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Abstract

We tackle the problem of monocular-to-stereo video con-
version and propose a novel architecture for inpainting and
refinement of the warped right view obtained by depth-
based reprojection of the input left view. We extend the
Stable Video Diffusion (SVD) model to utilize the input left
video, the warped right video, and the disocclusion masks
as conditioning input to generate a high-quality right cam-
era view. In order to effectively exploit information from
neighboring frames for inpainting, we modify the attention
layers in SVD to compute full attention for discoccluded
pixels. Our model is trained to generate the right view video
in an end-to-end manner without iterative diffusion steps by
minimizing image space losses to ensure high-quality gen-
eration. Our approach outperforms previous state-of-the-
art methods, being ranked best 2.6 X more often than the
second-place method in a user study, while being 6 X faster.

1. Introduction

Emerging technologies such as Mixed-Reality headsets and
glasses allows users to easily experience immersive con-
tent, thanks to the use of separate displays for left and right
eyes. Rendering videos from left and right eye viewpoints
on these displays creates a stereoscopic 3D effect, giving
viewers a sense of depth. However, capturing such stereo-
scopic videos usually requires specialized cameras that can
capture both left and right eye perspectives simultaneously.
While manual monocular-to-stereo video conversion is pos-
sible, it is costly and time-consuming. This drives the need
for automated, fast, and high-quality conversion methods
that can enable large scale conversion of videos.

Recent advancements in video generation [4, 5] as well
as monocular depth estimation [29, 78] have led to signif-
icant improvements in the monocular-to-stereo conversion
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Figure 1. We present M2SVid, an end-to-end video inpainting
and refinement approach for monocular-to-stereo video conversion
task. Given an initial right view, obtained via e.g. depth based
warping, our method inpaints the missing region and refines the

artifacts introduced by warping in a feed-forward manner.

quality. A common approach is to use depth maps gener-
ated by a monocular depth model to warp the input video
to a virtual right camera and then inpaint the disoccluded
regions [9, 44, 63]. SVG [9] repurposes a pre-trained video
diffusion model for the inpainting task, while [44] trains
a custom model. Rather than only modifying discoccluded
regions, the recent concurrent work StereoCrafter [63] fine-
tunes a video diffusion model [3] to inpaint and refine the
full warped video, using only the warped view and dis-
cocclusion masks as input. While obtaining improved re-
sults, StereoCrafter still leverages an architecture primar-
ily designed for monocular video inpainting task, without
exploiting the constraints specific to stereoscopic video-
refinement. Moreover, the inference requires many diffu-
sion steps leading to high computational cost.

In this work, we propose a novel architecture for effi-
cient inpainting and refinement in the monocular-to-stereo
conversion task. Our approach is designed to leverage im-
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portant additional cues available in this task. Firstly, in the
areas that are not disoccluded, the right view largely re-
sembles the left one, where the image content is just hor-
izontally shifted. Thus, even if depth-based warping intro-
duces artifacts in the generated right view, we conjecture
that most of them can be fixed by relying on left view in-
formation. Secondly, the disoccluded regions are generally
small in most cases. Furthermore in the presence of cam-
era or scene motion, the disoccluded regions in one frame
are often visible at nearby frames, thus simplifying the
inpainting task into a spatial-temporal matching problem.
The aforementioned aspects motivate us to design M2SVid
(Monocular-to-Stereo Video conversion), a specialized ar-
chitecture which performs inpainting and refinement in an
feed-forward manner, without any iterative diffusion steps.
Our main contributions are the following. First, we ex-
tend the Stable Video Diffusion (SVD) architecture by em-
ploying the input left view, in addition to the warped right
view and disocclusion mask as conditioning for the refine-
ment task. This makes it easier for the model to propa-
gate information from the uncorrupted left view to the tar-
get right view, thus preserving high frequency details such
as fine structures. Secondly, rather than performing tem-
poral attention only over the same spatial locations as in
SVD [3], we compute full cross-attention for disoccluded
pixels. This provides greater flexibility to propagate useful
information from either nearby temporal frames or the as-
sociated left view, with a limited computational overhead.
Thirdly, we train our model in an end-to-end manner using
perceptual and fidelity based losses, enabling high quality
inpainting and refinement (See Fig. 1). Finally, unlike other
methods, we train on publicly available datasets, making
our approach reproducible and enabling fairer comparisons.
We perform quantitative evaluation, qualitative analysis,
as well as a human perception user studies to evaluate our
method. It shows that our M2SVid outperforms previous
state-of-the-art StereoCrafter and SVG, being ranked best
2.6x more often than StereoCrafter and 4.75x more often
than SVG, while running 6 x and 600x faster, respectively.

2. Related Work
2.1. Novel View Synthesis

Early methods for novel-view synthetis performed 3D re-
construction of the full scene given dense input views [26,
60, 79], which can then be used to render novel views.
While Multi-Plane Image (MPI)-based approaches [16, 68,
69] were successfully used to generate multiplane represen-
tations from single images, NeRFs [47] marked a milestone
in the field, and spawned many efforts to improve qual-
ity [1, 2], reduce latency [17, 49, 50, 73, 80], extend to
large-scale scenes [70], explicit representation [30], pose-
free setup [7, 36, 46, 67, 72, 76], or fewer inputs [10, 21, 31,

51, 54, 67, 75], including just a single image [38—40, 45].
Approaches such as CAT3D [13], NVS-Diffusion [27],
MultiDiff [48] directly generate the queried camera view
using a diffusion models. A few works also extend these to
videos [74]. While obtaining promising results, the gener-
ated views can still have artifacts due to the inherent diffi-
culties of rendering views with large viewpoint changes.

2.2. Monocular-to-Stereo Conversion

Unlike general novel-view synthesis, monocular-to-stereo
conversion renders a fixed right view from a left view,
enabling monocular content to be experienced in 3D on
mixed-reality headsets. Most prior works can be grouped
into two families. One line of work aims to directly generate
the right image/video given the left input [34, 62, 77, 77].
A notable example is Deep3D [77], which leverages an in-
ternal disparity representation to directly render the right
video given the left one. The second type of approaches
employ an explicit depth map to reproject the left image
to the right camera, and then inpaint the disoccluded re-
gions [9, 9, 22, 33, 44, 63, 64, 71]. Notably, Wang et
al. [71] learn a diffusion model for inpainting disoccluded
pixels using self-supervision with random cycle rendering.
SVG [9] uses a pre-trained video diffusion model for in-
painting. While the method can achieve spatio-temporal
consistency in the output, the inpainting result can be in-
correct due to the lack of task-specific fine-tuning. Mehl et
al. [44] aim to instead perform a geometry aware inpaint-
ing of the disoccluded areas using local background in-
formation, rather than generating arbitrarily realistic con-
tent. StereoCrafter [63], which is concurrent to our work,
fine-tunes a video diffusion model for inpainting the disoc-
cluded areas, on a large stereo dataset (not released). An-
other recent work SpatialDreamer [42] mitigates the neces-
sity of paired stereoscopic training data by proposing a self-
supervised training framework using a forward-backward
rendering mechanism. Note that a number of the above
methods do not release code or model, and are often trained
on private collected data, making a fair comparison difficult.

2.3. Diffusion Models

Diffusion Models [18, 55, 65] are generative models that it-
eratively denoise an input to produce the output. They have
been tremendously successful for the text-to-image [18, 53,
55, 58, 82] and text-to-video [4, 19] tasks. They have also
been successfully employed for diverse computer vision
tasks, thanks to the strong image priors learned by the mod-
els. These include image [8, 37, 41] and video [6, 35, 87]
inpainting, novel view synthesis [25, 48], as well as monoc-
ular depth estimation [14, 20, 29, 61], semantic segmenta-
tion [28], or normal estimation [12]. Conventionally, dif-
fusion models employ multiple denoising steps during in-
ference, leading to large computations cost. A number of



approaches aim to train one-step models to address this,
using knowledge distillation [81, 85], GAN training [43],
low-rank adaptors [85]. Garcia et al. [14] instead finetune a
pre-trained diffusion model to perform direct feed-forward
monocular depth estimation using end-to-end training. In
this work, we show that such an end-to-end training strategy
can also be employed for inpainting disoccluded regions in
monocular-to-stereo video conversion task.

3. Conditional Latent Diffusion Models

Here, we provide a brief background on diffusion models
employed in our method. Denoising Diffusion Probabilistic
Models (DDPMs) [ 18] are generative models trained to map
a simple noise distribution pr to the data distribution py,
by reversing a stochastic forward process p;, t = 1,...,T.
A denoising model vy (x;,t) is trained to generate an im-
age from pure noise by progressively denoising inputs x; at
time stamp ¢. In order to reduce computational complex-
ity, Latent Diffusion Models (LDMs) [55] operate in a la-
tent space of a Variational Autoencoder (VAE) [32]. Condi-
tional diffusion models [57, 83] extend the denoising model
Vo(x¢,t, c) to be conditioned on additional input ¢, such as
text [57], images [57], etc. to control the generation process.

Training and inference with conditional LDMs: During
training, given a data sample x (e.g., an image or video)
and its corresponding conditioning input ¢ (e.g., text or an-
other image), the data sample x is first encoded into a la-
tent representation z = F/(x) using VAE encoder E. The
latent representation z is perturbed through a forward diffu-
sion process: z; = \/a;z + /1 — &€ where € ~ N (0,1)
is Gaussian noise, and &; controls the noise schedule. In-
stead of predicting the noise € directly, diffusion models
usually leverage v-parameterization [59], where the model
Vo (2, t, c) learns to predict: v = az€ — /1 — a;z. There-
fore the model vy, typically a U-Net [56], is trained to re-
construct v, by optimizing the objective:

L= Ez,c,ewN(O,I),tNZ/{(T) [HV - {’9(zt7 t, C)HQ] . (1

During inference, the denoising process starts from pure
noise z7 and the learned denoiser vy (2, t, ) iteratively re-
fines the output over 7" steps to recover the final sample.

Diffusion as feed-forward models: Garcia et al. [14] pro-
pose to use pre-trained diffusion U-Net model as a feed-
forward models for pixel-to-pixel tasks such as depth and
normal estimation. In this scenario, the timestep ¢ is not
sampled anymore and fixed as ¢t = T to train the model for
single-step prediction. The noise € is additionally replaced
by the mean of the noise distribution, i.e., zero. Witht = T,
we get ar ~ 0, and thus zp = \/arz++/1 — are ~ 0 and
v = ay€ — /1 —ayz =~ —z. As such, the model directly
learns to predict the clean output v =~ —z starting from zero
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Figure 2. Overview of our monocular-to-stereo conversion
pipeline. Given an input monocular video, we first estimate per-
pixel depth, which is used to warp the input video to a right camera
view. The input video, the warped video, as well as the disocclu-
sion masks are then passed to our video inpainting and refinement
module to generate the final right view.

noise vector zp = 0. With such timestep sampling and as-
sumptions, the standard loss (Eq. (1)) converges to the Lo
loss in the latent space between the ground truth —z and the
predicted latents v¢(0, T, ¢):

£latent = EZ,C [H((_Z) - {,9(07 T’ C)||2] . (2)

However, [14] proposes decoding the predicted latents,
z = —vy(0,T,c¢), using a VAE decoder D to obtain the
reconstructed output X = D(Z). Instead of minimizing the
latent space error Eq. (2), they propose to optimize a task-
specific loss directly in image space with £ = L4 (X, X).

4. Monocular-to-Stereo Conversion Pipeline

In this work, we tackle the problem of converting any 2D
video to a 3D stereoscopic video. Given a monocular
video V' € RNXHXWX3 containing N frames of resolu-
tion  x W, the goal is to transform it into a stereoscopic
video pair (V;,V,), where V;, V. € RVN*XHXWX3 represent
the views corresponding to the left and right eyes, respec-
tively. Following prior work, we assume that the input video
V corresponds to the left-eye view, i.e., V; = V, and there-
fore, the goal is to only generate the right-eye view V. from
V. Note that multiple possible right-eye views V;. exist de-
pending on the baseline, i.e. the distance between cameras.
Hence we condition the generation on a maximum desired
disparity Dy.x between V; and V., that can be set by the user
to control the stereoscopic effect in practical applications.

An overview of the pipeline is shown in Fig. 2. We fol-
low the commonly employed strategy [44, 63] of perform-
ing depth-based reprojection to generate an estimate of the
right view, as described next.

Video-depth estimation: We use a monocular video depth
estimation model to obtain per-frame depths. Our method
is agnostic to the choice of depth estimation method.

Left-to-right video warping: We use the user-provided
maximum disparity Dy« to convert the depth maps to dis-
parities. The disparity maps are then used to forward-splat
the input left-view video to a virtual right view denoted as



Vwarp Note that the warped right frames inevitably con-
tain missing values (i.e. holes) introduced by disocclusions.
These missing pixels are indicated by the disocclusion mask
MP°¢, obtained as a by-product of the splatting.

Video inpainting and refinement: The final step in our
pipeline is to generate a high quality right view given the
warped video V“"P. As mentioned before, the warped
right video V”*"P contains holes introduced by disocclu-
sions. Furthermore, the warped right video V,***"? can also
contain artifacts introduced due to reprojection and depth
errors. In this work, we mainly focus on this final “video
inpainting and refinement” task. To this end, we introduce
an efficient end-to-end model to inpaint the disoccluded re-
gions and fix reprojection artifacts. Our architecture is de-
scribed in detail in the next section.

5. End-to-End Stereoscopic Video Refinement

We introduce M2SVid, an efficient end-to-end model for
generating a high-quality right video from the warped right
video V"*"P. While this problem is similar to the standard
video inpainting task, it comes with a set of unique proper-
ties, as described next.

(1) In our setup for rendering a right camera view, inpaint-
ing holes appear in regions where depth increases from left
to right. These regions correspond to background, so un-
like general-purpose inpainting (e.g., object removal), our
model can rely on context from only one side of the hole.

(2) In a general inpainting setup, the model is only required
to generate the missing pixels, while keeping the rest of the
image unaltered. In our case, however, regions outside the
inpainting mask may also contain artifacts from depth-map
errors or interpolation during forward splatting. These arti-
facts are especially common in presence of thin structures
such as fences, where the estimated depth can have sub-
stantial errors. Fortunately, we can leverage the original left
video to correct the errors introduced by the reprojection.

(3) In the image inpainting task, the model must halluci-
nate content in missing regions due to the lack of additional
information. A video inpainting model can instead use in-
formation from multiple frames, though large holes still re-
quire substantial hallucination. In our task, however, the
inpainting regions are much thinner (i.e., as controlled by
the maximum disparity Dp,x). As a result, the inpainting
problem is greatly simplified and the model can copy infor-
mation from other temporal frames to avoid hallucination.

We develop a custom architecture for the right view gener-
ation task aiming to exploit the aforementioned properties.

5.1. Overview

An overview of our method is shown in Fig. 3. We base
our model on a strong pre-trained video diffusion model to
benefit from learned video priors. In particular, we utilize

Stable Video Diffusion (SVD) [3], a latent video diffusion
model trained to generate videos from an input image. We
customize the SVD architecture for the stereoscopic video
generation task as follows. First, we condition each latent
generation on the input left video V;, reprojected right video
Vwarp as well as the disocclusion masks M2°¢. Secondly,
only for the inpainted pixels, we extend the spatial atten-
tion in SVD to operate over all pixels in all frames, instead
of just the pixels in the same spatial location. This gives
greater flexibility for the model to copy visible pixels from
neighboring frames in order to consistently inpaint. Fi-
nally, we train our model end-to-end on public stereoscopic
datasets to generate the refined right view in a feed-forward
manner, without requiring multiple denoising steps.

5.2. High-Frequency Details Preservation

Conventional video inpainting methods utilize masked
video to condition inpainting models, a strategy widely
adopted in stereo conversion methods [44, 63, 71], where
the inpainting model is conditioned solely on the warped
right video V,***"P and the disocclusion mask M. How-
ever, as discussed in Sec. 5 (2), the warped right video is
likely to contain artifacts even in non-inpainting regions.
Thus we propose to also utilize the original left video V}
as an extra input to the model. In more detail, the standard
SVD model takes the noisy latents for a video snippet and
the VAE encoding of a conditioning image as input. We
modify the SVD architecture to instead take the following
inputs as conditioning: the VAE encoding of the left video
snippet E(V}), the VAE encoding of the warped right snip-
pet E(V,*9P) and the disocclusion mask Mpeeresized o
sized to the same resolution as the VAE encodings. We thus
denote the model V¢(z, t, ¢) with conditioning inputs ¢ as

c= [E(Vl),E(‘/Twarp),MrOCC’TESiZEd] , (3)

where [.] refers to concatenation. This modification is
achieved by modifying the first convolution layer in the U-
Net, as is the common practise.

Using the original left video as conditioning allows the
model to easily infer high frequency details as well as other
information which might have been destroyed during the
depth based reprojection stage. As shown in Fig. 5, this
improves the quality of the generated right views, with high-
frequency details from the left view better preserved.

5.3. Spatio-Temporal Aggregation for Inpainting

The SVD model takes multiple video frames (i.e. a snip-
pet) as input and jointly denoise them to produce a tempo-
rally consistent output. Ideally, one would compute a full
attention over all spatial tokens in all frames for maximal
information flow. However, this would be prohibitively ex-
pensive, resulting in a complexity of H = N? x h? x w?
for each attention layer, where h and w are the size of the
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Figure 3. An overview of our proposed stereoscopic video refinement method. Our model inpaints the discoccluded regions in the warped
right view, and corrects possible artifacts introduced by warping errors. The model takes the VAE encodings of the input left view,
reprojected right view, and the disocclusion mask as conditioning to the U-Net. The latent encodings of the refined right view are then
generated in a single denoising step, and then decoded by the VAE Decoder to generate the output right video. In order to effectively
utilize the information from neighboring frames for inpainting, we extend the spatial attention layer in SVD to compute full attention for
the disoccluded tokens. The model is training end-to-end by minimizing image space and latent space losses.

latent representations. For this reason, the standard video
diffusion models such as SVD and VideoCrafter [5] fac-
torize the full attention computation into interleaved spatial
and temporal attention layers. In the spatial attention lay-
ers, only tokens from the same timestamp attend to each
other, while in the temporal attention layers, tokens from
the same spatial location attend to each other across differ-
ent timestamps. This drastically reduces the complexity to
N x h? x w? + N2 x h x w, which is more palatable.
However, factorizing full attention can reduce modeling
capacity for our task, especially in dynamic scenes with
camera motion. As discussed in Sec. 5(3), an occluded pixel
in one frame is often visible at a different spatial location in
another, simplifying inpainting problem. In such cases, we
would prefer full spatio-temporal attention. Fortunately, the
number of inpainted tokens constitute only a small fraction
of all tokens (usually < 5%). We exploit this property and
modify the spatial attention layer in SVD to allow tokens
corresponding to the disocclusion mask M to attend to
all other tokens, while using the spatial attention only for
other tokens. This improves the inpainting capability of our
model (Fig. 6) without significant computational overhead.

5.4. Efficient Feed-Forward Prediction

The diffusion models for text-to-image/video generation
and inpainting commonly utilize multiple denoising steps
to generate the final image [18, 55, 57]. This is important
due to the ill-posed nature of the problem wherein multiple
solutions exists for a single input prompt. Utilizing fewer
denoising steps usually results in blurry output. However,
in our task of right view generation, the inpainting regions
are generally small. Furthermore, as described in Sec. 5, the
neighboring temporal frames as well as the input left frames

contain a significant amount of information needed to gen-
erate a high-quality, temporally consistent right video. The
model therefore does not need to perform significant hallu-
cination in most cases, but rather needs to fetch the relevant
information from other frames. The relatively constrained
nature of our problem thus motivates us to generate the right
view in a direct feed-forward manner, rather than the multi-
step denoising used in prior work [9, 63], similar to the ap-
proach employed by Garcia et al. [14] for depth estimation.
Given the input left video V;, warped right video V;**"?,
and the disocclusion masks M, we generate the condi-
tioning input c to the model by obtaining the VAE encod-
ings of left and reprojected videos, as shown in Eq. (3). The
initial latent is set to the mean noise 0 as in [14] and the
timestamp is set to the highest noise ¢ = T'. As discussed
in Sec. 3, this choice of initial latent and timestamp leads
the Video U-Net to directly reconstruct a clean latent due
to the use of v-parameterization [59]. Therefore, the condi-
tioning input, together with the initial latent are then passed
through the Video U-Net v to obtain the latent encoding
Z = —vy(0,T,c) of the right video. This is then passed
through the VAE decoder D to obtain the predicted right
view V,.. The inference pipeline can thus be denoted as,

Vr = D(_OQ(OvTv C))

“)

Our feed-forward prediction strategy significantly reduces
the latency of the right view generation step compared to
existing methods, as shown in Table 2. Furthermore, this
also allows us to train the model end-to-end using image
quality losses w.r.t. to the ground truth right video V;., in
order to maximize the quality of the generated video. In
particular, we train the model using a combination of LPIPS
and L, losses directly in the image space, along with an
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auxiliary loss Eq. (2) in the latent space. Our final training
loss is thus defined as,

L= Liatent(2,2) + LLa(Vi, Vi) + Lipwes (Vi Vi) (3)

Here z corresponds to the VAE encodings of the ground
truth right video V,.. Note that during training, we keep the
VAE decoder frozen and only fine-tune the U-Net model.

5.5. Training Data

To train our model using the supervised objective Eq. (5),
we require a dataset stereoscopic videos with their corre-
sponding disparity maps. Due to the lack of large-scale
stereoscopic datasets, prior works focused on collecting pri-
vate datasets that usually have not been publicly released.
Instead we aim to train using publicly available datasets.
We utilize Ego4D [15] and Stereo4D [23] datasets for
our training. Ego4D a large-scale egocentric video dataset
containing approximately 263 long videos (80 hours in to-
tal) collected using a stereo camera, while the recently re-
leased Stereod4D [23] dataset consists of ~ 200K stereo-
scopic video clips sourced from ~ 7K online videos. The
Stereo4D dataset also provides rectified videos and dispar-
ity maps. The Ego4D dataset on the other hand contains un-
rectified videos, without any precomputed disparity maps.

\ - . T il ge
Figure 4. Qualitative comparison of our approach with state-of-the-art methods SVG [9] and StereoCrafter [63]. Our approach can
effectively preserve the high-frequency information from the input video and generate high-quality right views.

We thus perform the following steps to preprocess
Ego4D dataset. First, we uniformly sample frames and
perform dense feature matching with LoFTR [66], using
these matches to compute the fundamental matrix [86] via
RANSAC [11]. Next, we estimate rectification transforma-
tions for both views and rectify the videos. We then com-
pute the LoFTR matches again and shift the left and right
views horizontally until all disparities between the matched
points are positive and the smallest disparity is zero. This
ensures that the videos follow a rectified stereo setup. Fi-
nally, we use an off-the-shelf stereo matching method Bi-
DaVideo [24] to obtain disparity maps for all stereo pairs.

6. Experimental Results

In this section, we evaluate the quality of the right view
videos generated by our method, both qualitatively as well
as quantitatively. Further results, analysis, visualizations
and implementation details are provided in the Appendix.

Quantitative evaluation: To quantitatively evaluate our
approach, we need datasets containing left and right stereo
videos, together with the (pseudo) ground truth disparity
maps which are used to generate the warped right views for
each method. This allows us to directly compare the gener-
ated right views with the ground truth right views, without



Method Training data Denoising steps ‘ PSNR {1 MS-SSIM 1 LPIPS |
SVG [9] - (training free) 50 steps 25.6 0.926 0.217
StereoCrafter [63] private dataset 25 steps 249 0.909 0.242
StereoCrafter [63] private dataset 1 step 25.3 0911 0.262
M2SVid (Ours) Stereo4D + Ego4D 1 step 26.2 0.915 0.180

Table 1. State-of-the-art comparison on Stereo4D test set. Our ap-
proach obtains the best scores in terms of PSNR as well as LPIPS.

Denoising # Chosen best
Method ‘ steps ‘ Average rank] ‘ (rank=1) 1 Latency (s) |
SVG [9] 50 steps 2.88 16/112 1270.4
StereoCrafter [63] 25 steps 2.05 29/112 12.2
StereoCrafter [63] 1 step 3.46 4/112 24
M2SVid (Ours) 1 step 1.43 76 /112 2.1

Table 2. Desktop human perception study (112 rankings, 21
videos, 13 participants), with methods ranked from 1 (best) to 4
(worst). Our method achieved an average rank of 1.43, signifi-
cantly outperforming others — M2SVid ranked best 2.6 X more of-
ten than StereoCrafter (25 steps) and 4.75 % more often than SVG
— while being 6x and 635 x faster, respectively. Runtimes were
measured on an A100 GPU for 512 x 512 16-frame videos.

StereoCrafter [63] (25 steps) ~ Ours (1 step)

VR headset comparison preferred I —

StereoCrafter vs. Ours 9/105 39/105

Table 3. VR headset human perception study with 105 compar-
isons over 21 videos with 5 distinct users. Our method shows a
clear advantage over StereoCrafter with 25 denoising steps.

having to worry about errors introduced by incorrect depth
estimation. We rely on Stereo4D [23] and Ego4D [15] test
sets and use the standard image quality metrics PSNR, MS-
SSIM, and LPIPS [84] for evaluation. We compute the met-
rics independently over each video, and average them over
the full dataset. In the appendix, we also report metrics in-
side and outside disoccluded regions. All evaluations are
performed on 16-frame videos, sampled at 5 FPS, resized
to 512 resolution, and centrally cropped.

Qualitative evaluation: For qualitative analysis and user
studies, we only need monocular videos along with per-
frame depth maps. We use videos from the DAVIS
dataset [52] as well as videos from free online stock
sources'. We sample 16 frames per video at 8 FPS and re-
size them to 640 x 1152 resolution. We compute the depth
maps using the recent DepthCrafter [20] method.

6.1. Comparison to State-of-the-Art

Baselines: We compare our method to the recent state-
of-the-art monocular-to-stereo conversion models SVG [9]
and StereoCrafter [63]. SVG is a training-free method that
utilizes a frozen diffusion model to inpaint regions within
the disocclusion mask while not modifying the remaining
regions. StereoCrafter, which is an unpublished concur-
rent work, fine-tunes SVD 1.1 [3] to inpaint and refine the
warped right views in a diffusion-based denoising setup,
using the warped right views along with the disocclusion
masks as conditioning. We evaluate StereoCrafter using

lhttps://www.pexels.com/

the default 25 denoising steps as well as single denoising
step. We exclude the Deep3D [77] from the evaluation as it
doesn’t allow control over the baseline between the stereo
cameras and is shown to have inferior results [9, 63] com-
pared to SVG and StereoCrafter. In order to ensure a fair
comparison, we use the same depth maps for reprojection
in all methods. However, we use the official warping imple-
mentation provided by the authors for each method.

Qualitative Results: We perform a qualitative compar-
ison with the SVG and StereoCrafter methods in Fig. 4.
Since SVG only performs inpainting within the disocclu-
sion mask, it fails to fix the artifacts introduced by errors in
warping. Furthermore, it can incorrectly extend the ‘fore-
ground’ object to fill the inpainting hole due to lack of
task-specific fine-tuning. StereoCrafter with a single de-
noising step produces blurry inpainting and degrades the
quality of the warped areas as well. This is expected since
the model was trained using a multi-step denoising objec-
tive. When using 25 denoising steps, StereoCrafter infer-
ence generally produces sharp results. However it can strug-
gle at times to correctly generate the high-frequency details.
This is because the high-frequency information can often
get degraded during the warping step. Since StereoCrafter
only utilizes warped view and masks as conditioning, it can
struggle to recover the details. In contrast, our model is con-
ditioned on the input left view as well, allowing it to lever-
age the full context for inpainting and refinement. Further-
more, since our method is trained in an end-to-end manner
with image space losses, it can learn to minimize the loss of
high-frequency information introduced by VAE decoder.

Quantitative Results: We quantitatively compare our ap-
proach with SVG and StereoCrafter on Stereo4D in Tab. 1.
Despite using only a single-step inference, M2SVid signif-
icantly outperforms both baselines on all metrics, except
for SVG on MS-SSIM, where SVG benefits in MS-SSIM
from preserving non-empty pixels (warped using ground
truth disparity), while our method incurs a slight MS-SSIM
drop due to VAE compression, but achieves superior visual
quality by correcting warping errors, e.g., in thin structures.

User studies: We also perform two user studies. First, in
a desktop user study, participants viewed a random subset
of 21 videos from the DAVIS dataset and public sources.
For each video, anonymized right views from each method
were shown alongside the input left view and disocclusion
mask (as reference). Each of the 13 participants were asked
to rank the quality of the generated videos from 1 (best) to
4 (worst), taking into account factors such as temporal con-
sistency, image quality (i.e. sharpness) and lack of artifacts.
If methods are indistinguishable, the equal ranking was al-
lowed. In total, 112 rankings per method were collected
(Tab. 2). Our method significantly outperforms all others,
obtaining an average ranking of 1.43, compared to 2.05 ob-
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tained by StereoCrafter (25 denoising steps) and 2.88 by
SVG. In fact, our method was ranked first 2.6 x more often
than StereoCrafter (25 steps), and 4.75x than SVG.

To validate that the enhanced visual quality of our
method also improves user experience in stereoscopic view-
ing, we conducted a second user study using a VR headset.
Participants were shown anonymized stereo videos gener-
ated by our method and StereoCrafter (25 denoising steps)
and asked which version they preferred, or if both were
equal. We collected 105 comparisons from 5 users (21
each). As shown in Tab. 3, our method was preferred in 39
cases, while StereoCrafter was favored in only 9 (the rest
are tied), highlighting the clear advantage of our approach.

Run-time: Furthermore, our efficient refinement achieves
a 6x and 635x speed-up compared to StereoCrafter with
25 steps and SVG, respectively, on an A100 GPU (Tab. 2).

6.2. Ablation Study

We ablate the key components of our approach in this sec-
tion on the Ego4D and Stereo4D datasets.

Left view conditioning (Sec. 5.2): The impact of using the
left view as conditioning, in addition to using the warped
view and disocclusion mask is shown in Tab. 4. Condition-
ing on the left video shows a 6.0%, 5.8% and 9.8% improve-
ment in PSNR, MS-SSIM and LPIPS metrics respectively
on Ego4D with 25 denoising steps. A similar improvement

Left view

Warped view

Standard factorized attention Full-attention at disoccluded pixels (ours)

Figure 6. Using full-attention at dis-occluded pixels (Ours,
Sec. 5.3) enables the model to exploit information from visible
pixels in other frames to improve inpainting (see Appendix).

Model feed Inf. Stereo4D EgodD
Architecture forward steps |PSNRT MS-SSIM?T LPIPSL‘PSNRT MS-SSIM? LPIPS]

Cond. with V%P + M?c X 25 | 245 0.886 0.226 | 20.8 0.822 0.296
Cond. with V;@"P + M2 +V; 25 | 2438 0.891 0.215 | 22.1 0.870 0.267

X
Cond. with V@7 + M2 v 1 ‘ 26.1 0.913 0.187 | 21.5 0.837 0.276
Cond. with V,*%™P + M2 +V, / 1 26.2 0915 0.179 | 22.8 0.886 0.244
+full attention v 1 26.2 0.915 0.180 | 22.7 0.885 0.248

Table 4. Impact of left-view conditioning and full attention at dis-
occluded pixels on Stereo4D and Ego4D datasets.

Loss feed Inf. Stereo4D Ego4D
forward  steps | PSNRT MS-SSIM LPIPS| | PSNRT MS-SSIMt LPIPS|
A Standard loss (1) X 25 24.8 0.891 0.215 22.1 0.870 0.267
B Standard loss (1) X 1 25.7 0.901 0.242 23.0 0.877  0.320
C Ligtent (2) v 1 25.6 0.901 0.238 229 0.875 0.318
D Liatent + Lrewpes + Lii (5) v 1 26.2 0.915 0.179 22.8 0.886 0.244

Table 5. Impact of different inference strategies and losses.

is observed in the feed-forward case. This is because the
left video conditioning allows the model to recover high-
frequency details and correct artifacts introduced during the
warping, as seen in Fig. 5.

Full-attention at disoccluded pixels (Sec. 5.3): While this
contribution doesn’t impact metrics in Tab. 4 (likely due to
the limited number of complex scenes in the test set), our
qualitative analysis shows benefits for dynamic scenes with
camera motion, where both foreground and background
move. In Fig. 6, we observe that our method prevents hallu-
cinations (top example) and enables correct inpainting (bot-
tom) of thin structures. More results are in Appendix.

End-to-end training (Sec. 5.4): In Tab. 5, we ablate our
proposed end-to-end training strategy. When comparing the
model trained with the standard diffusion loss (Eq. (1)) with
25 (A) or 1 (B) diffusion step at inference, the single step
model leads to more blurry results than (A), as evidenced
by the 12% and 20% decrease in LPIPS on Stereo4D and
Ego4D respectively. End-to-end training with only latent
space supervision (Eq. (2)) (C) only slightly improves the
LPIPS metric. Our final training loss (Eq. (5)) (D), includ-
ing LPIPS and L1 losses in image space, largely improves
the image sharpness, as evidenced by the 24% and 22%
improvement in LPIPS on Stereo4D and Ego4D compared
to (C). Notably, we outperform the standard diffusion loss
with 25 inference steps (A) on all metrics and datasets.

7. Conclusion

We introduce an end-to-end approach for stereoscopic video
inpainting and refinement in this work. First, we extend
the SVD model to take the input left video, warped right
video, and disocclusion mask as conditioning. Next, we
modify the attention layers in SVD to compute full atten-
tion for the discoccluded pixels in order to improve inpaint-
ing quality. Crucially, we perform the video refinement
using a single denoising step, enabling end-to-end train-
ing with image space losses. Qualitative and quantitative
experiments, as well as user studies, demonstrate that our
method clearly outperforms prior state-of-the-art methods
for the monocular-to-stereo video conversion task.
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