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Abstract

Heuristics are widely used for dealing with com-
plex search and optimization problems. How-
ever, manual design of heuristics can be often
very labour extensive and requires rich working
experience and knowledge. This paper proposes
Evolution of Heuristic (EoH), a novel evolution-
ary paradigm that leverages both Large Language
Models (LLMs) and Evolutionary Computation
(EC) methods for Automatic Heuristic Design
(AHD). EoH represents the ideas of heuristics in
natural language, termed thoughts. They are then
translated into executable codes by LLMs. The
evolution of both thoughts and codes in an evo-
lutionary search framework makes it very effec-
tive and efficient for generating high-performance
heuristics. Experiments on three widely studied
combinatorial optimization benchmark problems
demonstrate that EoH outperforms commonly
used handcrafted heuristics and other recent AHD
methods including FunSearch. Particularly, the
heuristic produced by EoH with a low computa-
tional budget (in terms of the number of queries
to LLMs) significantly outperforms widely-used
human hand-crafted baseline algorithms for the
online bin packing problem.

1. Introduction
Heuristics are commonly used for tackling complex search
and optimization problems. Over the last several decades,
much effort has been devoted to designing effective heuris-
tics, leading to simulated annealing (Van Laarhoven et al.,
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Figure 1. Heuristic design often (a) relies on human expertise with
reasoning over thoughts; recent progress has been made on (b)
search over the space of codes; while (c) our method evolves both
thoughts and codes using large language models.

1987), tabu search (Glover & Laguna, 1998), and iterated lo-
cal search (Lourenço et al., 2003), among many other meth-
ods (Mart et al., 2018). These hand-crafted methods have
been successfully used in a wide spectrum of real-world
applications. However, different applications may require
different algorithms and/or algorithm configurations. Manu-
ally designing, modifying, and configuring a heuristic for a
given problem can be very labor-intensive and demands rich
expert experience. This is a bottleneck in many application
domains. To address this issue, Automatic Heuristic Design
(AHD) has been proposed and become an active research
area (Burke et al., 2013; Stützle & López-Ibáñez, 2019).
AHD selects, tunes, or constructs effective heuristics for a
given problem class automatically. Genetic Programming
(GP) has been used in AHD (Langdon & Poli, 2013; Zhang
et al., 2023). GP requires a set of permissible primitives
or mutation operations for defining and generating heuris-
tics. It could be very difficult to construct a suitable set in
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practice (O’Neill et al., 2010).

It is believed that Large Language Models (LLMs) (Chen
et al., 2021; Austin et al., 2021; Li et al., 2023b) could
be a powerful tool for generating new ideas and heuris-
tics. However, standalone LLMs with prompt engineering
can be insufficient for producing novel and useful ideas be-
yond existing knowledge (Mahowald et al., 2023). Some
attempts have been made to couple LLMs with Evolution-
ary Computation (EC) methods to produce heuristics in
an automatic manner (Yang et al., 2023; Meyerson et al.,
2023; Chen et al., 2023). One representative work is Fun-
Search (Romera-Paredes et al., 2024). It models AHD as
a search problem in the space of functions, where each
function is a heuristic represented by a program and it uses
LLMs in an evolutionary framework to iteratively improve
the quality of generated functions. FunSearch has been ap-
plied on several problems with great success. However, its
mechanism is not very efficient and it needs a very large
amount of computational resources to generate a quality
heuristic.

In this paper, we present a new evolutionary paradigm,
dubbed Evolution of Heuristic (EoH) 1, to take advantage
of both LLMs and EC for AHD. Specifically, we leverage
a linguistic description, referred to as a thought, to repre-
sent a high-level idea (i.e., key logic) of a heuristic. Then,
a corresponding code representation, i.e., an executable
implementation of a heuristic, is generated via an LLM.
We propose an evolutionary framework to simultaneously
evolve the thoughts and codes of heuristics in a cooperative
manner. We demonstrate that the LLM-assisted evolution
of both thoughts and codes with curated prompts leads to
state-of-the-art AHD performance. We expect that EoH
serves as a step towards efficient and automatic algorithm
design.

In summary, our contributions are as follows:

• We propose EoH, a novel paradigm that uses LLMs to
evolution both thoughts and codes for the automatic
design of heuristics with minimum hand-craft design
and no domain model training.

• We develop several simple yet effective prompt strate-
gies to guide LLMs toward generating more diverse
and effective heuristics. These prompt strategies are
generally applicable to other LLM-assisted search
methods.

• We comprehensively evaluate EoH on three widely-
studied combinatorial optimization benchmark prob-
lems. We demonstrate that EoH outperforms many
existing AHD methods. In particular, EoH identifies

1Our work and its preliminary version (Liu et al., 2023b) were
developed independently of Romera-Paredes et al. (2024).

heuristics with better performance than those designed
by FunSearch. EoH uses much fewer queries to LLMs
than FunSearch on online bin packing problem.

2. Background and Related Works
2.1. Automatic Heuristic Design

Automatic heuristic algorithm design is commonly known as
hyper-heuristics (Burke et al., 2013; 2019; Stützle & López-
Ibáñez, 2019). With various effective methodologies (Blot
et al., 2016; López-Ibáñez et al., 2016; Akiba et al., 2019)
and frameworks (Burke et al., 2019), one can tune heuristics
or combine different algorithmic components in an auto-
matic manner. Much effort has been made to use machine
learning techniques in automatic algorithm design (Bengio
et al., 2021; Chen et al., 2022; He et al., 2021; Li et al.,
2023a). Among them, genetic programming (Mei et al.,
2022; Jia et al., 2022) provides an explainable approach to
algorithm design. However, it requires hand-crafted algo-
rithmic components and domain knowledge.

2.2. LLMs for Heuristic Design

Over the last few years, the ability of large language mod-
els has increased significantly (Naveed et al., 2023). Re-
cently, some effort has been made to use LLMs as basic
algorithmic components to improve the performance of al-
gorithms (Yang et al., 2023; Guo et al., 2023a). Most of
these works adopt LLM as optimizers (Yang et al., 2023)
to directly generate new trial solutions through in-context
learning. This approach faces challenges when applied to
complex problems with large search space (Yang et al., 2023;
Nasir et al., 2023; Zhao et al., 2023; Liu et al., 2023a). Oth-
ers integrate LLMs to assist algorithm design to extract deep
algorithm features for heuristic selection (Wu et al., 2023),
provide a guide for heuristic (Shah et al., 2023), and design
an algorithmic component (Xiao & Wang, 2023). How-
ever, designing a competitive heuristic is still a challenge
for standalone LLMs with prompt engineering.

2.3. LLMs + EC

Evolutionary computation is a generic optimization princi-
ple inspired by natural evolution (Bäck et al., 1997; Eiben
& Smith, 2015). Integration of EC in the prompt engi-
neering of LLMs is very promising in improving perfor-
mance in various domains (Guo et al., 2023b; Lehman et al.,
2023; Wu et al., 2024). Evolutionary methods have been
adopted in both code generation (Liventsev et al., 2023; Ma
et al., 2023; Lehman et al., 2024; Hemberg et al., 2024) and
text generation (Guo et al., 2023b; Fernando et al., 2023;
Xu et al., 2023a). The most related work to our effort is
FunSearch (Romera-Paredes et al., 2024), an evolutionary
framework with LLMs to search functions automatically. Al-
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gorithms generated by FunSearch outperform hard-crafted
algorithms on some optimization problems. However, Fun-
Search is computationally expensive and usually needs to
generate millions of programs (i.e., queries to LLMs) to
identify an effective heuristic function, which is not very
practical for many users.

3. Evolution of Heuristics (EoH)
3.1. Main Idea

EoH aims at evolving both thoughts and codes to mimic
the heuristic development conducted by human experts for
efficient automatic heuristic design. To achieve this goal,
EoH

• maintains both a natural language description and its
corresponding code implementation for each heuristic.
In each trial, it allows LLMs to first generate a heuris-
tic in terms of natural language and then generate its
corresponding code. The natural language description
summarizes the main idea and provides a high-level
understanding, while the code provides implementa-
tion details and settings that supplement the high-level
thought.

• employs several prompt strategies to guide LLMs to
do reasoning over existing thoughts and codes. These
strategies are designed to learn from previous experi-
ences and effectively explore the heuristic space. They
can be regarded as fine-grained in-context learning ap-
proaches that combine thoughts and codes for heuristic
search.

• evolves a population of candidate heuristics. It uses
LLMs in genetic operators such as crossover and muta-
tion to produce new heuristics. Selection is also used
to direct the search. The quality of each heuristic is
evaluated on a set of problem instances.

Unlike most evolutionary algorithms where individuals are
candidate solutions to an optimization problem, An indi-
vidual in EoH is a heuristic designed for solving a given
problem. We believe that the evolution of “thoughts” should
be an important research direction.

EoH Integrates LLMs into an evolutionary framework. It
generates and refines heuristics automatically. Unlike some
classic automatic heuristic design methods (Burke et al.,
2013), EoH doesn’t need any hand-crafted heuristic compo-
nents or train new models.

EoH evolves both thoughts and codes. Thoughts in natural
language and designed prompt strategies enable EoH to
generate more diverse and effective heuristics. In contrast,
FunSearch performs evolution of codes only and does not
use prompt strategies explicitly.

3.2. Evolution Framework

EoH maintains a population of N heuristics, denoted as
P = {h1, . . . , hN}, at each generation. Each heuristic hi

is evaluated on a set of problem instances and assigned a
fitness value f(hi).

Five prompt strategies are designed to generate new heuris-
tics. At each generation, each strategy is called N times to
generate N heuristics. Each newly generated heuristic will
be evaluated on problem instances and added to the current
population if it is feasible. At most 5N new heuristics will
be added to the current population at each generation. Then,
N best individual solutions from the current population will
be selected to form the population for the next generation.

EoH are summarised as follows:

Step 0 Initialization: Initialize the population P of N
heuristics h1, . . . , hN by prompting LLMs using Initializa-
tion prompt, its detail can be found in Section 3.4.

Step 1 Generation of Heuristics: If the stopping condition
is not met, five Evolution prompt strategies (detailed in
Section 3.4) are used simultaneously to generate 5N new
heuristics. For each of the five prompt strategies, repeat the
following process N times:

• Step 1.1: Select parent heuristic(s) from the current
population to construct a prompt for the strategy.

• Step 1.2: Request LLM to generate a new heuristic as
well as its corresponding code implementation.

• Step 1.3: Evaluate the new heuristic on a set of evalua-
tion instances to determine its fitness value.

• Step 1.4: Add the new heuristic to the current popula-
tion if the heuristic and code are feasible.

Step 2 Population Management: Select the N best in-
dividual heuristics from the current population to form a
population for the next generation. Go to Step 1.

3.3. Heuristic Representation

Each heuristic consists of three parts: 1) its description in
natural language, 2) a code block in a pre-defined format,
and 3) a fitness value.

The heuristic description comprises a few sentences in natu-
ral language. It is created by LLMs and presents a high-level
thought.

The code block is an implementation of the heuristic. It
should follow a pre-defined format so that it can be identi-
fied and seamlessly integrated into EoH framework. In the
experiments, we choose to implement it as a Python func-
tion. Three basic components should be explicitly given to
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format the code block: 1) Name of the function, 2) Input
variables, and 3) Output variables.

The evaluation of heuristics in EoH involves running the
resulting algorithms on an instance set of the problem in
question. This evaluation process differs from traditional
evolutionary algorithms, which typically evaluate the objec-
tive function in a single instance. It is similar to some AHD
approaches (López-Ibáñez et al., 2016; Hutter et al., 2011)
and is often costly.

3.4. Prompt Strategies

Initialization prompt In our experiments, we use LLMs
to create all the initial heuristics, eliminating the need for
expert knowledge. We inform the LLMs of the heuristic
design task and instruct it to design a new heuristic by
first presenting the description of the heuristic and then
implementing it as a Python code block. The details of
prompts for each problem are listed in the corresponding
subsections in the Appendix. We repeat N times to generate
N initial heuristics.

Evolution prompts Five prompt strategies are proposed
for creating new heuristics during evolution to mimic the
heuristic development by humans. They are categorized
into two groups: Exploration (E1, E2) and Modification
(M1, M2, M3). The exploration strategies focus more on
the exploration of the space of heuristics by conducting
crossover-like operators on parent heuristics. The modi-
fication strategies refine a parent heuristic by modifying,
adjusting parameters, and removing redundant parts. The
details of these evolutionary prompts are listed as follows:

E1: Generate new heuristics that are as much different as
possible from parent heuristics. First, p heuristics are se-
lected from the current population. Then, LLM is prompted
to design a new heuristic that is different from these selected
heuristics as much as possible in order to explore new ideas.

E2: Explore new heuristics that share the same idea as the
selected parent heuristics. First, p heuristics are selected
from the current population. Then, LLM is instructed to
identify common ideas behind these heuristics. Then, a new
heuristic is designed that are based the common ideas but
are as much different as possible from the selected parents
by introducing new parts.

M1: Modify one heuristic for better performance. Firstly,
one heuristic is selected from the population. Then, LLM is
prompted to modify it to produce a new heuristic.

M2: Modify the parameters of one selected heuristic. First,
one heuristic is selected from the current population. Then,
LLM is prompted to try different parameters in the current
heuristic instead of designing a new one.

M3: Simplify heuristics by removing redundant compo-
nents. First, one heuristic is selected from the current pop-
ulation. Then, LLM is prompted to analyze and identify
the main components in the selected heuristic and analyze
whether there are any redundant components. Finally, LLM
is prompted to simplify the code implementation of the
heuristic based on its analysis.

In all the above prompts, LLM is asked to first describe
the heuristic and then provide a code implementation in a
pre-defined format.

Any selection method can be used in EoH. In our experi-
mental studies, all the heuristics in the current population
are ranked according to their fitness. Heuristic i in the
current population is randomly selected with probability
pi ∝ 1/(ri +N), where ri is its rank and N is the popula-
tion size.

4. Experiments
4.1. Experimental Settings

Benchmarks and datasets. We consider three well-
studied combinatorial optimization benchmark problems:

• Online bin packing problem. The objective is to al-
locate a collection of items of different sizes into the
fewest possible bins with a fixed capacity C. We focus
on the online scenario (Seiden, 2002), where items are
packed as they arrive, in contrast to the offline scenario
where all items are known beforehand. The instances
that are used for evaluation during heuristic evolution
are five Weibull instances of size 5k with a capacity of
100 (Romera-Paredes et al., 2024). The fitness value
is set as the average lb

n on the five instances, where lb
represents the lower bound of the optimal number of
bins computed as in Martello & Toth (1990) and n is
the number of bins used to pack all the items by the
evaluated heuristic.

Methods in comparison include

– human hand-crafted heuristics: the first fit and
best fit heuristics (Romera-Paredes et al., 2024).
The first fit heuristic assigns the incoming item
to the first bin that has sufficient available space,
while the best fit heuristic selects the bin with the
least available space that can still accommodate
the item.

– heuristics generated automatically: Fun-
Search (Romera-Paredes et al., 2024) is
considered due to its excellent performance.
We directly use the heuristic generated by
FunSearch (Romera-Paredes et al., 2024) for
comparison.
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• Traveling Salesman Problem (TSP) (Matai et al., 2010).
It is to find the shortest route to visit all the given loca-
tions once and return to the starting location. It is one
of the most widely-studied combinatorial optimization
problems and a commonly used test bed for heuristics.
The heuristic evolution process is conducted on a set of
64 TSP100 instances. The locations in these instances
are randomly sampled from [0, 1]2 (Kool et al., 2018).
The average gap from the optimal solution (which is
generated by Concorde (Applegate et al., 2006)) is
used as the fitness value.

Methods in comparison include

– hand-crafted heuristics: The nearest inser-
tion(Rosenkrantz et al., 1977) and farthest inser-
tion (Rosenkrantz et al., 1977), two commonly
used constructive heuristics are used in compari-
son. Google Or-Tools (Perron & Furnon), one of
the most popular solvers is also used. We use the
default settings of Or-Tools and the local search
option suggested in OR-Tools to improve the so-
lution quality. The stopping criterion is 60s for
each instance.

– heuristics designed automatically by AI meth-
ods: they are the attention model (AM) (Kool
et al., 2018), POMO (Kwon et al., 2020) and
LEHD (Luo et al., 2023). AM (Kool et al., 2018)
is a seminal and well-known method for using
neural networks to learn heuristics for combina-
torial optimization. POMO (Kwon et al., 2020)
adopts AM ideas and achieves state-of-the-art re-
sults. LEHD (Luo et al., 2023) is a new revision
of AM with a different heavy decoder structure
and is trained using supervised learning.

• Flow Shop Scheduling Problem (FSSP) (Emmons &
Vairaktarakis, 2012). It is to schedule n jobs on m
machines, where each job contains m operations that
must be performed in a predetermined order on the
respective machine. The objective is to minimize the
total schedule length, known as the makespan. In the
perturbation flow-shop scheduling problem, the pro-
cessing order remains consistent throughout each step
and no machine can execute multiple operations si-
multaneously. During heuristic evolution, we conduct
evolution on 64 randomly generated instances. Each
instance consists of 50 jobs and 2 to 20 machines. The
processing times of the jobs are randomly generated
from a uniform distribution ranging from 0 to 1 (Pan
et al., 2021). The average makespan serves as the fit-
ness value.

Methods in comparison include

– hand-crafted heuristics: They are GUPTA (Gupta,
1971), CDS (Campbell et al., 1970) NEH (Nawaz

et al., 1983) and NEHFF (Fernandez-Viagas &
Framinan, 2014). GUPTA (Gupta, 1971) and
CDS (Campbell et al., 1970) are two classic meth-
ods for flow-shop scheduling. NEH (Nawaz et al.,
1983) and NEHFF (Fernandez-Viagas & Frami-
nan, 2014) are widely recognized efficient heuris-
tics for this problem.

– heuristics designed automatically: PFSPNet and
PFSPNet NEH (Pan et al., 2021) are used. They
are two recently proposed end-to-end deep learn-
ing solvers for flow-shop scheduling.

Implementation details.

• Online bin packing. We adopt the settings in Romera-
Paredes et al. (2024) to design heuristics to determine
the suitable bin allocation for incoming items (An-
gelopoulos et al., 2023). Specifically, the task for EoH
is to design the scoring function for assigning items.
The inputs are the size of the item and the rest capaci-
ties of bins. The output is the scores for the bins. The
item will be assigned to the bin with the maximum
score.

• Traveling salesman. We use EoH to design Guided
Local Search (GLS) heuristics (Alsheddy et al., 2018).
GLS is a strategy to help a local search to escape local
optimal solutions. A key issue in GLS heuristics is
how to update the objective function (i.e. landscape) to
guide the local search to move to more promising ar-
eas. Noting that the landscape is primarily determined
by the distance matrix, the goal of EoH is to produce
a method for updating the distance matrix. Follow-
ing (Alsheddy et al., 2018; Arnold & Sörensen, 2019),
the inputs are the distance matrix, the current route,
and the number of edges. The output is an updated
distance matrix. GLS runs local search operators on
updated landscapes iteratively. Two local search op-
erators used in our experiments are the relocate and
2-opt operators. A detailed introduction of the GLS
heuristics is presented in the Appendix.

• Flow shop scheduling. We use the EoH to produce a
heuristic for updating the objective landscape in GLS
for this problem. The inputs in the heuristic are the
time matrix, current scheduling, and the number of
machines and jobs. The outputs are the updated time
matrix and the calculated job perturbation priority. The
local search operators used are the relocate and swap
operators.

In our experiments, the number of generations in EoH for
all problems is set to 20. The population size is 20 for online
bin packing and 10 for TSP and FSSP. The number of parent
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The heuristic incorporates a weighted average of the utilization
ratio, dynamic adjustment, and an exponentially decaying factor,
with different parameter settings to minimize the number of used
bins.

def heuristic(item, bins):

diff = bins-item # remaining capacity

exp = exp(diff) # exponent term

sqrt = sqrt(diff) # square root term

ulti = 1-diff/bins # utilization term

comb = ulti * sqrt # combination of utilization and square root 

adjust = where(diff > (item * 3), comb + 0.8, comb + 0.3)

# hybrid adjustment term to penalize large bins 

hybrid_exp = bins / ((exp + 0.7) *exp)

# hybrid score based on exponent term

scores = hybrid_exp + adjust

# sum of hybrid score and adjustment

return scores

# Human (Best Fit)

def heuristic(item, bins):

scores = item - bins

return scores

# FunSearch

def heuristic(item, bins):

max_bin= max(bins)

comb1 = (bins - max_bin)**2 / item 

comb2 = bins**2 / item**2

comb3 = bins**2 / item**3

scores = comb1 + comb2 + comb3

scores[bins>item] = -score[bins>item]

scores[1:] -= score[:-1]

return scores

# EoH

Figure 2. Evolution of EoH for online bin packing. We outline the key thoughts and the corresponding code snippets of the best heuristics
produced in some generations during evolution. We list the prompt strategies. We present the best heuristic in the final population and
compare it with the best fit heuristic and the heuristic produced by FunSearch.

heuristics used in E1 and E2 is p = 5. The GPT-3.5-turbo
pre-trained LLM is used. For TSP and FSSP, the maximum
number of iterations for local search is set to 1,000, and the
maximum running time for each instance is 60 seconds. The
entire framework and the implementations of EoH on the
three problems are implemented in Python and executed on
a single CPU i7-9700.

4.2. Results

Online bin packing. We visualize the evolution of EoH
for the online bin packing problem in Figure 2. We outline
the key thoughts and the corresponding codes of the best
heuristic found in some generations in the evolution pro-
cess. We also list the prompt strategies that generate the
thoughts and codes. The fitness value (objective) increases
from 0.962 to 0.993 in 20 generations, which involves 2,000
LLM queries. As shown in Figure 2, in comparison to the
best fit heuristic, the heuristics designed by both FunSearch
and EoH are sophisticated. The best heuristic found by EoH
is a hybrid function with multiple components. It consists
of remaining capacities, exponent term of remaining capac-
ities, square root term of remaining capacities, and their
combinations. It is the result of evolution. An example of
the heuristic design using E2 prompt strategy is detailed in
the Appendix B.2.

We test the best heuristic produced by EoH on instances
of various sizes and capacities and compare it with two
hand-crafted heuristics (i.e., first and best fit), and the best
heuristic produced by FunSearch. The problem size ranges
from 1k to 10k and the capacities are 100 and 500. Each set
includes 5 randomly generated instances. Table 1 presents
the average gaps to the lower bounds, where the best results
are highlighted in bold. Our method is the best except for
the results on the 10k C100 set (instances with a problem
size of 10k and a capacity of 100). EoH makes only a
few thousands of LLM queries, which is much faster than
FunSearch (around 1 million queries reported in Romera-
Paredes et al. (2024)). Furthermore, our method achieves the
same best gap in the training distribution and demonstrates
excellent generalization performance to out-of-distribution
instances. For instance, on the instance set with 1k items and
a capacity of 500, FunSearch performs worse than two hand-
crafted heuristics, whereas our method achieves the best gap
of 2.13%. More results are provided in the Appendix B.4

Traveling salesman. Figure 3 (a) illustrates the evolution
process of heuristics in EoH for TSP. The y-axis represents
the gap (%) to the optimal solution and the x-axis represents
the number of generations. Each blue data point represents a
GLS heuristic produced by EoH. Every population consists
of 10 heuristics. The red curve shows how the performance
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Table 1. Online bin packing results. Comparison of the fraction
of excess bins to lower bound (lower is better) for various bin
packing heuristics on Weibull instances.

1k C100 5k C100 10k C100 1k C500 5k C500 10k C500

First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28%

Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95%

FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74%

EoH (ours) 2.24% 0.80% 0.61% 2.13% 0.78% 0.61%

Table 2. Traveling salesman problem results. Comparison of the
relative distance (%) to the best-known solutions (lower is better)
for various routing heuristics on a subset of TSPLib instances.

rd100 pr124 bier127 kroA150 u159 kroB200

NI 19.91 15.50 23.21 18.17 23.59 24.10
FI 9.38 4.43 8.04 8.54 11.15 7.54
Or-Tools 0.01 0.55 0.66 0.02 1.75 2.57

AM 3.41 3.68 5.91 3.78 7.55 7.11
POMO 0.01 0.60 13.72 0.70 0.95 1.58
LEHD 0.01 1.11 4.76 1.40 1.13 0.64

EoH(Ours) 0.01 0.00 0.42 0.00 0.00 0.20

of the best heuristic found at each generation is improved.
The orange curve shows the average performance of the
population at each generation. It is clear that EoH converges
after about 20 generations. We list the gap (%) to the best-
known solutions on six instances from TSPLib (Reinelt,
1991) in Table 2. Comprehensive evaluation on other TSP
instances and comparison with some other heuristics in-
cluding hand-crafted GLS algorithms are provided in the
Appendix C.4.

It should be pointed out that the heuristics produced by EoH
consistently outperform other heuristics on all test instances.
Notably, for pr124, kroA150, and u159, the EoH heuristic
finds the best-known solutions (i.e., gap= 0%). OR-Tools
works well on average. However, its performance on large
instances becomes worse perhaps due to the limited running
time. The neural solvers are trained on the instances from
a uniform distribution, which is the same as those used in
EoH for fitness evaluation. These solvers can generate high-
quality solutions on the instances from the same distribution.
However, they deteriorate on out-of-distribution instances,
such as the TSPLib instances. In contrast, the heuristic
designed by EoH works well on these out-of-distribution
instances.

Flow shop scheduling. Figure 3 (b) depicts the evolu-
tion process of heuristics on FSSP, demonstrating that it
converges in about 20 generations. Table 3 lists the experi-
mental results of different heuristics on Taillard instances
with the number of jobs (n) ranging from 20 to 100 and the
number of machines (m) ranging from 10 to 20. The table

Table 3. Flow shop scheduling problem results. Comparison of
the average relative makespan (%) to the baseline (lower is better)
on Taillard instances.

n20m10 n20m20 n50m10 n50m20 n100m10 n100m20

GUPTA 23.42 21.79 20.11 22.78 15.03 21.00

CDS 12.87 10.35 12.72 15.03 9.36 13.55

NEH 4.05 3.06 3.47 5.48 2.07 3.58

NEHFF 4.15 2.72 3.62 5.10 1.88 3.73

PFSPNet 14.78 14.69 11.95 16.95 8.21 16.47

PFSPNet NEH 4.04 2.96 3.48 5.05 1.72 3.56

EoH (ours) 0.30 0.10 0.19 0.60 0.14 0.41

Table 4. Comparison of different EoH variants on thoughts, codes,
and prompt strategies in ablation study.

Thoughts Codes Prompt Strategies

EoC ✗ ✓ E1
EoH-e1 ✓ ✓ E1
EoH-e2 ✓ ✓ E1, E2
EoH ✓ ✓ E1, E2, M1, M2, M3

displays the average gap (%) to the upper bound provided
in Taillard (1993). Each set consists of 10 instances. The
best results are highlighted in bold. EoH produces the best
results on all the test sets among all the heuristics. More
results can be found in the Appendix D.3.

4.3. Ablation Study

An ablation study is carried out to provide a better under-
standing of the contribution of major components in EoH.
We consider the following variants of EoH:

• EoH-e1: it doesn’t use the three modification prompt
strategies and E2, i.e. It uses only E1.

• EoH-e2: it doesn’t use the three modification prompt
strategies, i.e. It uses only E1 and E2.

• EoC: it is the code-only variant of EoH. It doesn’t
include the thought part (i.e. the description of the
heuristic in natural language). EoC only uses E1 (with-
out linguistic description) to generate new codes. The
number of parents p = 5.

Table 4 summarizes the components used in various com-
pared variants.

Experiments are carried out on online bin packing problem.
The population size is 20. The GPT-3.5-turbo pre-trained
LLM is used. The number of parent heuristics used in E1
and E2 is p = 5. To have a fair comparison, all the variants
use the same initial population. Consider that EoH uses
five prompt strategies while others use few strategies. We
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Figure 3. Convergence curves of EoH on TSP and FSSP. The y-
axis represents the average gap (%) to the baseline and average
makespan for TSP and FSSP, respectively. Each sample corre-
sponds to a heuristic generated during the evolutionary process.
The population size is 10 and the number of generations is 20. The
gaps or makespans of some heuristics are out of the range of the
figure or very close to each other. The red and orange lines depict
the best and average performance of each population throughout
the evolution.

increase the numbers of generations correspondingly in each
variant so that the total number of evaluated heuristics is the
same. Table 5 compares the final best heuristics produced by
different variants. We can make the following observations:

• On average, EoH performs the best and EoH-e2 per-
forms the second best. This implies that M1,M2,M3,
and E2 do make positive contribution to the perfor-
mance of EoH.

• EoC performs the worst or the second worst on these
test instances. It implies that the thought part in EoH
is also very beneficial.

Table 5. Comparison of the gap to lower bound using heuristics
designed by different versions on the six sets of Weibull instances.
Each set consists of 5 instances sampled from the same distribution.
In a b, a means the number of items and b means the capacity of
bin.

1k 100 5k 100 10k 100 1k 500 5k 500 10k 500

EoC 148.63% 3.23% 24.55% 150.89% 12.53% 32.02%

EoH-e1 4.13% 0.99% 0.60% 58.17% 55.48% 54.79%

EoH-e2 4.28% 0.97% 0.56% 5.86% 1.36% 0.73%

EoH 2.24% 0.80% 0.61% 2.13% 0.78% 0.61%

5. Discussion and Future Works
5.1. Discussion

Interaction between Thoughts and Codes We carry out
the following experiments to demonstrate the benefits of the
use of both thoughts and codes in EoH. The thought and
code can be regarded as multiple views of the heuristic. We
will show that the multi-view thought and code representa-
tion contribute to EoH. We compare EoH with the following
three variants:

• C2C: It uses only code to represent a heuristic. There
is no natural language (thought) representation.

• T2T2C: It uses only thought for heuristic represen-
tation. Evolutionary prompts (i.e., E1-2, M1-3) only
use thought representation to generate new heuristics.
However, we still need to query LLMs to produce
a code implementation for each heuristic for perfor-
mance evaluation.

• T&C2T2C: It uses both thought and code representa-
tions of input heuristics in evolutionary prompts. We
query LLMs with these prompts (i.e., E1-2, M1-3) to
give only a natural language presentation of the pro-
duced heuristic. As in T2T2C, we need to request
LLMs to produce a code implementation for each pro-
duced heuristic for performance evaluation.

Table 6 lists comparison results (average gap (%) to lb) of
EoH with the above three variants on the online bin packing
Weibull test instances. All experiments are carried out in
the same experimental settings three times on the online bin
packing problem.

It is evident that only use of codes (C2C) or thoughts
(T2T2C) in evolutionary prompts is much worse than EoH.
Thus, we can claim that the evolution of both codes and
thoughts does make significant contribution to EoH. EoH
is also better than T&C2T2C. It implies that letting these
prompts output both the codes and thoughts are helpful for
the quality of the produced heuristics.

8
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Table 6. Study of the effect of evolution of both thoughts and codes.
Average gap (%) to lb on online bin packing problem 5k Weibull
instances.

Setting Run 1 Run 2 Run 3 Average

C2C 2.92 1.25 3.53 2.57
T2T2C 3.72 1.66 1.00 2.13
T&C2T2C 0.79 0.76 1.00 0.85
EoH 0.68 0.67 0.62 0.66

Table 7. Comparison of EoH with different LLMs. Average gap
(%) to lb on online bin packing problem 5k Weibull instances.

Method LLM Run 1 Run 2 Run 3 Average

Sampling GPT3.5 2.76 1.92 2.65 2.44
EoH CodeLlama 0.93 0.62 1.66 1.07
EoH Deepseek 1.01 1.47 1.75 1.41
EoH Gemini Pro 0.92 0.61 0.61 0.71
EoH GPT3.5 0.68 0.67 0.62 0.66

Different LLMs We compare four commonly used LLMs:
GPT3.5, Gemini Pro, CodeLlama, and Deepseek. All ex-
periments are carried out in the same experimental settings
three times on the online bin packing problem. In general,
EoH can generate good-performance heuristics using these
different LLMs. EoH using different LLMs with 2,000
queries to LLMs performs better than randomly querying
GPT3.5 10,000 times. Nevertheless, our experimental re-
sults also show the benefits of using more powerful LLMs,
e.g., GPT3.5 and Gemini Pro outperform other LLMs.

Use of Expert Heuristic We investigate the impact of the
use of existing heuristics (expert heuristics) in EoH. Take the
bin packing problem as an example, we adopt the heuristic
provided in FunSearch paper (Romera-Paredes et al., 2024)
as the existing expert heuristic and put it into the initial
population of EoH. The rest of the initial heuristics are
randomly generated. The results are given in Table 8. We
term the EoH with an expert in the initial population EoH
expert and compare it to the original EoH and FunSearch.
The results show that the adoption of elite expert heuristic
benefits in the population benefits the final results in our test
case. The EoH expert clearly surpasses both FunSearch and
EoH. The knowledge of expert heuristics can be inherited
and evolved during evolution to produce better heuristics.

5.2. Future Works

It should be pointed out that the development of the evo-
lution of heuristics using LLMs is still in its very early
infancy. This paper and other research (Romera-Paredes
et al., 2024) show that it is very promising for automatic

Table 8. Study of the effect of using an existing expert heuristic
in EoH. Average gap (%) to lb on online bin packing problem 5k
Weibull instances.

Method Run 1 Run 2 Run 3 Average

FunSearch 0.94 0.82 1.15 0.97
EoH 0.68 0.67 0.62 0.66
EoH expert 0.57 0.55 0.52 0.55

algorithm design. Much effort should be made to advance
this area.

Pre-trained domain LLM Instead of using a general pre-
trained LLM with linguistic and code generation capability,
it is worthwhile studying how to train an LLM specifically
for automatic algorithm design. Domain knowledge can be
used for this purpose.

Understanding of search space of heuristics EoH di-
rectly does its search on the space of heuristics. It is dif-
ferent from classic optimization algorithms which conduct
their search in a well-defined math space such as Rn. It
should be very important to study and understand search
spaces of heuristics for further establishing theory and basic
principles for the automatic design of algorithms.

Interaction with human experts A LLM in EoH can be
regarded as an intelligent agent. During the process of EoH,
It is straightforward to let human experts to replace LLM
for generating, modifying, and evaluating heuristics at some
stage. It should be interesting to study how to implement
efficient and effective interaction with human experts in
EoH. Ideas and techniques in collective intelligence (Malone
& Bernstein, 2022) should be used for this purpose.

6. Conclusion
This paper has proposed Evolution of Heuristics (EoH),
which combines large language models (LLMs) and evo-
lutionary computation (EC) methods to design heuristics
in an automatic manner. By introducing the evolution of
both thoughts and codes and using five prompt strategies,
EoH mimics the process of heuristic design by human
experts. We have tested EoH on three well-studied opti-
mization problems, namely the online bin-packing prob-
lem, travel salesman problem, and flow shop scheduling
problem. Experiments have shown that EoH can out-
perform human hand-crafted heuristics in some problem
instances. EoH requires only a few thousand LLM re-
quests while achieving better performance on most test
instances. EoH offers a principled approach to automatic
algorithm design. The source code can be found in https:
//github.com/FeiLiu36/EoH.
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A. Additional Related Work
A.1. Neural Solvers

Recently, much effort has been made to develop end-to-end neural solvers, especially for combinatorial optimization (Bengio
et al., 2021). A pointer network as a neural solver was proposed to construct solutions autoregressively in Vinyals et al.
(2015). Some improvements to this work have been made including using an efficient reinforcement learning framework
to replace the original supervised learning (Bello et al., 2016) and adopting an attention model to replace the pointer
network (Kool et al., 2018; Deudon et al., 2018). Among these variants (Xin et al., 2020; Kwon et al., 2020; 2021), a
multiple optimal policy proposed in (Kwon et al., 2020) archives the state-of-the-art performance on diverse problems of
small or moderate sizes. Recent progress, leveraging a heavy encoder and light decoder, enhances its scalarization (Drakulic
et al., 2023; Luo et al., 2023).

Some effort has also been made to hybridize neural solvers and classic heuristic algorithms including heat map-based
methods (Joshi et al., 2019; Fu et al., 2021; Qiu et al., 2022), heat map guided beam search (Joshi et al., 2019), Monte Carlo
tree search (MCTS) (Fu et al., 2021), dynamic programming (Kool et al., 2022), and guided local search (Hudson et al.,
2021; Sui et al., 2023). The hybridization often requires significant effort to design and train domain neural models.

A.2. Prompt Engineering

LLMs with simple promoting face challenges in solving complex reasoning tasks (Chu et al., 2023). To address this
challenge, Chain-of-Thought (CoT) (Wei et al., 2022) was proposed to do in-context learning with step-by-step reasoning
processes to enhance the reasoning ability of LLMs without human annotation.

Consequently, there have been many extensions and modifications on CoT such as multi-sampling, tree-of-thoughts (Long,
2023), graph-of-thoughts (Yao et al., 2023), algorithm-of-thoughts (Sel et al., 2023), and automatic CoT construction (Kojima
et al., 2022; Xu et al., 2023b). The prompt strategies used in EoH can be regarded as variants of CoT for the design of
heuristics with parent heuristics and instructions as in-context information.

B. Online Bin Packing Problem
B.1. Prompt Engineering

In the following, we introduce the detailed prompt engineering used for online bin packing problem. The prompt engineering
for each evolution procedure consists of five main parts: 1) Task description, 2) Strategy-specific prompt, 3) Expected
output, 4) Note, and 5) Parent heuristic(s). Figure 4 presents two examples of prompts: initialization prompt and E2 prompt.
The prompt engineering for other operators (E1, M1, M2, and S1) has the same structure as these two examples and is not
listed for brevity. The five parts in different colors are introduced as follows:

• Task description: It informs LLMs of the problem description. Different prompt strategies usually share the same task
description.

• Strategy-specific prompt: It instructs LLMs to do reasoning over the in-context information and generate new
heuristics as well as its corresponding code implementation. Different prompt strategies have different strategy-specific
prompts. For example, during initialization, we instruct the LLM to create a totally new heuristic. During evolution, we
request LLM to perform different types of reasoning over parent heuristic(s) to explore the heuristic search space.

• Expected output: It asks the LLM to provide a description of the designed heuristic and then produce the code
implementation for the heuristic. In this paper, the code implementation is a function in Python. We explicitly define
the name, input, and output of the code for easy identification by EoH framework.

• Note: It provides additional instructions for LLM to improve the efficiency and robustness. For example, we may
suggest specific types of inputs and outputs and discourage extra explanations to prevent a long response.

• Parent heuristic(s): It includes parent heuristic(s) to enable in-context learning over both the linguistic heuristic
description and the code implementation. The initialization prompt does not include this part.

B.2. Heuristic Evolution
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Figure 4. Two examples of prompt engineering used in initialization prompt and E2 prompt for online bin packing.

Prompt for Initialization

I need help designing a new heuristic that
scores a set of bins to assign an item. In
each step, the item will be assigned to the
bin with the maximum score. If the rest
capacity of a bin equals the maximum
capacity, it will not be used. The final goal
is to minimize the number of used bins.

Please design a new heuristic.
Firstly, describe your new heuristic and
main steps in one sentence.
Next, implement it in Python as a function
named ’score’. This function should accept
two inputs: ’item’ and ’bins’. The function
should return one output: ’scores’. ’item’
and ’bins’ are the size of the current item
and the rest capacities of feasible bins,
which are larger than the item size. The
output named ’scores’ is the scores for the
bins for assignment.

Note that ’item’ is of type int, ’bins’ is
a Numpy array that includes integer val-
ues, and ’scores’ should be a Numpy array.
Avoid utilizing the random component, and
it is crucial to maintain self-consistency. Do
not give additional explanations.

Prompt for E2

I need help designing a new heuristic that scores a set of bins to assign an
item. In each step, the item will be assigned to the bin with the maximum
score. If the rest capacity of a bin equals the maximum capacity, it will not
be used. The final goal is to minimize the number of used bins.

I have five existing heuristics with their codes as follows:
No.1 Heuristic description:
Code:
...
No.5 Heuristic description:
Code:

Please help me design a new heuristic that is different from the given ones
but can be motivated by them.
Firstly, identify the common idea in the provided heuristics.
Secondly, based on the backbone idea describe your new heuristic in one
sentence.
Thirdly, implement it in Python as a function named ’score’. This function
should accept two inputs: ’item’ and ’bins’. The function should return
one output: ’scores’. ’item’ and ’bins’ are the size of the current item and
the rest capacities of feasible bins, which are larger than the item size. The
output named ’scores’ is the scores for the bins for assignment.

Note that ’item’ is of type int, ’bins’ is a Numpy array that includes integer
values, and ’scores’ should be a Numpy array. Avoid utilizing the random
component, and it is crucial to maintain self-consistency. Do not give
additional explanations.

The heuristic calculates the scores for each bin by

incorporating the rest capacity, the index of the

bin, and a penalty for bins with larger differences,

while also accounting for a modified version of

the difference between the rest capacity and the

item size, emphasizing efficient space utilization

and minimal usage of bins, and incorporating a

unique weighing factor for each bin.

The heuristic calculates the scores for each bin

by taking into account the rest capacity, the index

of the bin, and a different penalty for bins with

larger differences, incorporating a modified

version of the difference between the rest

capacity and the item size with a unique

weighing factor for each bin.

The heuristic calculates the scores for each bin

by considering the rest capacity, the index of the

bin, and a modified version of the difference

between the rest capacity and the item size, in

order to prioritize bins with higher rest capacity

and lower index, while penalizing bins with

larger differences. The modified difference will

be calculated by multiplying the natural

logarithm of the rest capacity minus the item size

with a factor of 3 and subtracting the bin index.

The heuristic calculates the scores for each bin
based on the remaining capacity, the index of
the bin, and a modified version of the difference
between the rest capacity and the item size, in
order to prioritize bins with lower rest capacity
and higher index, while penalizing bins with
smaller differences. The modified difference will
be calculated by multiplying the natural
logarithm of the rest capacity minus the item
size with a factor of 2, adding the square of the
index of the bin, and subtracting the item size.

The heuristic calculates the scores for each bin

based on their rest capacity and the item size,

with added penalties or transformations to

prioritize certain aspects, including but not

limited to trigonometric functions and

multiplication by certain factors as in the original

algorithm. This will ensure that the bins are

scored based on their capacity and other relevant

factors, while promoting efficient performance

and self-consistency.

The common idea in the provided heuristics is to calculate scores for each bin based on the rest capacity, index of the bin, and a modified version of the difference between the rest

capacity and the item size. The heuristics also incorporate penalties or transformations to prioritize certain aspects and promote efficient performance.

Heuristic 1

import numpy as np

def score(item, bins):

modified_diff = np.log(bins - item) + 2 *

np.sqrt(np.arange(len(bins)))

penalty = np.where(modified_diff > 5, -10, 0)

weights = np.arange(1, len(bins) + 1)

scores = bins - modified_diff + penalty +

weights

return scores

Code 1 import numpy as np

def score(item, bins):

modified_diff = np.log(bins - item) + 3* 

np.sqrt(np.arange(len(bins)))

penalty = np.where(modified_diff > 7, 

-15, 0)

weights = np.arange(1, len(bins) + 1) * 2

scores = bins - modified_diff + penalty + 

weights

return scores

Heuristic 2

Code 2

import numpy as np

def score(item, bins):

modified_diff = np.log(bins - item)

scores = bins - np.arange(len(bins)) -

modified_diff

return scores

Code 3

Heuristic 3

import numpy as np

def score(item, bins):

modified_diff = 2 * np.log(bins - item) + 

np.square(np.flip(np.arange(len(bins))))

scores = bins - modified_diff

return scores

Heuristic 4

Code 4
import numpy as np

def score(item, bins):

logarithmic_penalty = np.log10(bins) / 

np.sqrt(bins - item)

scores = bins * (bins == np.max(bins)) - (3 * 

np.arange(len(bins))) + logarithmic_penalty

return scores

Heuristic 5

Code 5

Based on this, the new heuristic can be described as follows: the new

heuristic calculates the scores for each bin by incorporating the rest capacity,

the index of the bin, and a penalty for bins with larger differences, while also

accounting for the logarithm of the rest capacity minus the item size,

multiplication with a factor, and a unique transformation for efficient space

utilization and minimal usage of bins.

import numpy as np

def score(item, bins):

modified_diff = np.log(bins - item) * 1.5 + 4 * np.sqrt(np.arange(len(bins))) - np.cos(bins)

penalty = np.where(modified_diff > 6, -12, 0)

weights = np.arange(1, len(bins) + 1) * 3

scores = bins - modified_diff+ penalty + weights

return scores

E2 Prompt

Reasoning

New Heuristic Code

Fitness: 0.0143

Fitness: 0.0085

Fitness: 0.0135 Fitness: 0.0185 Fitness: 0.0196

Fitness: 0.0082

LLM

Figure 5. Illustration of the generation of new heuristic and its code implementation using E2 prompt in one step in EoH on online bin
packing problem. Five parent heuristics are selected from the population. E2 prompts LLM to first observe and summarize the common
idea in the five heuristics, then design a new heuristic using this idea, and finally give a code implementation for the designed heuristic.
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The convergence process of evolution has been discussed in the main part. Figure 6 presents a detailed illustration of
E2 in one generation. Five heuristics are chosen from the population, each of them consists of a high-level description
and a detailed Python implementation. These heuristics are then used as inputs for prompt engineering in E2, which was
introduced in the previous section. The LLMs are given three instructions: firstly, to identify the shared concept among
the provided heuristics based on their descriptions and codes; secondly, to design a new heuristic based on this analysis;
and thirdly, to implement the heuristic in Python with a given name, input, and output. The improved heuristic follows the
identified common idea and integrates new components.

B.3. Designed Heuristic

Comparison of heuristics designed by humans, EoC, FunSearch, and our proposed EoH is presented in Figure 6. We
present them as Python functions with the same inputs and output. The inputs ’item’ and ’bins’ represent the size of the
current item and the rest capacities of bins following Romera-Paredes et al. (2024). The output is the scores assigned to the
bins. At each step, the item is assigned to the bin with the highest score. It is worth noting that the two most commonly
utilized hand-crafted heuristics can be implemented in one line of code. On the other hand, the heuristics designed by EoC,
FunSearch, and our method EoH are more complicated, making them difficult to achieve for human designers.

B.4. More Results

Table 9 summarizes the results of First Fit, Best Fit, and the algorithm produced by FunSearch, EoC, and EoH on Weibull
instances with different capacities and sizes. The average gap to the lower bound on five instances is reported for different
heuristics. The best results, indicated in bold, represent the heuristics with the lowest average gap to the lower bound. We
observe that the heuristic designed by EoC overfits on the distribution (100, 5k) which is used to evaluate the fitness of
heuristics generated in the evolution process. Among all the heuristics, EoH consistently achieves the best performance,
with an average gap to the lower bound of 1.18%. Importantly, EoH only utilizes a few thousand queries, which accounts for
much less computational budget required by FunSearch (around 1 million queries reported in Romera-Paredes et al. (2024)).
EoH achieves the same best gap in the training distribution while demonstrating superior generalization performance,
particularly for different capacities.

Table 9. Results on Weibull instances with varied capacities and problem sizes. Average gap to lower bound across five instances (best
results in bold).

Capacity Size First Fit Best Fit FunSearch EoC EoH

100 1k 5.32% 4.87% 3.78% 148.63% 2.24%
5k 4.40% 4.08% 0.80% 3.23% 0.80%
10k 4.44% 4.09% 0.33% 24.55% 0.61%

200 1k 4.86% 4.42% 4.20% 134.59% 2.10%
5k 4.14% 3.80% 0.93% 5.26% 0.76%
10k 4.16% 3.83% 0.36% 23.96% 0.58%

300 1k 4.93% 4.48% 4.93% 141.48% 2.18%
5k 4.18% 3.83% 1.07% 8.31% 0.77%
10k 4.20% 3.87% 0.49% 27.62% 0.59%

400 1k 4.97% 4.50% 5.38% 150.06% 2.16%
5k 4.24% 3.88% 1.57% 10.52% 0.79%
10k 4.25% 3.91% 0.69% 30.45% 0.61%

500 1k 4.97% 4.50% 6.75% 150.89% 2.13%
5k 4.27% 3.91% 1.47% 12.53% 0.78%
10k 4.28% 3.95% 0.74% 32.02% 0.61%

Average 4.51% 4.13% 2.23% 60.27% 1.18%
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Figure 6. Heuristics produced using different approaches: First fit and Best fit by human designers. Evolution-of-Codes (EoC), FunSearch,
and our proposed Evolution-of-Heuristics (EoH).

Heuristic Designed by Human (First Fit)

import numpy as np
def heuristic(item, bins):

scores = -np.arange(len(bins))
return scores

Heuristic Designed by Human (Best Fit)

def heuristic(item, bins):
scores = item - bins
return scores

Heuristic Designed by EoC

import numpy as np
def heuristic(item, bins):

scores = np.log(item) * (bins ** 2) / (
item * np.sqrt(bins - item)) + (
bins / item) ** 3

scores[bins == bins.max()] = -np.inf
return scores

Heuristic Designed by FunSearch

def heuristic(item, bins):
max_bin_cap = max(bins)
score = (bins - max_bin_cap)**2 / item +

bins**2 / (item**2)
score += bins**2 / item**3
score[bins > item] = -score[bins > item]
score[1:] -= score[:-1]
return score

Heuristic Designed by EoH

<Heuristic Description>
The heuristic incorporates a weighted average of the utilization ratio,
dynamic adjustment, and an exponentially decaying factor, with different
parameter settings to minimize the number of used bins.

<Code>
import numpy as np
def heuristic(item, bins):
diff = bins-item # remaining capacity
exp = np.exp(diff) # exponent term
sqrt = np.sqrt(diff) # square root term
ulti = 1-diff/bins # utilization term
comb = ulti * sqrt # combination of utilization and square root
adjust = np.where(diff > (item * 3), comb + 0.8, comb + 0.3)

# hybrid adjustment term to penalize large bins
hybrid_exp = bins / ((exp + 0.7) *exp)

# hybrid score based on exponent term
scores = hybrid_exp + adjust

# sum of hybrid score and adjustment
return scores
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C. Traveling Salesman Problem
C.1. Guided Local Search

The heuristics designed by EoH work with local search operators in a guided local search framework for both TSP and FSSP.
In contrast to the complicated local search in SOTA solvers (Helsgaun, 2017), We only adopt the two basic local search
operators. We show that even with these two simple operators, EoH can design a very competitive algorithm.

Guided local search (GLS) is a widely used strategy to guide a local search escape from local optimal solutions for solving
combinatorial optimization problems (Alsheddy et al., 2018; Voudouris & Tsang, 1999). In a typical local search (Alsheddy
et al., 2018), when a local search is trapped in a local optimal solution, GLS modifies the objective function to guide the
local search to move to other promising search regions (Alsheddy et al., 2018).

A GLS algorithm alternates the two phases: local search and perturbation (Arnold & Sörensen, 2019). During the local
search phase, we employ local search operators to search. When the search is trapped in a local optimum, the perturbation
phase is invoked to update the objective function (i.e., landscape) using a heuristic strategy.

EoH is employed to design a strategy to update the objective function. With some pre-selected local search operators, this
strategy can define a GLS heuristic. In our experiments, for each updating strategy generated in EoH, the performance of its
corresponding GLS heuristic is evaluated on a set of problem instances, with the average performance as its fitness value.

C.2. Prompt Engineering

Figure 7. Two examples of prompt engineering used in initialization and E2 strategy for TSP.

Prompt for Initialization

Given an edge distance matrix and a local
optimal route, please help me design a
strategy to update the distance matrix to
avoid being trapped in the local optimum
with the final goal of finding a tour with
minimized distance. You should create a
heuristic for me to update the edge distance
matrix.

Please design a new heuristic.
Firstly, describe your new heuristic and
main steps in one sentence.
Next, implement it in Python as a function
named ’update edge distance’. This
function should accept three inputs:
’edge distance’, ’local opt tour’, and
’edge n used’. The function should return
one output: ’updated edge distance’. ’lo-
cal opt tour’ includes the local optimal tour
of IDs, ’edge distance’ and ’edge n used’
are matrixes, ’edge n used’ includes the
number of each edge used during perturba-
tion.

All inputs and outputs are Numpy arrays.
Do not give additional explanations.

Prompt for E2

Given an edge distance matrix and a local optimal route, please help me
design a strategy to update the distance matrix to avoid being trapped in the
local optimum with the final goal of finding a tour with minimized distance.
You should create a heuristic for me to update the edge distance matrix.

I have five existing heuristics with their codes as follows:
No.1 Heuristic description:
Code:
...
No.5 Heuristic description:
Code:

Please help me design a new heuristic that is different from the given ones
but can be motivated by them.
Firstly, identify the common idea in the provided heuristics.
Secondly, based on the backbone idea describe your new heuristic in one
sentence.
Thirdly, implement it in Python as a function named ’update edge distance’.
This function should accept three inputs: ’edge distance’, ’local opt tour’,
and ’edge n used’. The function should return one output: ’up-
dated edge distance’. ’local opt tour’ includes the local optimal tour of IDs,
’edge distance’ and ’edge n used’ are matrixes, ’edge n used’ includes the
number of each edge used during perturbation.

All inputs and outputs are Numpy arrays. Do not give additional explana-
tions.

In the following, we give details of prompt engineering used for TSP. We use the same five components outlined in the
prompt engineering section for bin packing. In Figure 7, we provide two illustrative examples of prompts for initialization
and E2, with each component represented in different colors. For the sake of brevity, we omit the prompt engineering details
for other prompt strategies.
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C.3. Designed Heuristic Strategy

Figure 8 illustrates the heuristic strategy designed by EoH for updating the distance matrix for TSP. This matrix is obtained
by modifying the original distance matrix and adding some random factors, which involves several intermediate variables,
including the average of distances, the average of edge used, and a penalty on the current local optimal route.

Figure 8. Heuristic strategy designed by EoH on TSP.

Heuristic Designed by EoH

<Heuristic Description>
Update the edge distances in the edge distance matrix by
incorporating a pheromone-like effect, where the update is determined by edge count,
distance, and usage, with the addition of a decay factor to
avoid stagnation and promote exploration.

<Code>
import numpy as np

def heuristic(edge_distance, local_opt_tour, edge_n_used):
updated_edge_distance = np.copy(edge_distance)
edge_count = np.zeros_like(edge_distance)
for i in range(len(local_opt_tour) - 1):

start = local_opt_tour[i]
end = local_opt_tour[i + 1]
edge_count[start][end] += 1
edge_count[end][start] += 1
# penalize local optimal route

edge_n_used_max = np.max(edge_n_used)
# calculate the average edge used

decay_factor = 0.1 # decay fastor
mean_distance = np.mean(edge_distance)

# calculate the average distance
for i in range(edge_distance.shape[0]):

for j in range(edge_distance.shape[1]):
if edge_count[i][j] > 0:

noise_factor = (np.random.uniform(0.7, 1.3) / edge_count[i][j]) + (
edge_distance[i][j] / mean_distance) - (0.3 / edge_n_used_max) *
edge_n_used[i][j]
# calculate a hybrid noise factor

updated_edge_distance[i][j] += noise_factor * (1 + edge_count[i][j]) -
decay_factor * updated_edge_distance[i][j]
# The new guiding edge distance matrix is calculated based on both a

noise term and a decayed original distance matrix

return updated_edge_distance

C.4. More Experimental Results

We also compare the heuristic generated by EoH with the following methods:

• Graph Convolutional Network (GCN) method for TSP (Joshi et al., 2019).

• Attention Model (AM) (Kool et al., 2018). It uses neural networks to learn heuristics for combinatorial optimization.

• POMO (Kwon et al., 2020). It adopts AM ideas and achieves state-of-the-art results.

• LEHD (Luo et al., 2023). It is a new variant of AM with a different heavy decoder structure and is trained using
supervised learning.
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Table 10. Results on TSP20, TSP50, and TSP100. The gap and time are averaged over 1,000 instances.

Method TSP20 TSP50 TSP100
Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Concorde 0.000 0.010 0.000 0.051 0.000 0.224
LKH3 0.000 0.020 0.000 0.069 0.011 0.118

NN 17.448 0.000 23.230 0.002 25.104 0.010
FI 2.242 0.005 7.263 0.065 12.456 0.444
AM 0.069 0.038 0.494 0.124 2.368 0.356
GCN 0.035 0.974 0.884 3.080 1.880 6.127
POMO 0.120 / 0.640 / 1.070 /
POMO aug8 0.000 / 0.030 / 0.140 /
BQ 0.379 / 0.245 / 0.579 /
LEHD 0.950 / 0.485 / 0.577 /

LS 1.814 0.006 3.461 0.006 4.004 0.008
GLS 0.004 0.088 0.045 0.248 0.659 0.683
EBGLS 0.002 0.091 0.003 0.276 0.155 0.779
KGLS 0.000 1.112 0.000 3.215 0.035 7.468
GNNGLS 0.000 10.010 0.009 10.037 0.698 10.108
NeuralGLS 0.000 10.005 0.003 10.011 0.470 10.024

EoH 0.000 0.498 0.000 1.494 0.025 4.510

• GLS (Voudouris & Tsang, 1999). It is the vanilla version of GLS for TSP.

• EBGLS (Shi et al., 2018). It extends the GLS by considering the big valley feature of the TSP.

• KGLS (Arnold & Sörensen, 2019). It uses multiple features extracted from previous knowledge of routing problems.

• GNNGLS (Hudson et al., 2021) and NeuralGLS (Sui et al., 2023). They use deep learning models in GLS.

We set the maximum number of calls of LS to be 1,000 for each GLS algorithm on every test instance. We use the source
code of POMO (Kwon et al., 2020) , BQ (Drakulic et al., 2023), and LEHD (Luo et al., 2023) in our experiments. The
experimental results for GNNGLS Hudson et al. (2021), NeuralGLS Sui et al. (2023), AM Hudson et al. (2021) and GCN
Sui et al. (2023) are directly extracted from their respective papers. The solutions obtained by Concorde (Applegate et al.,
2006) are used as the baselines for computing the performance gap.

We consider three different numbers of locations: 20, 50, and 100. For each number of locations, we randomly generate
1,000 locations from [0, 1]2 and thus obtain 1,000 test instances. Table 10 shows the average performance of the heuristics
on these random instances. The table provides the average gap compared with the baseline solver Concorde, as well as the
average running time on each instance. It should be pointed out that POMO, BQ, and LEHD run in a parallel manner on the
GPU, so single-instance running time is not provided. It is very clear from Table 10 that the heuristic produced by EoH
performs the best.

We also conduct experiments on 29 TSPLib instances. As shown in Table 11, The GLS algorithm designed by EoH
outperforms all the other heuristics including hand-crafted ones in terms of the average gap on the 29 instances.

D. Flow Shop Scheduling Problem
D.1. Prompt Engineering

This subsection is to introduce details of prompt engineering used for FSSP. We use the same components for bin packing.
Figure 9 provides two illustrative examples of prompts for initialization and E2, with each component represented in a
different color.
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Table 11. Results on TSPLib instances. The gap (%) to the best-known solution from TSPLib.

Instance Other Algorithms GLS Algorithms EoHAM POMO LEHD GNNGLS NeuralGLS LS GLS EBGLS KGLS

eil51 1.63 0.83 1.64 0.00 0.00 2.85 0.67 0.67 0.67 0.67
berlin52 4.17 0.04 0.03 0.14 0.00 3.89 0.03 0.03 0.03 0.03

st70 1.74 0.31 0.33 0.76 0.00 2.64 0.31 0.31 0.31 0.31
eil76 1.99 1.18 2.54 0.16 0.00 3.93 1.37 1.18 1.18 1.48
pr76 0.82 0.00 0.22 0.04 0.82 6.71 0.00 0.00 0.00 0.00
rat99 2.65 2.39 1.10 0.55 0.72 6.58 1.55 0.74 0.68 0.68

kroA100 4.02 0.41 0.12 0.73 0.03 3.00 0.02 0.02 0.06 0.02
kroB100 5.14 0.32 0.26 0.15 0.88 0.58 0.23 0.00 0.25 0.00
kroC100 0.97 0.18 0.32 1.57 1.77 4.70 0.50 0.01 0.01 0.01
kroD100 2.72 0.84 0.38 0.57 0.00 5.67 0.00 0.20 0.00 0.00
kroE100 1.47 0.45 0.43 1.22 1.05 4.64 0.49 0.00 0.07 0.14

rd100 3.41 0.01 0.01 0.46 0.00 1.27 0.01 0.01 0.02 0.01
eil101 2.99 1.84 2.31 0.20 0.36 8.82 3.28 1.91 2.07 2.27
lin105 1.74 0.52 0.34 0.61 0.65 1.87 0.03 0.03 0.03 0.03
pr107 3.93 0.52 11.24 0.44 0.81 0.72 0.40 0.00 0.00 0.00
pr124 3.68 0.60 1.11 0.76 0.08 2.44 0.60 0.60 0.08 0.00

bier127 5.91 13.72 4.76 1.95 2.73 1.79 0.59 0.29 0.42 0.42
ch130 3.18 0.16 0.55 3.52 1.19 7.61 1.09 0.46 0.01 0.01
pr136 5.06 0.93 0.45 3.39 2.32 6.30 2.01 0.28 0.24 0.00
pr144 7.64 0.53 0.19 3.58 0.74 4.19 0.09 0.00 0.00 0.00
ch150 4.58 0.53 0.52 2.11 2.49 1.35 0.68 0.37 0.04 0.24

kroA150 3.78 0.70 1.40 2.98 0.77 5.05 1.75 0.26 0.17 0.00
kroB150 2.44 1.17 0.76 3.26 3.11 5.55 1.01 0.00 0.08 0.00

pr152 7.49 1.05 12.14 3.12 0.00 2.75 0.19 0.19 0.19 0.19
u159 7.55 0.95 1.13 1.02 0.90 5.63 0.74 0.78 0.96 0.00

rat195 6.89 8.15 1.42 1.67 0.48 2.14 0.61 0.61 0.97 0.82
d198 373.02 17.29 9.23 4.77 1.28 7.96 2.08 1.87 0.31 0.59

kroA200 7.11 1.58 0.64 2.03 0.86 0.91 0.75 0.18 0.71 0.15
kroB200 8.54 1.44 0.16 2.59 3.74 4.71 1.43 1.27 0.89 0.20

Average 16.77 2.02 1.92 1.53 0.96 4.01 0.78 0.42 0.36 0.28

D.2. Designed Heuristic Strategy

We adopt the same GLS framework with two selected local search operators: Swap and Relocate. EoH is used to design a
heuristic strategy for updating both the execution time matrix and to determine the perturbed jobs. Figure 10 illustrates a
heuristic designed by EoH for FSSP. Some selected elements in the original matrix are updated.

D.3. More Results

We also compare the heuristic produced by EoH with the following methods.

• GUPTA (Gupta, 1971). It is a classic heuristic algorithm for FSSP.

• CDS (Campbell et al., 1970). It is a classic heuristic algorithm for FSSP.

• NEH (Nawaz et al., 1983). It is widely recognized as an efficient heuristic for FSSP.

• NEHFF (Fernandez-Viagas & Framinan, 2014). It is a revision of NEH.

• PFSPNet and PFSPNet NEH (Pan et al., 2021). They are recently developed deep learning solvers for flow-shop
scheduling.

• Local Search (LS). It is the basic local search with the same operators used in EoH.

• ILS1 (Stützle, 1998): It is an iterated local search developed for FSSP.

• ILS2: It uses the same framework as ours but with hand-crafted heuristic strategy.

We evaluate the algorithms on the widely-used Taillard Instances. We test 11 different test sets. The number of jobs in these
instances ranges from 20 to 200, and the number of machines ranges from 5 to 20.
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Figure 9. Two examples of prompt engineering used in initialization and E2 strategy for FSSP.

Prompt for Initialization

I have n jobs and m machines. Help
me create a new heuristic to update the
execution time matrix and select the top
jobs to perturb to avoid being trapped in
the local optimum scheduling with the final
goal of finding scheduling with minimized
makespan.

Please design a new heuristic.
Firstly, describe your new heuristic and
main steps in one sentence.
Next, implement it in Python as a func-
tion named ’get matrix and jobs’. This
function should accept four inputs: ”cur-
rent sequence”,”time matrix”,”m”,”n”.
The function should return two output:
”new matrix”,’perturb jobs’. The variable
’current sequence’ represents the current
sequence of jobs. The variables ’m’ and
’n’ denote the number of machines and
number of jobs, respectively. The variable
’time matrix’ is a matrix of size n*m that
contains the execution time of each job on
each machine. The output ’new matrix’ is
the updated time matrix, and ’perturb jobs’
includes the top jobs to be perturbed.

The matrix and job list are Numpy arrays.
Do not give additional explanations.

Prompt for E2

I have n jobs and m machines. Help me create a new heuristic to update
the execution time matrix and select the top jobs to perturb to avoid being
trapped in the local optimum scheduling with the final goal of finding
scheduling with minimized makespan.

I have five existing heuristics with their codes as follows:
No.1 Heuristic description:
Code:
...
No.5 Heuristic description:
Code:

Please help me design a new heuristic that is different from the given ones
but can be motivated by them.
Firstly, identify the common idea in the provided heuristics.
Secondly, based on the backbone idea describe your new heuristic in one
sentence.
Thirdly, implement it in Python as a function named
’get matrix and jobs’. This function should accept four inputs: ”cur-
rent sequence”,”time matrix”,”m”,”n”. The function should return two
output: ”new matrix”,’perturb jobs’. The variable ’current sequence’
represents the current sequence of jobs. The variables ’m’ and ’n’
denote the number of machines and number of jobs, respectively. The
variable ’time matrix’ is a matrix of size n*m that contains the execu-
tion time of each job on each machine. The output ’new matrix’ is the
updated time matrix, and ’perturb jobs’ includes the top jobs to be perturbed.

The matrix and job list are Numpy arrays. Do not give additional explana-
tions.

Table 12 presents the results obtained from different algorithms on Taillard instances. The table gives the average gaps to the
upper bounds provided in Taillard (1993). The average is calculated on 10 instances for each test set. The best results are
highlighted in bold. EoH is the best on most test sets and obtain the best average gap of 0.23%. EoH outperforms these
commonly used heuristics as well as the recent deep learning neural solvers. Notably, EoH outperforms ILS2, which shares
the same framework and local search operators but uses a human hand-crafted heuristic strategy for perturbation.
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Figure 10. Heuristic strategy designed by EoH on FSSP.

Heuristic Designed by EoH

<Heuristic Description>
The heuristic randomly selects a subset of machines, computes the weighted
average execution time for each job on the selected machines,
and perturbs the top jobs in the current sequence to update the
execution time matrix by scaling the original execution time with
a random perturbation factor between 0.8 and 1.2.

<Code>
import numpy as np
def heuristic(current_sequence, time_matrix, m, n):

machine_subset = np.random.choice(m, max(1, int(0.3*m)), replace=False)
# randomly select a subset of machines

weighted_avg_execution_time = np.average(time_matrix[:, machine_subset], axis=1,
weights=np.random.rand(len(machine_subset)))
# compute the weighted average execution time

perturb_jobs = np.argsort(weighted_avg_execution_time)[-int(0.3*n):]
# sort the last jobs based on the weighted average execution time

new_matrix = time_matrix.copy()
perturbation_factors = np.random.uniform(0.8, 1.2, size=(len(perturb_jobs), len(

machine_subset)))
# calculate perturbation factors, introduce certain randomness

new_matrix[perturb_jobs[:, np.newaxis], machine_subset] *= perturbation_factors
# calculate the final guiding matrix

return new_matrix, perturb_jobs

Table 12. Results on Taillard instance sets. The value is the average gap to the best-known solutions on 10 instances in each set. The best
results are in bold.

Test Set GUPTA CDS NEH NEHFF PFSPNet LS ILS1 ILS2 EoH

20 5 12.89 9.03 3.24 2.30 2.30 1.91 0.42 0.18 0.09
20 10 23.42 12.87 4.05 4.15 4.04 2.77 0.33 0.25 0.30
20 20 21.79 10.35 3.06 2.72 2.96 2.60 0.29 0.25 0.10

50 5 12.23 6.98 0.57 0.40 0.51 0.32 0.15 0.32 0.02
50 10 20.11 12.72 3.47 3.62 3.48 3.33 1.47 0.29 0.19
50 20 22.78 15.03 5.48 5.10 5.05 4.67 2.13 0.34 0.60

100 5 5.98 5.10 0.39 0.31 0.31 0.28 0.20 0.38 -0.04
100 10 15.03 9.36 2.07 1.88 1.72 1.38 0.77 0.34 0.14
100 20 21.00 13.55 3.58 3.73 3.56 3.51 2.27 0.43 0.41
200 10 11.59 7.22 0.98 0.70 0.82 0.87 0.74 0.54 0.12

200 20 18.09 11.89 2.90 2.52 2.49 2.53 2.26 0.59 0.61

Average 16.81 10.37 2.71 2.49 2.48 2.20 1.00 0.36 0.23
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