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Abstract001

Utilizing large language models (LLMs) to002
rank a set of items has become a common ap-003
proach in recommendation and retrieval sys-004
tems. Typically, these systems focus on order-005
ing a substantial number of documents in a006
monotonic order based on a given query. How-007
ever, real-world scenarios often present a differ-008
ent challenge: ranking a comparatively smaller009
set of items, but according to a variety of di-010
verse and occasionally conflicting conditions.011
In this paper, we define and explore the task012
of multi-conditional ranking by introducing013
MCRank, a benchmark tailored for assessing014
multi-conditional ranking across various item015
types and conditions. Our analysis of LLMs016
using MCRank indicates a significant decrease017
in performance as the number and complex-018
ity of items and conditions grow. To overcome019
this limitation, we propose a novel decomposed020
reasoning method, consisting of EXtracting021
and Sorting the conditions, and then Iteratively022
Ranking the items (EXSIR). Our extensive ex-023
periments show that this decomposed reasoning024
method enhances LLMs’ performance signif-025
icantly, achieving up to a 12% improvement026
over existing LLMs. We also provide a detailed027
analysis of LLMs performance across various028
condition categories, and examine the effective-029
ness of decomposition step. Furthermore, we030
compare our method with existing approaches031
such as Chain-of-Thought and existing ranking032
models, demonstrating the superiority of our033
approach and complexity of MCR task. We will034
make our dataset and code publicly available.035

1 Introduction036

The rapid advancement of autoregressive Large037

Language Models (LLMs) has significantly en-038

hanced our ability to understand and solve NLP039

related tasks (Chowdhery et al., 2022; Touvron040

et al., 2023; OpenAI, 2023; Team et al., 2023).041

Among these tasks, document ranking plays a cru-042

cial role in recommendation and retrieval systems043

(Wu et al., 2023; Zhu et al., 2023). While there has 044

been a considerable advancement in ranking exten- 045

sive document collections given a query (Khattab 046

and Zaharia, 2020; Zhuang et al., 2023b; Qin et al., 047

2023), the nuanced task of ranking a smaller set 048

of items based on multiple conditions—a critical 049

requirement in numerous real-world applications— 050

has not been addressed in prior research. 051

Ranking a set of items according to multiple con- 052

ditions has vast implications across various fields 053

and applications. In recommendation systems, for 054

instance, once the top candidates are shortlisted, 055

the user experience can be significantly enhanced 056

by offering the capability to re-rank these candi- 057

dates based on specific conditions, such as genres 058

and categories. In the realm of education, this task 059

can be applied to the ranking of questions, enabling 060

educators to prioritize and arrange questions effec- 061

tively according to different criteria, such as subject 062

matter. Moreover, in the competitive environment 063

of job markets, multi-conditional ranking is invalu- 064

able for aligning resumes with job postings, while 065

prioritizing various factors like certain skills and 066

experience level. 067

In this paper, we define and explore the task of 068

multi-conditional ranking (MCR) by developing 069

MCRank, a comprehensive benchmark consisting 070

various item types and conditions for assessing 071

MCR task. In addition, we also propose a novel 072

decomposed reasoning based method, EXSIR, that 073

beats strong baselines (including CoT) by up to 074

12%. The new benchmark, MCRank, spans a vari- 075

ous category of conditions, including positional, lo- 076

cational, temporal, trait-based, and reasoning types. 077

We have designed MCRank to address scenarios 078

involving one to three conditions and to assess sets 079

of 3, 5, or 7 items. The benchmark distinguishes be- 080

tween two types of items: token-level items, which 081

consist of only a few tokens, and paragraph-level 082

items, which contain up to 150 tokens. An exam- 083

ple of MCRank involving two conditions and three 084
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(a) Base Approach (b) EXSIR (Ours)

Figure 1: Overview of multi-conditional ranking. Instead of directly prompting LLMs to rank items based on the
given conditions, we first extract and sort the conditions based on their priority. Then, we iteratively apply these
sorted conditions to the item list.

token-level items is presented in Figure 1.085

Our initial investigations into the performance086

of existing LLMs on MCRank revealed a notable087

decline in accuracy as the number of items and con-088

ditions increased. Specifically, we observe that the089

accuracy of investigated LLMs , .i.e., GPT-4 (Ope-090

nAI, 2023), ChatGPT(Kocoń et al., 2023) (both091

turbo versions), Llama3.1-70B (Touvron et al.,092

2023) and Mistral (Jiang et al., 2023) in correctly093

ranking items fell dramatically as the task scaled094

to three conditions and seven items, with accuracy095

approaching nearly 0%. To address the shortcom-096

ings of existing LLMs in MCR task, we introduce097

a novel method based on decomposed reasoning.098

Rather than directly prompting LLMs to rank items099

based on the given conditions, our approach begins100

with extracting and sorting the conditions based101

on their priority. Subsequently, we iteratively ap-102

ply these sorted conditions to the item list. An103

illustration of our approach is provided in Figure 1.104

Applying our method to MCRank, we observed a105

notable improvement, with up to a 12% increase in106

the LLMs’ ranking accuracy.107

Observing the impact of our approach in improv-108

ing LLMs performance on MCRank, we conduct109

an in-depth analysis of the models’ performance,110

dissecting the results based on the types of items111

and conditions involved. Additionally, we exam-112

ine the accuracy of the decomposition step within113

the evaluated LLMs shedding light on observed 114

behavior of LLMs on MCRank. To delve deeper 115

into the significance of the decomposition process, 116

we incorporate a zero-shot chain-of-thought (Wei 117

et al., 2022) approach, further underscoring the 118

importance of segmenting the MCR task into mul- 119

tiple steps to achieve improved outcomes. Finally, 120

we employ ColBERT (Khattab and Zaharia, 2020) 121

and RankGPT (based on GPT-4) (Sun et al., 2023), 122

rankers renowned for their performance in docu- 123

ment ranking (Nguyen et al., 2016; Dietz et al., 124

2017), to represent existing rankers. Our compari- 125

son illustrates that, despite their success in existing 126

ranking tasks, they exhibit considerably inferior 127

performance on MCRank. 128

2 Multi-Conditional Ranking 129

The task of multi-conditional ranking is designed to 130

shift the focus from traditional ranking tasks, which 131

typically involve ordering a large set of items based 132

on a single query. Instead, this task concentrates on 133

sorting a smaller, pre-selected set of items accord- 134

ing to multiple conditions. These conditions may 135

not only conflict with one another but also carry 136

varying levels of priority, adding layers of complex- 137

ity to the ranking task. Moreover, each condition 138

may specify a complete order for all items or only 139

provide a partial ordering instructions for the place- 140

ment of certain items. The primary objective is 141
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Type Condition Examples

Positional Item “[one of the items]” should be the last from left

Locational Items that are in Africa should appear at the beginning

Temporal Sort items based on their deadline from the first to the last

Trait-Based Sort the items based on their size from the smallest to the largest

Reason-Based Items that has the largest yards of touchdown should appear at the beginning

Table 1: Example of conditions based on different types. After extracting items, we determine their golden ranking
based on their corresponding labels. The conditions may specify a complete order for all items or only provide a
partial ordering instructions for the placement of certain items.

to closely replicate a scenario in which a user pro-142

vides a string containing several conditions along143

with their respective priorities, which then guides144

the ranking of an already shortlisted group of items.145

The complexity of this task lies in its need to bal-146

ance various conditions, understand their relative147

importance, and apply them effectively to produce148

a contextually relevant ordering of items.149

2.1 MCRank Benchmark150

To develop a benchmark for assessing the ability151

of LLMs to tackle the multi-conditional ranking152

(MCR) task—where the goal is to rank a small153

set of items based on a string of unsorted condi-154

tions—we must first compile a collection of items,155

each tagged with a gold label that denotes a specific156

category or a value for a particular feature. These157

labels serve as the foundation for generating the cor-158

rect ranking order under any given set of conditions.159

To structure our benchmark, we classify the condi-160

tions into five distinct types and distinguish items161

based on two categories: (1) token-level, which162

includes items comprising only a few tokens, and163

(2) paragraph-level, which encompasses items con-164

taining up to 150 tokens. We then collect items165

and their corresponding labels for each category.166

The conditions are divided into the categories be-167

low. We aimed to be as comprehensive as possible168

in choosing the categories, drawing insights from169

categories adopted by previous works on various170

tasks such as question answering (Dua et al., 2019),171

relation extraction (Pawar et al., 2017), text classi-172

fication (Pang et al., 2008), and retrieval systems173

(Zhao et al., 2024). Our motivation for each cate-174

gory was to capture a broad range of ranking needs175

observed across various subfields. The detailed list176

of samples for each category and the datasets used177

is provided in the Appendix. We also provide an178

example for each condition category in Table 1.179

Positional: We define positional conditions as180

the ones that explicitly requests the placement of an 181

item in a specific position within the ranking. Previ- 182

ous research (Srivastava et al., 2022) has typically 183

focused on straightforward conditions, such as po- 184

sitioning Item X in Position Y, where LLMs have 185

demonstrated high levels of performance. However, 186

in this work, we opt for more realistic and chal- 187

lenging conditions, such as “Item X should be the 188

last item from the left” aiming to mimic situations 189

where a user’s objective is to modify the perceived 190

importance of certain items by strategically placing 191

them at either the end or the beginning of the list. 192

This setting introduces a greater degree of complex- 193

ity, requiring the model to interpret more nuanced 194

spatial language and apply it accurately within the 195

context of MCR task. This type of condition does 196

not require pre-defined labels for the items. 197

Locational: Locational conditions are defined 198

as conditions that require the placement of items in 199

the ranking based on their geographical attributes. 200

For the token-level category, we compile items and 201

their respective locational labels by extracting pop- 202

ular entities and their objects from the location 203

predicate found in the T-REx benchmark (Elsahar 204

et al., 2018). Additionally, for the paragraph-level 205

category, to encompass a broader range of items, 206

we combine prompts for birth place, death place, 207

country of citizenship, headquarter location, and lo- 208

cation predicates from the T-REx benchmark along 209

with job descriptions from Dice 1 that contain loca- 210

tional labels. 211

Temporal: Temporal conditions are defined as 212

conditions that dictate the placement of items based 213

on their associated dates for specific attributes, such 214

as birthdates. For the token-level category, we con- 215

sider celebrities and their birthdates, sourced from 216

the CACD benchmark (Chen et al., 2014). For the 217

1We extracted the data from https://
www.kaggle.com/datasets/PromptCloudHQ/
us-technology-jobs-on-dicecom
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paragraph-level category, we incorporate a mix of218

job description and their deadlines from Dice and219

paragraphs from SQUAD (Rajpurkar et al., 2016)220

that have a query about a publication date.221

Trait-Based: We characterize trait-based condi-222

tions as those that control the positioning of items223

predominantly based on a physical attribute. For224

the token-level category, we compile items along225

with their size and height information from the226

VEC benchmark (Li et al., 2023). Additionally,227

for the paragraph-level category, we consider Ama-228

zon reviews detailing attributes like size, color, and229

spice variety (Ni et al., 2019; Yang et al., 2022), in230

addition to prompts derived from the genre predi-231

cate in the T-REx benchmark.232

Reason-Based: We define reason-based condi-233

tions as those that necessitate logical/mathematical234

reasoning to determine the correct positioning of235

items, such as deducing the category of an item or236

performing mathematical operations on values of a237

certain attribute in each item. For the token-level238

category, we collect items and their categories from239

the auto-categorization task in Big-Bench (Srivas-240

tava et al., 2022). In the paragraph-level category,241

we sourced items from DROP’s (Dua et al., 2019)242

paragraphs featuring "How Many" questions that243

require mathematical reasoning.244

To develop the MCRank benchmark, we assem-245

ble a collection of datasets, each corresponding to246

one of the two item categories and featuring sam-247

ples with 1, 2, or 3 conditions and sets of 3, 5, or248

7 items, culminating in 18 distinct scenarios. We249

curate the dataset for each scenario through sev-250

eral steps: Initially, for each condition type, we251

compile data and their labels to create 200 sam-252

ples. Each sample includes a condition from that253

category, a randomly arranged set of items, and the254

correct item ranking based on the labels. For the255

positional type conditions, we utilize items from256

the auto-categorization task in Big-Bench for the257

token-level and Amazon reviews for the paragraph-258

level category.259

After assembling 200 samples for each type of260

condition across all scenarios, we introduce addi-261

tional conditions for scenarios requiring more than262

one condition to mimic a realistic setting where263

users specify various conditions. We randomly add264

either a condition to sort items based on character265

counts or a positional condition. In scenarios with266

three conditions, we incorporate both.267

As in (Boutilier, 2013), we consider the users’268

1 Condition 2 Conditions 3 Conditions

T-level 916.7 860.0 797.7
P-level 1000 1000 1000

Table 2: Average number of samples in MCRank bench-
mark per number of conditions for paragraph- (P-level)
and token-level (T-level) items.

priority as extra input, we then explicitly assume 269

they are provided by the users. As described in 270

(Schnabel et al., 2020; Boutilier, 2013), the aim 271

is to discover enough about the user utility func- 272

tion to recommend a good recommendation. Thus, 273

we further assign a “low priority” to the charac- 274

ter count condition, a “medium priority” to each 275

category type condition, and a “high priority” to 276

the extra positional condition. The main usage of 277

assigning priorities is to handle contradictory con- 278

ditions. Moreover, our goal in choosing this spe- 279

cific assignment of conditions and their priorities is 280

to capture the varying priorities a user might have 281

in real-world contexts, as in (Stray et al., 2024). 282

Specifically, we use character count to represent 283

low-priority and easy conditions that a user might 284

inquire about. A medium-priority condition is cov- 285

ered by samples from different categories of condi- 286

tions, while a high-priority condition represents a 287

scenario in which a user asks to place the hard- 288

est/easiest, highest/lowest quality, or most/least 289

qualified item either first (as most important) or 290

last (to be ignored). We believe that this specific 291

form of assignment, along with the 18 scenarios 292

we have created and the randomness/diversity in 293

selecting various conditions, can encompass a wide 294

range of potential conditions posed by users in real- 295

world scenarios. 296

Upon assigning the priorities, we randomize the 297

conditions order, adding another layer of complex- 298

ity to make the task more realistic, and combine 299

the samples from each condition type to form a 300

dataset for each scenario. To maintain clarity, we 301

eliminate samples where multiple items share the 302

same character counts. The statistics of MCRank 303

are presented in Table 2. As indicated, we curated 304

approximately 930 samples on average for each sce- 305

nario. We provide more details and a step by step 306

illustration of MCRank creation in the Appendix. 307

2.2 Extracting, Sorting, and Iteratively 308

Ranking (EXSIR) 309

As shown in Section 4.1, the performance of cur- 310

rent LLMs when tested on the MCRank bench- 311

mark reveals a pronounced decline, particularly 312
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noticeable as the complexity of the task increases313

with additional conditions and items. To address314

this challenge and improve the LLMs’ effective-315

ness, we introduce a novel strategy based on the de-316

composed reasoning method, which meticulously317

breaks down the multi-conditional ranking task into318

several manageable steps.319

The process begins with the extraction of individ-320

ual conditions from a given string, organizing these321

into a coherent list. Following this, we implement322

a sorting mechanism that arranges the conditions323

based on their assigned priorities. This prioritiza-324

tion is crucial for the subsequent step, where these325

sorted conditions are iteratively applied to the list326

of items. In this phase, the item list is iteratively up-327

dated, with each cycle refining the rankings based328

on the current condition being applied. To illustrate329

this process, we provide a visual representation in330

Figure 1, which outlines the EXSIR method’s work-331

flow. Consistency in our approach is maintained by332

using the same LLM across all steps of the EXSIR333

process. To offer further clarity and insight into our334

methodology, detailed descriptions of the prompts335

utilized at each stage are available in the Appendix.336

3 Experimental Details337

Models We evaluate both commercial LLMs,338

GPT-4 (OpenAI, 2023), ChatGPT(Kocoń et al.,339

2023) (both turbo versions), as well as the open-340

source LLMs, Llama3.1-70B (instruct) (Touvron341

et al., 2023) and Mistral (Jiang et al., 2023)342

(Mistral-7B-Instruct-v0.2) on MCRank. To address343

the MCR task, in the base setting, we input the344

string of conditions along with the list of items345

into the prompt, instructing the LLMs to organize346

the list according to the conditions. For paragraph-347

level items, we assign a unique label, "Item-K,"348

to each item. The task for the model is then to349

rank the items but to output the sequence of sorted350

labels—Item-K—instead of the items themselves.351

The details of all prompts utilized in this study352

are provided in the Appendix. In designing the353

prompts, we aim to use similar wording to previous354

ranking works while avoiding framing the task as a355

standard document monotonic-ranking task.356

Evaluation Metric Given that the MCR task de-357

fined in this paper represents a broader and more358

complex variation of previously defined ranking359

tasks—where, unlike those tasks, the significance360

or relevance of items in the gold ranking doesn’t361

necessarily diminish in a linear order—traditional362

ranking metrics like MRR or nDCG (Zangerle and 363

Bauer, 2022) are not suitable for our context. Con- 364

sequently, we evaluate model performance on the 365

MCR task using exact match accuracy, where a 366

completely correct ranking earns a score of 1, and 367

an incorrect one receives 0. Additionally, we em- 368

ploy an averaged accuracy metric, calculating the 369

mean number of items correctly positioned in each 370

sample to provide a nuanced view of the models’ 371

ranking abilities. 372

4 Experiments 373

In this section, we explore the effectiveness of 374

LLMs and the influence of the EXISR method on 375

the MCR task using the MCRank benchmark. Our 376

analysis begins with an evaluation of the models’ 377

performance on MCRank. Subsequently, we delve 378

into a detailed breakdown of performance across 379

different categories to assess each model’s capabil- 380

ities. To understand the impact of the decomposi- 381

tion process on EXSIR’s functionality, we examine 382

the accuracy of the decomposition step for each 383

model. Lastly, to underscore the importance of 384

decomposed reasoning through multiple steps, we 385

compare our method’s performance against zero- 386

shot CoT prompting and existing ranking models. 387

4.1 Ranking on MCRank Benchmark 388

The accuracy and average accuracy of LLMs with 389

and without EXSIR are depicted in Figures 2 and 3. 390

These figures reveal that while all evaluated LLMs 391

exhibit significant accuracy with a single condition 392

and three items, their performance rapidly declines 393

towards zero as the number of conditions rises to 394

three and the items to seven. In overall, there is 395

a consistent pattern observed between token-level 396

and paragraph-level items, where a noticeable de- 397

crease in performance occurs as we transition from 398

the token to the paragraph setting. 399

Notably, EXSIR significantly and consistently 400

enhances model performance across various set- 401

tings, with the most pronounced improvement ob- 402

served in GPT-4, likely due to its superior perfor- 403

mance in the decomposition step (further discussed 404

in Section 4.3). Additionally, a similar trend is 405

noticeable in both accuracy and average accuracy 406

across the models. Intriguingly, despite the con- 407

vergence of accuracy to zero in more complex sce- 408

narios, the average accuracy remains substantial, 409

highlighting the fragility of accuracy in the MCR 410

setting which is aligned with previous works on the 411
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(a) Accuracy (b) Average Accuracy

Figure 2: LLMs performance on MCRank for token-level items.

impact of metrics sensitivity in LLMs performance412

on reasoning tasks (Schaeffer et al., 2024).413

4.2 Per-Category Breakdown414

A detailed breakdown of LLMs’ performance415

across different condition categories on the416

MCRank benchmark is available in the Appendix.417

Notably, performance varies across condition cat-418

egories for each setting. In token-level scenarios,419

models excel in reason-based conditions, whereas,420

in paragraph-level settings, they perform better in421

locational conditions but exhibit comparable re-422

sults in trait-based conditions. This variation is423

attributed to the increased complexity of reason-424

based conditions in paragraph settings and the ex-425

plicit provision of label information in trait-based426

and locational conditions, simplifying these tasks.427

However, all models struggle with the positional428

conditions, especially with conditions like “item429

[x] should be the last from the right” and “the last430

item in the sorted list should appear in the first431

place.” This struggle is likely due to the conflict432

between these conditions and the autoregressive na-433

ture of the models, which necessitates a complete434

understanding of the final ranking before even gen-435

erating the initial item.436

4.3 Accuracy of Decomposition437

Now that we have seen how EXSIR improve LLMs’438

performance, one remaining question is that how439

the accuracy of the decomposition step influences440

the overall performance. We detail the accuracy441

of LLMs in extracting and sorting conditions (de-442

compostion step) in Table 3. The result indi-443

cates that GPT-4 outperforms other LLMs, whereas444

Mistral’s accuracy decreases when transitioning445

Models Token Paragraph

2 cond 3 cond 2 cond 3 cond

Mistral 82.9 81.5 70.3 66.6
Llama3.1 91.0 87.2 88.1 86.0
ChatGPT 83.1 79.6 82.3 79.5
GPT-4 97.3 96.7 91.3 85.6

Table 3: LLMs accuracy in extracting and sorting the
conditions (decomposition part).

to paragraph-level, correlating with its EXSIR- 446

augmented ranking performance in such scenarios. 447

These findings, coupled with the LLMs’ per- 448

formances in previous sections, suggest that for 449

EXSIR to significantly influence model perfor- 450

mance, a high accuracy in the decomposition step 451

is crucial, along with at least an adequate perfor- 452

mance in ranking items under a single condition. 453

Consequently, to enhance ranking performance 454

while maintaining the efficiency of open-source 455

models, one potential strategy could be employing 456

a more advanced model like GPT-4 for the decom- 457

position step and utilizing less powerful models 458

for the ranking process. The investigation of such 459

strategies is a promising avenue for future research. 460

4.4 Zero-shot CoT vs Decomposed Reasoning 461

So far, we have observed how EXSIR enhances 462

LLM performance and the correlation between the 463

accuracy of the decomposition step and their over- 464

all effectiveness. However, one might question if 465

the multi-step decomposition reasoning is essential. 466

Could a similar performance level be achieved by 467

integrating the decomposition steps into a single 468

prompt, akin to the zero-shot Chain-of-Thought 469

(CoT) (Wei et al., 2022) approach? This section 470

narrows the focus to GPT-4, comparing its perfor- 471
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(a) Accuracy (b) Average Accuracy

Figure 3: LLMs performance on MCRank for paragraph-level items.

Figure 4: Evaluating the impact of EXSIR against zero-shot CoT prompting for token-level items. We additionally
report ColBERT and RankGPT performances as representatives of existing rankers.

mance using EXSIR against zero-shot CoT-style472

prompting. We provide an example for CoT-based473

prompt in the Appendix.474

The accuracy of GPT-4, GPT-4 with CoT and475

with EXSIR on MCRank, is depicted in Figures 4476

and 5. For token-level items, the figures demon-477

strate that while CoT prompting boosts the base478

performance of GPT-4, there remains a notable per-479

formance disparity between EXICR and CoT, high-480

lighting the value of multi-step reasoning. In con-481

trast, for paragraph-level items, incorporating CoT482

instructions seems to decrease the base model’s483

performance, possibly due to the task complexity484

and the challenge of adhering to the provided CoT485

instructions for GPT-4.486

4.5 Existing Rankers on MCRank487

In this section, we reexamine our preliminary hy-488

pothesis that the MCR task poses inherent chal-489

lenges for existing rankers. To evaluate this, we uti-490

lize ColBERT (Khattab and Zaharia, 2020), trained 491

on the MS MARCO passage ranking task (Nguyen 492

et al., 2016), as a representative for encoder-based 493

ranking models. We also consider RankGPT (based 494

on GPT-4) (Sun et al., 2023), which achieves either 495

state-of-the-art or near state-of-the-art performance 496

on existing benchmarks. The accuracy of ColBERT 497

and RankGPT on MCRank are illustrated in Fig- 498

ures 4 and 5. These figures indicate that ColBERT’s 499

performance is significantly inferior compared to 500

GPT-4 (as well as the other LLMs under investi- 501

gation), underscoring the task’s complexity and 502

the potential limitations of smaller ranking mod- 503

els in tackling such challenges in multi-conditional 504

setting. Moreover, since RankGPT is designed to 505

monotonically rank documents based on a given 506

query, it outperforms the GPT-4 baseline when only 507

one condition is present. However, as the number 508

of conditions increases, its performance becomes 509

comparable to our vanilla GPT-4 baseline, high- 510
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Figure 5: Evaluating the impact of EXSIR against zero-shot CoT prompting for paragraph-level items. We
additionally report ColBERT and RankGPT performances as representatives of existing rankers.

lighting the complexity of the MCRank. Based511

on these results, integrating RankGPT in the rank-512

ing step of EXSIR could potentially enhance the513

performance, which we leave to future research.514

5 Related Work515

LLMs have achieved significant success in tackling516

ranking tasks in recent years. However, despite this517

progress and the broad applicability of ranking in518

real-world scenarios, these tasks primarily focus519

on ranking passages in response to a specific query.520

Ranking with LLMs In recent years, LLMs521

have become pivotal in addressing ranking related522

tasks. Initially focusing on encoder-based rankers523

(Nogueira et al., 2019; Khattab and Zaharia, 2020),524

the rapid advancement of autoregressive LLMs has525

led to the development of methodologies that uti-526

lize these models as rankers, achieving unparalleled527

performance across various benchmarks (Zhuang528

et al., 2023a; Qin et al., 2023). However, despite529

these advances, the majority of LLM-based rank-530

ing efforts have concentrated on ordering extensive531

lists of passages based on a query, often overlook-532

ing the diverse applications of ranking in real-world533

scenarios. Our work closely aligns with develop-534

ments in recommendation systems, such as the con-535

ditional methods proposed by Hou et al. (2024),536

which only considers a limited concept of condi-537

tion in regard to variety and complexity compared538

to our notion of multi-conditional ranking.539

Decomposed Reasoning with LLMs As LLMs540

grow stronger, decomposed reasoning has emerged541

as a fundamental strategy to enhance their capa-542

bilities by segmenting complex tasks into smaller,543

more manageable components. This decomposi-544

tion can be straightforward, utilizing a single LLM, 545

as seen in approaches like Chain-of-Thought (Wei 546

et al., 2022), Tree-of-Thought (Yao et al., 2024), 547

and Self-Verification (Weng et al., 2022). Alter- 548

natively, it can involve more complex interactions 549

among multiple models within a multi-agent sys- 550

tems (Xi et al., 2023; Guo et al., 2024). Prior 551

research has successfully integrated decomposed 552

reasoning into various tasks, including question 553

answering (Dua et al., 2022), retrieval-augmented 554

generation (RAG) (Asai et al., 2023), and mathe- 555

matical reasoning (Qi et al., 2023). 556

6 Conclusion 557

We present an in-depth exploration of the multi- 558

conditional ranking (MCR) task, a critical yet un- 559

derexplored aspect of ranking task in real-world 560

applications. introducing MCRank benchmark, we 561

have highlighted the challenges LLMs face when 562

tasked with ranking a small set of items under a va- 563

riety of complex and sometimes conflicting condi- 564

tions. Our investigation reveals a significant perfor- 565

mance drop in LLMs as the number of conditions 566

and items increases. To address this, we proposed 567

a novel decomposed reasoning approach, EXSIR, 568

which significantly boosts LLMs performance on 569

the MCRank, demonstrating up to a 12% improve- 570

ment in accuracy. We also analyze the performance 571

of LLMs across various condition categories and 572

the effectiveness of the decomposition step in en- 573

hancing accuracy. Finally, by contrasting our ap- 574

proach with other existing methodologies such as 575

CoT and existing rankers, we have illustrated the 576

advantages of EXSIR and the intricate nature of 577

the MCR task. 578
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7 Limitations579

While this study advances our understanding of580

multi-conditional ranking with LLMs, several limi-581

tations should be take into consideration:582

Limited Scope of LLMs: Our research focused583

on four specific LLMs, which, while prominent, do584

not encompass the full spectrum of models avail-585

able in the field. This narrow focus may not fully586

capture the diversity of capabilities present in the587

broader landscape of large language models.588

Model Type Restriction: We limited our ex-589

ploration to autoregressive models and encoder-590

type rankers. Potentially, encoder-decoder models,591

known for their robust performance in a variety of592

NLP tasks, might exhibit different behaviors and593

capabilities when applied to the MCR task. We594

leave the exploration of these type of LLMs to fu-595

ture research.596

EXSIR Efficiency: Our proposed method597

EXSIR, while effective in enhancing performance598

on MCR tasks, presents notable challenges in terms599

of efficiency and cost. As a multi-step ranking pro-600

cess, EXSIR inherently is more time-consuming601

and costly compared to simpler, single-step meth-602

ods. This issue becomes more pronounced when603

deploying EXSIR at scale in real-world applica-604

tions. Optimizing the efficiency of EXSIR, without605

compromising its performance benefits, remains an606

open area for future research.607

Single LLM for Decomposition and Ranking:608

In our methodology, the same LLM is used for609

both the decomposition and ranking steps. This610

approach might not be optimal, as different models611

could have varying strengths, with some excelling612

at decomposition and others at ranking. A more613

nuanced strategy could involve a multi-agent sys-614

tem, where a planner identifies and decomposes615

the conditions, and then divide the ranking tasks616

to different rankers based on each condition. This617

division of labor could enhance the overall effec-618

tiveness of the multi-conditional ranking process.619

Interactive Ranking Solution: Our current620

model does not incorporate user interaction, which621

could be a significant limitation. An interactive622

ranking system, where the user engages in a dia-623

logue with the system to refine the ranking itera-624

tively, could offer a more dynamic and user-tailored625

solution. This approach would allow the system626

to adapt to user feedback in real-time, potentially627

leading to more accurate and satisfactory ranking628

outcomes.629

Addressing these limitations in future work 630

could broaden our understanding of multi- 631

conditional ranking, improve the performance and 632

applicability of ranking systems, and offer a more 633

nuanced perspective on the integration of LLMs in 634

such tasks. 635
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A MCRank Details838

In this section, we first outline the specifics of the839

datasets from which we extract items’ label to con-840

struct MCRank. Subsequently, we present more841

details on how we create MCRank and provide842

a comprehensive list of the various conditions in-843

cluded in the MCRank benchmark.844

A.1 Benchmark Used To Create MCRank 845

For token-level items, we utilized the following 846

datasets: The T-REx benchmark (Elsahar et al., 847

2018), which includes a subset of Wikipedia triples 848

aligned with corresponding Wikipedia abstracts, 849

featuring a comprehensive collection of 11 million 850

triples and 3.09 million Wikipedia abstracts across 851

more than 600 unique Wikidata predicates. The 852

CACD benchmark (Chen et al., 2014), which com- 853

prises images and details such as the birthdate of 854

2,000 celebrities. The VEC benchmark (Li et al., 855

2023), designed to test LLMs’ understanding of 856

visual and embodied concepts, provides physical 857

attributes like size and height for a range of entities. 858

Additionally, the auto-categorization task in Big- 859

Bench (Srivastava et al., 2022) involves predicting 860

the category to which a given list of items belongs. 861

For paragraph-level items, along with T-REx, 862

we incorporated the following datasets: A collec- 863

tion of 4.6 million job descriptions from Dice2, 864

each detailing various attributes such as work loca- 865

tion and application deadline. The SQUAD dataset 866

(Rajpurkar et al., 2016), a reading comprehension 867

dataset composed of questions based on Wikipedia 868

articles, where each question’s answer is a text 869

segment from the related passage. We also utilized 870

Amazon reviews that contain attributes such as size, 871

color, and spice variety (Ni et al., 2019; Yang et al., 872

2022). Additionally, we used the DROP dataset 873

(Dua et al., 2019), a more complex reading compre- 874

hension dataset, where many questions necessitate 875

reasoning about the information in the correspond- 876

ing passage to find the answer. 877

A.2 MCRank Creation Details 878

We provided a step-by-step illustration of MCRank 879

creation in Figure 6. For each scenario in MCRank, 880

we began with 200 samples for each category, utiliz- 881

ing extracted attributes from the original datasets 882

to establish the golden ranking of items. Addi- 883

tional conditions were then applied on top of each 884

category-based condition, necessitating a recalcula- 885

tion of the gold ranking to accommodate these aug- 886

mented conditions. Throughout this process, we 887

removed some samples where the addition of extra 888

conditions resulted in non-unique golden rankings. 889

Consequently, the average number of samples per 890

category in MCRank ranges from 159 to 200. 891

2The data was extracted from https://
www.kaggle.com/datasets/PromptCloudHQ/
us-technology-jobs-on-dicecom
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Figure 6: Step-by-step illustration of MCRank creation.

A.3 Conditions in MCRank892

The detailed list of conditions included in the893

MCRank benchmark is presented in Table 4.894

B Details of Prompts895

The prompts utilized for ranking token-level and896

paragraph-level items are detailed in Prompts B.1897

and B.2, respectively. Additionally, the prompts898

employed for the extraction and sorting of condi-899

tions are outlined in Prompts B.3 and B.4. Finally,900

we provide an example of zero-shot CoT-based901

prompt for token-level items in Prompt C.1.902

Token-level Ranking Prompt

Given following conditions: “[string of
conditions]”, sort the list of items “[string
of items]” from left to right. Do not provide
any explanation.

903

Paragraph-level Ranking Prompt

Given following conditions: “[string of
conditions]”, sort the items from left to right.
Do not provide any explanation and only provide
a permutation of Item-1, ..., Item-k enter
separated as the output.
Item-1: [item-1]
Item-2: [item-1]
...

904

Condition Extracting Prompt

Given the conditions, extract the conditions
into numbered items separated by enter. Do not
provide any explanation and do not modify the
conditions.
Conditions: [string of conditions]

905

Condition Sorting Prompt

Given the conditions, sort these conditions in
the order that they should be applied to a list
of items sequentially based on their priority
to satisfy all their requirements as much as
possible from the lowest priority to the highest
priority. Do not provide any explanation and do
not modify the conditions.
Conditions: [list of extracted conditions]

906

C Detailed Breakdown of Ranking 907

performance on MCRank 908

A detailed breakdowns of models performance on 909

MCRank, segmented by the category of conditions 910

and items, are presented in Tables 5, 6, 7, 8, 9, and 911

10. 912

Token-level CoT Ranking Prompt

Given following conditions: “[string of
conditions]”, sort the list of items “[string
of items]” from left to right. Do not provide
any explanation.
To sort the items, first extract the conditions,
then sort the conditions based on their priority.
Finally, apply the sorted conditions on the list
of items iteratively updating their order in
each iteration. Only report the final sorted
list of items.

913
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Type Conditions

Po
si

tio
n

1) Item “[X]” should be the last from left
2) Item “[X]” should be the last from right
3) First item in the final sorted order should appear in the end
4) First item in the final sorted order should appear in the beginning
5) Last item in the final sorted order should appear in the end
6) Last item in the final sorted order should appear in the beginning

L
oc

at
io

n 7) Items that are in “[X]” should appear at the beginning
8) Items that are in “[X]” should appear at the end
9) Items that have “[Y]” in “[X]” should appear at the beginning
10) Items that that have “[Y]” in “[X]” should appear at the end

Te
m

po
ra

l

11) Sort the items based on their birthday from the oldest to the newest
12) Item that born before “[X]” should appear at the end
13) Item that born after “[X]” should appear at the beginning
14) Sort items based on their deadline from the first to the last
15) Item that has a deadline before “[X]” should appear at the end
16) Item that has a deadline after “[X]” should appear at the beginning
17) Sort items based on mentioned publication date from the first to the last
18) Item that has a publication date before “[X]” should appear at the end
19) Item that has a publication date after “[X]” should appear at the beginning

Tr
ai

t

20) Sort the items based on their size from the smallest to the largest
21) Sort the items based on their height from the shortest to the tallest
22) Item with a size of less than “[X]” should appear at the end
23) Item with a size of more than “[X]” should appear at the beginning
24) Sort the items based on their size from the smallest to the largest
25) Item that is a “[X]” should appear at the end
26) Item that is a “[X]” should appear at the beginning
27) Item with a “[X]” color should appear at the end
28) Item with a “[X]” color should appear at the beginning
29) Item with the “[X]” genre should appear at the end
30) Item with the “[X]” genre should appear at the beginning
31) Sort the items based on their character count from the smallest to largest

R
ea

so
n

32) Items in the category “[X]” should appear at the beginning
33) Items in the category “[X]” should appear at the end
34) Sort items based on “[X]” from the smallest to the largest
35) Items that has the largest “[X]” should appear at the beginning
36) Items that has the smallest “[X]” should appear at the end

Table 4: List of conditions in MCRank. For instance, in location-based conditions, “[Y]” could represent “country
of citizenship”. In trait-based conditions, “[X]” might denote “Spice Variety”. Similarly, in reason-based conditions,
“[X]” could exemplify “longest yards of touchdown”.
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Models 3 items 5 items 7 items

ACC Avg ACC ACC Avg ACC ACC Avg ACC
G

PT
-4

Positional 38.5 38.5 44.5 44.5 39.5 39.5
Locational 83.2 83.2 49.2 49.2 81.4 81.4
Temporal 72.0 75.7 53.5 66.1 46.5 57.1
Trait-based 88.0 92.0 76.0 90.1 67.5 89.5
Reason-based 91.5 92.5 88.5 88.5 86.5 86.5
All 74.4 76.2 63.5 69.3 61.5 69.1

C
ha

tG
PT

Positional 39.5 39.5 44.5 44.5 39.0 39.0
Locational 74.0 74.0 51.7 51.7 69.5 69.5
Temporal 63.5 67.0 35.0 47.0 27.5 36.6
Trait-based 36.5 53.0 20.0 51.3 3.0 35.6
Reason-based 84.5 85.3 76.5 76.5 76.5 76.5
All 59.2 63.4 45.0 54.4 38.8 48.5

L
la

m
a3

.1

Positional 42.0 42.0 47.0 47.0 46.0 46.0
Locational 87.2 87.2 48.3 48.3 83.0 83.0
Temporal 66.5 69.6 50.5 60.3 45.0 55.2
Trait-based 78.0 85.0 40.0 72.7 38.5 77.9
Reason-based 94.0 94.8 94.0 94.0 94.0 94.0
All 73.1 75.4 57.7 69.3 56.6 65.9

M
is

tr
al

Positional 31.0 31.0 18.0 18.0 18.5 18.5
Locational 45.1 45.1 54.2 54.2 37.3 37.3
Temporal 41.5 45.3 29.5 34.8 23.5 29.3
Trait-based 53.0 68.9 20.5 55.0 5.0 38.0
Reason-based 53.5 57.2 46.5 46.5 47.5 47.5
All 44.8 49.6 31.9 40.6 24.6 33.6

G
PT

-4
-O

ur
s Positional 38.7 38.7 44.7 44.7 39.7 39.7

Locational 83.0 83.0 48.9 48.9 81.2 81.2
Temporal 72.2 75.6 53.4 65.9 46.3 57.0
Trait-based 87.6 91.7 76.1 90.0 67.3 89.2
Reason-based 91.3 92.3 88.4 88.4 86.3 86.3
All 74.2 76.0 63.3 69.2 61.4 68.9

C
ha

tG
PT

-O
ur

s Positional 38.9 38.9 43.8 43.8 39.3 39.3
Locational 73.7 73.7 51.3 51.3 69.8 69.8
Temporal 63.0 66.6 34.2 46.3 27.3 36.3
Trait-based 36.3 52.7 19.4 51.0 2.7 35.1
Reason-based 84.3 85.1 76.2 76.2 76.1 76.1
All 58.8 63.0 44.6 54.3 38.5 48.2

L
la

m
a3

.1
-O

ur
s Positional 41.0 41.0 46.1 46.1 46.5 46.5

Locational 85.7 85.7 49.5 49.3 84.4 84.4
Temporal 67.8 71.3 52.2 61.8 43.5 53.4
Trait-based 77.3 84.0 39.2 71.9 36.7 76.1
Reason-based 93.1 93.5 95.0 95.0 92.6 92.6
All 72.6 74.8 58.1 69.7 56.0 65.2

M
is

tr
al

-O
ur

s Positional 29.5 29.5 16.8 16.8 17.8 17.8
Locational 44.6 44.6 53.3 53.3 36.4 36.4
Temporal 42.5 46.8 28.5 33.0 22.5 27.8
Trait-based 51.3 66.6 21.8 56.7 5.6 39.4
Reason-based 52.5 55.8 45.4 45.4 46.5 46.5
All 44.0 48.7 31.4 40.0 24.1 33.1

Table 5: Detailed breakdown of models performance for token-level items and 1 condition.
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Models 3 items 5 items 7 items

ACC Avg ACC ACC Avg ACC ACC Avg ACC
G

PT
-4

Positional 30.6 33.9 20.0 34.1 6.7 25.2
Locational 36.3 41.7 40.2 57.1 39.2 60.2
Temporal 28.5 39.8 11.5 25.9 10.5 23.6
Trait-based 19.0 28.2 17.5 35.1 3.5 24.1
Reason-based 40.5 48.0 27.8 46.0 15.4 44.6
All 30.8 38.2 21.5 37.7 10.5 30.0

C
ha

tG
PT

Positional 25.9 31.6 13.0 27.0 7.3 22.4
Locational 31.6 34.1 16.9 29.0 19.6 41.7
Temporal 32.5 38.9 20.0 36.1 18.5 32.2
Trait-based 19.0 30.3 7.0 27.1 0.5 24.7
Reason-based 35.5 39.8 24.7 37.9 16.2 36.0
All 28.8 35.0 15.9 31.5 10.8 29.2

L
la

m
a3

.1

Positional 39.4 35.4 11.3 30.5 2.7 22.5
Locational 44.3 51.9 12.5 38.0 11.7 34.3
Temporal 38.0 36.1 11.0 23.7 10.5 21.2
Trait-based 29.0 42.6 15.0 42.4 4.5 31.5
Reason-based 42.5 52.9 19.7 41.2 5.6 37.0
All 34.3 43.5 13.8 34.7 6.3 27.7

M
is

tr
al

Positional 25.9 35.2 9.7 25.8 6.7 18.8
Locational 32.9 43.2 19.6 36.1 17.6 33.0
Temporal 28.5 39.3 11.5 25.3 7.0 18.7
Trait-based 23.5 40.7 4.0 32.4 2.5 23.8
Reason-based 32.0 42.0 10.5 27.3 8.1 26.5
All 28.4 40.0 10.2 28.8 6.6 22.3

G
PT

-4
-O

ur
s Positional 32.5 35.8 27.0 39.1 20.7 36.7

Locational 43.9 49.1 50.0 60.2 35.3 55.7
Temporal 25.5 37.0 17.5 34.4 10.0 27.1
Trait-based 61.0 67.9 43.0 60.7 17.5 52.1
Reason-based 46.5 52.6 37.3 52.1 22.0 51.0
All 41.8 48.5 33.4 48.1 18.2 41.9

C
ha

tG
PT

-O
ur

s Positional 39.0 43.6 27.0 43.7 11.7 33.4
Locational 42.7 50.3 23.2 43.2 17.6 34.9
Temporal 42.5 52.0 19.5 36.9 18.5 33.4
Trait-based 29.5 45.6 5.5 30.6 1.0 28.5
Reason-based 40.5 48.7 25.3 40.4 13.8 36.9
All 38.7 48.0 19.3 38.1 11.9 32.4

L
la

m
a3

.1
-O

ur
s Positional 40.1 47.5 25.9 46.3 20.1 38.6

Locational 46.7 53.4 34.8 50.4 13.7 41.8
Temporal 20.0 30.0 11.0 27.8 7.5 22.5
Trait-based 43.0 54.8 19.5 44.5 12.5 41.4
Reason-based 47.0 55.4 22.8 45.4 13.8 47.8
All 39.1 48.1 21.5 41.9 13.2 36.8

M
is

tr
al

-O
ur

s Positional 35.5 44.3 18.9 31.6 14.5 26.9
Locational 25.1 37.5 20.5 34.1 19.6 29.1
Temporal 25.5 41.0 17.0 32.0 18.0 28.0
Trait-based 35.0 52.0 8.5 32.1 2.0 26.0
Reason-based 33.5 44.1 18.5 36.5 10.6 28.0
All 31.3 43.9 16.5 33.1 12.1 27.7

Table 6: Detailed breakdown of models performance for token-level items and 2 conditions.
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Models 3 items 5 items 7 items

ACC Avg ACC ACC Avg ACC ACC Avg ACC
G

PT
-4

Positional 9.0 26.5 1.8 26.1 1.3 22.6
Locational 28.1 38.6 12.9 38.5 5.8 33.7
Temporal 29.0 38.6 2.0 26.5 0.0 22.9
Trait-based 31.0 40.9 11.5 34.8 3.0 31.3
Reason-based 28.0 38.3 14.1 36.6 8.5 34.3
All 25.1 37.6 7.6 31.6 2.3 27.1

C
ha

tG
PT

Positional 12.2 26.8 4.2 24.5 0.0 24.4
Locational 17.0 26.3 14.8 38.0 3.8 30.8
Temporal 18.0 30.7 4.0 27.9 0.0 23.0
Trait-based 19.5 30.2 3.0 25.4 0.0 22.6
Reason-based 21.5 29.1 9.4 31.1 4.2 28.6
All 17.7 28.7 6.0 28.1 0.6 24.3

L
la

m
a3

.1

Positional 10.0 31.0 3.6 29.2 0.0 26.2
Locational 25.7 34.8 5.5 31.4 0.0 21.4
Temporal 24.5 37.8 2.5 19.3 0.5 17.4
Trait-based 23.5 38.3 8.5 30.3 4.5 29.5
Reason-based 28.0 38.4 10.3 34.1 2.1 31.4
All 22.3 36.1 5.7 27.9 1.6 24.5

M
is

tr
al

Positional 13.8 28.0 1.2 18.0 1.3 12.9
Locational 16.7 31.9 4.6 24.8 1.9 16.2
Temporal 16.0 32.8 2.5 23.9 4.0 18.3
Trait-based 14.0 32.9 2.5 25.2 1.5 22.6
Reason-based 20.5 35.3 1.9 21.1 0.0 17.2
All 16.2 32.2 2.4 22.7 2.1 18.1

G
PT

-4
-O

ur
s Positional 8.5 24.5 3.6 19.5 0.0 17.0

Locational 35.6 45.6 33.3 51.3 17.3 40.7
Temporal 33.5 44.6 8.5 35.0 2.5 29.2
Trait-based 48.0 52.9 29.5 48.4 17.0 46.1
Reason-based 43.0 50.7 24.5 43.9 23.4 52.3
All 34.0 43.9 18.5 38.7 9.0 34.0

C
ha

tG
PT

-O
ur

s Positional 4.8 21.9 1.8 20.1 1.3 19.2
Locational 22.2 36.8 12.0 39.4 3.8 28.6
Temporal 31.5 44.6 3.5 27.3 0.5 21.6
Trait-based 31.5 43.7 5.0 31.5 0.5 28.1
Reason-based 26.5 40.8 6.6 30.9 6.3 29.5
All 23.7 38.1 5.2 28.4 1.4 23.3

L
la

m
a3

.1
-O

ur
s Positional 5.2 25.5 0.0 20.8 0.0 18.1

Locational 33.3 44.0 19.4 40.1 3.8 28.8
Temporal 30.0 42.9 7.5 31.8 2.0 25.0
Trait-based 44.0 52.3 22.0 44.6 18.0 46.2
Reason-based 36.0 43.5 19.8 36.0 10.6 40.1
All 29.8 41.8 12.9 34.5 7.1 31.3

M
is

tr
al

-O
ur

s Positional 15.3 33.1 5.5 22.7 5.2 16.5
Locational 17.0 35.2 9.3 21.7 9.6 25.9
Temporal 17.0 34.1 6.5 23.6 5.0 15.2
Trait-based 15.5 33.6 3.0 20.2 1.0 17.8
Reason-based 11.5 28.4 7.5 21.6 4.3 17.2
All 15.2 32.8 5.8 21.8 4.5 17.3

Table 7: Detailed breakdown of models performance for token-level items and 3 conditions.
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Models 3 items 5 items 7 items

ACC Avg ACC ACC Avg ACC ACC Avg ACC
G

PT
-4

Positional 44.0 44.0 46.0 46.0 43.5 43.5
Locational 96.5 96.5 92.5 92.5 95.5 95.5
Temporal 58.0 64.8 49.0 54.2 51.5 55.9
Trait-based 85.5 87.7 82.0 82.5 77.0 77.8
Reason-based 28.0 36.0 22.0 27.9 14.5 17.4
All 62.4 65.8 58.3 60.6 56.4 58.0

C
ha

tG
PT

Positional 25.5 25.5 26.5 26.5 26.5 26.5
Locational 59.5 59.5 49.5 49.5 43.5 43.5
Temporal 38.0 42.5 17.0 25.9 12.0 16.4
Trait-based 60.0 61.2 39.5 40.4 45.5 46.6
Reason-based 32.5 38.2 13.5 15.7 12.0 14.7
All 43.1 45.4 29.2 31.6 27.9 29.6

L
la

m
a3

.1

Positional 40.5 40.5 44.0 44.0 42.0 42.0
Locational 96.5 96.5 97.0 97.0 95.0 95.0
Temporal 62.0 65.6 46.0 54.0 29.5 40.9
Trait-based 85.0 86.3 79.0 81.1 73.0 74.7
Reason-based 37.5 42.4 19.0 25.4 15.0 20.2
All 64.3 66.3 57.0 60.3 50.9 54.5

M
is

tr
al

Positional 40.5 40.5 29.5 29.5 33.5 33.5
Locational 41.5 41.5 41.0 41.0 33.0 33.0
Temporal 26.0 33.0 13.5 21.5 9.5 14.3
Trait-based 48.5 49.8 42.5 44.7 35.0 35.6
Reason-based 26.0 32.2 9.0 13.6 11.5 14.6
All 36.5 39.4 27.1 30.1 24.5 26.2

G
PT

-4
-O

ur
s Positional 43.3 43.3 46.4 46.4 43.6 43.6

Locational 97.1 97.1 93.1 93.1 96.2 96.2
Temporal 57.2 63.9 48.4 53.7 50.9 55.0
Trait-based 84.6 86.6 81.3 81.6 78.0 76.8
Reason-based 27.2 34.9 21.5 27.0 13.8 16.4
All 61.9 65.2 58.1 60.3 56.1 57.6

C
ha

tG
PT

-O
ur

s Positional 24.5 24.5 26.2 26.2 25.8 25.8
Locational 60.7 60.7 48.6 48.6 44.1 44.1
Temporal 39.9 44.5 18.0 27.4 13.1 17.6
Trait-based 58.3 59.2 38.3 38.9 44.5 45.1
Reason-based 31.0 36.3 12.5 14.7 11.4 13.5
All 42.9 45.1 29.1 31.5 27.8 29.3

L
la

m
a3

.1
-O

ur
s Positional 40.0 40.0 43.0 43.0 42.0 42.0

Locational 97.5 97.5 97.5 97.5 98.0 98.0
Temporal 60.0 63.3 47.0 52.7 32.0 40.4
Trait-based 87.5 88.5 80.5 82.3 70.5 72.2
Reason-based 34.5 40.0 19.5 28.3 20.0 25.4
All 63.9 65.8 57.5 60.7 52.5 55.6

M
is

tr
al

-O
ur

s Positional 39.3 39.3 30.5 30.5 34.2 34.2
Locational 42.2 42.2 41.5 41.5 33.0 33.0
Temporal 25.0 31.8 12.5 20.1 8.5 12.8
Trait-based 47.5 47.8 42.5 43.4 34.5 34.5
Reason-based 24.7 29.8 9.0 12.4 10.8 13.8
All 35.7 38.6 26.8 29.6 24.2 25.7

Table 8: Detailed breakdown of models performance for paragraph-level items and 1 condition.

17



Models 3 items 5 items 7 items

ACC Avg ACC ACC Avg ACC ACC Avg ACC
G

PT
-4

Positional 27.5 36.1 14.0 32.0 6.5 30.0
Locational 42.0 51.9 21.0 39.3 18.0 37.6
Temporal 26.5 39.1 11.5 32.4 13.0 29.9
Trait-based 40.0 49.6 27.0 44.6 14.5 30.7
Reason-based 24.5 38.2 12.0 30.8 7.5 24.2
All 32.1 43.0 17.1 35.8 11.9 30.5

C
ha

tG
PT

Positional 19.0 25.7 8.5 20.9 6.0 18.7
Locational 14.0 24.2 7.5 23.5 6.0 19.2
Temporal 15.0 26.3 6.0 19.0 1.0 11.9
Trait-based 23.0 32.5 10.5 27.7 5.0 19.4
Reason-based 14.0 27.1 2.5 16.4 1.5 10.9
All 17.0 27.1 7.0 21.5 3.9 16.0

L
la

m
a3

.1

Positional 25.0 36.2 12.5 30.2 6.0 24.5
Locational 41.0 52.5 25.5 41.9 18.5 36.1
Temporal 26.5 42.2 11.0 30.2 10.0 26.4
Trait-based 34.5 45.8 24.0 39.8 13.0 27.8
Reason-based 24.0 36.4 9.5 26.4 4.0 21.1
All 30.2 42.6 16.5 33.7 10.3 27.2

M
is

tr
al

Positional 25.0 36.8 11.5 26.5 3.5 19.2
Locational 17.0 31.6 5.0 23.3 6.0 18.4
Temporal 9.5 26.7 6.5 23.0 4.0 19.5
Trait-based 18.0 34.3 7.5 26.4 7.0 20.8
Reason-based 8.5 26.0 4.5 19.6 3.0 16.5
All 15.6 31.1 7.0 23.8 4.7 18.9

G
PT

-4
-O

ur
s Positional 32.0 43.9 11.5 34.9 7.0 31.5

Locational 62.5 68.8 33.0 53.7 27.5 48.7
Temporal 44.0 55.2 17.5 37.8 10.0 33.3
Trait-based 53.0 59.6 28.0 50.6 22.5 42.8
Reason-based 30.5 43.2 11.5 28.6 7.5 24.0
All 44.4 54.1 20.3 41.1 14.9 36.1

C
ha

tG
PT

-O
ur

s Positional 20.0 30.1 9.5 22.4 5.0 17.7
Locational 22.0 34.3 11.5 31.4 6.5 23.0
Temporal 22.5 38.9 4.5 23.4 3.5 19.0
Trait-based 27.0 42.6 12.0 30.4 9.0 24.6
Reason-based 18.0 34.3 7.0 24.8 4.0 17.5
All 21.9 36.1 8.9 26.5 5.6 20.3

L
la

m
a3

.1
-O

ur
s Positional 34.0 44.4 16.0 33.0 6.0 27.3

Locational 50.5 60.3 22.5 46.0 21.0 45.0
Temporal 34.5 46.2 11.5 31.0 3.5 19.0
Trait-based 43.0 53.7 26.0 44.1 15.5 29.6
Reason-based 23.0 36.3 8.0 24.9 4.0 16.5
All 37.0 48.2 16.8 35.8 10.0 27.5

M
is

tr
al

-O
ur

s Positional 18.5 31.8 5.0 23.5 3.0 21.6
Locational 22.0 33.0 5.0 16.8 4.5 15.5
Temporal 20.0 34.1 5.5 22.4 4.0 16.4
Trait-based 17.5 34.3 7.0 24.5 5.5 20.5
Reason-based 11.0 25.8 5.5 20.8 1.0 14.7
All 17.8 31.8 5.6 21.6 3.6 17.8

Table 9: Detailed breakdown of models performance for paragraph-level items and 2 conditions.
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Models 3 items 5 items 7 items

ACC Avg ACC ACC Avg ACC ACC Avg ACC
G

PT
-4

Positional 10.5 26.3 2.0 24.8 1.0 25.5
Locational 30.5 35.9 12.0 34.2 1.0 24.3
Temporal 24.5 39.2 7.0 31.7 0.0 20.3
Trait-based 36.5 44.9 8.5 33.4 1.0 26.1
Reason-based 25.5 41.8 2.5 27.1 0.0 20.5
All 25.5 37.6 6.4 30.2 0.6 23.3

C
ha

tG
PT

Positional 9.5 17.3 1.5 14.5 0.0 10.7
Locational 11.5 19.5 3.5 17.1 0.0 9.2
Temporal 9.5 20.0 0.0 17.6 0.0 12.8
Trait-based 19.0 30.2 1.5 20.1 0.0 16.5
Reason-based 12.0 28.3 0.2 18.3 0.0 16.1
All 12.3 23.1 1.7 17.5 0.0 13.1

L
la

m
a3

.1

Positional 7.0 27.6 2.0 26.6 1.0 22.0
Locational 33.0 41.9 9.5 35.6 0.0 23.7
Temporal 26.0 42.4 2.5 27.4 0.5 18.5
Trait-based 31.5 42.8 8.0 31.4 0.5 22.4
Reason-based 29.5 43.3 2.5 24.7 0.0 18.7
All 25.4 39.6 4.9 29.1 0.4 21.1

M
is

tr
al

Positional 13.0 33.3 1.0 25.0 0.5 17.5
Locational 6.0 26.3 0.5 18.8 0.0 15.0
Temporal 6.5 25.3 0.5 17.3 0.0 14.6
Trait-based 11.0 27.5 1.0 21.8 0.0 15.4
Reason-based 7.0 26.0 0.5 20.9 0.0 13.6
All 8.7 27.7 0.7 20.8 0.1 15.2

G
PT

-4
-O

ur
s Positional 10.5 29.3 0.5 22.2 0.5 19.5

Locational 38.5 45.3 13.0 40.9 3.5 31.8
Temporal 36.5 47.0 10.0 30.4 3.0 24.3
Trait-based 47.5 53.7 12.0 35.7 2.0 28.1
Reason-based 32.5 47.5 4.5 29.6 0.0 19.9
All 33.1 44.6 8.1 31.8 1.8 24.7

C
ha

tG
PT

-O
ur

s Positional 22.5 38.0 2.5 22.5 0.0 13.1
Locational 14.0 26.3 3.5 21.1 2.0 18.8
Temporal 18.5 33.8 2.5 22.3 0.0 16.4
Trait-based 16.0 34.5 2.0 23.3 0.5 18.7
Reason-based 14.0 31.4 2.0 22.1 0.0 18.8
All 17.0 32.8 2.5 22.2 0.5 17.2

L
la

m
a3

.1
-O

ur
s Positional 29.5 45.8 2.5 27.1 0.0 17.2

Locational 25.5 42.1 10.0 31.5 0.5 18.7
Temporal 25.5 44.4 1.5 24.4 0.0 16.7
Trait-based 26.5 43.1 9.0 36.2 0.0 22.5
Reason-based 22.5 33.5 2.5 23.7 0.5 16.5
All 25.9 41.8 5.1 28.5 0.2 18.3

M
is

tr
al

-O
ur

s Positional 15.5 34.7 1.0 21.5 0.0 17.5
Locational 14.5 29.5 1.0 17.3 0.0 13.0
Temporal 15.0 29.2 1.0 20.3 0.0 15.8
Trait-based 13.0 29.5 0.5 18.7 0.0 14.6
Reason-based 11.0 25.8 2.5 23.9 0.0 13.9
All 13.8 29.7 1.2 20.3 0.0 15.0

Table 10: Detailed breakdown of models performance for paragraph-level items and 3 conditions.
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