 2023b) as baselines. Additionally, we include878

a method called Atypical Prompting (ATP) (Qin879

et al., 2024), which is designed specifically for the880

medical domain and enhances reasoning capabil-881

ities by focusing on non-typical factors such as882

scenarios and symptoms.883

A.2 Standard-Retrieval Methods884

In this category, "Standard" corresponds to "Adap-885

tive" mentioned later, referring to the RAG method886

that initiates retrieval for all inputs uniformly with-887

out Adaptive settings. This paper selects two rep-888

resentative baselines: RAG2 (Rationale-Guided889

RAG) (Sohn et al., 2024) and LongRAG (Zhao890

et al., 2024a).891

RAG2 (Rationale-Guided RAG) (Sohn et al.,892

2024) enhances the original input by utilizing ratio-893

nales generated by LLM based on the input ques-894

tion, and then performs subsequent retrieval opera-895

tions with the enhanced input. This approach was896

tested on medical question-answering tasks.897

LongRAG (Zhao et al., 2024a) designs a strat-898

egy that integrates global information perspective899

and factual detail perspective for long-text retrieval900

tasks. It improves the overall understanding and901

processing capability for long texts by prompting902

LLM to extract global information and analyze re-903

trieved document information.904

A.3 Adaptive-Retrieval Methods905

This paradigm enhances retrieval flexibility and906

controllability by presetting conditions or intro-907

ducing additional models. Retrieval is only acti-908

vated when the input meets preset conditions; other-909

wise, results are directly inferred by the LLM. We910

selected three representative baselines, including911

Adaptive-RAG (Jeong et al., 2024), DRAGIN (Su912

et al., 2024), and SEAKR (Yao et al., 2024).913

Adaptive-RAG (Jeong et al., 2024) labels train-914

ing data based on the correctness of LLM responses915

to certain samples, and trains a classification model916

to determine the complexity of multi-hop question917

answering problems to decide whether to perform918

retrieval.919

DRAGIN (Su et al., 2024) measures uncertainty920

by calculating the entropy of token probability dis-921

tributions, utilizing the Transformer’s self-attention922

mechanism to quantify the influence of tokens on923

subsequent content.924

SEAKR (Yao et al., 2024) introduces self-aware 925

uncertainty, determining whether to activate the 926

retrieval model based on this value. 927

A.4 Settings of Baseline Methods 928

To ensure a fair comparison, we implement all 929

baseline methods using the same backbone LLM, 930

retriever, and external knowledge corpus by de- 931

fault. For baseline methods that require training a 932

classifier (RAG2 (Sohn et al., 2024) and Adaptive- 933

RAG (Jeong et al., 2024)), we adopt the same lan- 934

guage model as used in our framework, namely 935

Mengzi-T5-base (Zhang et al., 2021). 936

B Details of Datasets 937

CMEMR (Jia et al., 2025) CMEMR is sourced 938

from a Chinese medical website2 and comprises 939

10,450 electronic medical records (EMRs) span- 940

ning 15 departments. During the collection process, 941

records with missing critical information or other 942

deficiencies were excluded via screening. The offi- 943

cial repository for this dataset has not provided a 944

formal license. 945

ClinicalBench (Yan et al., 2024) ClinicalBench 946

originates from authentic EMRs from officially cer- 947

tified Grade A Class III hospitals in China, encom- 948

passing 1,500 records across 24 departments. The 949

creators of this dataset have furnished a comprehen- 950

sive data usage license, which explicitly stipulates 951

that the dataset is limited to non-commercial aca- 952

demic research use. 953

CMB-Clin (Wang et al., 2023a) CMB-Clin is 954

a constituent dataset of CMB benchmark, primar- 955

ily derives its content from official medical text- 956

books. It comprises diagnostic procedures for vari- 957

ous disease types, compiled into 74 complete med- 958

ical records and 208 associated clinical diagnostic 959

questions. The official repository for this dataset is 960

licensed under the Apache-2.0 license. 961

For language, all these datasets are in Chinese. 962

According to the source papers of the above three 963

datasets, their construction processes all strictly 964

adhered to privacy protection principles, with the 965

personally identifiable information and sensitive 966

data such as treatment locations being concealed or 967

removed. During experiments, we have strictly ad- 968

hered to the stipulations set forth by the creators of 969

each dataset, employing these datasets exclusively 970

for the purpose of experimental evaluation. 971

2 https://bingli.iiyi.com/
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C Implementation Details972

C.1 Details of the Retrieval Module973

We employ the CMKD (Clinical Medicine Knowl-974

edge Database) as the external knowledge corpus.975

Knowledge documents for all 5,200 diseases were976

obtained from the official website. An example is977

provided in Chinese (Figure 7) and English (Fig-978

ure 8) version. Following (Zhao et al., 2024a), we979

preprocess the documents in the knowledge base980

by segmenting them into chunks prior to retrieval.981

Specifically, we impose a length constraint on982

the chunks, using sentences as the minimum seg-983

mentation unit. A sliding window is then applied984

to extend the context by merging overlapping con-985

tent from the end of the previous sentence, thereby986

preventing semantic discontinuity at truncation987

points. Short chunks at the end of a document988

are merged with preceding chunks to ensure bet-989

ter semantic coherence. Furthermore, since the990

knowledge documents for each disease are inher-991

ently semi-structured, containing fixed fields such992

as "Etiology," "Clinical Manifestations," "Labora-993

tory Tests," and "Other Auxiliary Examinations,"994

we terminate the current chunk at the end of the995

text corresponding to each field during the segmen-996

tation process. By default, we set the chunk size997

to 200 words after segmenting the documents of998

CMKD.999

During the retrieval process, we set the default re-1000

triever as the sparse retriever bm25(Robertson et al.,1001

2009), and all retrievers are implemented using the1002

retriv library3. The number of text chunks m re-1003

trieved for each sentence si is set to 100, and the1004

number of documents after mapping text chunks1005

to documents and reranking k is set to 5. During1006

retrieval, chunks with similarity scores below 50%1007

are discarded.1008

C.2 Details of the Classifier1009

We adopt BERT-Base-Chinese (Devlin et al., 2019)1010

as the foundation model for our classifier, train-1011

ing it for 2 epochs with a learning rate of 3e-51012

and AdamW (Loshchilov and Hutter, 2019) op-1013

timizer. For training data, we extract samples1014

from existing medical record datasets. Since the1015

CMEMR dataset provides comprehensive depart-1016

mental coverage and is significantly larger than1017

ClinicalBench and CMB-Clin datasets, we sam-1018

ple 5% of CMEMR records according to depart-1019

mental proportions (CMEMRsubset, 516 samples)1020

3 https://github.com/AmenRa/retriv

for entity weight calculation. These samples are 1021

completely excluded from subsequent experiments, 1022

with testing conducted only on the remaining 95% 1023

of CMEMR. For ClinicalBench and CMB-Clin 1024

datasets, all samples are used for evaluation. 1025

In the annotation process, we follow the strategy 1026

described in Section 3.2.2. For scenario (1), even 1027

when the LLM makes correct predictions after re- 1028

moving sentence si, this sentence may still contain 1029

valuable information due to content redundancy 1030

across sections (e.g., symptoms appearing in both 1031

chief complaint and present illness history). To 1032

prevent information loss and annotation errors, we 1033

implement an additional retrieval step for sentences 1034

labeled as label = C. If documents corresponding 1035

to diseases in R̄ can be retrieved using si, we up- 1036

date its label to B. 1037

C.3 Details of LLM Inference Settings 1038

We conducted our experiments using a single 1039

NVIDIA GeForce RTX 3090 GPU. Due to memory 1040

constraints, for inference with large-scale backbone 1041

models (such as Qwen2.5-14B), we utilized the 1042

API provided by the Siliconflow platform4. During 1043

inference, we set the maximum generation length 1044

of the LLM to 2048. To ensure reproducibility, we 1045

set do_sample to False by default. 1046

C.4 HyperParameters 1047

When calculating the information density based on 1048

the classifier’s predictions, the weights α, β, and γ 1049

for labels A, B, and C are set to 1.0, 0.5, and 0.1, 1050

respectively. The thresholds θ1 and θ2 are set to 1051

0.3 and 0.1, respectively. 1052

For the retrieval process, the number of chunks 1053

m retrieved for each sentence si is set to 100, 1054

and the number of documents k after chunk-to- 1055

document mapping and re-ranking is set to 5. Dur- 1056

ing retrieval, chunks with a similarity score below 1057

50% to the given query si are discarded. 1058

D Evaluation Metrics Calculation 1059

To enhance evaluation rigor, we follow Fan et 1060

al. (Fan et al., 2024) by adopting the International 1061

Classification of Diseases (ICD-10) (Percy et al., 1062

1990) to link natural language diagnoses with stan- 1063

dardized clinical terminology. For predicted dis- 1064

ease entities D̂ and reference diagnoses R, we em- 1065

ploy fuzzy matching (threshold 0.5) to map these 1066

entities to standardized disease sets SD̂ and SR. 1067

4 https://www.siliconflow.cn/
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Based on the above setup, this chapter redefines1068

the following statistical values:1069

True Positives (TP): The number of standard1070

disease terms in the prediction results SD̂ that cor-1071

rectly correspond to the reference diagnosis SR.1072

False Positives (FP): The number of standard1073

disease terms that appear in the prediction results1074

SD̂ but do not correctly match with the reference1075

diagnosis SR.1076

False Negatives (FN): The number of standard1077

disease terms that appear in the reference diagnosis1078

SR but are omitted in the prediction results SD̂.1079

Finally, based on the above statistical values, this1080

chapter can calculate set-level evaluation metrics1081

for the two sets SD̂ and SR: Set-level Recall, Set-1082

level Precision, and Set-level F1 score:1083

Set-level R =
TP

TP + FN
(13)1084

Set-level P =
TP

TP + FP
(14)1085

Set-level F1 =
2× P ×R

P +R
(15)1086

In all experiments of this paper, any metrics related1087

to "P", "R", and "F1" refer to the set-level metrics1088

defined above.1089

E Detailed Experimental Results1090

E.1 The Effects of Different Classification1091

Models1092

To verify the universality and robustness of our pro-1093

posed retrieval decision optimization module based1094

on input information completeness across various1095

classification models, we evaluated two additional1096

pre-trained language models: Struct-BERT (Wang1097

et al., 2020; Yin et al., 2019) and T5 (Zhang et al.,1098

2021). We trained these models on our annotated1099

data and assessed their text unit importance classi-1100

fication accuracy and final diagnostic performance.1101

As shown in Table 3, BERT-base achieved the high-1102

est classification accuracy (86.28%), while the gen-1103

erative T5-base model performed slightly lower1104

than the self-encoding architectures of BERT and1105

StructBERT, despite having more parameters. Nev-1106

ertheless, all models maintained robust classifica-1107

tion performance, with trends consistent with their1108

final diagnostic performance. These results demon-1109

strate the strong cross-model adaptability and ro-1110

bustness of ICA-RAG’s adaptive retrieval decision1111

optimization module.1112

To further analyze the rationality of ICA-RAG’s1113

text unit importance categorization, Figure 51114

Table 3: Performances of different classification models
on CMEMR dataset.

Model Acc (%) R (%) P (%) F1 (%)
BERT 86.28 53.42 48.58 50.88
StructBERT 85.28 53.09 48.61 50.75
T5 84.34 52.50 48.20 50.25

presents the confusion matrices for the three mod- 1115

els. The matrices reveal that label B is frequently 1116

misclassified as label A, while label C is rarely mis- 1117

classified. This pattern is intuitive—models can 1118

easily distinguish between expressions like "nor- 1119

mal diet and sleep" and "obvious purpura on both 1120

lower limbs" based on their importance difference. 1121

However, differentiating between similarly patho- 1122

logical information such as "obvious purpura on 1123

both lower limbs" and "multiple thyroid nodules" 1124

proves challenging. This indicates current limita- 1125

tions in distinguishing between decisive and impor- 1126

tant information, highlighting directions for future 1127

improvements. 1128

E.2 The Effects of Different Retrievers 1129

To further investigate the retrieval module design 1130

and verify the universality of our method, we com- 1131

pare our approach with other RAG methods us- 1132

ing multiple retrievers: the sparse retriever BM25 1133

(our default choice), and three dense retrievers: 1134

E5 (Wang et al., 2024b), BGE-m3 (Xiao et al., 1135

2024), and CoROM (Long et al., 2022). Results 1136

in Table 4 show that our method achieves optimal 1137

performance across different retrievers with mini- 1138

mal variation (maximum difference of only 0.96% 1139

in Set-level F1 scores). This validates the rational- 1140

ity of our document segmentation and mapping- 1141

based knowledge retrieval strategy, which reduces 1142

document-level search to simpler text segment 1143

matching tasks. Furthermore, it demonstrates that 1144

our adaptive control module can selectively retain 1145

or filter information without additional overhead, 1146

maintaining high stability across different retriev- 1147

ers and facilitating broader application scenarios. 1148

E.3 Performance Analysis Across Different 1149

LLMs for Inference 1150

Table 5 demonstrates the performance of differ- 1151

ent foundation models as inference models on 1152

the CMEMR dataset. Considering that the offi- 1153

cial LLaMA models from metaAI perform poorly 1154

on Chinese tasks, we use the Chinese versions of 1155
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Figure 5: Classification accuracy comparison between ICA-RAG and other two baseline methods Adaptive-
RAG (Jeong et al., 2024) and RAG2 (Sohn et al., 2024). We also provide the confusion matrix across three labels
(Right).

Methods bm25 BGE E5 CoROM
RAG2 45.69 42.80 46.64 44.97
LongRAG 49.07 48.93 49.15 48.24
Adaptive-RAG 49.27 48.19 48.83 47.78
DRAGIN 47.00 45.51 47.62 42.25
SEAKR 46.62 43.07 44.31 45.18
ICA-RAG(ours) 50.88 50.21 51.17 50.34

Table 4: Performance comparison (in F1-score) of using
different retrievers on CMEMR dataset. Bold indicates
the best performances.

LLaMA35 and LLaMA3.16 released by Wang et al.1156

for our experiments. The experimental results indi-1157

cate that the inference capabilities of these LLMs1158

significantly influence diagnostic performance in1159

three aspects:1160

(1) Under the same conditions, larger models1161

generally yield better performance. For instance,1162

when the parameter size of the Qwen2.5 model1163

increases from 7B to 14B, its performance on the1164

CMEMR dataset improves by 3.08%. (2) With1165

the iterative upgrades of model versions, diagnos-1166

tic performance also shows qualitative improve-1167

ments. For example, from LLaMA3 to LLaMA3.1,1168

the Set-level F1 increases by 4.26%. (3) When1169

pre-training corpora, training strategies, and model1170

architectures differ, model performance varies ac-1171

cordingly. For instance, although GLM4-9B-Chat1172

has 1∼2B more parameters than Qwen2.5-7B and1173

LLaMA3.1-8B, its actual diagnostic performance1174

lags significantly behind the other two models.1175

Backbone R (%) P (%) F1 (%)
Qwen2.5-7B-Instruct 53.42 48.58 50.88
Qwen2.5-14B-Instruct 56.68 51.49 53.96
GLM4-9B-Chat 43.48 41.56 42.50
LLaMA3-8B-Chinese 46.66 38.87 42.41
LLaMA3.1-8B-Chinese 45.58 47.81 46.67

Table 5: Performance comparison of different inference
LLMs on CMEMR dataset. Bold indicates the best
performances.

E.4 Results on Different Clinical Departments 1176

To investigate ICA-RAG’s performance in diagnos- 1177

tic tasks across different medical departments, we 1178

compared it with several representative baseline 1179

methods on samples from major departments in the 1180

CMEMR dataset. The results in Figure 6 reveal 1181

that: 1182

(1) ICA-RAG consistently outperforms other 1183

baseline methods using adaptive retrieval strategies 1184

across all departments, confirming its effectiveness 1185

in various departmental diagnostic tasks. 1186

(2) All methods, including ICA-RAG, show rel- 1187

atively lower diagnostic performance in dermatol- 1188

ogy, oncology, and obstetrics and gynecology. This 1189

can be attributed to the high feature overlap in der- 1190

matological conditions, the heavy reliance on imag- 1191

ing information in oncology, and the unique nature 1192

of obstetric cases where routine pregnancy exami- 1193

nations are often analyzed through a pathological 1194

diagnostic framework. These observations provide 1195

valuable directions for future improvements. 1196

5 https://huggingface.co/shenzhi-wang/
Llama3-8B-Chinese-Chat

6 https://huggingface.co/shenzhi-wang/Llama3.
1-8B-Chinese-Chat
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Figure 6: Diagnostic performance of ICA-RAG (ours)
and selected baseline methods on samples from major
clinical departments in the CMEMR dataset.

F Case Study1197

Table 6 presents representative case studies demon-1198

strating the practicality of our proposed ICA-RAG.1199

The results show that ICA-RAG conducts fine-1200

grained importance assessment of patient infor-1201

mation, accurately determining if the current data1202

suffices for diagnosis and initiating retrieval when1203

appropriate. Unlike previous Adaptive-Retrieval1204

methods, our approach warns when Inorm falls1205

below a threshold, indicating potential diagnostic1206

failure. This meets clinical requirements for balanc-1207

ing accuracy and reliability, highlighting practical1208

significance.1209

G Prompt Templates1210
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Document Example (Chinese)

【疾病名】: 病毒性心肌炎
【英文名】: Viral Myocarditis
【ICD号】: I41.0*
【分类】: 心血管内科
概述: 病毒性心肌炎(viral myocarditis)是一种与病毒感染有关的局限性或弥漫性炎症性心
肌疾病，是最常见的感染性心肌炎。近年来随着检测技术的提高，发现多种病毒可引起
心肌炎，其发病率呈逐年增高趋势，是遍及全球的常见病和多发病。
流行病学: ... 病毒性心肌炎可发生于各个年龄段，但从临床发病情况看以儿童和40岁以
下成人居多。由于许多病毒感染具有明显的季节分布特点，如流感病毒感染多发生在冬
季，而肠道病毒感染则多发生于夏秋季，因此，病毒性心肌炎的发病也具有明显的季节
特征，夏秋季发病率较高，冬春季较少。...
病因: ...目前已证实能引起心肌炎的病毒包括：(1)小核糖核酸病毒：肠道病毒如柯萨
奇(Coxsackie)、埃可(ECHO)、脊髓灰质炎病毒、鼻病毒等；(2)虫媒病毒：如黄热病毒、
登革热病毒、白蛉热病毒、流行性出血热病毒等；...
临床表现: ... 在临床就诊的患者中，90%左右以心律失常为主诉或首发症状，常诉心悸、
乏力、胸闷、头晕等，严重者可出现晕厥或阿-斯综合征。部分患者可有程度不一的胸
痛，其原因可能有：...
实验室检查: ...血清心肌肌钙蛋白I(cTnI)或肌钙蛋白T(cTnT)增高(以定量测定为准)有较大
价值。...
其他辅助检查: ...X线检查约1/4病人有不同程度心脏扩大，搏动减弱，其扩大程度与心肌
损害程度一致，有时可见心包积液(病毒性心肌心包炎)，严重病例因左心功能不全有肺淤
血或肺水肿征象。...
鉴别诊断: 1.风湿性心肌炎有典型风湿热表现者，则两者鉴别不难，一般可从以下几点作
鉴别：风湿性心肌炎常有扁桃体炎或咽峡炎等链球菌感染史，抗“O”增高，血沉降多明显
增快，C反应蛋白(CRP)阳性，心电图改变以P-R间期延长较常见，咽拭物培养常有链球
菌生长，且多有大关节炎，鉴于风湿性心肌炎常有心内膜炎，因此二尖瓣反流性收缩期
杂音多较明显，且可因瓣膜水肿、炎症出现舒张期杂音(Carey Coombs杂音)，若心脏扩大
不明显，而杂音较响亮，则风湿性可能性更大。...
治疗: (1)应用改善心肌细胞营养与代谢药物：该类药物包括维生素C、维生素B、辅酶A
50～100U或肌苷200～400mg，每天肌内注射或静脉注射1～2次；细胞色素C 15～30mg，
每天静脉注射1～2次，该药应先皮试，无过敏者才能注射。...

Figure 7: A document example from CMKD (in Chinese).
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Data Example (English)

[Disease Name]: Viral Myocarditis
[English Name]: –
[ICD Code]: I41.0*
[Classification]: Cardiovascular Medicine
Overview: Viral myocarditis is a localized or diffuse inflammatory myocardial disease associated
with viral infections, and it is the most common infectious myocarditis. In recent years, with the
improvement of detection techniques, it has been found that various viruses can cause myocarditis,
and its incidence has been increasing year by year, making it a common and frequently occurring
disease worldwide.
Epidemiology: ... Viral myocarditis can occur in all age groups, but clinically, it is more common
in children and adults under 40 years old. Since many viral infections have distinct seasonal
distribution characteristics, such as influenza virus infections occurring mostly in winter and
enterovirus infections occurring mostly in summer and autumn, the incidence of viral myocarditis
also has obvious seasonal characteristics, with higher incidence in summer and autumn and lower
incidence in winter and spring....
Etiology: ... It has been confirmed that viruses that can cause myocarditis include: (1) Picor-
naviruses: enteroviruses such as Coxsackie, ECHO, poliovirus, rhinovirus, etc.; (2) Arboviruses:
such as yellow fever virus, dengue virus, sandfly fever virus, epidemic hemorrhagic fever virus,
etc.;...
Clinical Manifestations: ... Among patients who seek clinical consultation, about 90% report
arrhythmia as their main complaint or initial symptom, often complaining of palpitations, fatigue,
chest tightness, dizziness, etc. In severe cases, syncope or Adams-Stokes syndrome may occur.
Some patients may experience varying degrees of chest pain, which may be due to:...
Laboratory Tests: ... Elevated serum cardiac troponin I (cTnI) or troponin T (cTnT) (based on
quantitative measurements) is of significant value....
Other Auxiliary Examinations: ... X-ray examination shows that about 1/4 of patients have varying
degrees of cardiac enlargement and weakened pulsations, with the degree of enlargement consistent
with the degree of myocardial damage. Sometimes pericardial effusion (viral myopericarditis) can
be seen, and severe cases may show signs of pulmonary congestion or pulmonary edema due to
left heart dysfunction....
Differential Diagnosis: 1. Rheumatic myocarditis: For those with typical rheumatic fever man-
ifestations, the differentiation is not difficult. Generally, the following points can be used for
differentiation: rheumatic myocarditis often has a history of streptococcal infections such as
tonsillitis or pharyngitis, elevated anti-streptolysin O (ASO), significantly increased erythrocyte
sedimentation rate (ESR), positive C-reactive protein (CRP), and common ECG changes such
as prolonged P-R interval. Throat swab cultures often grow streptococci, and there is often pol-
yarthritis. Since rheumatic myocarditis often involves endocarditis, the systolic murmur of mitral
regurgitation is usually more pronounced, and diastolic murmurs (Carey Coombs murmur) may
appear due to valve edema and inflammation. If the heart is not significantly enlarged but the
murmur is loud, rheumatic myocarditis is more likely....
Treatment: (1) Use of drugs that improve myocardial cell nutrition and metabolism: These
drugs include vitamin C, vitamin B, coenzyme A 50~100U, or inosine 200~400mg, administered
intramuscularly or intravenously once or twice daily; cytochrome C 15~30mg, administered
intravenously once or twice daily. This drug should be skin-tested first, and only those without
allergies can be injected....

Figure 8: A document example from CMKD (translated).
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Case 1: Non-retrieval
[Patient Info]:
<Chief Complaint>: Pain in the right upper abdomen for 2 days... <History of Present Illness>:
...Persistent pain with paroxysmal exacerbation, accompanied by nausea and vomiting (vomitus
consisted of gastric contents), as well as abdominal distension and poor appetite... <Physical
Examination>: ...No abdominal muscle tension or palpable masses... <Auxiliary Examination>:
...Color ultrasound indicates gallbladder sludge and stones...
[Inorm]: 0.63 [Activate_Retreival]: False [Raise_Warning]: False
[LLM Diagnosis]: Gallstones and acute cholecystitis (✓)

Case 2: Retrieval
[Patient Info]:
...<History of Present Illness>: ...Previously treated at a local hospital with enteric-coated aspirin
tablets and isosorbide mononitrate, but no significant improvement was observed...<Physical
Examination>: ...The heart rhythm is regular, and no pathological murmurs are heard in any of
the valve auscultation areas... <Auxiliary Examination>: ...During the Bruce protocol exercise
test, at 2 minutes and 14 seconds, tall tent-shaped T waves appeared in the precordial leads,
accompanied by upsloping ST-segment elevation in the corresponding leads (Figure 2). Simul-
taneously, the patient experienced chest tightness...
[Inorm]: 0.47 [Activate_Retreival]: True [Raise_Warning]: False
[Retrieved Documents]: ...Transient episodes of chest pain induced by exercise or other
conditions that increase myocardial oxygen demand... In some patients with spontaneous angina,
transient ST-segment elevation occurs during episodes, known as variant angina. New-onset
exertional angina, worsening exertional angina, and spontaneous angina are often collectively
referred to as "unstable angina."...
[LLM Diagnosis]: Coronary heart disease, unstable angina (✓)

Case 3: Warning
[Patient Info]:
<Chief Complaint>: Recurrent pain in both knees for 8 years, worsening over the past month....
<Past Medical History> Previously healthy, preoperative blood tests and coagulation function
tests were normal, and color Doppler ultrasound of the arteries and veins of both lower limbs
showed no abnormalities. <Physical Examination>: ...No localized redness or swelling in the
bilateral knee joints, with normal muscle tone....
[Inorm]: 0.27 [Activate_Retreival]: True [Raise_Warning]: True
[Retrieved Documents]: Knee synovitis: The common sites of disease are the knee and hip
joints, and the general symptoms are joint pain and significant limitation of movement...
[LLM Diagnosis]: Knee synovitis (✘)

Table 6: Case Study. For clarity, only part of the key information of the selected samples is presented.
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[Role]<SYS>
You are an outstanding AI medical expert. You can perform a preliminary disease diagnosis
based on the patient’s Information.
[Role]<USR>
Below is a medical record summary of a patient from the ${department}. Please act as the
attending physician and provide a diagnosis based on your expertise and knowledge.
[Medical Record Summary]:
###
${summary}
###
[Requirements]:
1. You need to comprehensively analyze the patient’s symptoms, medical visits, medical history,
and various examination results.
2. Please provide your diagnosis using the following template.
[Output Template]:
Diagnosis: [Predicted Disease 1: [Disease Name 1]; Predicted Disease 2: [Disease Name 2]; ...;
Predicted Disease n: [Disease Name n]]
Please strictly adhere to the output template and do not include any irrelevant information!

Table 7: The default prompt template for LLM direct diagnosis. The presence of a "$" symbol indicates a placeholder
variable that needs to be filled with specific content.

[Role]<SYS>
You are an outstanding AI medical expert. You can perform a preliminary disease diagnosis
based on the patient’s Information.
[Role]<USR>
Below is a medical record summary of a patient from the ${department}. Please act as the
attending physician and provide a diagnosis based on your expertise and knowledge.
[Medical Record Summary]:
###
${summary}
###
Additionally, by searching the medical knowledge base, you have identified several suspected
diseases and have extracted relevant information from them as follows, for reference:
[Knowledge Document]:
${External Knowledge Documents}
[Requirements]:
1. You need to comprehensively analyze the patient’s symptoms, medical history, examination
results, and other relevant information.
2. You should make full use of your medical knowledge and may refer to the knowledge
documents you retrieved. Please note! The knowledge in the documents may contain errors or
misleading information, so you must carefully evaluate and avoid blindly following them!
3. After the above analysis and thinking process, please provide your diagnosis using the
following template.
[Output Template]:
Diagnosis: [Predicted Disease 1: [Disease Name 1]; Predicted Disease 2: [Disease Name 2]; ...;
Predicted Disease n: [Disease Name n]]
Please strictly adhere to the output template and do not include any irrelevant information!

Table 8: The default prompt template for RAG-based LLM diagnosis. The presence of a "$" symbol indicates a
placeholder variable that needs to be filled with specific content.
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[Role]<SYS>
You are an outstanding AI medical expert. You can perform a preliminary disease diagnosis
based on the patient’s Information.
[Role]<USR>
Below is a medical record summary of a patient from the ${department}.
[Medical Record Summary]:
###
${summary}
###
Based on the above, you tried to search in the medical knowledge base and retrieved the
following document from the knowledge base:
${External Knowledge Documents}

[The Conception of Differential Diagnosis]
When analyzing the given documents, you may refer to the method of "differential diagnosis"
in clinical medicine: by analyzing the degree of concordance between the patient’s onset
cause, presenting symptoms, examination indicators, and the characteristics of the diseases
described in the current document, you can determine the relevance of the document for
reference. Additionally, you need to compare whether there are contradictions or significant
inconsistencies between the patient’s condition and the descriptions in the document. If such
inconsistencies exist, you should consider that the current document may not provide accurate
diagnostic guidance.

[Requirements]:
Your task is to match the patient’s condition with the description in the knowledge base
document, analyzing any content that matches or conflicts. Then, use your knowledge to
think critically and ultimately determine whether the knowledge base document is valuable for
diagnosis. If you think it is valuable, select "True"; if you think it is misleading or irrelevant,
select "False".
Please output in the following JSON format and do not output anything else:
{"status": "the value of status"}

Table 9: The default prompt template for LLM filtering the retrieved document via differential diagnosis prompt.
The presence of a "$" symbol indicates a placeholder variable that needs to be filled with specific content.
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