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Abstract—Stereo-electroencephalography (SEEG) is a tech-
nique to monitor and evaluate the spatial and temporal properties
of ictal EEG changes in patients with epilepsy during pre-surgery
evaluation. When patients have different types of seizures, the
intra-seizure patterns across different ictal episode provide extra
and meaningful information for personalized treatment planning.
This work introduces a patient-specific framework to capture the
intra-seizure patterns in a seizure-specific way. After defining
a Pre-seizure Plus Seizure (PPS) window as period of interest,
SHapley Additive exPlanations (SHAP) is applied to quantify the
contributing score of each SEEG channel (i.e. spatial correlation)
based on XGBoost classifier. These SHAP scores are segmented
and compared via Soft-Dynamic Time Warping (Soft-DTW) to
characterize their dissimilarities (i.e. temporal pattern). Then, k-
medoids clustering is exploited to divide seizure episodes into
groups (episodes) based on Soft-DTW variations, and three
clinically meaningful stages, namely trigger, transient, and steady
stages, are consistently identified. Validated on SEEG data from
eight patients, our results demonstrate high classification perfor-
mance, reliable epileptogenic zone localization, and robust intra-
seizure stage segmentation which are consistent with clinicians
annotations.

Index Terms—Epileptogenic zone localization, Intra-seizure
pattern, Seizure stage discovery, spatial-temporal representation,
Stereo-electroencephalograpy.

I. INTRODUCTION
A. Motivation & Prior Works

Epilepsy is a neurological disease that affects millions of
people worldwide [1]. Approximately one-third of patients are
resistant to at least two anti-seizure medications, and are usu-
ally suggested to different epilepsy surgeries, laser ablation or
neurostimulation [1]. To find the most effective treatment plan,
a comprehensive pre-surgery evaluation must be performed
using different techniques, including electroencephalography
(EEG), neuroimaging, and sometimes invasive tools. Stereo-
electroencephalography (SEEG) is a type of intracranial EEG
(iEEG) that implants depth electrodes into the human brain
to monitor and collect cerebral activities [2]. When traditional
scalp EEG does not provide detailed information on surgical
regions, SEEG is then applied to investigate deep brain activi-
ties for surgical planning with high resolution. SEEG has now
been widely adopted in more than 300 institutions across the
US for pre-surgery evaluation [2].

Accurate SEEG evaluation enables clinicians to localize
and characterize the epileptogenic zone (EZ), the hypothetical
brain region responsible for ictal onset, propagating network
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and symptomatic behaviors [3], in order to guide surgical
resections or targeted neurostimulation [4]. The EZ exhibits
both spatial and temporal characteristics: spatially, it includes
seizure onset zone (SOZ), the cortical areas where ictal EEG
changes first appear; temporally, it reflects the dynamic evo-
lution of different epileptic activities with clinical symptoms.
Due to the high dimensionality of SEEG recordings, which
involve 10 to 20 depth electrodes and up to 200 signal chan-
nels (contact points), data-driven SEEG analysis is applied
to provide accurate and efficient insights beyond clinicians’
visual inspections [2]. In the spatial domain, researchers have
applied statistical analysis [4] and machine learning classi-
fication [5] to localize the seizure-contributing channels. In
the temporal domain, researchers have quantified the signal
patterns of different seizure stages (phases) from initialization,
propagation to termination, utilizing dynamic seizure network
modeling [6], [7] or deep neural networks [8], [9]. However,
epilepsy patients may have different seizure types, and most
of prior works treat seizure types equivalently during data
analysis, ignoring the intra-seizure patterns, i.e., the varieties
of ictal features from different seizure events in each individual
patient.

Understanding intra-seizure patterns may assist in a more
comprehensive and personalized plan. During pre-surgery
evaluation, neurologists focus on the first 10 to 20 seconds
of seizure-onset patterns [10] seen from the SEEG, neglecting
late development of epileptic ictus involving symptomatogenic
regions. Identifying the intra-seizure pattern could provide
valuable information about those additional seizure-related
regions beyond SOZ. EEG patterns may correlate with dif-
ferent clinical symptoms, e.g. focal seizures with preserved
consciousness and impaired consciousness. In such cases,
the information could contribute to the optimal EZ area and
therefore surgical resection. Additionally, when responsive
neurosimulation (RNS) is considered, stimulation parameters
(e.g., pulse width and frequency) may be better defined in
a personalized way. SEEG analysis that can correlate both
spatial and temporal seizure patterns with a greater precision
and clinical relevance continues to be the standard for pre-
surgery evaluation. Researchers in [11] quantified the direc-
tional connectivities from frequency-domain seizure network
and correlated with RNS outcomes. Authors in [12] adopted
dynamic mode decomposition to extract the spatiotemporal dy-
namics of SEEG network for identifying EZ regions. In [13],
a dynamic step effective network was employed to obtain the



propagation pathways for surgical evaluation. However, these
work required network modeling from SEEG data where pa-
rameter estimation (e.g., frequency band) could be challenging.
Besides, they focused on the overall dynamics of entire seizure
events, rather than intra-seizure stage discovery.

B. Main Contribution

In this work, we introduce a patient-specific framework
for SEEG-based seizure analysis that captures the spatial-
temporal dynamics of individual seizure episodes. We train an
XGBoost classifier to compute per-seizure SHapley Additive
exPlanations (SHAP) and to quantify the contribution of each
contact point (channel) during the Pre-seizure Plus Seizure
(PPS) window. SHAP profiles act as temporal biomarkers, cap-
turing how contributions of EZ evolve over time. To identify
distinct seizure stages, SHAP temporal profiles are segmented
and compared using Soft-DTW, a time-series-aware similarity
measure. The resulting distance matrices are clustered using
the k-medoids algorithm, enabling unsupervised discovery of
consistent seizure stages without requiring manual annotations.
We apply our analysis to each individual seizure, and consis-
tently identify clinically relevant stages, i.e. mainly these three:
1) an initial trigger stage, ii) an intermediate transient stage,
and iii) a final steady stage. Findings offer a more detailed
representation of seizure evolution and support future efforts
to integrate stage-aware markers into personalized treatment,
such as in pre-surgical evaluation or neurostimulation adjust-
ment.

The remainder of this paper is organized as follows: Sec-
tion II details the proposed methodology, including channel
ranking, SHAP profiling, and clustering. Section III presents
empirical findings and examines their alignment with clinical
observations. Finally, Section IV summarizes the key contri-
butions and outlines future directions.

II. METHODOLOGY

This study, approved by the IRB at a Level-4 U.S. epilepsy
center, includes SEEG from eight patients (3 male, 5 female,
ages 18-52) with drug-resistant focal epilepsy, recorded at The
University of Texas Southwestern Medical Center (UTSW).
They overall produced 38 seizures recorded at 1000 Hz using a
clinical EEG system. The overall methodology is summarized
in Fig. 1 and explained next.

A. Data Preprocessing

SEEG data were acquired for each patient based on clin-
ical electrode implantation strategies (e.g., Fig. 2). For each
seizure, a PPS window was extracted, encompassing both the
seizure period and a pre-onset buffer to capture early seizure
transitions. An illustration of the PPS segmentation approach
is shown in Fig. 3, highlighting the seizure onset along with
the extended pre-seizure region included in the analysis.

The analysis begins with channels selected by the clinical
team based on their assessment of seizure onset, typically cor-
responding to the SOZ. To obtain a more comprehensive view,
we adopt an electrode extension approach, as described in [14],
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Fig. 2. SEEG example: (a) Implantation map with clinician-selected LA/LB
in red; (b) ten contact points (LA1-LA10) on LA.

by including all contact points along the electrodes identified
by clinicians. For instance, if LA1 is selected by clinicians, all
channels LA1 through LA10 are analyzed to capture broader
regional activity, as illustrated in Fig. 2(b). By expanding spa-
tial coverage and incorporating temporal patterns, this method
also facilitates assessment of the symptomatogenic region,
providing a more complete characterization of epileptogenic
involvement beyond the clinical-marked SOZ.

Signals were bandpass-filtered (1-60 Hz, 4th-order Butter-
worth) and decomposed using a Daubechies-4 DWT with five
levels [15]. From each coefficient set (one approximation, five
details), mean and standard deviation were extracted, yielding
12 features per channel per window. This representation effec-
tively captures the dynamics of nonstationary SEEG signals.

B. Spatial Correlation Analysis (EZ Localization)

An XGBoost classifier is trained per patient using all PPS
and non-seizure windows, with an 80% - 20% (training-
test) stratified split across seizures to ensure balance and
prevent leakage. SHAP values [16] are computed per seizure
to quantify each channel’s contribution, forming the basis
for selecting seizure-relevant channels and defining temporal
stages. Classifier performance confirms its reliability for gen-
erating SHAP values. XGBoost, a gradient-boosted decision
tree algorithm, is well-suited for structured biomedical data
due to its scalability and high performance [17].
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Fig. 3. Illustration of PPS segmentation, combining a user defined pre-onset
buffer with the ictal period to capture early seizure dynamics.

Given a channel ¢ € N, where N is the set of input
channels, the SHAP value at time ¢, denoted ¢ ¢, is computed
as:

¢c,t = Z
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where S is any subset of channels excluding ¢, and f; repre-
sents the model’s raw output at time ¢ (e.g., the unnormalized
margin score before classification). This formulation ensures
both local accuracy and consistent channel attribution over
time [16].

To organize these values across all channels and time points,
we define the SHAP matrix ® € RY*T, where C is the
number of selected channels and 7' is the number of time
segments within the PPS window:
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This matrix offers a compact spatial-temporal representation
of SHAP dynamics and serves as the input for downstream
segmentation and stage clustering within our framework.

In this work, we use 2-second window with 50% overlap-
ping (1-second) to divide the SEEG signals into 7" segments
across the PPS. The mean SHAP value is then calculated for
each contact point over 7' segments, quantifying its overall
contribution during the seizure. The elbow method [18] is
applied to ranked SHAP scores to automatically determine the
threshold, independent of clinician input. The SHAP ranking
typically exhibits a sharp decline among the top-ranked chan-
nels, followed by a transition to smaller incremental changes.
This inflection point defines a natural threshold and supports
stable, data-driven channel selection. Fig. 4 shows the selection
of 4 channels (LA1, LA2, LAS8, LC12) from 36, with the elbow
point at C' = 4.

C. Temporal Pattern Analysis (Stage Discovery)

To capture the evolution of seizure stages for each seizure
individually, we analyze the temporal progression of SHAP
values across the PPS window, where the three stages (trigger,
transient, steady) are derived from clustering these temporal
profiles rather than fixed amplitude or duration thresholds.
These values are organized in the SHAP matrix ® € RE*T,
where each row corresponds to a contact point and each
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Fig. 4. SHAP ranking of LA, LB, and LC contacts (Patient 1000, Seizure
4). Red line = elbow cutoff; LA1-2 clinician-selected, LA8 and LC12 model-
identified.

column to a time segment. Since SHAP temporal profiles
may differ in complexity across seizures, we first evaluate
multiple window sizes (1-5 seconds) by pre-clustering with
k = 3 for each window size. We then select the length that
yields the highest silhouette score [19], reflecting intra-cluster
compactness relative to inter-cluster separation. This selection
ensures that the segmentation is adapted to the underlying
seizure dynamics prior to clustering.

To compare multivariate temporal segments, we employ the
Soft-DTW algorithm [20], a differentiable and robust variant
of Dynamic Time Warping (DTW) that enables smooth align-
ment and real-valued cost aggregation over multidimensional
sequences.

Let X,Y € REX% denote two temporal segments extracted
from the SHAP matrix ®, where C is the number of selected
channels and w is the chosen window length (in time steps).
The Soft-DTW distance between X and Y is defined as:

soft- DTW(X,Y) = —vlog Z exp (D(W)> , @
TEP v

where « is a smoothing parameter, and P denotes the set of all
possible alignment paths (i.e., warping paths) between the two
sequences. Each path 7 defines a time-step correspondence
that allows for non-linear alignment, accommodating temporal
shifts or rate differences between SHAP patterns. The cost of
a given path 7 is computed as:

D(m)= > d(xi,y)), 3)
(i,j)em

where d(z;,y;) is the pairwise dissimilarity between elements
from sequences X and Y, computed using Euclidean distance.
An example of Soft-DTW divergence matrices computed for
four seizures of Patient 1000 is shown in Fig. 5, where each
cell quantifies the dissimilarity between SHAP segments over
time. These matrices reveal distinct temporal dynamics and
intra-seizure structure useful for downstream clustering.

The resulting pairwise distances are clustered using the k-
medoids algorithm [19], which minimizes intra-cluster dis-
similarities using actual representative segments. K-medoids,
widely used in biomedical analysis for its robustness [19],
was employed for stage discovery with k£ = 3, consistent with
the window-size step and reflecting clinical relevance (trigger,
transient, steady stages). The optimization objective is:

k
minz Z d(x, m;), 4)

i=1 ze€C;
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Fig. 5. Soft-DTW divergence matrices for Patient 1000 across four seizures.
Heatmaps show pairwise divergence of SHAP segments (50% overlap); darker
regions indicate higher dissimilarities.

where C} is the i-th cluster and m; € C; is the medoid (i.e., the
representative segment) of cluster C;. The function d(x, m;)
denotes the dissimilarity between data point z and medoid m;.

D. Evaluation Metrics and Visualization

We evaluate several aspects of effectiveness of our proposed
methodology. For SHAP-based EZ localization (Sec. II-B),
we first describe the classification performance of our patient-
specific XGBoost classifiers using accuracy, F1-score, and 5-
fold cross-validation, emphasizing their effectiveness in identi-
fying seizure-relevant channels through SHAP-based interpre-
tation. Second, for cluster-based stage discovery (Sec. II-C),
we assess our clustering method using the silhouette coef-
ficient [19], a metric quantifying cluster separability. Third,
we visualize these clusters (i.e., stages) using Uniform Mani-
fold Approximation and Projection (UMAP) [21] to illustrate
distinct seizure stages clearly, and depict the temporal sum-
maries of these stages with respect to raw SEEG waveforms.
Finally, clinical alignment is evaluated by comparing model-
recognized stage transitions with clinician-annotated seizure
onsets. Quantitative validation of these visualizations and
additional analytical results are discussed in Section III.

III. EXPERIMENTAL RESULTS
A. Model Performance and EZ Localization

Using SEEG signals, we employed patient-specific XG-
Boost classifier to distinguish PPS and non-seizure segments,
and measure performance through 5-fold cross-validation.
These results confirm the classifier reliably models patient-
specific brain dynamics, which supports the use of its SHAP
values for downstream stage discovery. As detailed in Table I,
the classifiers consistently exhibited excellent performance
across all patients, demonstrating an average ROC AUC of
0.992 and an average seizure Fl-score of 0.959. In some cases,
such as Patient 1000 and Patient 1600 achieved near-perfect

TABLE I
XGBOOST CLASSIFIER PERFORMANCE METRICS (5-FOLD
CROSS-VALIDATION AVERAGES PER PATIENT).

Patient ID ROC AUC F1-score Sensitivity Specificity

1000 0.997£0.002  0.9714£0.011  0.967+0.019  0.975+0.015
1100 0.995+£0.001  0.9654+0.006  0.963+0.009  0.967+0.008
1300 0.991£0.004  0.95440.017  0.9394+0.027  0.972+0.006
1400 0.985+£0.006  0.9514+0.011  0.956+0.011  0.924+0.027
1500 0.985£0.006  0.9394+0.013  0.920+0.029  0.960=0.020
1600 0.991£0.003  0.953£0.008  0.943+0.018  0.959+0.007
1700 0.996+£0.003  0.969+0.014  0.968+0.016  0.970+£0.020
1800 0.994£0.002  0.9664+0.007  0.95440.007  0.979+0.008
Avg. 0.992+0.003  0.959+0.011  0.951+0.017  0.963+0.014

ROC AUC scores (0.997 and 0.996, respectively), highlighting
the robustness and accuracy of the classification models.

As tabulated in Table II, a significant agreement exists be-
tween clinician-selected channels and those identified through
our data-driven SHAP approach (marked with an asterisk).
Patient 1600 (with 9 seizures) exemplified this concordance,
consistently highlighting clinician-identified channels RB1 and
RB2 across multiple seizures. This alignment underscores the
clinical validity and robustness of our automated channel-
selection strategy.

B. Intra-Seizure Stage Discovery and Clustering

The central contribution of our approach is the recognition
of intra-seizure stages (initial, transient and steady) through
unsupervised clustering of temporal SHAP profiles. Table III
outlines the effectiveness of our clustering approach, which
applies k-medoids clustering using soft-DTW as the distance
metric. Clustering performance is evaluated using silhouette
scores, where SHAP-based feature clusters yielded higher
average separability (0.71) compared to raw SEEG signal
clusters (0.57). Notably, Patient 1000 demonstrated particu-
larly distinct SHAP-based stages (silhouette score: 0.84) in
the second seizure, where three well-separated clusters were
discovered. Visualization of cluster separability using UMAP
projections (Fig. 6) for this example further confirmed the
superior performance of SHAP-derived features. While most
cases favored SHAP-based clustering, Patient 1300 showed
closely matched silhouette scores between SHAP-based and
raw feature clusters (0.79 vs. 0.75; Table III), with a slight
margin still supporting the SHAP-based approach. For both
SHAP and raw SEEG approaches, window sizes were op-
timized per seizure. In general, and SHAP-derived features
achieved significantly higher silhouette scores (p = 0.0039,
Wilcoxon test).

Our framework also provides quantitative metrics to char-
acterize seizure dynamics, such as the number of stage tran-
sitions and stage durations. These values, detailed in Ta-
ble II, illustrate variations in seizure complexity. For example,
Seizure 6 of Patient 1800 exhibited highly dynamic behavior
(54 transitions), whereas seizures from Patient 1600 displayed
more stable, clearly delineated stages (average 2 transitions).
These metrics offer knowledge and hypotheses to clinicians to



TABLE II
INTRA-SEIZURE STAGE RECOGNITION RESULTS PER PATIENT.

Seizure/Event #

First Stage Stage Best Window

Patient ID (Type)i Duration (s)  Selected Channels Stage Durations (s) Offset (s)"  Transitions Size (s)
1 (ES) 63 LA1*, LA2* LC12, LC10 17.0, 14.0, 32.0 -3.0 2 2
1000 2 (ES) 66 LAT1*, LA2*, LB10, LA8, LC12 1.0, 35.0, 30.0 -19.0 3 2
3 (ES) 195 LA1*, LA2* LB10, LA8 28.5, 19.5, 147.0 -18.5 3 3
4 (ES) 107 LAT1*, LA2*, LA8, LCI2 36.0, 9.0, 61.5 16.0 4 3
1100 1 (FIC) 295 LB2*, LB10, LB8, LB1* 98.0, 44.0, 153.0 -19.0 21" 2
2 (FIC) 199 LB2*, LB1*, LB8, LB7 60.0, 59.0, 79.5 1.0 4 3
1 (FPC- FIC) 37 LBI1*, LB4, LB10, LB2* 23.0, 14.0, 0 -6.0 1 4
1300 2 (FPC- FIC) 140 LBI1*, LC6, LC7, LC4, LC1* 8.0, 114.0, 18.0 -16.0 4 4
3 (FPC- FIC) 154 LBI1*, LC6, LC7, LC1* 24.5, 27.0, 102.0 1.0 7 3
1 (FPC) 72 RI7*, RA2*, RI8, RC10 8.0, 12.0, 52.0 -18.0 9 2
1400 2 (ES) 102 RI7*, RA2*, RI1, RI8 11.0, 55.0, 36.0 -19.0 21" 2
3 (ES) 83 RI7*, RA2*, RI8, RB5 12.0, 47.0, 24.0 -14.0 21" 2
1 (ES) 52 LB9, LB7, LBI1*, LB8 2.0, 29.0, 21.0 -17.0 7 2
1500 2 (ES) 69 LB9, LB2*, LB3, LBS 6.0, 31.0, 32.0 -17.0 16" 2
3 (FBTC) 144 LB9, LB2*, LB1*, LB10 23.0, 19.0, 101.5 -1.0 2 2
1 (FPC) 64 RB1*, RB2*, RBS, RB4 24.0, 14.0, 26.0 -1.0 4 2
2 (FPC) 82 RB1*, RB2*, RB6, RB9 18.0, 41.5, 22.5 -2.0 2 3
3 (FPC) 67 RB1*¥, RB2*, RB3, RB9 20.0, 24.0, 23.0 0.0 2 2
4 (FPC) 65 RB1*, RB2*, RB6, RB9 18.0, 23.0, 24.0 -2.0 2 3
1600 5 (FPC) 69 RB1*, RB2*, RB6, RB9 18.0, 27.0, 24.0 -2.0 3 2
6 (FPC) 69 RB1#, RB2*, RB4, RB6 20.0, 25.0, 24.0 0.0 2 2
7 (FPC) 69 RB1*, RB10, RB2*, RB6 19.0, 23.0, 27.0 -1.0 2 2
8 (FPC) 84 RB1#, RB2*, RB9, RB4 18.0, 19.5, 46.5 -2.0 2 3
9 (FPC) 75 RB1*, RB2*, RB10, RB9 19.0, 25.5, 30.0 -1.0 2 2
1 (FPC) 85 LBI1*, LB3, LB7, LB5 18.0, 43.5, 23.5 -2.0 2 3
1700 2 (FIC) 90 LBI1*, LB3, LB7, LB10 14.0, 5.0, 71.0 -6.0 2 2
3 (FIC) 94 LBI1*, LB7, LB3, LB10 21.0, 6.5, 66.0 1.0 2 3
1 (ES) 47 LC2*, LB1*, LC3*, LB7 12.0, 8.0, 27.0 -15.0 3 2
2 (FIC) 37 LC3*, LB3, LB10, LB1*, LC10, LC2*  23.0, 14.0, 0 -14.0 3 4
3 (FIC) 56 LC2*, LB1*, LC3*, LB3 5.0, 16.0, 35.0 -10.0 3 2
4 (FBTC) 76 LCI10, LB10, LB3, LB1* 13.0, 12.0, 51.0 -18.0 6 2
5 (FIC) 24 LB10, LB3, LBS, LB1* 15.0, 9.0, 0 -18.5 2 3
1800 6 (FIC) 170 LB3, LB10, LB1*, LC10, LB4, LC3* 22.0, 83.0, 65.0 -14.0 54 2
7 (FIC) 22 LBI1*, LB3, LC2*, LB8 11.0, 6.0, 5.0 -10.0 3 2
8 (ES) 369 LB10, LC2*, LB1*, LB3, LC3* 270.0, 93.0, 6.0 2.0 4 4
9 (ES) 38 LB10, LB3, LB1*, LC10 19.0, 13.0, 6.0 -14.0 4 2
10 (FPC) 45 LBI1*, LB10, LB3, LB8 14.0, 26.0, 5.0 2.0 6 4
11 (FPC) 70 LB3, LB10, LB1*, LC10, LB4, LB8 2.0, 675,0 0.0 2 4

* Clinician-selected channel based on provided patient information.

 Negative values indicate initial onset stage before clinician-marked seizure onset; positive values indicate initial stage after onset.
** Elevated transition counts may reflect seizure complexity, signal artifacts, or anatomical variability.
* ES = Electrographic Seizure; FPC = Focal Preserved Consciousness; FIC = Focal Impaired Consciousness; FBTC = Focal to Bilateral Tonic Clonic.

TABLE III
PATIENT-LEVEL CLUSTERING PERFORMANCE.

Avg. Silhouette ~ Avg. Silhouette ~ Avg. First Stage  Avg. Closest Trans.

Patient ID

(Our Work) (Raw) Offset (s) Offset (s)
1000 0.84 0.40 -6.13 7.50
1100 0.66 0.47 -9.00 0.00
1300 0.79 0.75 -7.00 -0.33
1400 0.59 0.46 -17.00 0.67
1500 0.54 0.47 -11.67 0.00
1600 0.83 0.70 -1.22 -1.11
1700 0.78 0.68 -2.33 -0.67
1800 0.63 0.60 -11.23 -0.41
Avg. 0.71 0.57 -8.20 0.71

quantify seizure complexity and severity, potentially guiding
clinical interpretations and treatment strategies.

C. Temporal Pattern of Seizures

It is understood that identifying seizure onset can sometimes
be visually challenging and ambiguous. One goal of this study
is to evaluate how well the seizure onset, found by our method
align with clinical seizure onset. We intentionally considered
20 seconds before the clinician’s selected onset to allow our
computational model explore the pattern. We analyzed the

30 s
oo 13 -3 EEN Stage
~ 20 ~ . .. LU 9 0
A A, . oo o o
< < o * 5 - 1
=10 S101 . L. %
=) = e e et 2
2 %85 % e S e 5
O o:- (r.'.-}. . i -. .. ..
10 20 0 5
UMAP 1 UMAP 1
(@) (b)

Fig. 6. UMAP of seizure stages for Patient 1000 (Stage O: trigger, Stage

1: transient, Stage 3: steady), Seizure 1: (a) soft-DTW features (silhouette
= 0.81) show clear separation; (b) raw SEEG segments (silhouette = 0.35)
expectedly showing poor separability.

temporal offset between the first data-driven stage transition
and the clinician-marked onset. Results showed that in some
cases, the initial transition occurred prior to clinical labeling.

Quantitatively, the closest detected stage transition occurred
an average of (.71 seconds from the clinician-annotated
seizure onset across all seizures (Table III), highlighting the
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method’s ability to align closely with expert visual assessment.
As shown in the “First Stage Offset” column of Table III,
this metric quantifies the temporal gap between the clinician-
annotated onset and the first stage transition detected by the
model. Note that the average offset of —8.2 seconds indicates
that stage transitions that precede visually marked onset (often
in range of 1-19 seconds). As visual inspection may miss early
or subtle ictal activity, our method uses these annotations as
temporal references, with the negative offsets reflecting early
ictal dynamics that can inform anticipatory interventions and
treatment timing. In addition to onset alignment, the number
of stage transitions reported in Table II offers insight into the
temporal structure of each seizure episode. A larger number
of transitions may reflect more complex or fluctuating intra-
seizure activity, whereas a smaller number indicates greater
temporal stability. We may choose to filter out very short
(e.g. less that 1 sec.) stages as they may be due to noise
and artifact. The Stage Duration column presents the total
time spent in each of the three stages (trigger, transient,
and steady). This information is useful for characterizing the
relative contribution of each stage and offers a more detailed
analysis of seizure evolution across episodes and patients that
can be utilized for personalized treatments.

Clinical interpretability was further supported by visualizing
stage transitions alongside raw SEEG signals. As a repre-
sentative example, Seizure 3 from Patient 1600 demonstrated
a strong alignment between the data-driven stage boundaries
and clinically observable changes, with the first detected stage
occurring at the same times as the clinician-marked onset and
a high silhouette score of 0.87. This example, shown in Fig. 7,
highlights the interpretative capability of our approach when
applied to raw traces. Fig. 8(a-c) illustrates an overview of
the stage patterns in a few other seizures for the same patient.
Across all episodes, the framework consistently detected three
distinct stages with clear temporal separation, reinforcing the
robustness and clinical relevance of the method. Some patients,
especially those with Electrographic Seizures (ES) [22] exhibit
a more variant seizure pattern. For example, three seizures
for Patient 1400 shown in Fig. 8(e,f)), display approximately
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Fig. 8. Stage recognition across six seizures: (a—c) Patient 1600 showing con-
sistent transitions aligned with onset; (d—f) Patient 1400 showing fragmented
dynamics, with Seizures 2—3 having 21 transitions from high variability (Stage
0 = green: trigger; Stage 1 = red: transient; Stage 3 = yellow: steady).

21 stage transitions. We comment on such cases in the next

Subsection.

D. Factors Impacting Stage Recognition

This section explores critical factors affecting the accuracy
and interpretability of intra-seizure stage recognition. Specifi-
cally, we discuss the impact of temporal segmentation param-
eters, clustering configurations, and seizure type variability.

* Impact of window size: To account for differences in seizure
duration and complexity, we applied variable window sizes
(e.g., w = 1-5 seconds, a typical range commonly used) when
segmenting SHAP temporal profiles. As shown in Table II,
the optimal window size varied not only across patients but
also across seizures within the same patient. For instance,
the four seizures from Patient 1000 were best modeled using
different window lengths, underscoring the importance of
seizure-specific temporal resolution rather than a fixed global
setting.

e Impact of cluster numbers: We chose to fix the number
of clusters at k = 3 for all seizures to facilitate consistent
comparisons among seizures and patients. This choice aligns
with commonly recognized seizure phases (onset, propagation,
and symptomatic) as reported in recent SEEG-guided clinical
studies [23], corresponding to our stages of trigger, transient,
and steady activity.

In addition, silhouette scores for Patient 1600 are shown
as an illustrative example supporting £ = 3 as a reasonable
setting (Fig. 9(b)). For Seizure 9 of the same patient, scores for
k =2, 3, and 4 were comparable (Fig. 9(a)), suggesting that
finer granularities may also be viable. While higher & values
could capture sub-stages, k& = 3 was preferred for clinical
interpretability.

* Impact of Seizure Types: Consistent seizure stage pat-
terns were observed for Patient 1600, whose episodes were
all classified as Focal Preserved Consciousness (FPC) [22].
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Fig. 9. (a) Silhouette scores of each seizure for Patient 1600. (b) Average
across nine seizures, peaking at k = 3.

For this patient, both spatial and temporal findings closely
aligned with clinical annotations, as illustrated by Fig. 8 and
Table II. Spatially, clinician-selected channels ranked within
the top two of our SHAP-based analysis. Temporally, the
first-detected stage transitions were aligned with the clinician-
marked seizure onsets (with small offsets), and the small
number of total stage transitions (< 4) showed well-identified
ictal evolutions.

In contrast, Patient 1400 exhibited a more variant seizure
profile. As listed in Table II, Seizure 1 was a FPC event, but
Seizures 2 and 3 were identified as Electrographic Seizure
(ES) [22]. These seizures displayed approximately 21 stage
transitions each (see Table II, Fig. 8(e,f)), suggesting more
complex temporal dynamics than Seizure 1 (FPC). Multi-
ple factors could contribute to or influence this variability
such as multiple generators, variable networks and anatomical
locations of SEEG electrodes. Overall, this highlighted the
significance of our intra-seizure analysis, as different seizure
events initiated from an identical patient could show variant
temporal patterns during their ictal propagation.

IV. CONCLUSION

This work presents a patient-specific framework for intra-
seizure pattern recognition using SEEG data. By integrating
SHAP-based channel score, we quantify the contributions of
different spatial regions. With Soft-DTW-based temporal pat-
tern similarity and unsupervised clustering, we identify three
temporal stages—onset, transient, and steady—with clinical
meaningfulness. Evaluated on eight patients (38 seizures) as
a pilot study, the framework shows a strong potential for
personalized surgical planning and neurostimulation. Future
work will validate our findings on a larger dataset and correlate
stages with clinical factors to refine treatment timing and
parameters.
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