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ABSTRACT

Large language models (LLMs) have mastered a wide range of reasoning tasks,
with an underlying assumption that the tasks are well-specified for LLMs to reach
solutions. In reality, queries and instructions to LLMs often contain incomplete
or underspecified information. Therefore, LLMs need to be able to actively ac-
quire missing information, e.g., by asking clarifying questions, ideally seeking the
minimally sufficient piece of information. To assess whether LLMs possess this
ability, we construct QUESTBENCH, a set of underspecified reasoning tasks that
can be solved by asking at most a single question. We frame the tasks as constraint
satisfaction problems with missing variable assignments, where the exact model
response cannot be determined unless certain variables’ values are acquired. This
framework specifically targets tasks where uncertainty stems from missing infor-
mation, rather than semantic ambiguity in language. QUESTBENCH includes (1)
Logic-Q: Logical reasoning tasks where one proposition is missing, (2) Planning-
Q: PDDL planning problems where the initial state is partially observed, and (3)
GSM-Q: Grade school math problems where one variable assignment is missing.
Each task presents multiple choices of possible questions, only one of which is
correct. We evaluate Gemini and GPT-4o models and find that they achieve 20 –
30% accuracy in both zero-shot and few-shot settings. When evaluating GPT-4-o1
on a subset of our data, we find that it is only 41 – 44% accurate, despite using
state-of-the-art inference-time reasoning techniques. When investigating charac-
teristics of QuestBench, we find that LLMs struggle with tasks that are computa-
tionally expensive for traditional search-based CSP solvers. Our analyses reveal a
negative correlation between LLM accuracy and solver runtime complexity, sug-
gesting that LLMs may share similar limitations to CSP solvers.

1 INTRODUCTION

Large language models (LLMs) have become popular tools for solving reasoning tasks such as
math (Cobbe et al., 2021; Hendrycks et al., 2021; Li et al., 2024a), logic (Zhang et al., 2023; Chen
et al., 2024b; Creswell et al., 2022) and planning/coding (Curtis et al., 2024a; Silver et al., 2024;
Wang et al., 2024a; Austin et al., 2021; Chen et al., 2021). An underlying assumption for these tasks
is that they are well-specified, i.e., all premises are given such that there exist answers.

Aleena subscribed to a streaming service that charges her $140 per month.
If the streaming company charged her the initial amount for the first three
months and then charged her 10% less money on the remaining half of the
year, calculate the total amount she had paid for the streaming service by
the end of the year.

What information must be gathered?
(A) The amount the streaming company charged from June to December.
(B) The amount the streaming company charged in July.
(C) The amount the streaming company charged from July to December.
(D) The amount the streaming company charged in June.

Figure 1: An example of tasks in QUESTBENCH.

Yet this assumption does not always
hold in practice: users can miss con-
ditions when asking math questions;
robots usually do not observe the en-
tire initial state. In these circumstances,
proactively obtaining relevant informa-
tion, e.g., by asking questions, is an im-
portant skill that LLMs need to master.

Do LLMs have the ability to identify
what information they should gather?
Existing benchmarks mostly focus on
resolving ambiguity in language (Kuhn et al., 2023a) and disambiguating intents in task oriented-
dialogues (Rastogi et al., 2020; Budzianowski et al., 2018). Some recent work has looked at asking
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You will be given a planning problem in the 
domain defined by the following PDDL: 
(:action stack 
     :parameters (?x - block ?y - block) 
     :precondition (and (holding ?x) 
         (clear ?y)) 
     :effect (and (not (holding ?x)) 
            (not (clear ?y)) (clear ?x) 
            (handempty) (on ?x ?y))) 
(:action pick-up ...) 
... 
The current objects are present in the 
problem: 
a,b,c,d 

Known facts in the current state: 
(ontable a) 
(ontable b) 
not (holding b) 
(handempty) 

Goal: (on b a) 
  
Here are the possible questions: 
1. Is (ontable c) true? 
2. Is (on d b) true? 
...

Every day, Wendi feeds each of her chickens 
three cups of mixed chicken feed, containing 
seeds, mealworms and vegetables to help keep 
them healthy. She gives the chickens their feed 
in three separate meals. In the afternoon, she 
gives her chickens another 25 cups of feed. 
How many cups of feed does she need to give 
her chickens in the final meal of the day if the 
size of Wendi's flock is 20 chickens?

Induces a 
distribution over

Suppose you know the following rules about Alice: 

1. If Alice is smart, then Alice is jittery. 
2. If Alice is strange and jittery, then Alice is worried. 
3. If Alice is jittery and smart and worried, then Alice is pleasant. 
4. If Alice is pleasant, then Alice is worried. 
5. If Alice is stubborn and worried, then Alice is strange. 

Alice is smart. 
Alice is stubborn. 
You may not ask if Alice is worried. 
Is Alice pleasant?

A

LM

y

C

LM

LM

Is (on d b) true?

Planning-Q

Logic-Q

C

A

y

GSM-Q

CSPs

Word Problem

C
A
y

T - M1 - M2

M3

D * F 25

3 20

❓

What is M1 (cups of 
feed in first meal)?

Only 2 Possible Alices

smart 
stubborn 
jittery (C1) 
pleasant 
worried (C4) 
strange (C5)

(1)

To know if we're in (1) or (2), we 
need to know if Alice is strange.

a b c d
Objects

Is Alice strange?

Plan from states 
(1)-(3) is: (on d b) was False 

in these cases.

Plan from 
state (4) is:

(on d b) was True in these cases.

Therefore, to know the plan, we need to know if (on d b) is true.

smart 
stubborn 
jittery (C1) 
¬pleasant 
¬worried (C3) 
¬strange (C2)

(2)

...

Possible Initial States

db

(2)

a
c

(3)

dba c

(1)
d

ba c

d
ba c

(4)
Goal

b
a

T=3*F
M3=T-M1-M2
F=20
M2=25
What is M3?

Figure 2: A sample of underspecified problems from three domains in QUESTBENCH. We construct
three types of underspecified reasoning tasks, where each task can be represented as a constraint
satisfaction problem (CSP) and exactly one missing piece of information is required to solve the
task. At the top left, we show an example from GSM-Q, at the top-right, an example from Logic-Q,
and at the bottom, an example from Planning-Q. C represents constraints of the CSP, A represents
assignments to a subset of the variables, and y is the target variable.
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questions for disambiguating tasks (Handa et al., 2024; Li et al., 2023), factual questions (Min et al.,
2020) and preferences (Chen et al., 2024a). In these cases, the exact information necessary to ac-
quire may depend on individuals and populations (Aroyo & Welty, 2015; Davani et al., 2022; Basile
et al., 2021; Sandri et al., 2023; Wan et al., 2023). E.g., a person asks for dinner recommendation,
and the LLM asks “how about tuna nigiri?”, which might be helpful for someone in Japan, but not
for someone who is vegan. That means, there is often no ground truth for the question that must
be asked. These factors make it challenging to use such existing benchmarks to reliably assess the
ability of LLMs to identify what information is required, especially for complex reasoning problems.

To address this gap, we construct QUESTBENCH: a collection of question asking benchmarks based
on underspecified constraint satisfaction problems. QUESTBENCH is a multi-choice dataset illus-
trated in Figure 1, and it aims to reliably evaluate how well LLMs can reason about missing infor-
mation and proactively ask the right clarification questions. The benchmarks include

• Logic-Q: logical reasoning tasks where a missing proposition’s truth value is needed to determine
whether a claim is true or false,
• Planning-Q: PDDL planning problems with partially observed initial states, where additional ob-
servations are needed to disambiguate a path to a goal state, and
• GSM-Q: grade school math problems that are missing a condition for deriving the solution.

Each problem in QUESTBENCH possesses an objective single piece of missing information1, making
it ideal for quantitative evaluation. QUESTBENCH problems exhibit varying levels of difficulty,
determined by the search depth and width of their corresponding constraint satisfaction problems
(CSPs). Examples can be found in Figure 2. This ensures a thorough understanding of the aspects
in which the models excel and those that require improvement.

We evaluate the performance of Gemini Pro 1.5 (Gemini Team Google, 2024), GPT-4o (OpenAI,
2023) and GPT-4-o1 on QUESTBENCH. These models are the current state-of-the-art models judged
by Chatbot Arena (Chiang et al., 2024). These models achieve between 15–44% and 9–41% for
Logic-Q and Planning-Q respectively, showing that there is significant room for improvement.

Our contributions include (1) a constraint satisfaction framework enabling focused evaluation of un-
derspecification in LLMs, (2) a benchmark QUESTBENCH for evaluating the information gathering
abilities of LLMs, (3) empirical evaluation and analyses of LLM performance on QUESTBENCH.
The dataset can be found at anonymous.

2 BACKGROUND AND RELATED WORKS

Ambiguity in User Requests Natural language queries posed by human users can be ambiguous
for many different reasons. Prior work has examined ambiguity in the context of semantic uncer-
tainty (Kuhn et al., 2023b), factual question-answering (Min et al., 2020), intents in task-oriented
dialogues (Rastogi et al., 2020; Budzianowski et al., 2018; Zhang et al., 2024b), personalized human
preferences and tasks (Li et al., 2023; Handa et al., 2024; Chen et al., 2024a). Zhang et al. (2024a)
introduces a taxonomy of ambiguity including categories like unfamiliarity (lack of knowledge),
semantics and possible question types such as who, when, what.

In this paper, we focus on underspecification, where the user has not provided enough information
for the LM to fulfill the request. This may be because the user is unaware of what information is
necessary to complete a task, or is unaware of what information the LM does not know.

Importance of Information Gathering For humans, Chouinard et al. (2007) finds that actively
gathering information (e.g., by asking questions) is an indispensable skill for solving problems under
uncertainty, and may even play a crucial role in cognitive development of children.

For autonomous systems, information gathering abilities are especially crucial since the system can
often be uncertain. In the literature of AI/ML, researchers have extensively explored strategies to
sequentially acquire data for tasks like concept learning (Sammut & Banerji, 1986; Angluin, 1988),
active learning (Cohn et al., 1996; Settles, 2009; Houlsby et al., 2011; Gal et al., 2017; Ren et al.,
2021), Bayesian optimization (Kushner, 1964; Moc̆kus, 1974; Auer, 2002; Srinivas et al., 2010;

1Though in practice more information may be missing, evaluations with one piece of missing information
serve as an upper bound on performance for queries with multiple pieces of missing information.
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Hennig & Schuler, 2012; Wang & Jegelka, 2017; Garnett, 2023; Wang et al., 2024b), reinforcement
learning (Kaelbling et al., 1996; Ghavamzadeh et al., 2015; Sutton, 2018), and robot planning with
partially observable states (Kaelbling et al., 1998; Kaelbling & Lozano-Pérez, 2013; Phiquepal &
Toussaint, 2019; Curtis et al., 2024b). Wu (2023) argues AI assistants should also ask questions in
the presence of uncertainty, specifically in the context of generating code.

Information gathering is also an important skill for LLMs as they often operate under uncertainty.
Our work proposes basic reasoning tasks to evaluate how well LLMs master such skills.
Question-asking Problems and Techniques for LMs Prior works have introduced question-
asking methods for subjective or knowledge-based tasks with ambiguous user requests, such as
“What is a good pasta recipe” (Andukuri et al., 2024) or “Who won the US open?” (Zhang & Choi,
2023; Pang et al., 2024). Li et al. (2023); Kuhn et al. (2023a) directly prompt a language model
to ask questions. Piriyakulkij et al. (2024) augments this process by sampling questions with the
highest information gain, while Andukuri et al. (2024) encourages LMs to produce useful questions
through self-training. Grand et al. (2024) parses questions into symbolic programs before computing
information gain on top of programs. Handa et al. (2024) computes information gain with respect to
preferences represented as Bayesian linear models. Hu et al. (2024) introduces a method based on
simulating entire conversation trajectories, computing information gain at each turn, and propagat-
ing rewards through a conversation. Zhang & Choi (2023) decomposes question-asking into three
stages: (1) determining when clarification is needed, (2) determining what clarifying question to
ask, and (3) responding accurately with the new information gathered through clarification. Zhang
et al. (2024b) trains agents to ask for clarification in travel planning settings.

To our best knowledge, these methods either do not apply to our tasks or require significant modifica-
tions (such as simulating users) to be applied to the underspecified reasoning tasks in our benchmark.
We are not aware of existing methods that solve underspecified CSPs defined in our work.

3 PROBLEM FORMULATION

Consider the following user request:
Example 3.1. Please solve the math problem: Janet had a few eggs (variable x0) and ate one
(variable x1). How many eggs does she have now (target variable y)?

While it is clear that the arithmetic word problem can be parsed to y = x0 − x1, x1 = 1, the LM
cannot compute target variable y without knowing the value of variable x0. Other examples can
be found in Figure 2. In these cases, the desired behavior is for the LM to ask the minimal set of
questions that enables it to respond to the user query.

3.1 SEMANTIC AMBIGUITY VS. UNDERSPECIFICATION

In this paper, we focus on problems that are semantically equivalent to constraint satisfaction prob-
lems,2 which allow us to formalize underspecification in a well-defined and rigorous manner.

Solving a problem thus comprises of two stages:
1. A natural language query is parsed into a set of variables and constraints, and a target

variable corresponding to the desired response. For example, in Example 3.1, there are
variables x0 (initial eggs), x1 (eaten eggs), target variable y (current eggs), and a constraint
y = x0 − x1.

2. The model solves for the target variable in the CSP.

The model might not know the answer for the target variable due to two possible reasons.
1. Semantic ambiguity: There are multiple semantic interpretations of the problem at the

parsing stage, inducing a distribution over possible CSPs.
2. Underspecification: For a given CSP, some variable assignments or constraints may be

missing that makes it impossible to solve for the target variable.

Semantic ambiguity has been treated extensively in prior work (Kuhn et al., 2023b), and may vary
based on different human’s interpretations due to reasons including mental states or demographics.

2Note: open-ended queries can be viewed as a combination of soft constraints.
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This work only considers underspecification, which can be evaluated by formulating problems as
CSPs with missing information.

3.2 FORMALIZING UNDERSPECIFICATION

We formalize underspecification and the information gathering objective below. This formalism is
critical for constructing tasks to evaluate the question asking skills of models. First, we define a CSP
as a tuple ⟨X,D,C,A, y⟩ with:

• X = {xi}Ni=1 is a set of N variables.
• D = {Di}Ni=1 is a set of domains for each variable in X .
• C = {cj}Mj=1 is a set of M constraints. Each constraint is associated with a list of variables

in X and specifies the values that can be assigned to those variables.
• A = ∧i∈IA(xi = ai) is a proposition stating that for each i ∈ IA ⊆ [N ], variable xi is

assigned a value ai ∈ Di.
• y is a target that the user requests to be solved.

In Example 3.1, the variables are {x0, x1, y} and y is also the target. The constraint c0 is y = x0−x1.

We use the shorthand cj(xj) to denote cj([xi]i∈Ij ). Variable y must satisfy
∧

j∈[M ] cj(xj) ∧A.

The Known predicate. For convenience, we introduce the Known predicate. Known(x) means
that the value of variable x is known. For example, if variables are assigned values, their values are
known. That means, A =⇒ ∧i∈IAKnown(xi). If the value of a variable can be derived from the
CSP, its value is also known. In Example 3.1, once values to both variable x0 and x1 are assigned,
the value of y is uniquely determined since y = x0 − x1. We consider the value of y known in this
circumstance, i.e., Known(y) = True.

Conversely, ¬Known(x) means that the value of variable x is unknown, i.e., its value is not assigned
and cannot be derived from the CSP. For example, for the user query “a = 1, y = a+ b. What is the
value of y?”, we have ¬Known(y) = True since ¬Known(b) = True.

We can then formally define underspecified CSPs as follows.
Definition 3.1. A CSP is underspecified if and only if

∧
j∈[M ]

cj(xj) ∧A =⇒ ¬Known(y).

We use Known(X ) over a set of variables X to denote that the values of all variables in X are known,
i.e., Known(X ) =

∧
x∈X Known(x).

Knowing the values for a set of variables can potentially be sufficient to determine the value of y,
and we define such sets as follows.
Definition 3.2. A set of variables X ⊆ X is a sufficient set if and only if∧

j∈[M ]

cj(xj) ∧A ∧ Known(X ) =⇒ Known(y).

The objective of efficient question asking for an underspecified CSP is to find a smallest sufficient
set3, i.e., X̂ = argminX⊆X |X | s.t. X is sufficient. That means, in order to solve for the target y,
the model only needs to ask questions about the variables in a smallest sufficient set.

For example, in the context of a = 1, y = a + b, we have Known(b) =⇒ Known(y), so the
information to seek is the value of b. In a logic problem, every variable can take on True or False
values. If we have a ∨ b =⇒ y, y =⇒ b and ¬a, we cannot determine the value of y. But
if we know the value of b, not matter if b is True or False, we know the value of y. That means,
Known(b) =⇒ Known(y).

Finally, we define the special case where the size of the smallest sufficient sets is 1.
Definition 3.3. An underspecified CSP is a 1-sufficient CSP if the size of its smallest sufficient sets
is 1. We call those smallest sufficient sets 1-sufficient sets.

The problems in all datasets we construct in §4 are 1-sufficient CSPs.
3There could be many smallest sufficient sets for an underspecified CSP.
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4 DATASET CONSTRUCTION

To examine LLMs capabilities at the easiest setting, we construct datasets where each task is a 1-
sufficient CSP as defined in Definition 3.3 (samples are shown in Figure 2). Note the 1-sufficient
set need not be unique (there may be multiple size-1 smallest sufficient sets). During evaluation, we
consider a LLM’s behavior to be correct if they produce a variable in any 1-sufficient set.

# Total Tasks

Logic-Q 1152
Planning-Q 7500

GSM-Q 570

Table 1: Dataset sizes.

We construct 1-sufficient CSP problems in three domains: SimpleL-
ogic, Planning, and grade-school math (GSM), which lie at various
points along the real-synthetic axis. SimpleLogic is a simple, fully
synthetic setting to arbitrarily generate any logic problems. Planning
is a more realistic domain where external physical commonsense
knowledge may need to be leveraged. Finally, GSM is a realistic
setting of concrete math problem. See Table 1 for dataset statistics.

4.1 LOGIC-Q

SimpleLogic (Zhang et al., 2023) is a propositional logic benchmark, which consists of

1. a set of rules about an imaginary person named Alice, for example: If Alice is strange and jittery,
then Alice is worried.
2. a set of properties that hold true about Alice, for example: Alice is strange. Alice is not jittery.
3. a question about an unknown property of Alice, for example: Is Alice worried?
Problem Definition. We can define a CSP in this domain as follows:

• X is a set of all the potential properties of Alice that appears in all rules (e.g. strange,
jittery, worried).

• D = {{TRUE, FALSE} ∀x ∈ X}. Each property in X can be either be true or false.
• A is the set of properties that we know to be true about Alice (e.g. strange, ¬jittery).
• C is the set of rules about Alice. C takes the form of a conjunction of implicative con-

straints (e.g. in the above example, strange ∧ jittery =⇒ worried).

C =
∧

i∈[M ]

ci =
∧

i∈[M ]

 ∧
j∈[Mi]

xi,j

 =⇒ xi,Mi+1


• y is the property that we are being asked about, e.g. worried in the above example.

Because the original CSPs in the dataset were fully specified, we discard the A’s that are already
present in the dataset. We then construct new Ã’s such that a single additional property of Alice
is sufficient to fully determine whether the goal property is true or false, such that ⟨X,D, Ã, C, y⟩
form a 1-sufficient CSP. We detail the dataset construction procedure in Appendix A.1.

4.2 PLANNING-Q

We adapt the blocks world problem from PyperPlan (Alkhazraji et al., 2020), a pick-and-place task
involving n blocks which can be set on the table or stacked on top of each other.

We use the following predicates:
(ontable ?a), (clear ?a), (handempty), (holding ?a), (on ?a ?b).

Each predicate can be applied to any blocks to construct an atom, e.g., (ontable a). A state is a
conjunction of atoms or their negations4, e.g., for two blocks a and b, a state can be

(ontable a), (holding b), ¬(on a b).
At each state, there are a set of actions that can potentially be applied to it to transition to another
state. Each action has a precondition specifying atoms the state must satisfy before applying the
action, and an effect specifying atoms the next state must satisfy after applying the action. An
example of an action:
stack(?a, ?b)

:precondition (and (holding ?a) (clear ?b))

4Note that not all states are valid under this definition.

6
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:effect (and (not (holding ?a)) (not (clear ?b))
(clear ?a) (handempty) (on ?a ?b))

Given an initial state and a goal state, the model is expected to plan the shortest action sequence to
the goal state, e.g., [pick-up(b), stack(b,a)].
Problem Definition The problem can be expressed as a CSP ⟨X,D,C,A, y⟩ as follows:5

• X is the set of all atoms (predicates applied to objects) in the initial state.
• D = {{TRUE, FALSE} ∀x ∈ X}. Each atom must be either true or false.
• A is the set of atoms with known values in the initial state.
• C is the set of constraints. For any sequence of actions [qt]t∈[n] and their corresponding

sequence of states [st]t∈[n], each pair of current state st and next state st+1 must satisfy the
precondition and effect of action qt, i.e.,

∀p ∈ PRE(qt), st =⇒ p [[preconditions of qt must hold in st]]
∀e ∈ EFFECTS(qt), st+1 =⇒ e [[effects of qt must hold in st+1]]

• y is the shortest action sequence from the initial state to the goal state.

We construct problems such that the initial state is potentially underspecified – we only know the
values of certain atoms of the initial state, and must ask the value of at most a single other atom in
order to disambiguate the shortest action sequence.

Some problems are fully specified CSPs – i.e., the shortest action sequence can be fully determined
regardless of uncertainty about the initial state. For example, even if we do not know whether block
b is on top of another block or on the table, that information does not affect what the shortest action
sequence will be. In these cases, we expect the LLM to output “No questions needed.”

Some problems are 1-sufficient CSPs – the LLM must ask for the value of an atom, which will be
enough to fully determine the shortest action sequence, regardless of the value of the atom.

Details about dataset construction can be found in Appendix A.2.

4.3 GSM-Q

In general, grade-school math problems can be parsed into simple algebra problems where a se-
quence of variable substitutions can fully solve the problem. We construct underspecified grade-
school math problems from GSM-Plus’ “distractor” setting (Li et al., 2024a), which was derived
from adding a single distractor sentence to math problems in GSM8k (Cobbe et al., 2021) that is
irrelevant to deriving the goal. This allows us to isolate whether LLMs can identify which specific
variables are relevant to a goal.
Problem Definition. Given a generic GSM8k word problem, we can parse it into a 1-sufficient
CSP ⟨X,D,C,A, y⟩ where

• X is a set of variables in the problem.
• D is possible values x can take on, generally N,∀x ∈ X .
• C is a set of equations relating variables in the problem to each other.
• A = Ã variable assignments from the problem with a single variable withheld.
• y variable the user wants to solve for.

An example can be seen in Figure 2 (left).
Construction. Unlike the datasets introduced so far, we use human annotators to construct this
dataset. We construct 1-sufficient CSPs as follows: First, we ask annotators to try and solve the
word problems on their own. If they cannot solve the problem due to semantic ambiguity, or answer

5Note there were alternative ways of constructing 1-sufficient planning CSPs that we considered: first, we
considered asking LLMs to discover what must be known about the initial state such that there is an action
sequence (not just the shortest one) to the goal. However, in BlocksWorld all initial states can get to the goal
state through some path, making this a trivial task. Second, we also considered giving the trajectory to the
LLM and asking it to determine whether the trajectory was the shortest path for an underspecified initial state.
However, this made the problem much easier as the LLM simply had to follow an existing plan, rather than
performing search to discover distinct plans.
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Logic-Q Planning-Q GSM-Q
Full Subset Full Subset Full

ZS o1-preview - 44% - 41% (44%) -

ZS
GPT-4o 27.39% 24% 14.61% (14.55%) 9% (12%) 84.74%

Gemini Pro 29.13% 23% 19.80% (20.36%) 21% (24%) 81.23%
Gemini Flash 16.78% 11% 8.52% (11.76%) 9% (16%) 45.26%

ZS + CoT
GPT-4o 28.04% 28% 10.49% 8% 93.51%

Gemini Pro 29.13% 19% 21.27% 28% 94.91%
Gemini Flash 18.70% 11% 9.33% 5% 90.88%

4S
GPT-4o 25.57% 22% 11.48% 9% 86.49%

Gemini Pro 26.35% 22% 18.80% 21% 58.13%
Gemini Flash 15.48% 18% 18.29% 18.18% 60.00%

Table 2: Language model accuracies at predicting the right question in QUESTBENCH. For the
Planning-Q domain, we additionally evaluate a setting where additional physical constraints are
included in the prompt in the 0-shot (ZS) setting, the results of which appears in parentheses. We
include results on the full dataset, as well as results on a smaller, curated subset of Logic-Q and
Planning-Q, which we use to evaluate GPT4-o1-preview. While o1 substantially outperforms other
models, it still struggles to perform beyond 50%, indicating large room for improvement.

the problem in a way that doesn’t match the original answer in GSM-Plus (due to interpreting the
problem differently, or erroneous problems in GSM-Plus), we discard the problem entirely.

Next, we ask annotators to try and parse each math word problem into a set of variables X , con-
straints C, assignments A, and a goal variable y. We assume domains D for each variable is the
set of natural numbers. We had three different annotators provide CSPs for each math problem, as
different annotators may have different interpretations of a problem, resulting in different CSPs. We
further perform automated checks to ensure the annotated CSPs actually result in the correct answer,
discarding any CSP which we weren’t able to parse or provided incorrect answers. We use all valid
CSPs resulting from this process, including different CSPs corresponding to the same math problem.
This gives us the set of fully specified CSPs.

To make these CSPs underspecified, we withhold both distractor variable assignments {di}ni=0 that
aren’t essential to computing y, as well as a single variable assignment a ∈ A that is required
for computing the goal, creating Ã = A\ ({di}ni=0 ∪ {a}). Asking about the value of the variable
corresponding to a is necessary and sufficient for deriving the value of target variable y.

We directly condition on the underspecified CSPs in order isolate how well LLMs are at reasoning
about underspecification, without the presence of semantic ambiguity.

Annotation Details We recruited a total of 21 annotators (11 male, 10 female) from five countries
to annotate our tasks. Annotators were all fluent in English and between the ages of 25 – 45. We
paid annotators an average of $27 – $55 per hour. Details including full instructions provided to
annotators and screenshots of the annotation interface for each task, can be found in Appendix A.3.

5 RESULTS

We can restrict LLMs to ask a finite set of questions (about the value of each variable in X), and
expect them to ask a question about a variable in the sufficient set of A. For the Planning-Q domain,
we additionally have the option to include physical constraints (e.g. (ON A B)→ ¬(ON B A), which
are inferrable from the pre- and post-conditions of each action written in the PDDL, but aren’t
explicitly stated) in the prompt.6

We evaluate GPT-4o, Gemini 1.5 Pro, Gemini 1.5 Flash-S, in zero-shot (ZS), chain-of-thought
(CoT), and four-shot settings (4S), the results of which are shown in Table 2.

6We infer that some of these constraints were probably learned as common-sense knowledge during LLM
pre-training. For those that weren’t learned through common-sense, this is equivalent to providing LLMs with
shortcuts in reasoning.
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Logic-Q Planning-Q GSM-Q
d |X| |C| EBF d |X| b pg d |X| |C| pg

o1-
Preview

-0.41 -0.47 -0.44 -0.43 0.22 0.15 0.15 0.57 - - - -

GPT-4o -0.19 -0.16 -0.11 -0.26 -0.00 -0.07 -0.07 0.45 -0.14 -0.18 -0.29 0.18
ZS Gemini

Pro
-0.24 -0.19 -0.12 -0.35 0.01 -0.11 -0.11 0.30 -0.07 -0.15 -0.26 0.15

Gemini
Flash

-0.22 -0.26 -0.19 -0.32 -0.12 -0.13 -0.13 0.21 -0.09 -0.49 -0.37 0.49

GPT-4o -0.20 -0.18 -0.15 -0.24 -0.07 -0.10 -0.10 0.40 0.07 0.06 -0.15 -0.06
ZS
+
CoT

Gemini
Pro

-0.24 -0.21 -0.13 -0.37 -0.03 -0.04 -0.04 0.16 0.07 0.07 -0.11 -0.07

Gemini
Flash

-0.22 -0.25 -0.14 -0.34 -0.08 -0.09 -0.09 0.31 0.02 -0.01 -0.10 0.01

GPT-4o -0.20 -0.18 -0.20 -0.30 -0.06 -0.10 -0.10 0.41 -0.09 -0.33 -0.34 0.33
4S Gemini

Pro
-0.15 -0.11 -0.03 -0.31 0.06 -0.03 -0.03 0.51 -0.09 -0.40 -0.45 0.40

Gemini
Flash

-0.15 -0.08 0.04 -0.20 0.01 -0.12 -0.12 0.33 -0.05 -0.51 -0.36 0.51

Table 3: Spearman’s rank correlation coefficient between various axes and accuracy for at predicting
the right question. For the Planning-Q domain, we additionally evaluate a setting where additional
physical constraints are included in the prompt. Bolded values indicates a statistical significance
correlation between the axis and model accuracy (p < 0.05).

Generally, we find that even the largest and most recent models (GPT-4o, Gemini 1.5 Pro) struggle
to perform beyond 30% on our Logic-Q and Planning-Q domains. It is not always the case that
few-shot and Chain of thought (CoT) can improve the performance. Furthermore, we found that the
best models (GPT4-o and Gemini-Pro) were fairly good at inferring missing variables in GSM-Q.
Even Gemini Flash is able to achieve 90% on GSM-Q when augmented with chain-of-thought. We
suspect that because of how GSM-Q was annotated, the task simply boils down to identifying unas-
signed variables missing from the left-hand-sides of any constraint (see Section 6).7 Furthermore,
the problems in GSM-Q generally have a small number of variables and constraints compared to
problems in the other two domains, and thus appear to be sufficiently easy for SoTA models.

Additionally, we evaluate GPT4-o1 on our dataset. Due to the computational and financial con-
straints, we evaluate GPT-o1 on only 100 samples from each of Logic-Q and Planning-Q. We make
sure to evenly sample from both easy and difficult problems when creating these 100-sample subsets.
The results of each model on this subset is reported in the subset column of Table 2. We find that
despite being optimized for reasoning, GPT4-o1 is only able to achieve ∼40% on this subset, while
using 200-300 times more inference tokens. This indicates that even the most current in-context
reasoning techniques have significant room for improvement on QUESTBENCH.

6 CORRELATION BETWEEN SEARCH COMPLEXITY AND LLM ACCURACY

The 1-sufficient CSPs can be solved through brute-force (forward) search or backwards search
in general. Are LLMs using a similar mechanism or something completely different? In this section,
we conduct preliminary investigation by estimating how much model’s accuracy correlate with the
human-understandable problem parameters (E.g., depth of the search).

We can approximately quantify the difficulty of each problem in these domains based on the runtime
complexity of each algorithm. If there is a correlation between the factors that determine algorithmic
complexity, and the performance of the LLM, this serves as a high-level signal for the types of
mechanisms LLMs may be using to succeed in these tasks.

Specifically, we analyze the correlation between LLM performance and the following factors:
7We suspect the large jump from 45% to 90% when chain-of-thought is applied to Gemini Flash in GSM-Q

is due to chain-of-thought enabling the LM to iterate through all the variables and check their absence.
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Logic-Q Planning-Q

Brute-force Search O((|X|+ |C|)EBF/δ) with probability ≥ δ O
(
4|X|b2

)
Backwards Search O

(
|X||C|d) O(b2d) or O

(
3|X|d)

Table 4: Runtime complexities of brute-force and backwards search in Logic-Q and Planning held-
out. Derivation details can be found in Appendices C.1 and C.2.

• d: depth of backwards search. In planning, d also represents the maximum length of the
shortest path from any possible initial state to the goal conditions.

• |X|: number of variables.
• |C|: number of constraints.
• b: number of blocks (for Planning-Q).
• EBF: expected number of guesses for brute-force search (determined by number of total

variables |X| divided by the number of sufficient sets).
• pg: probability that a random question is correct, computed as the percentage of correct

answers divided by the total number of possible questions.

We report Spearman’s rank correlation coefficients between accuracy and these factors in Table 3.
The full set of plots of accuracy across each factor can be found in Appendix D. We describe these
factors in more detail below, including how they contribute to the runtime complexity of each algo-
rithm in each domain below.

Logic-Q The complexities of Brute-force and Backwards search can be found in Table 4. Details
of how these algorithms are implemented can be found in Appendix C.1.

Looking at Table 3, we find that performance is negatively correlated with backwards search depth,
number of variables, number of constraints, and expected number of brute-force guesses. These
correlations are statistically significant for most LLMs in this domain, indicating that in Logic-Q,
brute-force and backwards search may serve as good approximations for the type of reasoning LLM
are required to perform.

Planning-Q The complexities of Brute-force and Backwards search can be found in Table 4. Details
of how these algorithms are implemented can be found in Appendix C.2.

Looking at Table 3, we find that performance is generally only slightly negatively correlated with
d, |X|, b, and positively correlated for GPT4-o1-preview. This indicates that LLMs may be using
mechanisms other than the backwards search or brute-force search in planning. This is reasonable as
these search algorithms generally require exponential-time search, while LLMs cannot perform non-
polynomial-time-computation within a polynomial amount of chain-of-thought (Li et al., 2024b).

GSM-Q We anticipate that our GSM-Q task is sufficiently easy without search. When examining
the annotated CSPs, we find that only 25% of the problems were annotated to include extraneous
irrelevant variables. Thus, most problems in GSM boil down to missing-variable detection: the
model simply needs to detect which variable is missing from the left-hand-side of assignments and
constraints, and ask about the value of that variable. Thus, of the metrics reported here, only |C| is
consistently correlated with task difficulty, indicating difficulty of iterating through the constraints.

7 DISCUSSION AND CONCLUSION

We introduce a collection of benchmarks for identifying underspecification in problems, which we
posit is an essential skill necessary for LLMs’ to perform tasks under uncertainty. We found that
SOTA LLMs are relatively good at identifying missing information in simple algebra problems, but
struggle with more complex tasks involving logic and planning. Their performance tends to decline
with the increase of the size of solution spaces and search depths, if these problems were to be solved
by a search algorithm. We conjecture that LLMs may possess search skills similar to breadth-first
search or brute-force approaches, which become less effective as the search space expands. Future
work includes understanding the mechanisms of LLMs to determine what information is missing
in a given task, and how to enhance their ability to effectively seek that information. One possible
method for higher performance is to use LLMs to extract the symbolic CSP for an underspecified
task and then run search algorithms to find the right variable to clarify.
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ETHICS STATEMENT

We foresee limited ethical risks with our benchmark, as it focuses on low-risk domains such as log-
ical reasoning, blocks-world planning, and math problems. This work will enable progress towards
LLMs that can work with humans to ask clarifying questions. We note when or if these techniques
are eventually deployed into the real world, they can alleviate unforeseen risks through confirming
with users before executing on a task. Furthermore, LLMs that can ask clarifying questions are likely
more easily customizable and personalizable. However, this may also introduce risks if malicious
actors can more easily use LLMs for malicious purposes; care must be taken to ensure these risks
do not come to fruition, for example, by preventing LLMs from ever displaying certain behavior.

REPRODUCIBILITY

We plan to release the code and benchmark upon publication. All data construction details and
annotation instructions can be found in the appendix. All models were evaluated with temperature
0 settings. GPT-4o and GPT-4-o1 models were queried through the OpenAI API.
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analysing annotators’ disagreement in subjective tasks. In Proceedings of the 17th Conference of
the European Chapter of the Association for Computational Linguistics, pp. 2428–2441, 2023.

Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison, 2009.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael
Katz. Generalized planning in pddl domains with pretrained large language models. In AAAI
Conference on Artificial Intelligence (AAAI), 2024.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. In International Conference
on Machine Learning (ICML), 2010.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Ruyuan Wan, Jaehyung Kim, and Dongyeop Kang. Everyone’s voice matters: Quantifying anno-
tation disagreement using demographic information. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 14523–14530, 2023.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar prompt-
ing for domain-specific language generation with large language models. In Advances in Neural
Information Processing Systems (NeurIPS), 2024a.

Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization. In
International Conference on Machine Learning (ICML), 2017.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of
Machine Learning Research (JMLR), 25(212):1–83, 2024b.

Jie JW Wu. Large language models should ask clarifying questions to increase confidence in gener-
ated code. In Annual Symposium on Machine Programming (MAPS), 2023.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van Den Broeck. On
the paradox of learning to reason from data. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/375. URL https://doi.org/10.24963/ijcai.2023/375.

Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interac-
tion with lms. arXiv:2311.09469 [cs.CL], 2023.

Tong Zhang, Peixin Qin, Yang Deng, Chen Huang, Wenqiang Lei, Junhong Liu, Dingnan Jin, Hon-
gru Liang, and Tat-Seng Chua. CLAMBER: A benchmark of identifying and clarifying ambigu-
ous information needs in large language models. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (ACL), 2024a.

Xuan Zhang, Yang Deng, Zifeng Ren, See-Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proac-
tive language agents for real-world planning. arXiv:2406.12639 [cs.CL], 2024b.

14

https://doi.org/10.24963/ijcai.2023/375


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Limitations. We construct simplified tasks with only one missing piece of information to pre-
cisely evaluate whether LLMs is able to identify that missing piece. Real-world user queries are
much more complex. They often involve multiple missing pieces of information and inherent ambi-
guities of natural language. To address this, our work could be extended by modeling distributions
over constraints on model responses. However, determining such distributions would likely require
extensive user studies and experiments, which is beyond the scope of this work.

A DATASET CONSTRUCTION DETAILS

A.1 LOGIC-Q

We create 1-sufficient CSPs out of SimpleLogic problems by first discarding the A’s that are already
present in the dataset. We then identify all assignments A(y) = {A(y)

i : A
(y)
i =⇒ y}Mi=0 to (a subset

of) variables in X\y which would imply y is true, and similarly all assignments A(¬y) = {A(¬y)
i :

A
(¬y)
i =⇒ ¬y}M ′

i=0 that imply y is false. These sets are found through recursive backwards search
starting from y or ¬y, see Appendix A.1.1.

Once we have the full set of assignments which imply y, to make them underspecified, we examine
all pairs of assignments (A(y)

i , A
(¬y)
j ) ∈ {A(y)

i }Mi=0 {A(¬y)
i }M ′

i=0 where A
(y)
i and A

(¬y)
j differ on

an assignment to a single variable xd. This means that if we remove xd’s assignment from both
A

(y)
i and A

(¬y)
j (creating A

(y)
i \xd and A

(¬y)
j \xd), then knowing

(
(A

(y)
i \xd) ∧ (A

(¬y)
j \xd)

)
is true

means knowing xd’s value is sufficient to determine whether y or ¬y is true,

Known(xd) ∧ (A
(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ Known(y).

We conduct further checks (see Appendix A.1.2) to ensure that the assignments themselves do not
already imply a value for y,

(A
(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ ¬Known(y),

discarding any assignment from that doesn’t satisfy the above property. We define Ã as the set of
assignments satisfying the two properties above, and Ã as an element of this set.

Ã =
{
(A

(y)
i \xd) ∧ (A

(¬y)
j \xd) :

∃xd ∈ X,(
Known(xd) ∧ (A

(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ Known(y)

)
∧
(
(A

(y)
i \xd) ∧ (A

(¬y)
j \xd) =⇒ ¬Known(y)

)}
(1)

where the sufficient set of each Ã ∈ Ã is defined as

C(Ã) =
{
x :

(
Known(xd) ∧ Ã =⇒ Known(y)

)
∧
(
Ã =⇒ ¬Known(y)

)}
. (2)

A.1.1 CONSTRUCTING ALL ASSIGNMENTS THAT IMPLY y IS TRUE

We begin by doing backwards search through the constraints C to iteratively derive the set of as-
signments which imply y is true. At each iteration, we keep track of a disjunction of conjunctions
of variables that must be set in order for the goal variable to be true. We start from the most trivial
assignment – just setting goal variable itself y to true.

g0 = y

We then find all rules which imply y is true and add the relevant variable assignments to our set. For
example, suppose we have rule a∧ b → y and c∧¬d → y, then at the first iteration, we expand our
disjunction of conjunctions to include

g1 = (a ∧ b) ∨ (c ∧ ¬d)
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We then iterate through each conjunction, and apply the above procedure on each variable in the
conjunction. For example, if we have e ∧ f =⇒ b and e ∧ g ∧ h =⇒ b and e ∧ x =⇒ c in the
constraints, then we expand as:

g2 = ((a ∧ ((e ∧ f) ∨ (e ∧ g ∧ h)))) ∨ ((e ∧ x) ∧ ¬d)

Which we can then apply the distributive property to, obtaining

g2 = (a ∧ e ∧ f) ∨ (a ∧ e ∧ g ∧ h) ∨ (e ∧ x ∧ ¬d)

More formally, we decompose each constraint Ci into PREMISES(Ci) =⇒ CONCLUSION(Ci)
8,

where PREMISES(Ci) is a set of terms that participate in the conjunction, while CONCLUSION(Ci)
is a single term implied by PREMISES(Ci). Backwards search is thus formalized as follows:

g0 = y

g1 =

[N ]∨
i

[Mi]∧
j

ti,j

 , ∀ti,j ∈ PREMISES(Ci),∀Ci where CONCLUSION(Ci) = y

g2 =

[N ]∨
i

[Mi]∧
j

[Nj ]∨
k

[Mk]∧
ℓ

ti,j,k,ℓ

 , ∀ti,j,k,ℓ ∈ PREMISES(Ci,j,k),

∀Ci,j,k where CONCLUSION(Ci,j,k) = ti,j , · · ·

=

[N ]∨
i

∨
k′,

∀(j,k′)∈((0,k′),··· ,(Mi,k
′))

∀((0,k′),··· ,(Mi,k
′))∈

{{(j,k)∀k∈[Nj ]}∀j∈[Mi]}

[Mi]∧
j

[Mk]∧
ℓ

ti,(j,k′),ℓ

∀ti,(j,k′),ℓ ∈ PREMISES(Ci,(j,k′)),

∀Ci,(j,k′) ∈ j{Ci,j,k∀Ci,j,k where CONCLUSION(Ci,j,k) = ti,j}
taking all combinations of k rules that can form each j term

=
∨
i2

∧
j2

ti2,j2 re-indexing

· · ·

to infer all sets of variable assignments that implies y. Similarly, we repeat the process starting from
¬y.

This gives us the full set of variable assignments A(y) which imply y is true. We also repeat this
backwards-search procedure starting from ¬y to get the full set of variable assignments A(¬y) which
imply ¬y is true.

A.1.2 CHECKING 1-SUFFICIENCY

After constructing potential 1-sufficient assignments Ay,−1 = {(A(y)
i \xd)∧ (A

(¬y)
j \xd)∀xd ∈ X},

we conduct several further checks to ensure they are 1-sufficient:

1. First, we check that

∀Ay,−1
i ∈ Ay,−1,(

∀A(y)
i ∈ A(y), Ay,−1

i ≠⇒ A(y)
)
∧(

∀A(¬y)
i ∈ A(¬y), Ay,−1

i ≠⇒ A(¬y)
)

8Note that any rule of form a∧ b∧ c =⇒ d is equivalent to a∧ b∧¬d =⇒ ¬c, a∧¬b∧ c =⇒ ¬d, etc.
We consider all possible cycles by writing Ci in the form of a disjunction, ¬a ∨ ¬b ∨ ¬c ∨ d and seeking all
disjunctions that contain a particular term (e.g. d), meaning they are implied by the conjunction of the negation
of the rest of the terms (e.g. a ∧ b ∧ c).
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This ensures that Ay,−1
i by itself is not sufficient to determine the value of y. We throw

away any Ay,−1
i that does not satisfy these two constraints.

2. For any Ay,−1
i ∈ Ay,−1, if exists another Ay,−1

i′ ∈ Ay,−1 such that Ay,−1
i′ =⇒ Ay,−1

i ,
then all variables in the sufficiency set of Ay,−1

i′ is also in the sufficiency set of Ay,−1
i .

However, resolving Ay,−1
i′ may require shallower backwards search than resolving Ay,−1

i
(see Appendix C.1). To ensure that the LM conducts search to the full depth required for
resolving Ay,−1

i , we construct an “invalid set” consisting of the elements of the resolution
sets of Ay,−1

i′ . During test-time, we tell the LM that it cannot ask about the value of any x′
d

in the sufficiency set of Ay,−1
i′ .

A.2 PLANNING-Q

We introduce some notation to describe the dataset construction procedure for Planning-Q. The
fully-specified version of the Blocks World task with n blocks can by characterized as a MDP
⟨X,S,Q, s0, y⟩ where

• X is the full set of atoms p that can be true of a state.
• S is the set of physically-possible fully-specified states, which can be represented as a full

set of assignments from all variables in X to {TRUE, FALSE}.
• Q : S → S is a set of actions that operate on the current state and transitions it to a next

state. Each action q ∈ Q has a set of preconditions which must hold for the action to
be applicable in the state, and a set of effects which hold after the action is applied. Pre-
conditions and effects can be expressed as a conjunction of atoms x or negated atoms ¬x
for any x ∈ X . In the blocks setting, there are 4 types of actions which can be enacted on
each block:
pick-up(?x)

:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x))
put-down(?x)

:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x)

(handempty) (ontable ?x))
stack(?x, ?y)

:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y))
unstack(?x, ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y))))
• s0 is the initial state, which is in S.
• y is a conjunction of goal propositions which we wish to be true at the end of a plan. There

are 6 possible y’s in this dataset, which were written manually by the authors:
{(on b a),
(and (on b a) (on c b)),
(and (on b a) (on d c)),
(and (on b a) (ontable a)),
(and (on b a) (ontable a) (on c b)),
(and (on b a) (ontable a) (on d c) (ontable c))}

Given the above, models are expected to construct an optimal action sequence τ̂ =
[q0, q1, · · · , qk−1] where qt ∈ Q for all qt in the trajectory.

Definition: (Optimal) Action Sequence. An action sequence τ enables the robot to go from
initial state s0 to a goal state sk where the goal conditions are satisfied (sk =⇒ y). We use
TRANSITION(s0, τ) to denote the state of the robot after taking action sequence τ from state s0. We
also use s0, · · · sk to denote the sequence of intermediate states the robot goes through when taking
the action sequence, where action ai results in state si+1. An optimal sequence τ̂ is the shortest path
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that satisfy TRANSITION(s0, τ) implies y.

τ̂ = argmin
τ

|τ | s.t. TRANSITION(s0, τ) =⇒ y (3)

Definition: Planner. We use Ψy to denote an optimal planner that can map initial states s0 to an
optimal actions sequence τ̂ to the goal y. The planner is implemented through breadth-first-search,
on a search graph where the nodes are the states and the edges are the actions, starting from state s0
and terminating in a state where y is true.

In order to make the planning problem underspecified, we construct a version of it where certain
predicates in s0 are withheld, such that the initial state is only partially observed.

Definition: Partial state. A partial state is one where a subset of predicates have been assigned
values.

Definition: Consistent set. We say a full state s is consistent with a partial state s̃ if s ∈ S and
s =⇒ s̃. The set of all states which are consistent with s̃ is called the consistent set for s̃, which
we denote with F (s).

We begin by inferring all partial states s̃0 where there is only a single possible optimal action se-
quence from any s0 ∈ F (s̃0) to the goal. In other words, if we know s̃0, we know the optimal
trajectory to the goal. This gives us all the fully-specified CSPs.

S̃0 = {s̃0 : ∃τ̂ , s0 ∈ F (s̃0) =⇒ Ψ(s0) = τ̂} = {s̃ : s̃ =⇒ Known(τ)} . (4)

The construction process for this set is given in Appendix A.2.1.

In order to construct 1-sufficient initial states, we withhold a single atom from each s̃0 ∈ S̃0 and
check that knowing the truth value of a single additional atom in X is necessary and sufficient
in order to disambiguate a single optimal action sequence to the goal. Details are given in Ap-
pendix A.2.2.

S̃0
′
=

{
s̃0

′ : ∃x ∈ X,
(
Known(x) ∧ s̃0

′ =⇒ Known(τ)
)
∧
(
s̃0

′ =⇒ ¬Known(τ)
)}

(5)

where the sufficient set of each s̃0
′ is defined as

C(s̃0′) = {x :
(
Known(x) ∧ s̃0

′ =⇒ Known(τ)
)
∧
(
s̃0

′ =⇒ ¬Known(τ)
)
}. (6)

A.2.1 DERIVING ALL FULLY-SPECIFIED PARTIAL STATES WITH THE SAME OPTIMAL ACTION
SEQUENCE TO y

Given goal conditions y, first, we perform backwards breadth-first-search from y to derive the full
set of optimal partial-state trajectories that end at y.

Definition: Partial-state Trajectories. A trajectory τ̃ where the intermediary states are partial
states, e.g. [s̃0, q0, s̃1, q1, · · · , s̃k], where s̃1···K are partial states. Partial-state trajectories are valid
if for any consecutive state sequence s̃t, qt, s̃t+1 ∈ τ̃ , applying qt to any full state st ∈ F (s̃t) arrives
at some st+1 ∈ F (s̃t+1). They are optimal if the trajectory is the shortest trajectory from s̃0 to s̃k.

Starting from the atoms in y, we iteratively search each action and deduce the partial states from
which applying that action result in y.

g0 = {[y]}
g1 = {[s̃, q, y] , ∀q ∈ Q∀s̃ s.t. TRANSITION(s̃, q) =⇒ y}

find all partial states s̃ that transition into y on some action q,
prepend s̃, q to the existing trajectories

· · ·
gi+1 = {[s̃, q, τ̃ ] , ∀q ∈ Q∀s̃ s.t. ∃τ̃ ∈ gi where TRANSITION(s̃, q) =⇒ τ̃ [0]}

find all partial states s̃ that transitions from some action q into an initial state τ̃ [0]

of a trajectory τ̃ found in the prior iteration gi. Prepend s̃, q to that trajectory
· · ·
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We expand a search tree where each branch of the tree is partial trajectory. We terminate search
for that branch if we arrive at a partial state s̃ that is implied by a partial state we have already
encountered (meaning we have already considered that partial state). This means in the worst case,
we exhaust the space of all possible partial states. When all branches have terminated, we have the
set of all optimal partial-state trajectories to the goal y, by taking the union g0 ∪ g1 ∪ · · · . The set of
fully specified partial states S̃0 is the initial states of all these trajectories.

A.2.2 CREATING 1-SUFFICIENT PARTIAL STATES

To create 1-sufficient partial states from S̃0, we remove one proposition xd from each s̃0 ∈ S̃0 to
create S̃′

0 = {s̃0\xd∀xd ∈ s̃0∀s̃0 ∈ S̃0} where s̃0
′ = s̃0\xd for some s̃0, and check that each of the

following holds:

1. For all other s̃0′′ ∈ S̃0, we check whether ∃x ∈ X, s̃0
′′ = s̃0

′ ∧ x, meaning that a single
additional true atom brings us to another 1-sufficient partial state. In this case, we assign
the salient atom x where s̃0

′′ = s̃0
′ ∧ x to FALSE, to eliminate the possibility more than

one question must be asked: for example, if x is asked and turns out to be true, then we
are brought to s̃0

′′, which we know is 1-sufficient, meaning we must ask at least one other
question.

2. For all physically-valid, fully-specified states s′0 ∈ F (s̃0
′) consistent with the 1-sufficient

state s̃0
′, we check that there are at most two possible distinct optimal action sequences to

the goal condition y:

∣∣{Ψy(s
′
0), ∀s′0 ∈ F (s̃0

′}
∣∣ ≤ 2

(a) If there is 1 unique action sequence, then we expect the LM response to be “No ques-
tions needed.”

(b) If there are 2 unique action sequences τ1, τ2, then we separated out S̃0 into S̃
(1)
0 and

S̃
(2)
0 , where the optimal action sequence from all states in S̃

(1)
0 to the goal is τ1, while

the optimal action sequence from all states in S̃
(1)
0 to the goal is τ2 (S̃0 = S̃

(1)
0 ∪ S̃

(2)
0 ).

We find the set of differentiating attributes between S̃
(1)
0 and S̃

(2)
0 , that is to say, all

attributes of states in S̃
(1)
0 that aren’t present in any state of S̃(2)

0 , or vice versa (all
attributes of states in S̃

(2)
0 that aren’t present in any state of S̃

(1)
0 ). If any of these

questions are asked, they would disambiguate whether the optimal action sequence is
τ1 or τ2.

This ensures that for all s̃0′, asking about the truth value of xd fully determines a unique optimal
trajectory from the state to the goal conditions. If s̃0′ passes all of the above checks, we add it to the
set of 1-sufficient partial states S̃ ′

0

A.3 GSM-Q

Full instructions we provided to annotators can be found below:
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You will be presented with a series of math problems. These math problems are written in words and
may be ambiguous. Your task is to try to solve the problem. The problem may be ambiguous, which
would make it unsolvable. However, if the problem is solvable, you will be asked to provide the answer,
and may additionally be asked to translate the problem into a set of variables and equations given the
information present in the problem. Two examples are provided below. Please read carefully and make
sure you understand before proceeding.

Math problem 1:
If there are 10 eggs in a basket. Alice buys more eggs and increases her egg quantity by 200%, but she
had also sold half of her eggs by then. How many eggs are there total?

You will be asked to try and solve the problem to check if it is ambiguous.
1. Try to solve this problem. What is the answer?: [text box]

□ Not sure. Explain why: [text box E]
What questions, when answered, could clarify this problem?: [text box Q]

In this case, the problem is ambiguous. You should check off “Not sure” and write why the problem
is ambiguous in the explanation text box E. For example, in this case, you may write: it is unclear
whether “increases by 200%” means 200% or 300% of her original amount. Furthermore, it is unclear
which came first: did she sell half her eggs before increasing by 200%, or did she buy 200% more eggs
first, then sell half her eggs.

Next, you should write some questions that could be asked to clarify this problem in text box Q. For
example, you may write “does an increase by 200% mean 200% or 300% of the original amount?”,
“which happened first, Alice buying more eggs or Alice selling half her eggs?”
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Here are some other examples of ambiguous questions that raters have found in this dataset. Note:
there may be some subjectivity when deciding whether or not a particular problem is ambiguous. Please
base it off your own interpretation.

Problem Explanation
Janet buys a brooch for her daughter. She pays $500 for
the material to make it and then another $800 for the
jeweler to construct it. After that, she pays 10% of that
to get it insured. How much did she pay?

The antecedent of ”that” in ”10% of
that” is unspecified.

Josh decides to try flipping a house. He buys a house
for $80,000 and then puts in $50,000 in repairs. This
increased the value of the house by 150%. How much
did he make?

What should be considered the ini-
tial value of the house is unclear. It
could be taken as the initial purchase
price or the initial purchase price plus
repairs. Furthermore, it is unclear
whether “increase by 150%” means
150% or 250% or the price.

Jason has a phone plan of 1000 minutes per month. Ev-
ery day he has a 15-minute call with his boss, and he’s
had 300 extra minutes of call this month to other people.
How many minutes does Jason have left if this month has
30 days?

The day of the month is not specified.

In a 60-item quiz, 40% of the questions are easy, and the
rest are equally divided as average and difficult questions.
If Aries is sure to get 75% of the easy questions, and half
of the average and difficult questions correctly, how many
points is she sure to get?

The number of points per question is
not specified. They could all be worth
one point or they could be weighted
differently.

Mara added 3 slices of cake to a plate that already had
2 slices on it. She was getting hungrier so she tripled
the number of slices she currently has. She ate 2 slices
and while she was distracted, her friend stole 5 slices off
her plate. What number of cake slices remained on the
plate?

The order of events is unclear. Be-
cause of the temporal mismatch be-
tween ”was getting” and ”currently
has” in the same sentence, a reader
cannot know whether ”the number of
slices she currently has” refers to the
number of slices before or after adding
the 3.

Note 2: the problem may be ambiguous in more ways than one. Please explain all ways the problem is
ambiguous.

Math problem 2:
If there are 10 eggs and 2 in a basket, and there are twice as many eggs in a second basket, how many
eggs are there total?

1. Try to solve this problem. What is the answer?: [text box]
□ Not sure. Explain why: [text box E]

What questions, when answered, could clarify this problem?: [text box Q]
In this case, you should answer 30. This is because there are 10 eggs in the first basket + 20 in the
second basket, so 30 total. You should not check off “Not sure.”

In cases where you did not check off “Not sure”, you may be additionally asked to translate the problem
into a series of equations, together with the variables that appear in the equations and the goal of the
problem.

2. Please translate the above math problem into a list of variables, a list of equations, and a goal
variable. Ensure that your translation is equivalent to the variables above.

For example, in this case, the problem may be translated as follows:

Variables:
A = 10 [Number of eggs in the first basket]
B [Number of eggs in the second basket]
T [Total number of eggs]

Equations:
B = 2 * A [There are twice as many eggs in the second basket as the first.]
T = A + B [The total number of eggs is the sum of the eggs in the first and second
baskets.]

Goal: T. How many eggs are there total?
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If the value of a variable is directly mentioned in the math problem, you should write down the value.
For example, A = 10. If the value of a variable is not directly mentioned in the math problem, you
should not write down the value, even if it can be computed. Here are some examples of incorrect
translation:
INCORRECT EXAMPLE 1

Variables:
A = 10 [Number of eggs in the first basket]
T [Total number of eggs]

Equations:
T = A + B. The total number of eggs is the sum of the eggs in the first and second
baskets.

Goal: T. How many eggs are there total?

The above example is missing a variable (the number of eggs in the second basket) and an equation.
INCORRECT EXAMPLE 2

Variables:
A = 10 [Number of eggs in the first basket]
B = 2 [Number of eggs in the second basket]
T = Total number of eggs

Equations:
T = A + B. The total number of eggs is the sum of the eggs in the first and second
baskets.

Goal: T. How many eggs are there total?

The above example has a wrong variable value and missed an equation. “There are twice as many eggs
in the second basket as the first” should be translated into B = 2 * A instead of B = 2.

INCORRECT EXAMPLE 3

Variables:
T [Total number of eggs]

Equations:
T = 10 + 20. The total number of eggs is the sum of the 10 eggs in the first basket
and the 20 eggs in the second basket.

Goal: T. How many eggs are there total?

The above example combines too many operations into a single equation, in a way that is not faithful
to the original question. A good rule of thumb is to have one variable stand in for every number in the
problem, and have all equations be of one of two forms: (1) assigns one variable to one constant, or (2)
assigns one variable to a relation among other variables. Avoid equations that can be simplified.

A screenshot of the annotation interface for each math problem can be found in Figure 3.

B LM PROMPTS FROM EACH DATASET

B.1 LOGIC-Q

Suppose you know the following rules about Alice:
[rules nl]
You trying to discern whether a statement about Alice is true given some facts. You must decide whether
you have enough information to determine whether the final statement is true. You may respond with
one of the following-
If you do not have enough information yet, you may ask a question about an attribute of Alice, in the
form of ”Question: Is Alice [attribute]?”. Ask the best question that, regardless of how it is answered,
provides the most information about the final statement.
Once you have enough all information necessary to determine the truth value of the statement, you can
terminate with ”End questioning”.
Generate one of ”Question: Is Alice [attribute]?” or ”End questioning” and nothing else.
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Figure 3: Screenshot of the annotation interface used for obtaining CSPs for each math problem in
the GSM setting.
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B.2 PLANNING-Q

You will be given a planning problem in the domain defined by the following PDDL:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; 4 Op-blocks world ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (domain BLOCKS)
(:requirements :strips :typing) (:types block) (:predicates (on ?x - block ?y - block) (ontable ?x - block)
(clear ?x - block) (handempty) (holding ?x - block) )
(:action pick-up :parameters (?x - block) :precondition (and (clear ?x) (ontable ?x) (handempty)) :effect
(and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))
(:action put-down :parameters (?x - block) :precondition (holding ?x) :effect (and (not (holding ?x))
(clear ?x) (handempty) (ontable ?x))) (:action stack :parameters (?x - block ?y - block) :precondition
(and (holding ?x) (clear ?y)) :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty)
(on ?x ?y))) (:action unstack :parameters (?x - block ?y - block) :precondition (and (on ?x ?y) (clear
?x) (handempty)) :effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty)) (not (on ?x
?y)))))
The current objects are present in the problem:
[’a’, ’b’, ’c’, ’d’, ’e’]
You will be given a set of conditions true in your initial state and a set of goal conditions, and will
need to construct a plan from your current state to the goal state. Some details of your initial state
may be missing. You must decide whether you have enough information to disambiguate a plan to the
final state. If not, you must decide what information is necessary to construct a fully unambiguous plan
from your initial state to the goal state. You will be presented with a set of multiple-choice options for
questions you may ask, and you must answer with one of the options. Please reason step-by-step, then
generate ”Answer:” followed by the number of the option and nothing else.
Known facts about current state:
[current state]
Goal state:
[goal state]
Possible questions:
0. Is (clear a) true?
1. Is (clear b) true?
2. Is (clear c) true?
...

B.3 GSM-Q

C SEARCH SOLUTIONS FOR LOGIC-Q AND PLANNING-Q

C.1 LOGIC-Q

Brute-force Solution. A problem in Logic-Q can be solved through brute force search as follows.
We have a subroutine infer that allows us to infer the values of all variables consistent with the
current variable assignments. For example, if A = {a, b} and we know that a ∧ b → c, then
infer(A) gives us {a, b, c}. At a high-level, infer is analogous to breadth-first-search, and thus
has runtime complexity O(|X|+ |C|).
To solve a Logic-Q problem, we first run infer to get values of all variables consistent with the
current assignment A, creating A′. Next, for all unassigned variables xu ∈ X\A′, we iterate through
them one at a time and check whether:

1. Including xu in A′ allows us to infer the target variable is either true or false.
2. Include ¬xu in A′ allows us to infer the target variable is the opposite assignment as it was

in case (1).

The first time 1 and 2 both hold, we have that xu is true.

The runtime of brute-force can thus be computed by the expected number of variables that we
need to iterate through to get to a variable in the sufficient set (denote this EBF), multiplied by
the complexity of running the infer algorithm twice. By Markov’s inequality, with probability
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≥ 1− δ, the complexity is bounded by

O((|X|+ |C|)EBF/δ)

Backwards Search Solution. A problem in Logic-Q can be solved through backwards search.
The procedure is the same as the backwards search used to construct the dataset, described in Ap-
pendix A.1.1. At each iteration, we keep track of a disjunction of conjunction of variables required
to prove y.

The complexity of backwards search is given by the search depth d multiplied by the number of
expansions per depth, which is bounded by O(3|X||C|) (expanding up to |C| rules for conjunction,
for which there are at most 3|X| conjunctions – each variable can be either true/false/missing from
that conjunction) Thus, the overall complexity is O(3|X||C|d).
Though comprehensive backwards search is EXP-time, we can terminate early as soon as we find
a disjunction consisting of the negation of all initial conditions, the goal variable, and an additional
term, which would mean that asking about the value of the initial term is sufficient to infer the value
of the goal variable.

If we know this disjunction is at most at depth d, then the runtime is bounded by |X||C|d, where
|X||C| is the branching factor at each node. The branching factor comes from the cross product of
at most |X| terms across at most |C| conjunctive constraints. Thus, the total runtime is given by

O(|X||C|d)

C.2 PLANNING-Q

Brute-force Solution. Given an underspecified initial state s̃0, we can generate all physically-
plausible initial states s0 ∈ F (s̃0). We can then search all initial states in this set, and partition
the consistent initial states based on their optimal plan. This is analogous to the procedure used to
construct 1-sufficient partial states for this dataset, described in Appendix A.2.2.

1. Using breadth-first search, we find the shortest path τ̂ from the initial state s0 to the goal
condition.

2. We add s0 to the partition corresponding to τ̂ .

The dataset was constructed so there is at most 2 partitions. At the end of this process, we examine
each partition and extract the attributes, common to the initial states of a partition, that do not appear
in the initial states of the other partition. Knowing the value of these variable allow us to distinguish
which partition we are in, and accordingly which optimal plan takes us to the goal.

Breadth-first search takes at most O(|S|+ |S||A|) time, and we perform Breadth-first search at most
|S| times, meaning the overall runtime of this solution is O((|S|+ |S||A|)|S|). The number of states
is bounded by |S| = 2|X|, while the number of actions is bounded by |A| = 2b+2b(b+1) = O(b2)
where b is the number of blocks in the domain, so the overall complexity is:

O(22|X|b2)

Backward Search Solution. We replace the breadth-first-search from each consistent state with
a single backwards search. Starting from the goal condition, we iterate backwards to find sets of
initial states that utilize the same path to the goal. This is the same backwards search that was used
to construct all fully-specified partial states, described in Appendix A.2.1. We expand backwards
until we arrive at a set of partial initial states that are consistent with the given partially-observed set
s̃0, and we find the attribute that distinguishes each partial initial state from each other.

Because the number of partial states is bounded by 3|X| (each proposition can take on 3 values:
true/false/unknown), the backwards breadth-first search takes O(3|X| + 3|X||A|). However, if we
know that the longest path from any initial state consistent with s̃0 to the goal is of length d, meaning
we only need to search up to depth d, then the runtime is bounded by

O(|A|d) = O(b2d) or O(3|X|d)

(Each iteration, expand at most 3|X| states or |A| actions.)
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Figure 4: LM accuracies across varying backwards search depths d, number variables |X|, number
constraints |C|, and expected number brute-force guesses EBF for Logic-Q.

D PLOTS OF CORRELATIONS BETWEEN SEARCH COMPLEXITY AND LM
ACCURACY

Plots of accuracy across each factor identified in Section 6 can be found in Figures 4 to 6.
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Figure 5: LM accuracies across varying backwards search depths d, number variables |X|, number
blocks b, and random-guess correctness probabilities pg for Planning-Q.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 6: LM accuracies across search depths d, number variables |X|, number constraints |C|, and
random-guess correctness probabilities pg for GSM-Q.
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