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ABSTRACT

In this paper, we investigate the long-term memory learning capabilities of state-
space models (SSMs) from the perspective of parameterization. We prove that
state-space models without any reparameterization exhibit a memory limitation
similar to that of traditional RNNs: the target relationships that can be stably ap-
proximated by state-space models must have an exponential decaying memory.
Our analysis identifies this “curse of memory” as a result of the recurrent weights
converging to a stability boundary, suggesting that a reparameterization technique
can be effective. To this end, we introduce a class of reparameterization tech-
niques for SSMs that effectively lift its memory limitations. Besides improving
approximation capabilities, we further illustrate that a principled choice of repa-
rameterization scheme can also enhance optimization stability. We validate our
findings using synthetic datasets and language models.

1 INTRODUCTION

Understanding long-term memory relationships is fundamental in sequence modeling. Capturing
this prolonged memory is vital, especially in applications like time series prediction (Connor et al.,
1994), language models (Sutskever et al., 2011; Fu et al., 2023; Poli et al., 2023). Since its emer-
gence, transformers (Vaswani et al., 2017) have become the go-to models for language representation
tasks (Brown et al., 2020). However, a significant drawback lies in their computational complexity,
which is asymptotically O(T 2), where T is the sequence length. This computational bottleneck has
been a critical impediment to the further scaling-up of transformer models. State-space models such
as S4 (Gu et al., 2021), S5 (Smith et al., 2023), RWKV (Peng et al., 2023) and RetNet (Sun et al.,
2023) offer an alternative approach. These models are of the recurrent type and excel in long-term
memory learning. Their architecture is specifically designed to capture temporal dependencies over
extended sequences, providing a robust solution for tasks requiring long-term memory (Tay et al.,
2021). One of the advantages of state-space models over traditional RNNs lies in their computa-
tional efficiency, achieved through the application of parallel scan algorithms (Martin & Cundy,
2018). Traditional nonlinear RNNs are often plagued by slow forward and backward propagation, a
limitation that state-space models circumvent by leveraging linear RNN blocks.

As traditional nonlinear RNNs exhibit an asymptotically exponential decay in memory (Wang et al.,
2023), the SSMs variants like S4 overcome some of the memory issues. The previous empirical
results suggest that either (i) the “linear dynamics and nonlinear layerwise activation” or (ii) the
parameterization inherent to S4, is pivotal in achieving the enhanced performance. Current research
answers which one is more important. We first prove an inverse approximation theorem showing
that state-space models without reparameterization still suffer from the “curse of memory”, which is
consistent with empirical results (Wang & Xue, 2023). This rules out the point (i) as the reason for
SSMs’ good long-term memory learning. A natural question arises regarding whether the reparame-
terizations are the key to learn long-term memory. We prove a class of reparameterization functions
f , which we call stable reparameterization, enables the stable approximation of linear functionals.
This includes commonly used exponential reparameterization and softplus reparameterization. Fur-
thermore, we question whether S4’s parameterizations are optimal. Here we give a particular sense
in terms of optimization that they are not optimal. We propose the optimal one and show its stability
via numerical experiments.
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We summarize our main contributions as follow:

1. We prove that similar to RNNs, the state-space models without reparameterization can only
stably approximate targets with exponential decaying memory.

2. We identify a class of stable reparameterization which achieves the stable approximation
of any linear functionals. Both theoretical and empirical evidence highlight that stable
reparameterization is crucial for long-term memory learning.

3. From the optimization viewpoint, we propose a criterion based on the gradient-over-weight
ratio. We identify the “best” reparameterization in this sense and verify its performance.

Notation. We use the bold face to represent the sequence while then normal letters are scalars,
vectors or functions. Throughout this paper we use ∥ · ∥ to denote norms over sequences of vectors,
or function(al)s, while | · | (with subscripts) represents the norm of number, vector or weights tuple.
Here |x|∞ := maxi |xi|, |x|2 :=

√∑
i x

2
i , |x|1 :=

∑
i |xi| are the usual max (L∞) norm, L2 norm

and L1 norm. We use m to denote the hidden dimension.

2 BACKGROUND

In this section, we first introduce the state-space models and compare them to traditional nonlinear
RNNs. Subsequently, we adopt the sequence modeling as a problem in nonlinear functional ap-
proximation framework. Specifically, the theoretical properties we anticipate from the targets are
defined. Moreover, we define the “curse of memory” phenomenon and provide a concise summary
of prior theoretical definitions and results concerning RNNs.

2.1 STATE-SPACE MODELS

Recurrent neural networks (RNNs) (Rumelhart et al., 1986) are a family of neural networks spe-
cialized in sequence modeling. With trainable weights W ∈ Rm×m, U ∈ Rm×d, b, c ∈ Rm and
activation function σ(·), the simplest RNN maps d-dimensional input sequence x = {xt} to 1-
dimensional output sequence {ŷt}. To simplify our analysis, we utilize the continuous-time frame-
work referenced in Li et al. (2020):

dht

dt = σ(Wht + Uxt + b) h−∞ = 0,
ŷt = c⊤ht, t ∈ R. (1)

State-space models refer to the type of neural networks with layer-wise nonlinearity but linear dy-
namics in the hidden states. As detailed in Appendix E, the following form is a simplification of
practical SSMs in the sense that practical SSMs can be realized by the stack of Equation (2).

dht

dt = Wht + Uxt + b, h−∞ = 0,
ŷt = c⊤σ(ht), t ∈ R. (2)

It is known that multi-layer state-space models are universal approximators (Orvieto et al., 2023;
Wang & Xue, 2023). In particular, when the nonlinearity is added layer-wise, it is sufficient (in
approximation sense) to use real diagonal W (Gu et al., 2022; Li et al., 2022). In this paper, we
only consider the real diagonal matrix case and denote it by Λ.

dht

dt
= Λht + Uxt + b (3)

Compared with S4, the major differences lies in initialization such as HiPPO (Gu et al., 2020) and
parameters saving method such as DPLR (Gu et al., 2022) and NPLR (Gu et al., 2021).

We assume the hidden states remain uniformly bounded for any input sequence x, irrespective of
the hidden dimensions m. Specifically, this can be expressed as

sup
m

sup
t

|ht|∞ < ∞. (4)

Also, we assume the weights are uniformly bounded with supm max(|c|2, |Λ|2, |U |2, |b|2) < ∞. We
focus on strictly increasing, continuously differentiable nonlinear activations with Lipschitz constant
L0. This property holds for activations such as tanh, sigmoid, softsign σ(z) = z

1+|z| .
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2.2 SEQUENCE MODELING AS NONLINEAR FUNCTIONAL APPROXIMATIONS

Sequential modeling aims to discern the association between an input series, represented as x =
{xt}, and its corresponding output series, denoted as y = {yt}. The input series are continuous
bounded inputs vanishing at infinity: x ∈ X = C0(R,Rd) with norm ∥x∥∞ := supt∈R |xt|∞. It is
assumed that the input and output sequences are determined from the inputs via a set of functionals,
symbolized as H = {Ht : X → R : t ∈ R}, through the relationship yt = Ht(x). In essence, the
challenge of sequential approximation boils down to estimating the desired functional sequence H

using a different functional sequence Ĥ potentially from a predefined model space such as SSMs.

We first introduce the definitions on (sequences of) functionals as discussed in (Wang et al., 2023).
Definition 2.1. Let H = {Ht : X 7→ R; t ∈ R} be a sequence of functionals.

1. (Linear) Ht is linear functional if for any λ, λ′ ∈ R and x,x′ ∈ X , Ht(λx + λ′x′) =
λHt(x) + λ′Ht(x

′).

2. (Continuous) Ht is continuous functional if for any x,′ x ∈ X , limx′→x |Ht(x
′) −

Ht(x)| = 0.

3. (Bounded) Ht is bounded functional if the norm of functional ∥Ht∥∞ :=

sup{x̸=0}
|Ht(x)|
∥x∥∞+1 + |Ht(0)| < ∞.

4. (Time-homogeneous) H = {Ht : t ∈ R} is time-homogeneous (or shift-equivariant) if
the input-output relationship commutes with time shift: let [Sτ (x)]t = xt−τ be a shift
operator, then H(Sτx) = SτH(x).

5. (Causal) Ht is causal functional if it does not depend on future values of the input. That
is, if x,x′ satisfy xt = x′

t for any t ≤ t0, then Ht(x) = Ht(x
′) for any t ≤ t0.

6. (Regular) Ht is regular functional if for any sequence {x(n) : n ∈ N} such that x(n)
s → 0

for almost every s ∈ R, then limn→∞ Ht(x
(n)) = 0.

The continuity, boundedness, time-homogeneity, causality are important properties for good
sequence-to-sequence models to have. Linearity is an important simplification as many theoretical
theorems are available in functional analysis. Without loss of generality, we assume that the nonlin-
ear functionals satisfy Ht(0) = 0. It can be achieved via studying Hadjusted

t (x) = Ht(x)−Ht(0).

2.3 CURSE OF MEMORY AND STABLE APPROXIMATION

The concept of memory has been extensively explored in academic literature, yet much of this work
relies on heuristic approaches and empirical testing, particularly in the context of learning long-term
memory (Poli et al., 2023). Here we study the memory property from a theoretical perspective.

The “curse of memory” phenomenon, which was originally formulated for linear functionals and
linear RNNs, is well-documented in prior research (Li et al., 2020; 2022). Building upon this foun-
dation, our study employs the extended framework proposed by Wang et al. (2023), which specif-
ically focuses on nonlinear RNNs. However, these studies do not address the case of state-space
models. Within the same framework, the slightly different memory function and decaying memory
concepts enable us to explore the approximation capabilities of nonlinear functionals using SSMs.
We add 1 in the memory function definition to make it more regular.
Definition 2.2 (Memory function and decaying memory). For bounded, causal, continuous, regu-
lar and time-homogeneous nonlinear functional sequences H = {Ht : t ∈ R} on X , define the
following function as the memory function of H: Over bounded Heaviside input ux(t) = x · 1{t≥0}

M(H)(t) := sup
x ̸=0

∣∣ d
dtHt(u

x)
∣∣

|x|∞ + 1
. (5)

We assume the memory function of the target is finite for all t ∈ R. The functional sequences
H have a decaying memory if limt→∞ M(H)(t) = 0. In particular, we say it has an exponential
(polynomial) decaying memory if there exists constant β > 0 such that limt→∞ eβtM(H)(t) = 0
(limt→∞ tβM(H)(t) = 0).
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Similar to Wang et al. (2023), this adjusted memory function definition is also compatible with the
memory concept in linear functional which is based on the famous Riesz representation theorem
(Theorem A.2). As shown in Appendix B.1, the nonlinear functionals constructed by state-space
models are point-wise continuous over Heaviside inputs. Combined with time-homogeneity, we
know that state-space models are nonlinear functionals with decaying memory (see Appendix B.2).
Definition 2.3 (Functional sequence approximation in Sobolev-type norm). Given functional se-
quences H and Ĥ, we consider the approximation in the following Sobolev-type norm:∥∥∥H− Ĥ

∥∥∥
W 1,∞

= sup
t

(
∥Ht − Ĥt∥∞ +

∥∥∥∥∥dHt

dt
− dĤt

dt

∥∥∥∥∥
∞

)
. (6)

Definition 2.4 (Perturbation error). For target H and parameterized model Ĥ(·, θm), θm ∈ Θm :=
{Rm×m × Rm×d × Rm × Rm}, we define the perturbation error for hidden dimension m:

Em(β) := sup
θ̃m∈{θ:|θ−θm|2≤β}

∥H− Ĥ(·; θ̃m)∥. (7)

In particular, H̃ refers to the perturbed models Ĥ(·; θ̃m). Moreover, E(β) := lim supm→∞ Em(β)
is the asymptotic perturbation error. The weight norm for SSM is |θ|2 := max(|Λ|2, |U |2, |b|2, |c|2).

Based on the definition of perturbation error, we consider the stable approximation as introduced by
Wang et al. (2023).
Definition 2.5 (Stable approximation). Let β0 > 0. We say a target functional sequence H admits
a β0-stable approximation if for all 0 ≤ β ≤ β0, the perturbed error satisfies that: (i) E(0) = 0; (ii)
E(β) is continuous for β ∈ [0, β0].

Equation E(0) = 0 means the functional sequence is an approximation. As the stable approxi-
mation is the necessary requirement for the optimal parameters to be found by the gradient-based
optimizations, it is a desirable assumption.

The “curse of memory” describes the phenomenon where targets approximated by linear, hardtanh,
or tanh RNNs must demonstrate an exponential decaying memory. However, empirical observations
suggest that state-space Models, particularly the S4 variant, may possess favorable properties. Thus,
it is crucial to ascertain whether the inherent limitations of RNNs can be circumvented using state-
space models. Given the impressive performance of state-space models, notably S4, a few pivotal
questions arise: Do the model structure of state-space models overcome the “curse of memory”? In
the subsequent section, we will demonstrate that the model structure of state-space models does not
indeed address the curse of memory phenomenon.

3 MAIN RESULTS

In this section, we first prove that similar to the traditional recurrent neural networks (Li et al.,
2020; Wang et al., 2023), state-space models without reparameterization suffer from the “curse of
memory” problem. This implies the targets that can be stably approximated by SSMs must have
exponential decaying memory. Our analysis reveals that the problem arises from recurrent weights
converging to a stability boundary when learning targets associated with long-term memory. There-
fore, we introduce a class of stable reparameterization techniques to achieve the stable approxima-
tion for targets with polynomial decaying memory.

Beside the benefit of approximation perspective, we also discuss the optimization benefit of the
stable reparameterizations. We show that the stable reparameterization can make the gradient scale
more balanced, therefore the optimization of large models can be more stable.

3.1 SSMS ARE NOT STABLE APPROXIMATORS

In this section, we present a theoretical theorem demonstrating that the state-space structure does
not alleviate the “curse of memory” phenomenon. State-space models consist of alternately stacked
linear RNNs and nonlinear activations. Our proof is established for the shallow case. As recurrent
models, SSMs without reparameterization continue to exhibit the commonly observed phenomenon
of exponential memory decay, as evidenced by empirical findings (Wang & Xue, 2023).
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(a) SSM
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(b) SoftplusSSM
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(c) S4

Figure 1: State-space models without stable reparameterization cannot approximate targets with
polynomial decaying memory. In (a), the intersection of lines are shifting towards left as the hidden
dimension m increases. In (b), SSMs using softplus reparameterization has a stable approximation.
In (c), S4 can stably approximate the target with better stability.

Theorem 3.1 (Curse of memory in SSMs). Assume H is a sequence of bounded, causal, continuous,
regular and time-homogeneous functionals on X with decaying memory. Suppose there exists a
sequence of state-space models {Ĥ(·, θm)}∞m=1 β0-stably approximating H in the norm defined in
Equation (6). Assume the model weights are uniformly bounded: θmax := supm |θm|2 < ∞. Then
the memory function M(H)(t) of the target decays exponentially:

M(H)(t) ≤ (d+ 1)L0θ
2
maxe

−βt, t ≥ 0, β < β0. (8)

The proof of Theorem 3.1 is provided in Appendix B.3. The stability boundary is discussed in Re-
mark B.1. Compared with previous results (Li et al., 2020; Wang et al., 2023), the main proof differ-
ence comes from Lemma B.6 as the activation is in the readout yt = c⊤σ(ht). Our results provide a
more accurate characterization of memory decay, in contrast to previous works that only offer quali-
tative estimates. A consequence of Theorem 3.1 is that if the target exhibits a non-exponential decay
(e.g., polynomial decay), the recurrent weights converge to a stability boundary, thereby making the
approximation unstable. Finding optimal weights can become challenging with gradient-based opti-
mization methods, as the optimization process tends to become unstable with the increase of model
size. The numerical verification is presented in Figure 1 (a). The lines intersect and the intersec-
tions points shift towards the 0, suggesting that the stable radius β0 does not exist. Therefore SSMs
without reparameterization cannot stably approximate targets with polynomial decaying memory.

3.2 STABLE REPARAMETERIZATIONS AND THE APPROXIMATION BENEFIT

The proof of Theorem 3.1 suggests that the “curse of memory” arises due to the recurrent weights
approaching a stability boundary. Additionally, our numerical experiments (in Figure 1 (c)) show
that while state-space models suffer from curse of memory, the commonly used S4 layer (with
exponential) ameliorates this issue. However, it is not a unique solution. Our findings highlight that
the foundation to achieving a stable approximation is the stable reparameterization method, which
we define as follows:
Definition 3.2 (Stable reparameterization). We say a reparameterization scheme f : R → R is
stable if there exists a continuous function g such that: g : [0,∞) → [0,∞), g(0) = 0:

sup
w

[
|f(w)| sup

|w̃−w|≤β

∫ ∞

0

∣∣∣ef(w̃)t − ef(w)t
∣∣∣ dt] ≤ g(β). (9)

For example, commonly used reparameterization (Gu et al., 2021; Smith et al., 2023) such as
f(w) = −ew, f(w) = − log(1 + ew) are all stable. Verifications are provided in Remark B.3.

As depicted in Figure 1 (b), state-space models with stable reparameterization can approximate
targets exhibiting polynomial decay in memory. In particular, we prove that under a simplified
perturbation setting (solely perturbing the recurrent weights), any linear functional can be stably
approximated by linear RNNs. This finding under simplified setting is already significant as the
instability in learning long-term memory mainly comes from the recurrent weights.
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Theorem 3.3. For any bounded, causal, continuous, regular, time-homogeneous linear functional
H, assume H is approximated by a sequence of linear RNNs {Ĥ(·, θm)}∞m=1 with stable reparam-
eterization, then this approximation is a stable approximation.

The proof of Theorem 3.3 can be found in Appendix B.4. Compared to Theorem 3.1, Theorem 3.3
underscores the pivotal role of stable reparameterization in achieving stable approximation of linear
functional with long-term memory.

3.3 OPTIMIZATION BENEFIT OF STABLE REPARAMETERIZATION

In the previous section, the approximation benefit of stable reparameterization in SSMs is discussed.
Therefore, a natural question is whether the commonly used reparameterizations in S4/S5 are the
optimal ones. Here we give a optimization criterion and show that they are not optimal. As pointed
out by Li et al. (2020; 2022), the approximation of linear functionals using linear RNNs can be
reduced into the approximation of L1-integrable memory function ρ(t) via functions of the form
ρ̂(t) =

∑m
i=1 cie

−λit.

ρ(t) ≈
m∑
i=1

cie
−λit, λi > 0. (10)

Within this framework, λi is interpreted as the decay mode. Approaching this from the gradient-
based optimization standpoint, and given that learning rates are shared across different decay modes,
a fitting characterization for “good parameterization” emerges: The gradient scale across different
memory decays modes should be Lipschitz continuous with respect to the weights scale.

|Gradient| :=
∣∣∣∣∂Loss
∂λi

∣∣∣∣ ≤ L|λi|. (11)

The Lipschitz constant is denoted by L. Without this property, the optimization process can be
sensitive to the learning rate. We give a detailed discussion in Appendix F. In the following theorem,
we characterize the relationship between gradient norms and recurrent weight parameterization.

Theorem 3.4 (Parameterizations influence the gradient norm scale). Assume the target functional
sequence H is being approximated by a sequence of SSMs Ĥm. Assume the (diagonal) recurrent
weight matrix is parameterized via f : R → R : f(w) = λ. w is the trainable weight while λ is
the eigenvalue of recurrent weight matrix Λ. The gradient norm Gf (w) is upper bounded by the
following expression:

Gf (w) :=

∣∣∣∣∂Loss
∂w

∣∣∣∣ ≤ CH,Ĥm

|f ′(w)|
f(w)2

. (12)

Here CH,Ĥm
is independent of the parameterization f provided that H, Ĥm are fixed. Moreover,

the discrete-time version is GD
f (w) :=

∣∣∂Loss
∂w

∣∣ ≤ CH,Ĥm

|f ′(w)|
(1−f(w))2 .

Refer to Appendix B.5 for the proof of Theorem 3.4. Here we discuss the feasibility to extend to
deeper networks. As the reparameterization only change the gradients of state-space models, so the
gradient analysis holds for the recurrent weights in complex models which will also be bounded by
a parameterization-dependent term in Equation (12). Therefore Theorem 3.4 will also be effective
for multi-layer networks. In Table 1 we summarize common reparameterization methods and
corresponding gradient scale functions. Moreover, according to the criterion given in Equation (11),
the “best” stable reparameterization should satisfy Gf (w) ≡ L|w| for some constant L > 0. The
equation can be solved into the following form: f(w) = 1

aw2+b , a ̸= 0, b ∈ R (proof is given in
Appendix G). Similarly, the discrete case gives the solution f(w) = 1 − 1

aw2+b . We choose a =
1, b = 0.5 because this ensures the stability of the hidden state dynamics and stable approximation
in Equation (9). The stability of linear RNN further requires a > 0 and b ≥ 0. We plot and
compared Gf (w)

|w| of different stable reparameterizations in Figure 2. It can be seen that, compared
with linear and exponential reparameterizations, the softplus reparameterization is generally milder
in this gradient-over-weight criterion. The “best” parameterization is optimal in the sense it has a
balanced gradient-over-weight ratio across different weights.

6



Under review as a conference paper at ICLR 2024

101 100 0 100 101

Weight w
10 10

10 7

10 4

10 1

102

105

108

Gr
ad

ie
nt

-w
ei

gh
t r

at
io

 a
t w

ei
gh

t w
: G

f(w
)

|w
|

linear, = w, w > 0
exponential, = exp(w), w
softplus, = log(1 + exp(w)), w
best, = 1

w2 , w

(a) Continuous time Gf (w)

|w|

101 100 0 100 101

Weight w
10 10

10 7

10 4

10 1

102

105

108

Gr
ad

ie
nt

-w
ei

gh
t r

at
io

 a
t w

ei
gh

t w
: G

f(w
)

|w
|

(b) Discrete time
GD

f (w)

|w|

Figure 2: Gradient norm function Gf and GD
f of different parameterization methods. The “best”

parameterization methods maintain a balanced gradient-over-weight ratio.

Table 1: Summary of reparameterizations and corresponding gradient norm functions in continuous
and discrete time. Notice that the Gf and GD

f are rescaled up to a constant CH,Ĥ.

Reparameteriations f Gf or GD
f

Continuous ReLU −ReLU(w) 1
w21{w>0}

Exp − exp(w) e−w

Softplus − log(1 + exp(w)) exp(w)
(1+exp(w)) log(1+exp(w))2

“Best”(Ours) − 1
aw2+b , a > 0, b > 0 2a|w|

Discrete ReLU exp(−ReLU(w)) exp(−w)
(1−exp(−w))21{w>0}

Exp exp(− exp(w)) exp(w−exp(w))
(1−exp(− exp(w)))2

Softplus 1
1+exp(w) e−w

Tanh tanh(w) = e2w−1
e2w+1 e2w

“Best”(Ours) 1− 1
w2+0.5 ∈ (−1, 1) 2|w|

4 NUMERICAL VERIFICATIONS

Based on the above analyses, we verify the theoretical statements over synthetic tasks and language
models using WikiText-103. The additional numerical details are provided in Appendix C.

4.1 SYNTHETIC TASKS

Linear functionals have a clear structure, allowing us to study the differences of parameterizations.
Similar to Li et al. (2020) and Wang et al. (2023), we consider linear functional targets H with fol-
lowing polynomial memory function ρ(t) = 1

(t+1)1.1 : yt = Ht(x) =
∫ t

−∞ ρ(t−s)xsds. We use the
state-space models with tanh activations to learn the sequence relationships. In Figure 3, the eigen-
values λ are initialized to be the same while the only difference is the reparameterization function
f(w). Training loss across different reparameterization schemes are similar but the gradient-over-
weight ratio across different parameterization schemes are different in terms of the scale.

4.2 LANGUAGE MODELS

In addition to the synthetic dataset of linear functions, we further justify Theorem 3.4 by examining
the gradient-over-weight ratios for language models using state-space models. In particular, we
adopt the Hyena (Poli et al., 2023) architecture while the implicit convolution is replaced by a
simple real-weighted state-space model (Smith et al., 2023).
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Figure 3: In the learning of linear functionals of polynomial decaying memory, the gradient-over-
weight scale range during the training of state-space models. It can be seen the “best”discrete
parameterization f(w) = 1− 1

w2+0.5 achieves the smallest gradient-over-weight scale. 0.5 is added
to ensure f(w) ∈ (−1, 1). Such property is desirable when a large learning rate is used in training.
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Figure 4: Language models on WikiText-103. In (a), we show the gradient-over-weight ratio
ranges for different parameterizations of recurrent weights in state-space models. The eigenvalues
λ are initialized to be the same while the only difference is the reparameterization function f . In
(b), the “Best” parameterization is more stable than the ReLU and exponential reparameterizations.
Additional experiments for different learning rates are provided in Figure 6.

In Figure 4 (a), given the same initialization, we show that stable reparameterizations such as expo-
nential, softplus, tanh and “best” exhibit a narrower range of gradient-over-weight ratios compared
to both the direct and relu reparameterizations. Beyond the gradient at the same initialization, in
Figure 5, we show the gradient-over-weight ratios during the training process. The stable reparame-
terization will give better gradient-over-weight ratios in the sense that the “best” stable reparameter-
ization maintains the smallest max( |grad|

|weight| ). Specifically, as illustrated in Figure 4 (b) and Figure 6,
while training with a large learning rate may render the exponential parameterization unstable, the
“best” reparameterization f(w) = 1− 1

w2+0.5 appears to enhance training stability.

5 RELATED WORK

RNNs, as introduced by Rumelhart et al. (1986), represent one of the earliest neural network ar-
chitectures for modeling sequential relationships. Empirical findings by Bengio et al. (1994) have
shed light on the challenge of exponential decaying memory in RNNs. Various works (Hochreiter
& Schmidhuber, 1997; Rusch & Mishra, 2022; Wang & Yan, 2023) have been done to improve the
memory patterns of recurrent models. Theoretical approaches (Li et al., 2020; 2022; Wang et al.,
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Figure 5: Gradient-over-weight ratio for different reparameterizations of the recurrent weights in
language modeling. The “best” reparameterization f(w) = 1 − 1

w2+0.5 maintains the smallest

max( |grad|
|weight| ) which is crucial for the training stability as illustrated in Figure 4 (b).

2023) have been taken to study the exponential memory decay of RNNs. In this paper, we study the
state-space models which are also recurrent. Our findings theoretically justify that although SSMs
variants exhibit good numerical performance in long-sequence modeling, simple SSMs also suffer
from the “curse of memory”.

State-space models (Siivola & Honkela, 2003), previously discussed in control theory, has been
widely used to study the dynamics of complex systems. HIPPO (Gu et al., 2020), which is designed
for the online compression of both continuous signals and discrete time series, generalizes the Leg-
endre Memory Unit and provides a new memory update mechanism which achieves state-of-the-art
for permutated MNIST. The subsequent variants, S4(Gu et al., 2021), GSS (Mehta et al., 2022), and
S5 (Smith et al., 2023), have significantly enhanced empirical performance. Notably, they excel in
the long-range arena (Tay et al., 2021), an area where transformers traditionally underperform. Con-
trary to the initial presumption, our investigations disclose that the ability to learn long-term memory
is not derived from the linear RNN coupled with nonlinear layer-wise activations. Rather, our study
underscores the benefits of stable reparameterization in both approximation and optimization.

Apart from the attempts in model design, several other approaches have been adopted in improving
the long-term memory learning. Hardt et al. (2018) proposes the first polynomial guarantees to do
linear system identification. It also points out gradient descent over (linear) RNN without reparam-
eterization can blow up even with small learning rate. The training stability has also been discussed
in Revay et al. (2020). Our paper shows that stable reparameterization has benefit in improving the
optimization stability, which is important for training of large models (Wortsman et al., 2023).

6 CONCLUSION

In this paper, we study the intricacies of long-term memory learning in state-space models, specif-
ically emphasizing the role of parameterization. We prove that state-space models without repa-
rameterization fails to stably approximating targets that exhibit non-exponential decaying memory.
Our analysis indicates this “curse of memory” phenomenon is caused by the recurrent weights con-
verging to stability boundary. As an alternative, we introduce a class of stable reparameterization
as a robust solution to this challenge, which also partially explains the performance of S4. We also
explore the optimization advantages associated with stable reparameterization, especially concern-
ing gradient-over-weight scale. Our results give the theoretical support to observed advantages of
reparameterization in S4 and moreover give principled methods to design “best” reparameterization
scheme in the optimization stability sense. This paper shows that stable reparameterization not only
enables the stable approximation of any linear functionals with long-term memory but also enhances
the optimization stability for general nonlinear functionals.
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A THEORETICAL BACKGROUNDS

In this section, we collect the definitions for the theoretical statements.

A.1 APPROXIMATION IN SOBOLEV NORM

Definition A.1. In sequence modeling as a nonlinear functional approximation problem, we con-
sider the Sobolev norm of the functional sequence defined as follow:∥∥∥H− Ĥ

∥∥∥
W 1,∞

= sup
t

(
∥Ht − Ĥt∥∞ +

∥∥∥∥∥dHt

dt
− dĤt

dt

∥∥∥∥∥
∞

)
. (13)

Here H is the target functional sequence to be approximated while the Ĥ is the model we use.

In particular, the nonlinear functional operator norm is given by:

∥Ht∥∞ := sup
x̸=0

|Ht(x)|
∥x∥∞ + 1

+ |H(0)|. (14)

As H(0) = 0, ∥Ht∥∞ is reduced to sup
x ̸=0

|Ht(x)|
∥x∥∞ + 1

. If H is a linear functional, this definition is

compatible with the common linear functional norm in Equation (19).

Here we check this operator norm in Equation (14) is indeed a norm. Without loss of generality, we
will drop the time index for brevity.

1. Triangular inequality: For nonlinear functional H1 and H2,

∥H1 +H2∥∞ := sup
x̸=0

|(H1 +H2)(x)|
∥x∥∞ + 1

(15)

≤ sup
x̸=0

|H1(x)|
∥x∥∞ + 1

+ sup
x̸=0

|H2(x)|
∥x∥∞ + 1

= ∥H1∥∞ + ∥H2∥∞. (16)

The inequality is by the property of supremum.

2. Absolute homogeneity: For any real constant s and nonlinear functional H

∥sH∥∞ := sup
x̸=0

|(sH)(x)|
∥x∥∞ + 1

= |s| sup
x̸=0

|H(x)|
∥x∥∞ + 1

= |s|∥H∥∞. (17)

3. Positive definiteness: If ∥H∥∞ = 0, then for all non-zero inputs x ̸= 0 we have H(x) = 0.
As H(0) = 0, then we know H is a zero functional.

A.2 RIESZ REPRESENTATION THEOREM FOR LINEAR FUNCTIONAL

Theorem A.2 (Riesz-Markov-Kakutani representation theorem). Assume H : C0(R,Rd) 7→ R is
a linear and continuous functional. Then there exists a unique, vector-valued, regular, countably
additive signed measure µ on R such that

H(x) =

∫
R
x⊤
s dµ(s) =

d∑
i=1

∫
R
xs,idµi(s). (18)

In addition, we have the linear functional norm

∥H∥∞ := sup
∥x∥X≤1

|H(x)| = ∥µ∥1(R) :=
∑
i

|µi|(R). (19)

In particular, this linear functional norm is compatible with the norm considered for nonlinear
functionals in Equation (14).

12
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B PROOFS FOR THEOREMS AND LEMMAS

In Appendix B.1, we show that the nonlinear functionals defined by state-space models are point-
wise continuous functionals at Heaviside inputs. In Appendix B.3, the proof for state-space models’
exponential memory decaying memory property is given. In Appendix B.4, we prove the linear
RNN with stable reparameterization can stably approximate any linear functional. The target is
no longer limited to have an exponenitally decaying memory. The gradient norm estimate of the
recurrent layer is included in Appendix B.5.

B.1 PROOF FOR SSMS ARE POINT-WISE CONTINUOUS FUNCTIONALS

Proof. Let x be any fixed Heaviside input. Assume lim
k→∞

∥xk − x∥∞ = 0. Let hk,t and ht be the

hidden state for inputs xk and x. Without loss of generality, assume t > 0. The following | · | refers
to p = ∞ norm.

By definition of the hidden states dynamics and triangular inequality, since σ(·) is Lipschitz contin-
uous

d|hk,t − ht|
dt

= |σ(Λhk,t + Uxk,t)− σ(Λht + Uxt)| (20)

≤ L|Λhk,t + Uxk,t − Λht − Uxt| (21)
= L|Λ(hk,t − ht) + U(xk,t − xt)| (22)
≤ L(|Λ||hk,t − ht|+ |U ||xk,t − xt|). (23)

Here L is the Lipschitz constant of activation σ. Apply the Grönwall inequality to the above in-
equality, we have:

|hk,t − ht| ≤
∫ t

0

eL|Λ|(t−s)L|U | |xk,s − xs|ds. (24)

As the inputs are bounded, by dominated convergence theorem we have right hand side converges
to 0 therefore

lim
k→∞

|hk,t − ht| = 0, ∀t. (25)

Let yk,t and yt be the outputs for inputs xk and x. Therefore we show the point-wise convergence
of dHt

dt at x:

lim
k→∞

∣∣∣∣dyk,tdt
− dyt

dt

∣∣∣∣ = lim
k→∞

∣∣∣∣c⊤(dhk,t

dt
− dht

dt
)

∣∣∣∣ (26)

≤ lim
k→∞

|c|L(|Λ||hk,t − ht|+ |U ||xk,t − xt|) = 0. (27)

B.2 POINT-WISE CONTINUITY LEADS TO DECAYING MEMORY

Here we give the proof of decaying memory based on the point-wise continuity of dHt

dt and bound-
edness and time-homogeneity of H:

Proof.

lim
t→∞

∣∣∣∣dHt

dt
(ux)

∣∣∣∣ = lim
t→∞

∣∣∣∣dH0

dt
(x · 1{s≥−t})

∣∣∣∣ = ∣∣∣∣dH0

dt
(x)

∣∣∣∣ = 0.

The first equation comes from time-homogeneity. The second equation is derived from the point-
wise continuity where input x means constant x for all time x = x ·1{s≥−∞}. The third equation is
based on the boundedness and time-homogeneity as the output over constant input should be finite
and constant Ht(x) = Hs(x) for all s, t. Therefore |dH0

dt (x)| = 0.
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B.3 PROOF FOR THEOREM 3.1

The main idea of the proof is two-fold. First of all, we show that state-space models with strictly
monotone activation is decaying memory in Lemma B.6. Next, the idea of analysing the memory
functions through a transform from [0,∞) to (0, 1] is similar to previous works (Li et al., 2020; 2022;
Wang et al., 2023). The remainder of the proof follows a standard approach, as the derivatives of the
hidden states follow the rules of linear dynamical systems when Heaviside inputs are considered.

Proof. Assume the inputs considered are uniformly bounded by X0:

∥x∥∞ < X0. (28)

Define the derivative of hidden states for unperturbed model to be vm,t =
dhm,t

dt . Similarly, ṽm,t is

the derivative of hidden states for perturbed models ṽm,t =
dh̃m,t

dt .

Since each perturbed model has a decaying memory and the target functional sequence H has a
stable approximation, by Lemma B.6, we have

lim
t→∞

ṽm,t = 0, ∀m. (29)

If the inputs are limited to Heaviside inputs, the derivative ṽm,t satisfies the following dynamics:
Notice that the hidden state satisfies ht = 0, t ∈ (−∞, 0],

dṽm,t

dt
= Λ̃mṽm,t, t ≥ 0 (30)

ṽm,0 = Λ̃mh0 + Ũmx0 + b̃m = Ũmx0 + b̃m (31)

⇒ ṽm,t = eΛ̃mt(Ũmx0 + b̃m). (32)

Notice that the perturbed initial conditions of the ṽm,t are uniformly (in m) bounded:

Ṽ0 := sup
m

|ṽm,0|2 (33)

= sup
m

|Ũmx0 + b̃m|2 (34)

≤ sup
m

|Ũmx0 + b̃m|2 (35)

≤ dX0(sup
m

∥Um∥2 + β0) + sup
m

∥bm∥2 + β0 (36)

< ∞ (37)

Here d is the input sequence dimension.

Similarly, the unperturbed initial conditions satisfy:

V0 := sup
m

|ṽm,0|2 (38)

= sup
m

|Umx0 + bm|2 (39)

≤ sup
m

|Umx0 + bm|2 (40)

≤ dX0 sup
m

∥Um∥2 + sup
m

∥bm∥2 (41)

< ∞ (42)

Select a sequence of perturbed recurrent matrices {Λ̃m,k}∞k=1 satisfying the following two proper-
ties:

1. Λ̃m,k is Hyperbolic, which means the real part of the eigenvalues of the matrix are nonzero.

2. limk→∞(Λ̃m,k − Λm) = β0Im.
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Moreover, by Lemma B.7, we know that each hyperbolic matrix Λ̃m,k is Hurwitz as the system for
ṽm,t is asymptotically stable.

sup
m

max
i∈[m]

(λi(Λ̃m,k)) < 0. (43)

This is the stability boundary for the state-space models under perturbations.

Therefore the original diagonal unperturbed recurrent weight matrix Λm satisfies the following
eigenvalue inequality uniformly in m. Since Λm is diagonal:

sup
m

max
i∈[m]

(λi(Λm)) ≤ −β0. (44)

Therefore the model memory decays exponentially uniformly

M(Ĥm)(t) := sup
X0

1

X0 + 1

∣∣∣∣ ddt ŷm,t

∣∣∣∣ (45)

= sup
X0

1

X0 + 1
|c⊤m[σ′(hm,t) ◦ vm,t]| (46)

≤ sup
X0

1

X0 + 1
|cm|2|σ′(hm,t) ◦ vm,t|2 (47)

≤ sup
X0

1

X0 + 1
|cm|2 · sup

z
|σ′(z)| · |e−β0tvm,0|2 (48)

≤ sup
X0

1

X0 + 1

(
sup
m

|cm|2 · sup
z

|σ′(z)| · V0

)
e−β0t (49)

≤ sup
X0

1

X0 + 1

(
sup
m

|cm|2 · L0 · V0

)
e−β0t (50)

≤ sup
X0

(
sup
m

|cm|2 · L0 (51)

·
( X0

X0 + 1
d(sup

m
∥Um∥2) +

1

X0 + 1
(sup

m
∥bm∥2)

))
e−β0t (52)

≤
(
sup
m

|cm|2 · L0

(
d sup

m
∥Um∥2 + sup

m
∥bm∥2

))
e−β0t (53)

≤ (d+ 1)L0θ
2
maxe

−β0t (54)

The inequalities are based on vector norm properties, Lipschitz continuity of σ(z) and uniform
boundedness of unperturbed initial conditions. Therefore we know the model memories are uni-
formly decaying.

By Lemma B.8, the target H has an exponentially decaying memory as it is approximated by a
sequence of models {Ĥm}∞m=1 with uniformly exponentially decaying memory.

Remark B.1. When the approximation is unstable, we cannot have the real parts of the eigenvalues
for recurrent weights bounded away from 0 in Equation (44). As the stability of linear RNNs requires
the real parts (of the eigenvalues) to be negative, then the maximum of the real parts will converge
to 0. This is the stability boundary of state-space models.

lim
m→∞

max
i∈[m]

(λi(Λm)) = 0−. (55)

Remark B.2. The uniform weights bound is necessary in the sense that: Since state-space models
are universal approximators, they can approximate targets with long-term memories. However, if
the target has an non-exponential decaying (e.g. polynomial decaying) memory, the weights bound
of the approximation sequence will be exponential in the sequence length T .

θ2max ≥ eβ0T
M(H)(T )

(d+ 1)L0
. (56)

This result indicates that scaling up SSMs without reparameterization is inefficient in learning se-
quence relationships with a large T and long-term memory.
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B.4 PROOF FOR STABLE REPARAMETERIZATION ENABLES THE STABLE APPROXIMATION
FOR LINEAR FUNCTIONAL

Proof. Let the target linear functional be Ht(x) =
∫ t

−∞ ρ(t − s)xsds. Here ρ is an L1 integrable
function. We consider a simplified model setting with only parameters c and w. Let ci, wi be the
unperturbed weights and w̃i be the perturbed recurrent weights. Similar to ρ being L1 integrable,
we note that

∫∞
0

|cief(wi)t|dt = |ci|
|f(wi)| . To have a sequence of well-defined model, we require they

are uniformly (in m) absolutely integrable:

sup
m

m∑
i=1

|ci|
|f(wi)|

< ∞. (57)

Based |w̃ − w|2 ≤ β. We know the approximation error is

Em(β) = sup
|w̃−w|2≤β

∫ ∞

0

∣∣∣∣∣
m∑
i=1

cie
f(w̃i)t − ρ(t)

∣∣∣∣∣ dt (58)

≤ sup
|w̃−w|2≤β

∫ ∞

0

∣∣∣∣∣
m∑
i=1

cie
f(wi)t − ρ(t)

∣∣∣∣∣ dt (59)

+ sup
|w̃−w|2≤β

∫ ∞

0

∣∣∣∣∣
m∑
i=1

cie
f(w̃i)t −

m∑
i=1

cie
f(wi)t

∣∣∣∣∣ dt (60)

= Em(0) + sup
|w̃−w|2≤β

∫ ∞

0

m∑
i=1

|ci|
∣∣∣ef(w̃i)t − ef(wi)t

∣∣∣ dt (61)

= Em(0) +

m∑
i=1

|ci| sup
|w̃−w|2≤β

∫ ∞

0

∣∣∣ef(w̃i)t − ef(wi)t
∣∣∣ dt (62)

≤ Em(0) +

m∑
i=1

|ci| sup
|w̃i−wi|2≤β

∫ ∞

0

∣∣∣ef(w̃i)t − ef(wi)t
∣∣∣ dt (63)

≤ Em(0) +

m∑
i=1

|ci|
g(β)

|f(wi)|
(64)

= Em(0) +

m∑
i=1

|ci|
|f(wi)|

g(β). (65)

The first inequality is the triangular inequality. The second inequality comes from the fact that |w̃i−
wi| ≤ |w̃ − w|2 ≤ β. The third inequality is achieved via the property of stable reparameterization:
For some continuous function g(β) : [0,∞) → [0,∞), g(0) = 0:

sup
w

[
|f(w)| sup

|w̃−w|≤β

∫ ∞

0

∣∣∣ef(w̃)t − ef(w)t
∣∣∣ dt] ≤ g(β). (66)

By definition of stable approximation, we know limm→∞ Em(0) = 0. Also according to the re-
quiement of the stable approximation in Equation (57), we have

lim
β→0

E(β) = lim
β→0

lim
m→∞

Em(β) (67)

≤ lim
β→0

lim
m→∞

Em(0) +

(
sup
m

m∑
i=1

|ci|
|f(wi)|

)
∗ lim

β→0
g(β) (68)

= 0 + 0 = 0 = E(0). (69)

Since g(β) is continuous, it can be seen E(β) is continuous:

E(β) ≤

(
sup
m

m∑
i=1

|ci|
|f(wi)|

)
g(β). (70)
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Remark B.3. Here we verify the reparameterization methods satisfy the definition of stable
reparameterization.

For exponential reparameterization f(w) = −ew, w ∈ R:

sup
|w̃−w|≤β

∫ ∞

0

∣∣∣ef(w̃)t − ef(w)t
∣∣∣ dt = eβ − 1

|f(w)|
. (71)

For softplus reparameterization f(w) = − log(1 + ew), w ∈ R: Notice that exp(−β) log(1 +
exp(w)) ≤ sup|w̃−w|≤β log(1 + exp(w̃)) ≤ exp(β) log(1 + exp(w)),

sup
|w̃−w|≤β

∫ ∞

0

∣∣∣ef(w̃)t − ef(w)t
∣∣∣ dt ≤ eβ − 1

|f(w)|
. (72)

For “best” reparameterization f(w) = − 1
aw2+b , w ∈ R, a, b > 0: Without loss of generality, let

w ≥ 0

sup
|w̃−w|≤β

∫ ∞

0

∣∣∣ef(w̃)t − ef(w)t
∣∣∣ dt = |a(w + β)2 − aw2| (73)

≤
a(β2+2βw)

aw2+b

|f(w)|
(74)

≤
a(β2+2βw)

b

|f(w)|
. (75)

Here g(β) = a(β2+2βw)
b . The famous Müntz–Szász theorem indicates that selecting any non-zero

constant a does not affect the universality of linear RNN.

While for the case without reparameterization f(w) = w,w < 0: For 0 ≤ β < −w,

sup
|w̃−w|≤β

∫ ∞

0

∣∣∣ef(w̃)t − ef(w)t
∣∣∣ dt = β

(−w − β)(−w)
=

β

(−w − β)|f(w)|
, (76)

Here limw→−β supw
β

−w−β = ∞, therefore the direct parameterization is not a stable reparameter-
ization.

B.5 PROOF FOR THEOREM 3.4

Proof. For any 1 ≤ j ≤ m, assume the loss function we used is the L∞ norm: Loss = supt ∥Ht −
Ĥm,t∥∞. Notice that by time-homogeneity, Loss = ∥Ht − Ĥm,t∥∞ for any t. This loss function is
larger than the common mean squared error, which is usually chosen in practice for the smoothness
reason.
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∣∣∣∣∂Loss
∂wj

∣∣∣∣ =
∣∣∣∣∣∂∥Ht − Ĥm,t∥∞

∂wj

∣∣∣∣∣ (77)

=

∣∣∣∣∣∂ sup∥x∥∞≤1 |Ht(x)− Ĥm,t(x)|
∂wj

∣∣∣∣∣ (78)

=

∣∣∣∣∣∂ sup∥x∥∞≤1 |
∫ t

−∞(ρ(t− s)−
∑m

i=1 cie
−f(wi)(t−s))xsds|

∂wj

∣∣∣∣∣ (79)

=

∣∣∣∣∣∂
∫ t

−∞ |ρ(t− s)−
∑m

i=1 cie
−f(wi)(t−s)|ds

∂wj

∣∣∣∣∣ (80)

=

∣∣∣∣∣∂
∫ t

−∞ |(ρ(t− s)−
∑

i ̸=j cie
−f(wi)(t−s))− cje

−f(wj)(t−s)|ds
∂wj

∣∣∣∣∣ (81)

=

∣∣∣∣∣∂
∫∞
0

|(ρ(s)−
∑

i̸=j cie
−f(wi)s)− cje

−f(wj)s|ds
∂wj

∣∣∣∣∣ (82)

≤
∫ ∞

0

∣∣∣∣∣∂|(ρ(s)−
∑

i ̸=j cie
−f(wi)s)− cje

−f(wj)s|
∂wj

∣∣∣∣∣ ds (83)

≤
∫ ∞

0

∣∣∣∣∂|cje−f(wj)s|
∂wj

∣∣∣∣ ds (84)

The first equality is the definition of the loss function. The second equality equality comes from the
definition of the linear functional norm. The third equality expand the linear functional and linear
RNNs into the convolution form. The fourth equality utilize the fact that we can manually select
xt’s sign to achieve the maximum value. The fifth equality is separating the term in dependent of
variable wj . The sixth equality is change of variable from t − s to s. The inequality is triangular
inequality. The last equality is dropping the term independent of variable wj .

∣∣∣∣∂Loss
∂wj

∣∣∣∣ ≤ ∫ ∞

0

∣∣∣∣∂|cje−f(wj)s|
∂wj

∣∣∣∣ ds (85)

= |cjf ′(wj)|
∫ ∞

0

e−f(wj)ss ds (86)

=

∣∣∣∣cj f ′(wj)

f(wj)

∣∣∣∣ ∫ ∞

0

e−f(wj)sds (87)

=

∣∣∣∣cj f ′(wj)

f(wj)2

∣∣∣∣ (1− lim
s→∞

e−f(wj)s) =

∣∣∣∣cj f ′(wj)

f(wj)2

∣∣∣∣ . (88)

The first equality is evaluating the derivative. The second equality is extracting |f ′(w)| from integral.
The third equality is doing the integration by parts.

In particular, notice that cj is a constant independent of the recurrent weight parameterization f :

Ĥm,t(x) =

∫ t

−∞

m∑
i=1

cie
−f(wi)(t−s)xsds. (89)

Therefore cj is a parameterization indepndent value, we will denote it by CH,Ĥm
.
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Moreover, in the discrete setting, assume hk+1 = f(w) ◦ hk + Uxk,∣∣∣∣∂Loss
∂wj

∣∣∣∣ ≤ ∞∑
k=0

∣∣∣∣∂|cjf(wj)
k|

∂wj

∣∣∣∣ ds (90)

= |cjf ′(wj)|
∞∑
k=1

kf(wj)
k−1 (91)

= |cjf ′(wj)|

( ∞∑
k=1

f(wj)
k−1

)2

(92)

=

∣∣∣∣cj f ′(wj)

(1− f(wj))2

∣∣∣∣ . (93)

So the gradient norm is bounded by ∣∣∣∣∂Loss
∂wj

∣∣∣∣ = |cjf ′(wj)|
(1− f(wj))2

. (94)

Nonlinear functionals Now we show the generalization into the nonlinear functional: Consider
the Volterra Series representation of the nonlinear functional.

Theorem B.4 ((Boyd et al., 1984)). For any continuous time-invariant system with x(t) as input
and y(t) as output can be expanded in the Volterra series as follow

y(t) = h0 +

N∑
n=1

∫ t

0

· · ·
∫ t

0

hn(τ1, . . . , τn)

n∏
j=1

x(t− τj)dτj . (95)

Here N is the series’ order. Linear functional is an order-1 Volterra series.

For simplicity, we will only discuss the case for N = 2. When we take the Hyena approach (Poli
et al., 2023) and approximate the order-2 kernel h2(τ1, τ2) with its rank-1 approximation:

h2(τ1, τ2) = h2,1(τ1)h2,2(τ2). (96)

Here h2,1 and h2,2 are again order-1 kernel which can be approximated with linear RNN’s kernel. In
other words, the same gradient bound also holds for general nonlinear functional with the following
form:

Gf (w) :=

∣∣∣∣∂E∂w
∣∣∣∣ = CH,Ĥm

|f ′(w)|
f(w)2

. (97)

And the discrete version is

GD
f (w) :=

∣∣∣∣∂E∂w
∣∣∣∣ = CH,Ĥm

|f ′(w)|
(1− f(w))2

. (98)

B.6 LEMMAS

Lemma B.5. If the activation σ(·) is bounded, strictly increasing, continuously differentiable func-
tion over R. Then for all C > 0, there exists ϵC such that ∀|z| ≤ Cϵ, |σ′(z)| ≥ ϵC .

Proof. Since σ(·) is monotonically increasing, therefore σ′(·) > 0,∀z ≥ 0. Notice that σ′(·) is
continuous, for any C > 0, we know 1

2 min|z|≤C σ′(z) > 0. Define ϵC := 1
2 min|z|≤C σ′(z) > 0, it

can be seen the target statement is satisfied.

Lemma B.6. Assume the target functional sequence has a β0-stable approximation and the per-
turbed model has a decaying memory, we show that ṽm,t → 0 for all m.
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Proof. For any m, fix Λ̃m and Ũm. Since the perturbed model has a decaying memory,

lim
t→∞

∣∣∣∣ ddtH̃m(ux)

∣∣∣∣ = lim
t→∞

∣∣∣∣∣c⊤(σ′(h̃m,t) ◦
dh̃m,t

dt
)

∣∣∣∣∣ = lim
t→∞

∣∣∣c⊤(σ′(h̃m,t) ◦ ṽm,t)
∣∣∣ = 0. (99)

By linear algebra, there exist m vectors {∆ci}mi=1, |∆ci|∞ < β such that cm+∆c1, . . . , cm+∆cm
form a basis of Rm. We can then decompose any vector u into

u = k1(cm +∆c1) + · · ·+ km(cm +∆cm). (100)

Take the inner product of u and ṽm,t, we have

lim
t→∞

u⊤(σ′(h̃m,t) ◦ ṽm,t) =

m∑
i=1

ki lim
t→∞

(cm +∆ci)
⊤(σ′(h̃m,t) ◦ ṽm,t) = 0 (101)

As the above result holds for any vector u, we get

lim
t→∞

∣∣∣σ′(h̃m,t) ◦ ṽm,t

∣∣∣
∞

= 0. (102)

As required in Equation (4), the hidden states are uniformly (in m) bounded over bounded input
sequence. There exists constant C0 > 0 such that

sup
m,t

|hm,t|∞ < C0. (103)

Since σ is continuously differentiable and strictly increasing, by Lemma B.5, there exists ϵC0
> 0

such that
|σ′(z)| > ϵC0

, ∀|z| ≤ C0. (104)
Therefore

sup
t

∣∣∣σ′(h̃m,t)
∣∣∣
∞

> ϵC0
. (105)

We get
lim
t→∞

|ṽm,t|∞ = 0. (106)

Lemma B.7. Consider a dynamical system with the following dynamics: h0 = 0

dvt
dt

= Λvt,

v0 = Λh0 + Ũx0 + b̃ = Ũx0 + b̃.

(107)

If Λ ∈ Rm×m is diagonal, hyperbolic and the system in Equation (107) is satisfies limt→∞ vt = 0
over any bounded Heaviside input ux0 , |x0|∞ < ∞, then the matrix Λ is Hurwitz.

Proof. By integration we have the following explicit form:

vt = eΛtv0 = eΛt(Ũx0 + b̃). (108)

The stability requires lim
t→∞

|vt| = 0 for all inputs v0 = Ũx0 + b̃. Notice that with perturbation from

Ũ and b̃, the set of initial points {v0} is m-dimensional. Therefore the matrix Λ is Hurwitz in the
sense that all eigenvalues’ real parts are negative.

Lemma B.8. Consider a continuous function f : [0,∞) → R, assume it can be approximated by a
sequence of continuous functions {fm}∞m=1 universally:

lim
m→∞

sup
t≥0

|f(t)− fm(t)| = 0. (109)

Assume the approximators fm are uniformly exponentially decaying with the same β0 > 0:

lim
t→∞

sup
m∈N+

eβ0t|fm(t)| → 0. (110)

Then the function f is also decaying exponentially:

lim
t→∞

eβt|f(t)| → 0, ∀0 < β < β0. (111)

20



Under review as a conference paper at ICLR 2024

The proof is the same as Lemma A.11 from (Wang et al., 2023). For completeness purpose, we
attach the proof here:

Proof. Given a function f ∈ C([0,∞)), we consider the transformation T f : [0, 1] → R defined
as:

(T f)(s) =

{
0, s = 0
f(− log s

β0
)

s , s ∈ (0, 1].
(112)

Under the change of variables s = e−β0t, we have:

f(t) = e−β0t(T f)(e−β0t), t ≥ 0. (113)

According to uniformly exponentially decaying assumptions on fm:

lim
s→0+

(T fm)(s) = lim
t→∞

fm(t)

e−β0t
= lim

t→∞
eβ0tfm(t) = 0, (114)

which implies T fm ∈ C([0, 1]).

For any β < β0, let δ = β0 − β > 0. Next we have the following estimate

sup
s∈[0,1]

|(T fm1)(s)− (T fm2)(s)| (115)

=sup
t≥0

∣∣∣∣fm1
(t)

e−βt
− fm2

(t)

e−βt

∣∣∣∣ (116)

≤max

{
sup

0≤t≤T0

∣∣∣∣fm1
(t)

e−βt
− fm2

(t)

e−βt

∣∣∣∣ , C0e
−δT0

}
(117)

≤max

{
eβT0 sup

0≤t≤T0

|fm1(t)− fm2(t)| , C0e
−δT0

}
(118)

where C0 is a constant uniform in m.

For any ϵ > 0, take T0 = −
ln( ϵ

C0
)

δ , we have C0e
−δT0 ≤ ϵ. For sufficiently large M which depends

on ϵ and T0, by universal approximation (Equation (109)), we have ∀m1,m2 ≥ M ,

sup
0≤t≤T0

|fm1
(t)− fm2

(t)| ≤ e−βT0ϵ, (119)

eβT0 sup
0≤t≤T0

|fm1(t)− fm2(t)| ≤ ϵ. (120)

Therefore, {fm} is a Cauchy sequence in C([0,∞)).

Since {fm} is a Cauchy sequence in C([0,∞)) equipped with the sup-norm, using the above esti-
mate we can have{T fm} is a Cauchy sequence in C([0, 1]) equipped with the sup-norm. By the
completeness of C([0, 1]), there exists f∗ ∈ C([0, 1]) with f∗(0) = 0 such that

lim
m→∞

sup
s∈[0,1]

|(T fm)(s)− f∗(s)| = 0. (121)

Given any s > 0, we have

f∗(s) = lim
m→∞

(T fm)(s) = (T f)(s), (122)

hence
lim
t→∞

eβtf(t) = lim
s→0+

(T f)(s) = f∗(0) = 0. (123)

C NUMERICAL DETAILS

In this section, the details of numerical experiments are provided for the completeness and repro-
ducibility.
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C.1 SYNTHETIC TASK

We conduct the approximation of linear functional with linear RNNs in the one-dimensional input
and one-dimensional output case. The synthetic linear functional is constructed with the polynomial
decaying memory function is ρ(t) = 1

(t+1)1.1 . Sequence length is 100. Total number of synthetic
samples is 153600. The learning rate used is 0.01 and the batch size is 512.

The perturbation list β ∈ [0, 10−3, 10−3 ∗ 21/2, 10−3 ∗ 22/2, . . . , 10−3 ∗ 220/2]. Each evaluation of
the perturbed error is sampled with 30 different weight perturbations to reduce the variance.

C.2 LANGUAGE MODELS

The language modeling is done over WikiText-103 dataset (Merity et al., 2016). The model we used
is based on the Hyena architecture with simple real-weights state-space models as the mixer (Poli
et al., 2023; Smith et al., 2023). The batch size is 16, total steps 115200 (around 16 epochs), warmup
steps 1000. The optimizer used is AdamW and the weight decay coefficient is 0.25. The learning
rate for the recurrent layer is 0.004 while the learning rate for other layers are 0.005.

D ADDITIONAL NUMERICAL RESULTS

D.1 ADDITIONAL NUMERICAL RESULTS FOR LANGUAGE MODELS

In the main paper, we provide the training loss curve for learning rate = 0.005 as the stability of
“best” discrete-time parameterization f(w) = 1 − 1

w2+0.5 is mostly significant as the learning rate
is large. In Figure 6, we further provide the results for other learning rates (lr = 0.001, 0.002, 0.010).
Despite the final loss not being optimal for the “best” reparameterization, it is observed that the
training process exhibits enhanced stability compared to other parameterization methods.

Reparameterizations Train ppl Train loss Test ppl Test loss
“Best” 17.182 2.844 20.811 3.035

Exp(S5) 15.721 2.755 20.218 3.007
Softplus 14.570 2.679 20.136 3.003
Direct 18.916 2.940 28.167 3.338

Table 2: Train/test perplexity and loss for the language modelling over wikitext103, lr=0.005. The
models with stable reparameterizations are all better than the models without reparameterizations.
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(a) lr=0.001, “best” reparameterization is not optimal in loss but
no large fluctuation. Exponential parameterisation is also stable at
lr=0.001

0 20000 40000 60000 80000 100000 120000
Steps

3 × 100

4 × 100

5 × 100

Tr
ai

ni
ng

 lo
ss

ReLU
Softplus
Exp
Best
Tanh

(b) lr=0.002, “best” reparameterization is also not optimal, but the
final loss is comparable against Exp and Softplus
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(c) lr=0.01, “best” reparameterization achieve the smallest loss

Figure 6: The stability advantage of “best” reparameterization (red line) is usually better when the
learning rate is larger.
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D.2 ON THE STABILITY OF “BEST” REPARAMETERIZATION

The previous experiment on Wikitext language modelling shows the performance of stable repa-
rameterization over the unstable cases. We further verify the optimization stability of “best” repa-
rameterization in the following extreme setting. We construct a large scale language model with 3B
parameters and train with larger learning rate (lr=0.01). As can be seen in the following table, the
only convergent model is the model with “best” reparameterization. We emphasize that the only
difference between these models are the parameterization schemes for recurrent weights. Therefore
the best reparameterization is the most stable parameterization. (We repeats the experiments with
different seeds for three times.)

“Best” Exp Softplus Direct
Convergent / total experiments 3/3 0/3 0/3 0/3

Table 3: Experiment to the stability of “best” reparameterization over lr = 0.01. All other reparam-
eterizations diverged within 100 steps while the “best” reparameterizations can be used to train the
model.

D.3 ADDITIONAL NUMERICAL RESULTS FOR ASSOCIATIVE RECALLS

In this section, we study the performance of of different stable reparameterizations over the ex-
tremely long sequences (up to 131k). It can be seen in Table 4 that stable parameterizations are bet-
ter than the case without reparameterization and simple clipping. The advantage is more significant
when the sequence length is longer. The models are trained under the exactly same hyperparameters.

Reparameterizations Train acc Test acc Train acc Test acc
“Best” 57.95 99.8 53.57 100

Exp(S5) 54.55 99.8 53.57 100
Clip 50.0 76.6 13.91 9.4

Direct 43.18 67.0 16.59 5.6

Table 4: Comparison of parameterizations on associative recalls. The first two columns are the train
and test accuracy over sequence length 20, vocabulary size 10, while the second two columns are
the train and test accuracy over sequence length 131k and vocabulary size 30.

D.4 ADDITIONAL NUMERICAL RESULTS FOR IMAGE CLASSIFICATIONS

In this section, we study the effects of stable reparameterization over the image classfication tasks.
For the fairness of comparison, we set the hyperparameters and initialization schemes to be exactly
the same. All models are trained for 10 epochs. While the direct parameterization of the recurrent
weights will cause the divergence, the stable reparameterization enables the learning of sequential
MNIST in Table 5 and sequential CIFAR10 in Table 6.

E GRAPHICAL DEMONSTRATION OF STATE-SPACE MODELS AS STACK OF
EQUATION (2)

Here we show that the Equation (2) correspond to the practical instantiation of SSM-based models
in the following sense: As shown in Figure 7, any practical instantiation of SSM-based models
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Train acc Train loss Test acc Test loss
“Best” 99.31(0.0264) 0.02269(0.00121) 99.3(0.153) 0.02501(0.00519)

Exp 99.26(0.241) 0.02305(0.000694) 99.21 (0.0321) 0.02546(0.00118)
Softplus 99.14(0.036) 0.02337(0.00132) 99.19 (0.0458) 0.02682(0.000769)
Direct 9.84(0.0753) Diverged 10.09 (0.742) Diverged

Table 5: Comparison of parameterizations on image classification over MNIST. The best reparam-
eterization scheme f(w) = 1 − 1

w2+0.5 comes with the best performance over the average of three
repeats. The standard deviation is included in the parenthesis.

Reparameterizations Train acc Train loss Test acc Test loss
“Best” 61.97(0.500) 1.059(0.0155) 66.41(0.156) 0.9430(0.00248)

Exp 61.77 (0.690) 1.062(0.0141) 65.87(0.136) 0.9487(0.00983)
Softplus 61.53 (0.716) 1.0683(0.0142) 65.84(0.05) 0.9575(0.00189)
Direct 9.988 (0.032) Diverged 9.736(8.533E-05) Diverged

Table 6: Comparison of parameterizations on image classification over CIFAR10. The best repa-
rameterization scheme f(w) = 1 − 1

w2+0.5 comes with the best performance over the average of
three repeats. The standard deviation is included in the parenthesis.

can be implemented as a stack of Equation (2). The pointwise shallow MLP can be realized with
state-space model layer with layer-wise nonlinearity by setting recurrent weights W to be 0.

...

...

...

Figure 7: MLP can be realized by two-layer state-space models. The superscript indicates the layers
while the subscript indicates the time index. It can be seen the MLP is equivalent to having zero
recurrent weights W1 = W2 = 0.

F MOTIVATION FOR THE GRADIENT-TO-WEIGHT LIPSCHITZ CRITERION

Here we discuss the motivation for adopting the gradient-over-weight boundedness as a criterion.
First of all, the “best” reparameterization is proposed to further improve the optimization stability
across different memory patterns. The criterion “gradient is Lipschitz to the weight” is a necessary
condition for the stability in the following sense:

1. Consider functions f(x) = x4, the gradient function g(x) = 4x3 does not have a global
Lipschitz coefficient for all input values x. Therefore for any fixed positive learning rate η,
there exists an initial point x0 (for example x0 = 1

2η +1) such that the convergence cannot
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be achieved via the gradient descent step

xk+1 = xk − ηg(x). (124)

2. Consider functions f(x) = x2, the gradient function g(x) = 2x is associated with a Lip-
schitz constant L = 2. Then the same gradient descent step converges for any η ≤ 1

2 in
Equation (124).

3. As can be seen in the above two examples, the criterion “gradient is Lipschitz to the
weight” is associated with the convergence under large learning rate. As the use of
larger learning rate is usually associated with faster convergence (Smith & Topin, 2019),
smaller generalization errors (Li et al., 2019), we believe the Lipschitz criterion is a suitable
stability criterion for the measure of optimization stability.

4. The gradient-to-weight ratio evaluated in Figure 4(a) is a numerical verification of our
Theorem 3.4. The gradients of stable reparameterizations are less susceptible to the well-
known issue of exploding or vanishing gradients (Bengio et al., 1994; Hochreiter, 1998).

G SOLUTION OF “BEST” PARAMETERIZATION BASED ON ODE

Here we give a brief proof to show the “best” parameterization is the optimal “hypernetwork” in the
sense of gradient-over-weight Lipschitz continuity. Further study of the optimization of hypernet-
works for other criterions are left for future works.

Proof. Assume for some constant L, Gf (w) ≡ L|w| for all w,

Gf (w) = CH,Ĥm

f ′(w)

f(w)2
= Lw, (125)

d(ln(f(w)))

dw
= aw, a =

L

CH,Ĥm

(126)

ln(f(w)) = aw2 + b. (127)

The second and third equation are achieved by integrating the function f ′(w)
f(w)2 . Here a, b ∈ R.

Therefore the “best” reparameterization under the assumption of the Lipschitz property of gradient
is characterized by the function with two degrees of freedom: By stability requirement f(w) ≤ 0

f(w) =
1

aw2 + b
, a ̸= 0.
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